Computer Science C010§‘é%(e)

Technical Report

University

Enabling Code Generation within the Sparse
Polyhedral Framework
Alan LaMielle, Michelle Strout

Colorado State University
{lamielle,mstrout}@cs.colostate.edu

March 16, 2010

Technical Report CS-10-102

Computer Science Department
Colorado State University
Fort Collins, CO 80523-1873

Phone: (970) 491-5792 Fax: (970) 491-2466
WWW: http://www.cs.colostate.edu

Enabling Code Generation within the Sparse Polyhedral
Framework

Alan LaMielle, Michelle Strout
Colorado State University
{lamielle,mstrout}@cs.colostate.edu

March 16, 2010

Abstract

Loop transformation frameworks based on the polyhedral model use libraries such
as Polylib, ISL, and Omega to represent and manipulate polyhedra and use tools like
CLooG to generate loops that scan the modified polyhedra. Most of these libraries
are restricted to iteration space sets and memory/array access functions with affine
constraints that preclude the specification of run-time reordering transformations (i.e.,
inspector/executor strategies) within the existing code generation tools. Automatic
generation of inspector and executor code is important for the parallelization and data
locality improvements in irregular computations such as those that manipulate sparse
data structures. We enable the specification of run-time reordering transformations
at compile time in the Sparse Polyhedral Framework (SPF) by representing indirect
memory references and run-time generated data and iteration reorderings using unin-
terpreted function symbols. This paper presents techniques for manipulating abstract
sets and relations that include affine constraints with uninterpreted function symbols
thus enabling code generation for run-time reordering transformations in the SPF.

1 Introduction

Applications such as molecular dynamics simulations and finite element analysis that ma-
nipulate sparse data structures have performance problems due to indirect memory accesses
such as A[B[i]]. A number of inspector/executor strategies [I3] have been developed to
improve the data locality [9] and to parallelize [20] such applications. To automate the ap-
plication of inspector/executor strategies individually and in composition, we are developing
an inspector/executor code generator.

We base the generation of inspector and executor code on the specification of irregular
computations and run-time reordering transformations in a previously presented frame-
work [19] that we now call the Sparse Polyhedral Framework (SPPED. In [19], we introduced
the concept of representing run-time reordering transformations (RTRTs) as Presburger rela-
tions with uninterpreted function symbols. Conceptually, an uninterpreted function symbol
f(p1,p2,...,p3) is a function whose output value is not known. Therefore, we use uninter-
preted function symbols to represent index arrays, permutation reordering functions, and
grouping/tiling functions at compile time even though their values will not be known un-
til runtime. Mathematically, this approach is powerful enough to represent and transform
irregular applications.

Current loop transformation frameworks such as Pluto [7] represent and manipulate
iteration spaces as polyhedra and/or unions of polyhedra. Code is generated to scan the
transformed iteration spaces by (1) determining loop bounds that are affine functions of
outer iterators and symbolic constants and (2) computing new memory/array accesses in

IThis term was originally coined by Larry Carter.

for (i=0; i<=5; i++) {
for(j=0; j<=4; j++) {
Ali,jl=fC...,A[i-1,j+1],...);
}

Figure 1: Original affine computation

for(i’=0; i’<=9; i’++) {
for(j’=max(i’,0);
jo<=min(i’,5); j ++) {
A[j’,i’_j’]=
£C.,AL57-1,i7-§ +1]1+1,..);

Figure 2: Transformed example affine computation

terms of the new iterators. Fourier-Motzkin elimination is used to project out existentially
quantified variables and to project out inner iterators in succession to determine the loop
bounds for outer iterators.

As an example of what polyhedral transformation frameworks can do, consider the origi-
nal and transformed affine computation in Figures[Iand 2} The iteration space specification
for the original 2D loop is the set

{Lil: (0<i<H)A0<j<4)}.

After applying a skewing transformation and a loop permutation transformation, the set
specification for the transformed iteration space is

{(I,i1: (0<i<BHAO<j<HAGF =i+))AG =1}

Generating code for the transformed computation requires determining loop bounds for the
new loop iterators (i.e., 1’ and j’) and determining the new array access functions within the
context of the transformed iteration space (i.e., A[i,j] to A[j?,i’-j’]). Fourier-Motzkin
elimination is a common technique used to project out the existentials i and j from the
transformed iteration space and modified access function. Fourier-Motzkin elimination is
also used to project out j’ to derive the loop bounds for i’.

Now consider the original and transformed irregular computation in Figures [3] and [
The original iteration space specification for the single “statement” is

I = {[time, tri] : (0 < time < T) A (0 < tri < R)}.

The iteration space set specification after applying data and iteration reorderings and a
partitioning is

I' = {[time, p, tri] : (0 < time < T) A p = proc(tri) A (0 < tri < R)}.

for(time=0; time<T; time++) A
for(int tri=0; tri<R; tri++) {
...datalni1[tril]...

}

Figure 3: Original irregular computation

for(time=0; time<T; time++) {
for (p=0; p<NUM_PROCS; p++) {
for(tri=0; tri<R; tri++) {

if (p==proc(tri)) {

:::data [sigma[nl[delta '[tril]]]...

Figure 4: Transformed irregular computation

Note that there are no affine bounds for the iterator p. The original access function for the
access to the array datal] is

Agiig = {[time, tri] — [out] : out = nl(tri)}.

Note the use of the uninterpreted function symbol (UFS) n1 to represent an index array of the
same name. The access function for the access to the array data[] after the transformation
is

;rig = {[time, p, k| — [out] : k = delta(tri) A out = sigma(nl(tri))}.
Note that, following transformation, this specification contains two constraints with the
existential tri that is not in the final code and that both of those constraints contain
uninterpreted function symbols (UFSs).

The problem is that existing libraries and techniques such as FM do not support pro-
jecting variables out of constraints involving uninterpreted function symbols. This paper
discusses techniques to project out such existentials and introduce affine bounds to enable
code generation for inspectors and executors (Section . Before introducing these tech-
niques, in Section 2] we discuss the mathematical framework this work is based on. Section []
evaluates these techniques by comparing our implementation’s performance and ability to
project out existentials to Omega, a similar library. Finally, we discuss related work in
Section [f and conclude in Section [Gl

2 The Sparse Polyhedral Framework (SPF)

We originally introduced the sparse polyhedral framework in [T9] where it was described as a
compile-time framework for composing run-time reordering transformations. In this section,
we provide a basic introduction to the SPF: how to represent computations in the SPF, how
to transform these computations, and introduce a new problem that arises in this context.
The SPF provides a mathematical framework for representing and transforming irregular
computations in a way that is analogous to the polyhedral model for regular computations.
SPF builds on the work discussed by Kelly and Pugh in [I1], which is based on the concept
of Presburger sets and relations. The Kelly and Pugh framework has the ability to express
computations and transformations in the polyhedral model as well non-affine memory refer-
ences and control flow using uninterpreted function symbols (UFSs) [I8]. The key addition
to the SPF over the Kelly and Pugh framework is the usage of UFSs to express run-time
entities such as index arrays and run-time reordering transformations at compile-time and
the requirement that the input and output domains of UFSs be specified to enable code
generation. We now review the concept of sets and relations, a few operations on these sets
and relations, and finish with a discussion of the problems that inhibit code generation.

2.1 Sets

We use sets to represent computation spaces. A set represents an unordered collection of
integer tuples in Z™. For the example in Figure 3] the computation space is specified with
the set

I = {[time, tri] : (0 < time < T) A (0 < tri < R)}.
In general sets have the form
s=A{[z1,...,zm] AL A (1)

where each z; is a tuple variable/iterator and each ¢; is a constraint. The constraints in a
set are equalities and inequalities that are affine expressions involving the tuple variables,
symbolic constants, and existentials. A symbolic constant represents a constant value that
does not change during the computation, but may not be known until runtime. An existential
is any variable in the constraints that is not a tuple variable or a symbolic constant and
represents an existentially quantified variable. Our definition of sets supports a single level
of existential quantification and no support for universal quantifiers. The above set s is said
to have arity m as it has m tuple variables.
Sets can also be unions of collections of integer tuples and have the form

s={Z: C1}Vv{Z:Co} v...v{Z:C,}, (2)

where & represents the vector of tuple variables and each C; represents the constraints for
each component of the union. We refer to the complete union of multiple sets as a disjunction
and each individual component of the union as a conjunction. This arises from the fact that
the constraints of a set are in disjunctive normal form.

Sets in the SPF can also have constraints with uninterpreted function symbol (UFS)

expressions. The following iteration space for the example computation in Figure [4| contains
the UF'S proc:

I' = {[time, p, tri] : (0 < time < T) A p = proc(tri) A (0 < tri < R)}.

An uninterpreted function symbol has the form f(a1,a2,...,a,,), where f is the name
of the function and a; through a,, are the m arguments to the function. Just as with
constraints, the arguments are affine expressions involving the tuple variables, symbolic
constants, existentials, and other uninterpreted function symbols (allowing for the possibility
of nested functions). Since a UFS is a function, it holds that for a UFS f, if ¢ = j then
f(@) = f(5). We use UFSs to represent entities in irregular computations that will not
be known until runtime, such as index arrays (nl1) and run-time reorderings (proc). The
domain and range of a UFS must be a union of polyhedra and thus cannot be expressed in
terms of other UFSs. Also, the arguments to UFS must be UFS expressions (i.e., affine and
UFS) of tuple variables and symbolic constants. An existential can only be an argument to
a UFS that is a bijection with only one argument.

2.2 Relations

We use relations to represent memory access functions, scheduling functions, and transfor-
mation functions. A relation represents an unordered mapping of integer tuples from Z™
to Z™. For the example in Figure |3, the access to the data array datal] is defined by the
relation

Agig = {[time, tri] — [k] : k = n1(tri)}.

This access function defines the indices of the data array data[] that are accessed given the
loop iterators time and tri. Notice here the use of the UFS n1, an example of using a UFS
to represent an index array. Index arrays introduce a layer of indirection when accessing a
data array and thus only at runtime can we know exactly what elements of the data array
are accessed.

In general relations have the form

r={[z1, ., Tm] = [Y1,-- s Yn] 11 AL AT (3)

where each z; is an input tuple variable, each y; is an output tuple variable, and each ¢
is a constraint. The constraints of a relation follow the same restrictions as set constraints.
The above relation r is said to have an input arity of m and an output arity of n as it has
m input tuple variables and n output tuple variables.

Unions of relations are also possible and have the following form (similar to unions of
sets)

{Z—=§:C1}V{ZT—-§:Co} V.. V{Z—7:Ct, (4)

where & is the vector of input tuple variables, ¥/ is the vector of output tuple variables, and
each C; represents the constraints for each component in the union.

As a second example, the scheduling/scattering [5l, 3] function for the statement in Fig-
ure [3]is defined by the relation

S = {[time, tri] — [0, time, 1, tri, 0]},

where we have denoted that the first and fifth output tuple variables are equal to zero and
the third is equal to one. A scheduling function maps iteration points of a specific loop nest
to points in an iteration space for the whole computation [I1L [l Bl B]. The lexicographic
order of the points in the full iteration space defines the order of execution for the whole
computation.

Figure [4] shows a transformed version of the original computation after applying three
transformations: consecutive packing, locality grouping, and a partitioning. Consecutive
packing (cpack) and locality grouping (locgroup) are data and iteration reordering heuris-
tics used to improve data locality by optimizing the order of data accesses and were in-
troduced by Ding and Kennedy [9]. In this example, we permute the data array datal]
and permute the iterations of the tri loop based on the run-time computed permutations
determined by cpack and locgroup. The partitioning introduces potential parallelism into
the computation by adding a processor loop and a guard that ensures that the compu-
tation for each triangle is only executed on the processor that the triangle is mapped to
(this is commonly referred to as an owner-computes strategy of parallelism). We note that
the introduction of the processor ‘guard’ is sub-optimal. We are developing techniques for
removing such guards, but the discussion of these techniques is beyond the scope of this
paper. This loop could be annotated using an OpenMP #pragma to introduce parallelism
across multiple processors. We represent these three transformations in the SPF using the
following relations:

Repack = {[in] — [out] : out = sigma(in)},
T1ocgroup = {[Co, time, ¢y, tri, ca] — [co, time, ¢, k, co] : k = delta(tri)}, and

Tpare = {[co, time, ¢y, tri, ca] — [co, time, cq, p, co, tri, c3] : p = proc(tri)}.

Note the use of the UFSs sigma, delta, and proc to represent mappings that will not be
known until runtime.

2.3 The Apply Operation

Building on our definitions of sets and relations from the previous sections, next we describe
three operations on sets and relations that are required by our transformation framework:
first we discuss the apply operation in this section followed by the inverse and compose
operations in Section To generate code a transformation framework must be able to
apply a schedule to a statement’s iteration space to determine the statement’s position in
the context of the full computation. A statement’s iteration space is represented with a
set (e.g., I = {[time, tri] : (0 < time < T) A (0 < tri < R)}). The scheduling function is
represented as a relation (e.g., S = {[time, tri] — [0, time, 1, tri, 0]}). By applying the original
scheduling function to the statement’s iteration space, we can derive the full iteration space
for that statement, including the nesting and ordering of that statement in relation to other
statements. For example:

F =5()
= {[time, tri] — [0, time, 1, tri, 0] }({[time, tri] : (0 < time <T) A (0 < tri <R)})
= {[0, time, 1, tri, 0] : (0 < time < T) A (0 < tri < R)}.

In general, the resulting set s of the apply operation s = r1(s1) has the same tuple
variables as the output tuple from the relation 71, has constraints from both the relation rq
and the input set s;, and additionally has constraints that the input tuple variables from
r1 are pairwise equal to the tuple variables of s;. Mathematically, the apply operation is
defined as (Z € s) <= (Fy st. ¥ € s1 Ay — & € r1). The general form of the apply
operation is

s =r1(s1) (5)
={[y1,--sYm) = [21,- -y 2] a1 Ao A }(
{lz1, .., &m] tehp1 Ao ACjrks1))
={[z1,-- sz AN ACE I AT =T A ATy = Ui

The apply operation is only legal when the arity of s; matches the input arity of r;. The
x; and y; variables become existentials in the resulting set, which later simplification will
project out. If s; and/or r; involve more than one conjunction, then the above operation
is performed on the Cartesian product of the two disjunctions of conjunctions. Note that
in the following formulas, C; and D; denote conjunctions of constraints rather than single
constraints:

r={g—Z:C1}V{g—Z:Co} V.. V{g— Z:Cr}, (6)
S1 Z{flDl}\/{f:Dg}\/...\/{fZDj},

s =ri(s1)

2.4 The Inverse and Compose Operations

We now describe both the inverse and compose operations. Just as with iteration spaces,
a transformation framework must be able to place access functions within the whole con-
text of the computation being represented and manipulated. The access function Ay =
{[time, tri] — [k] : k = nl(tri)} is specified in terms of only the iterators of a single state-
ment (in this case time and tri). Using the scheduling function for the statement (e.g.,
S = {[time, tri] — [0, time, 1, tri, 0]}) with the inverse and compose operations allows us to
construct an access function that is in terms of the full iteration space F. The scheduling
function is a relation from the iterations of a single statement to the full iteration space.
We use the inverse operation to produce a new relation from the full iteration space to
the iterators for the single statement. Finally, we compose the original access function (a
relation from the single statement iterators to an array position) with this new relation to
produce the full access function from the full iteration space to an array position:

Agal =Aorig(S™H)

={[time, tri] — [k] : k = n1(tri)}(({[time, tri] — [0, time, 1, tri,0]})"")
—{[time, ri] — K] - k = 1 (txi) }({[0, time, 1, tri, 0] — [time, txi]})
={[0, time, 1, tri, 0] — [k] : k = n1(tri)}.

In general, the resulting relation r of the inverse operation r = ri 1is a relation with the
same constraints as r; but with input and output tuple variables swapped. Mathematically,
the inverse operation is defined as (¥ — ¢ € 1) <= (¥ — & € r1). In general, inverse has
the form

r=r’ ™)
={Zf—7:C}V{Z - §:Co} V.. V{Z—i:C.H?
z{;&'—>5c’Cl}\/{gj’—>fCQ}\/\/{g’—mZ’C’k}

The calculation of the full access function also utilizes the compose operation. The
resulting relation r of the compose operation r = r1(r2) has the input tuple variables from

ro and the output tuple variables from rq, has constraints from both relations r; and rs,
and additionally has constraints that the output tuple variables from ro are pairwise equal
to the input tuple variables from r;: Mathematically, the compose operation is defined as
(Z—yer)<— (FZst. T—Z€ryNZ— §€rq). In general, compose has the form

r =ri(rg) (8)
={[d1,...,di] = [e1,....en] g1 Ao ACjprgr f(
{lat,- -, am] = [b1,...,bi] :ea Ao Aeg))
={la1,...,am] = [e1,...,en] i1 AL A Chpjpr AbL =di AL A D = di}

The compose operation is only legal when the output arity of 5 is equal to the input arity of
r1. The b; and d; variables become existentials in the resulting set, which later simplification
will attempt to project out. If r; and/or 79 involve more than one conjunction, then the
above operation is performed on the Cartesian product of the two collections of conjunctions
as follows:

rm={d—e: R}v{d—ée:F}Vv.. Vv{d-e:F}, (9)
7"2:{d—>5:Cl}\/{(_i—>g:Cg}\/...\/{c_i—ﬂ_)':Ck},

r =r1(r2)
—{@—c:CLAFANb=d}V{@—&:CL ANF, Ab=2¢&}V
N{@—E:CLANFjAb=d}.

2.5 The Problems Arise: Transforming the Computation

This section presents two examples of situations where an operation produces a set or relation
for which we are unable to generate code using existing code generation techniques. We have
shown in Sections and how to represent the computation in Figure [3] and
how to manipulate this representation to prepare it for transformation. Now we show that
applying the transformations Repack, Tiocgroups and Tpare to the data and the computation
results in sets and relations that inhibit code generation.

We first apply the consecutive packing transformation to the computation. This in-
volves composing the access function transformation (e.g., Repack = {[in] — [out] : out =
sigma(in)}) with the full access function for the statement (e.g., Agn = {[0, time, 1, tri, 0] —
[k] : k =nl(tri)}) to derive the transformed access function:

/full :chack(Afull)
={]0, time, 1, tri, 0] — [out] : out = sigma(nl(tri))}.

When applying an iteration permutation RTRT such as locality grouping, we must up-
date the access functions of the statements that are within the loop whose iterations are
being permuted using a transformation relation (e.g., Tiocgroup = {[Co,time, ¢y, tri, co] —
[co, time, 1, D, 2, tri, c3] : p = proc(tri)}). As an example, consider the following operations
that update Af

-1
gjll :A%ull(Tlocgroup)
={[0, time, 1, tri, 0] — [out] : out = sigma(nl(tri))}(
{[co, time, c1, k, ca] — [co, time, c1, tri, co] : k = delta(tri)})
={]co, time, c1, k, ca] — [out] : k = delta(tri) A out = sigma(nl(tri))}.

Notice this operation results in the presence of the existential tri as the input to the UFS
delta. This is a problem as existing techniques such as Fourier-Motzkin do not support
projecting out existentials that are inputs to UFSs. To generate efficient code for this access
relation, we need the output tuple variable out expressed as a function of the input tuple
variables.

Finally, we apply a partitioning transformation (e.g., Tpare = {[co,time, ¢y, tri, co] —
[co, time, c1, p, 2, tri, c3] : p = proc(tri)}) to the computation by updating the iteration
spaces of the affected statements (e.g., F = {[0, time, 1, tri,0] : (0 < time < T) A (0 < tri <

R)}):
F' =Tpare (F)

={]co, time, c1, tri, c3] — [co, time, c1, p, Co, tri, c3] : p = proc(tri) }(
{[0, time, 1, tri, 0] : (0 < time < T) A (0 < tri < R)})
={]co, time, c1, p, 2, tri, cg] : (0 < time < T) A (0 < tri < R) A p = proc(tri)}.

Note the fact that the iterator p does not have explicit affine bounds but rather is equal to
the output of the UFS proc. In order to generate code that iterates over all points in this
set, we need affine bounds for each iterator/tuple variable.

The application of both the locality grouping and partitioning transformations resulted in
situations where code generation is inhibited. In the first case, the resulting access function
contains a constraint where an existential is an input to a UFS. In the second case, we do
not have explicit bounds on a loop iterator. These types of situations inhibit the generation
of polyhedral scanning loop nests by tools such as CLooG [3, [, [5] or the generation of
expressions for array accesses based on access functions. Section [3]introduces techniques to
rectify these situations to enable code generation.

3 Constraint Simplification in the SPF

Section [2 showed examples of how a computation can be represented and transformed using
the Sparse Polyhedral Framework. After applying RTRTSs to the computation it is possible
to produce constraints that contain existentials as inputs to UFSs (e.g., AY;;) or tuple
variables without explicit affine bounds (e.g., F')—situations that inhibit code generation.
This section introduces remedies for these situations.

We identify three general situations where code generation is inhibited. In the following,
let v be an existential, let ¢ be a tuple variable, let f be a UFS:

e ¢ = f(v): An existential is an input to a UFS,

e v = expr: An existential is equal to an affine expression, possibly containing a UFS
instance, and

e t = f(...): A tuple variable is equal to a UFS instance and no affine bounds are present
for that variable in other constraints.

These situations were generalized from specific instances of each that arose during our work
with the SPF on an example benchmark. This list is thus necessary but may not be sufficient
for enabling code generation—there may be other situations involving UFSs that we have
not encountered that make it difficult to generate code. We examine each of these general
cases in the following subsections.

3.1 Inverse Function Simplification

When performing operations on sets and relations to represent and transform computations
in the SPF, it is possible to introduce an existential that is an input to a UFS. We have
shown that this is possible by applying the locality grouping iteration permutation RTRT
to our example computation. Specifically, we produced the following access function:

A{ 1 = {[co, time, c1, k, co] — [out] : k = delta(tri) A out = sigma(nl(tri))}.

Notice in the constraint k = delta(tri) that the argument to the function delta, tri, is an
existential. Therefore we need to manipulate these constraints in some way so that we can
remove the existential.

If we are given the fact that the UFS delta is invertible (with its inverse named delta™
for example), we can utilize this information to remove the existential from the constraints.
More specifically, we can utilize information that delta is a bijection to perform an obvious
simplification on the equality constraint. We often deal with permutations such as those

1

that are the result of cpack or locgroup. Since permutations are bijections, they can be
inverted automatically at runtime. For this simplification to apply, we only require to know
that a given UFS is a bijection and what the inverse of the UFS is named.

When we apply this simplification rule to the constraint in the relation A{;, we obtain
the following relation:

AL = {[co, time, c1,k, ca] — [out] : delta™* (k) = tri A out = sigma(n1(tri))}.

This relation is now one step closer to having all existentials removed from the constraints.
At this point, assuming we knew sigma and nl were also bijections, we could apply the
inverse simplification rule twice to the constraint out = sigma(ni(tri)) to obtain the con-
straint n1~!(sigma~!(out)) = tri. In order to generate code, however, we require con-
straints be in terms of the output tuple variable out. Additionally, the permutability of n1
is not known and therefore we could not apply this rule for this UFS to expose the existential
tri. The next section will discuss how we completely remove the existential tri from the
remaining constraints using a different approach.

In general, the inverse function simplification applies to equality constraints of the form:

where t is a tuple variable, v is an existential, and we know that f is a function that admits
an inverse and that inverse is f~!. In this situation, we can transform the constraint into:

fHt) =,

to produce a constraint with tuple variable ¢ as input to the inverse function f—!.
We show that this is a legal constraint manipulation using the fact that f admits an
inverse:

t=f(v) (10)
= [Tt =" (f(v)

— fHt) =v.

3.2 Existential Equality Simplification

We utilize a second simplification rule to remove existentials involved in equalities with
UFSs. The use of the inverse function simplification in the previous section produced the
following relation:

A = {[co, time, c1, k, co] — [out] : delta™* (k) = tri A out = sigma(n1(tri))}.

This relation still contains the existential tri We remove this variable using the existential
equality simplification. If an existential is present in a equality constraint, we can remove
that constraint and replace all instances of that variable’s equivalent value. In this example,
we replace tri with delta™!(k) to produce the following relation:

Ay = {[co, time, ¢y, k, co] — [out] : out = sigma(nl(delta™(k)))}.

After applying this simplification, we have removed all existentials from the constraints of
this relation and thus may generate code for this access function.

In general, the existential equality simplification can be used with equality constraints
of the form

v = expr,

where v is an existential and expr is any expression, possibly involving UFSs (though this
is not required). If an equality constraint of this form is found, we can:

1. remove the equality constraint from the collection of constraints of the set or relation
and

2. replace all instances of the existential v with the expression that v is equal to (expr).

The legality of this simplification can be ensured by considering the fact that we apply
this simplification to equality constraints. Since the existential in question is equal to the
expression we are replacing it with, we know that simply removing that constraint and
modifying all other constraints that reference this existential is legal. Note that we do not
apply this simplification rule in situations where the existential in question is not used in
other constraints.

3.3 Affine Approximation

In this section, we introduce a method for introducing affine bounds for tuple variables that
are constrained by an equality with a UFS. Consider the following full iteration space that
we derived at the end of Section 2.5t

F" = {[co, time, c1, p, ca, tri, c3] : (0 < time < T) A (0 < tri < R) A p = proc(tri)}.

One method of code generation requires that all iterators of an iteration space have affine
bounds. However, note that the tuple varible p is only involved in an equality constraint
that contains a UFS.

To fix the situation when a tuple variable has no explicit affine bounds, we utilize addi-
tional information about the UFS to which it is equal. Specifically, we note that if we know
the range of the UFS proc in the above example, we can introduce inequalities that bound
the tuple variable p:

F’ ={]co, time, ¢1, p, c2, tri, c3] :
(0 < time < T) A (0 < tri < R) Ap = proc(tri) A (0 < p < n_procs)}.

Here we have introduced two inequalities that bound p from above and below. We utilize
the information that the UFS proc ranges from 0 to n_procs to allow us to approximate the
value of p. After this approximation, we are able to generate a loop that scans the range of
possible values for p.

In general, suppose we have a constraint of the form

E=f(.),

where t is a tuple variable, f is some UFS for which we have compile-time range information
and no other affine bounds are available for ¢. In this case, since we know the range of f,
we can add approximate constraints on ¢. Specifically, we can conservatively say that t will
fall somewhere within the upper and lower bounds of the range of f, or

lower_bound(range(f)) < t < upper_bound(range(f))

in constraint form. We may safely introduce these inequality constraints without changing
meaning of the set or relation since we are only bounding the values of the tuple variable ¢
and not restricting its value beyond the original equality constraint.

3.4 Simplification Algorithm

In the previous sections we described three techniques for manipulating set and relation
constraints that are required to enable code generation of the transformed code in Figure [4]
Our approach for applying these three techniques as a complete simplification algorithm is
shown as Algorithm [[] Our implementation uses this algorithm in two situations: at the
time a set or relation is constructed from a user’s specification and on a set or relation that
is the result of an operation such as apply, inverse, or compose.

This algorithm attempts to successively project out each existential present in a set or
relation’s constraints. For each existential we attempt to apply the inverse function simpli-
fication and existential equality simplification as many times as they are applicable. Once
these have been applied, we check that no existential is present in constraints containing a
UFS. We then use Fourier-Motzkin elimination to project the existential out of any remain-
ing affine constraints. Finally, we apply the affine approximation technique to introduce
affine bounds for tuple variables where possible.

10

for each ezistential v do
Inverse function simplifications;
Existential equality simplifications;

if v present in a UFS constraint then
| fail

end

Project out v from the constraints using Fourier-Motzkin;
end
Affine approximation;

Algorithm 1: Set/Relation Simplification Algorithm

4 Evaluation

In this section, we present a discussion concerning the complexity and performance of the
set and relation operations and simplifications. We first discuss the complexity of each
operation and the simplification algorithm presented in Section [3.4] The second half of this
section will present the performance of our implementation of the set and relation concepts
from this paper.

4.1 Operation and Simplification Complexity Analysis

Understanding the algorithmic complexity of the set and relation operations and simpli-
fications allows us to have some idea for the upper bound on the expected running time
of a code generation tool based on our techniques. We first present the complexity of the
constraint simplification techniques followed by the overall complexity of the set/relation
operations. For the following discussion, take IV to be the number of constraints and M to
be the number of conjunctions.

In general when performing an operation such as union or compose, we first perform the
steps required by the operation to produce a new set of constraints. Following this we apply
our simplification techniques to attempt to project out existentials from the constraints.
Therefore, the complexity of each operation is a function both of the operation itself and of
simplification. Since simplification is common to all operation complexity, we discuss this
first.

We have discussed our simplification algorithm in Section [3.4] and have presented it as
Algorithm [T} For each existential present in a set or relation’s constraints, this algorithm
attempts to project out that variable. It first applies the inverse function simplification
and the existential equality simplification to remove existentials from constraints containing
UFSs. It then uses Fourier-Motzkin elimination to project the variable out of the constraints
that do not contain UFSs. The complexity of Fourier-Motzkin elimination is double expo-
nential in the number of constraints and variables. Therefore, this is the dominating term for
our simplification algorithm. However, for the sake of completeness, we note that both the
inverse function simplification and the existential equality simplification are O(N) for each
existential since we must perform a linear scan through all constraints. Also, as an optimiza-
tion, we note that we can utilize the existential equality simplification when projecting out
existentials involved in equality constraints. We have found that this optimization avoids
running full FM in the majority of cases, avoiding the worst-case exponential complexity of
FM.

The complexity of both the apply and compose operations is O(M?) in the total number
of conjunctions since we must create a new conjunction for every pair of conjunctions between
operands. Union is O(M) since we must combine all conjunctions into a single set or relation.
Inverse is O(1) since we only change the order of the tuple variables and no manipulation
of the conjunctions or constraints is necessary.

4.2 Implementation Performance

We evaluate the performance and power of our set and relation implementation by comparing
to Omega [T}, [T0] where possible. We base our evaluation on a suite of set/relation operations
taken from a real-world run of our tool, IEGen. This run consisted of the application of three
transformations (cpack, locgroup, and a loop alignment) and one optimization (pointer

11

update, or collapsing nested UFSs) to a molecular dynamics benchmark. The benchmark
itself, moldyn [I4], consisted of approximately 100 lines of C code with three main loops
nested within an outer timestep loop. We extracted only the sets and relation operations
from this run to form our suite of operations for benchmarking. We measured various aspects
of performing these operations after constructing the arguments to each operation. We first
present information about these operations only related to our implementation followed by
a discussion of our implementation compared to Omega.

The whole run of IEGen of the transformation sequence on the moldyn computation took
a total of 1.85 seconds. Running just the set and relation operations that this consisted of
(the operations suite) took 1.46 seconds. Figure [5| presents the number of each operation
type for 77 total operations that the operations suite contains. Figure [f] shows a histogram
of the numbers of tuple variables in the results of the operations. Figure[7]shows a histogram
of the numbers of existentials that need to be projected out for the operations. The time
to run each of the collections of individual operation types is shown in Figure[§] Across all
operations, a total of 246 existentials were projected out. Most of these were projected out
using one or more applications of the existential equality simplification. Only 16 existentials
required using the full Fourier-Motzkin algorithm to be projected out of the constraints.
The inverse simplification rule was applied a total of 30 times.

Omega’s support for UFSs is limited [I8,[23]. Syntatically, it requires that inputs to UFSs
be prefixes of the tuple variables. Additionally, any attempt to project out an existential
that is the input to a UFS results in an UNKNOWN constraint being added to the result
signifying that the result is only an approximation and may not be correct. Due to these
restrictions, Omega is not able to perform all of the 77 operations that the operations suite
contains. We filtered out the operations that Omega could not support to create a subset of
operations that Omega can support. Of the 136 sets and relations that were arguments to
the operations 81 did not contain UF'Ss. The total number of operations where all arguments
contain no UFSs is 33, composed of:

e Inverse: 4
e Apply: 16
e Compose: 4
e Set Union: 9

We use these 33 operations to compare our implemementation performance to Omega’s. Fig-
ure [J] presents the times taken for our implementation and Omega to perform all operations
from each of the four types above. In most cases we are two orders of magnitude slower than
Omega. We note that our initial implementation goal was not raw performance but rather
supporting the operations and simplifications required for code generation. To improve the
performance, we could utilize techniques implemented in Omega [I7]. The performance goal
for our implementation is to be fast enough to support interactive use of IEGen. For moldyn,
we’ve come very close to meeting this goal, but there is clearly still room for improvement.

5 Related Work

Our work on the Sparse Polyhedral Model builds upon many ideas and projects within the
field of program optimization. This section describes how the work we present in this paper
relates to two areas of work: libraries for program representation and tools for program
optimization and code generation. We use the techniques in this paper to implement a
library for representing programs within the SPF. Additionally, we are developing a tool
that uses this library to generate optimized irregular computations.

We note four polyhedral libraries that provide representations and operations on polyhe-
dra: Omega, Polylib, PPL, and ISL. The Omega project [IT],[10] is most closely related to the
work we present in this paper. Used primarily for data dependence analysis, Omega’s usage
of sets and relations (based on Presburger arithmetic) is the same mathematical concept
that our work is based on. The Omega library provides an implementation of sets and rela-
tions with limited support for UFSs. Unlike the techniques we have presented in this paper,
Omega does not utilize any additional information about the UFSs. Therefore, the library is
unable to perform operations like the inverse function simplification or affine approximation.

12

25

Set/Relation Operation Counts

Number of Operations

18

12

Compose

Figure 5: Counts of number of operations

Apply Inverse

Set Union Relation Union

of 5 types in the

Number of Output Tuple Variables per Operation Result

25F

Frequency of Number of Tuple Variables

Figure 6: Histogram of numbers
operations suite

4

4 6
Number of Tuple Variables

of tuple variables in the results

Number of Existentials per Operation

20

15-

Frequency of Number of Existentials

4

6
Number of Existentials

operations suite

of all operations in the

Figure 7: Histogram of total number of existentials for all operations in the operations suite

13

IEGen Operations Times
T T

100

80

Time (% of all operations)

$ 0 0,
0 e
Compose Apply Inverse Set Union Relation Union All
Type of Operations

Figure 8: Times for performing various collections of operations in the operations suite
grouped by type

IEGen vs. Omega Operations Times

0.6

I |EGen
Hl Omega

0.51

Time (seconds)
o o
W »

o
N

0.1

0.0

Compose Apply Inverse Set Union All
Type of Operations

Figure 9: Times for performing various collections of operations in that Omega could run

14

Other limitations are that inputs to uninterpreted functions in Omega can only be prefixes
of input and/or output tuples and composition of two relations with uninterpreted functions
results in an UNKNOWN constraint. To a limited extent, uninterpreted function symbols
have been used in Omega to represent indirect array accesses for determining more accurate
data dependence information.

Polylib [22, 12] is a library that provides a way to represent and manipulate unions of
parameterized polyhedra. Polylib maintains both constraint and generator representations
of the polyhedra as some operations are more efficient on one representation than the other.
Our implementation uses an approach similar to the constraint representation. Polylib does
not have support for UFSs and thus is not able to support the class of programs we are
targeting. Another library that represents polyhedral is PPL [2]. Similarly to Polylib,
PPL maintains dual representations of polyhedra. Just as with Polylib, PPL represents
rational polyhedra as well. PPL has no support for representing UFSs. Finally, ISL [21] is a
fourth library that represents polyhedra. This library recently became the default polyhedral
backend for CLooG.

CLooG, Pluto, Graphite, FADA, and PoCC are tools used for code generation, program
analysis, and optimization that utilize one or more of the polyhedral libraries. CLooG [3} /4, [5]
is a tool for generating code that scans a specified union of polyhedra. We use CLooG for
generating loop nests that scan the iteration spaces of our computations. Pluto [7] is an au-
tomatic polyhedral loop optimizer and parallelizer that utilizes a large set of tools from the
polyhedral community including CLooG for generating scanning loop nests. Graphite [15] is
used as a polyhedral optimizing backend for the popular GCC compiler suite. FADA [8] [6]
(Fuzzy Array Dataflow Analysis) is a tool for performing dataflow analysis on irregular pro-
grams. It performs an ’instance wise dependence analysis for non-static control programs’.
The FADA Toolkit is a partial implementation of this analysis. FADA offers full support
for static control programs as it extends Feautrier’s Array Dataflow Analysis (ADA). Ad-
ditionally, FADA supports while loops and conditionals, scalar and array references,and
indirect array accesses (such as we require in SPF) and non-affine array accesses. FADA
does not support pointer indirection and array cell aliasing. The output from FADA is a set
of dataflow dependences in the form of quasts (quasi-affine selection tree). Our work may
be able to utilize a tool like the FADA Toolkit to support dataflow analysis to determine if
a specified transformation is legal. Finally, PoCC [I6] (the Polyhedral Compiler Collection)
is a source-to-source optimizing compiler.

6 Conclusions

Many scientific computations utilize indirect array accesses and therefore require inspec-
tor/executor strategies for performing run-time reordering transformations. The Sparse
Polyhedral Framework (SPF) is an extension to the polyhedral model that supports the
compile-time application of run-time reordering transformations (RTRTs) and the genera-
tion of inspectors and executors that implement the RTRTs. The key addition of the SPF
is the ability to utilize sets and relations with uninterpreted function symbols (UFSs) in
constraints at compile time to represent run-time entities such as index arrays and run-time
reorderings. To generate code for iteration sets and array access functions that involve UFS
constraints, it is necessary to project existentials out of such constraints and provide all
of the loop iterators with affine constraints. We present three simplification rules that if
applied to these situations, produce sets and relations for which we are able to generate
code. We evaluate our implementation of these techniques by comparing the functionality
and performance to Omega. Using the sets and relations that support UFSs enables us to
develop a transformation framework and programming model that supports the application
of RTRTs to irregular codes.

References

[1] N. Ahmed, N. Mateev, and K. Pingali. Synthesizing transformations for locality en-
hancement of imperfectly-nested loop nests. Int. J. Parallel Program., 29(5):493-544,
2001.

15

[2]

[10]

[11]

[12]
[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

R. Bagnara, P. M. Hill, and E. Zaffanella. The parma polyhedra library: Toward a
complete set of numerical abstractions for the analysis and verification of hardware and
software systems. Sci. Comput. Program., 72(1-2):3-21, 2008.

C. Bastoul. Generating loops for scanning polyhedra. Technical Report 2002/23,
PRiSM, Versailles University, 2002.

C. Bastoul. Efficient code generation for automatic parallelization and optimization.
pages 23-30, october 2003.

C. Bastoul. Code generation in the polyhedral model is easier than you think. In Pro-
ceedings of the 13th Interntional Conference on Parallel Architecture and Compilation
Techniques (PACT), 2004.

M. Beloucha, D. Barthou, and S.-A.-A. Touati. FADA Toolkit Users Guide. University
of Versailles Saint-Quentin en Yvelines, France, October 2009.

U. Bondhugula, A. Hartono, J. Ramanujam, and P. Sadayappan. A practical automatic
polyhedral parallelizer and locality optimizer. SIGPLAN Not., 43(6):101-113, 2008.

J.-F. Collard, D. Barthou, and P. Feautrier. Fuzzy array dataflow analysis. In PPOPP
’95: Proceedings of the fifth ACM SIGPLAN symposium on Principles and practice of
parallel programming, pages 92-101, New York, NY, USA, 1995. ACM.

C. Ding and K. Kennedy. Improving cache performance in dynamic applications through
data and computation reorganization at run time. In Proceedings of the ACM SIGPLAN
Conference on Programming Language Design and Implementation, pages 229-241, At-
lanta, Georgia, May 1999.

W. Kelly, V. Maslov, W. Pugh, E. Rosser, T. Shpeisman, and D. Wonnacott. The
Omega Calculator and Library, November 1996.

W. Kelly and W. Pugh. A unifying framework for iteration reordering transformations.
Technical report, University of Maryland, College Park, MD, USA, October 1995.

V. Loechner. Polylib: A library for manipulating parameterized polyhedra, 1999.

R. Mirchandaney, J. H. Saltz, R. M. Smith, D. M. Nico, and K. Crowley. Principles of
runtime support for parallel processors. In ICS ’88: Proceedings of the 2nd international
conference on Supercomputing, pages 140-152, New York, NY, USA, 1988. ACM.

R. Ponnusamy, Y.-S. Hwang, R. Das, J. Saltz, A. Choudhary, and G. Fox. Supporting
irregular distributions in fortran 90d/hpf compilers. Technical report, College Park,
MD, USA, 1994.

S. Pop, A. Cohen, C. Bastoul, S. Girbal, G. A. Silber, and N. Vasilache. Graphite:
Loop optimizations based on the polyhedral model for gcc. In Proc. of the 4th GCC
Developper’s Summit, pages 179-198, June 2006.

L.-N. Pouchet, U. Bondhugula, C. Bastoul, A. Cohen, J. Ramanujam, and P. Sadayap-
pan. Hybrid iterative and model-driven optimization in the polyhedral model. Technical
Report 6962, INRIA Research Report, June 2009.

W. Pugh. A practical algorithm for exact array dependence analysis. Commun. ACM,
35(8):102-114, 1992.

W. Pugh and D. Wonnacott. Nonlinear array dependence analysis. Technical Report
CS-TR-3372, College Park, MD, USA, November 1994.

M. M. Strout. Compile-time composition of run-time data and iteration reorderings. In
In Proceedings of ACM SIGPLAN Conference on Programming Language Design and
Implementation, 2003.

M. M. Strout, L. Carter, and J. Ferrante. Rescheduling for locality in sparse matrix
computations. In Proceedings of the 2001 International Conference on Computational
Science, Lecture Notes in Computer Science, pages 28-30. Springer-Verlag, 2001.

16

[21] S. Verdoolaege. An integer set library for program analysis. In Advances in the Theory
of Integer Linear Optimization and its Extensions, AMS 2009 Spring Western Section
Meeting, San Francisco, California, April 2009.

[22] D. K. Wilde. A library for doing polyhedral operations. Technical report, 1993.

[23] D. G. Wonnacott. Constraint-Based Array Dependence Analysis. PhD thesis, University
of Maryland, College Park, 1995.

17

	Introduction
	The Sparse Polyhedral Framework (SPF)
	Sets
	Relations
	The Apply Operation
	The Inverse and Compose Operations
	The Problems Arise: Transforming the Computation

	Constraint Simplification in the SPF
	Inverse Function Simplification
	Existential Equality Simplification
	Affine Approximation
	Simplification Algorithm

	Evaluation
	Operation and Simplification Complexity Analysis
	Implementation Performance

	Related Work
	Conclusions

