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Abstract

We show that given a k-bounded pseudo-Boolean function f, we can always compute
the ¢*® moment of f over regions of arbitrary radius in Hamming space in polynomial
time using algebraic information from the adjacency structure (where k and c are
constants). This result has implications for evolutionary algorithms and local search
algorithms because information about promising regions of the search space can be
efficiently retrieved, even if the cardinality of the region is exponential in the problem
size. Finally, we use our results to introduce a method of efficiently calculating the
expected fitness of mutations for genetic algorithms.

1 Introduction

The class of k-bounded pseudo-Boolean functions (i.e., real valued functions over binary
strings that are epistatically bounded by a constant k) plays an important role in evolu-
tionary computation, combinatorial optimization, biophysics, and machine learning. These
functions appear as objective functions in a number of well-studied combinatorial optimiza-
tion problems over the set of binary strings, e.g., MAX-k-SAT problems, NK-landscapes,
spin models, and several graph optimization problems such as MAX-CUT.

In the fields of evolutionary computation and local search, a landscape is a mathematical
formalism which can be expressed as a tuple (X, N, f). Here X is a finite set of configurations
that make up the domain of a real-valued objective function f. N is a neighborhood structure
which is a geometric, topological, or algebraic structure on X that imposes connectivity on
its elements. In evolutionary computation, f is often called the fitness function, and the



configurations that make up A are called genotypes. In this case, the landscape is often
referred to as a fitness landscape.

We study landscapes where the configuration set is the set X = {0, 1}" (i.e., all binary
strings of length n), the fitness function f is any k-bounded pseudo-Boolean function, and
the neighborhood N is given by the standard Hamming operator.

We will show that every k-bounded pseudo-Boolean function has a sparse representation
in an eigenbasis of the Hamming adjacency matrix and use this to derive polynomial time
computations of the moments of the fitness function over regions of the landscape. We
prove that any k-bounded pseudo-Boolean function f can be written as a linear combination
of a bounded number of eigenfunctions of the Hamming neighborhood structure, each of
which is polynomially computable. We first show that, for such functions, higher powers
of f can also be written as sums over eigenfunctions of the neighborhood structure, each
again polynomially computable. This allows us to compute the moments of f over the
neighborhood of any point without explicitly examining any of the neighbors.

We then recursively generalize the neighborhood structure and show that eigenfunctions
over the Hamming neighborhood are also eigenfunctions over radius-r Hamming spheres,
i.e., sets of points that lie at Hamming distance r. We show that the ¢ moment of any
k-bounded pseudo-Boolean function f can be computed in polynomial time over any sphere
of arbitrary radius and any Hamming ball (i.e., union of spheres) of arbitrary radius.

One immediate consequence is that central moments of f (such as the mean, variance,
skewness, and kurtosis) can be computed in polynomial time over specialized regions of the
landscape. This result is significant since the cardinality of such regions can be exponential
in the problem size. For example, a radius n/2 Hamming sphere contains ©(2"/?) unique
states and any Hamming ball of radius O(n) has O(2") unique states. If the epistasis of f
is bounded by a constant k, our approach has a time complexity of O(nCQ"“) to calculate the
exact value for the ¢ moment of f over any sphere or ball.

The information provided by these calculations allows for a better characterization of
the distribution of codomain values of a function over localized regions of the landscape.
Such information may be useful for the design and analysis of heuristic search algorithms.
Currently, the only way to characterize the distribution of a function over localized regions
is either by exhaustive enumeration of the region, or estimation via direct sampling.

Finally, we present an application of the results developed in this paper and introduce
an efficient algorithm for computing the expected fitness of mutations for a binary genetic
algorithm using a k-bounded fitness function and a fixed mutation rate.

1.1 Background

Landscape analysis has been a useful tool to study the characteristics of the state space
explored by search algorithms and evolutionary processes [12, 19, 20, 13, 1, 17, 16]. In this
paper, we will study the expansion of functions in an eigenbasis of the landscape neighbor-
hood structure. A number of combinatorial optimization domains were first observed by
Grover [6] to be related by a difference equation to the neighborhood structure imposed
by natural search operators. Further analysis by Stadler [20, 21] has produced a number



of important results that capture many characteristics of landscapes. The method used in
this paper also relies on representing functions in the orthogonal Walsh basis [23]. Walsh
analysis was first introduced to the evolutionary computation community by Holland and
Bethke [11, 2] and later developed by Goldberg [5].

This paper generalizes the work of Heckendorn, Rana, and Whitley [8]. Using a Walsh
decomposition, they compute summary statistics (e.g., central moments such as the mean,
variance, skewness, and kurtosis) over the entire search space for MAX-3-SAT and all -
bounded pseudo-Boolean functions, which they call embedded landscapes. In this paper we
will give a method for calculating the exact summary statistics for subsets of the landscape
corresponding to Hamming spheres and volumes of arbitrary radius.

Unless P=NP, NP-complete problems require in the worst case superpolynomial time
to solve exactly. Problems such as MAX-k-SAT are therefore often “heuristically solved” in
practice using local search methods. Information that is relevant to evolutionary systems and
local search algorithms can often be computed in polynomial time for some classic problems
that are NP-complete. The moment calculations that are presented in this paper are directly
applicable to the topology of the search space that is explored by local search algorithms
used to solve MAX-k-SAT problems.

Artificial evolutionary models, and in particular Holland’s genetic algorithm and Kauff-
man’s NK-Landscapes, also assume that the moments of different regions of the search space
are important. In both systems, chromosomes are represented as simple binary strings with
0 and 1 alleles. These artificial bit chromosomes are decoded as simple haploid structures.
From this perspective, genetic algorithms are often viewed as optimization procedures or
search methods acting on pseudo-Boolean functions.

The method presented in this paper relies on direct knowledge of the Walsh coefficients.
If the Walsh coefficients are unknown, but f is still epistatically bounded by a constant k,
the Walsh coefficients can be efficiently retrieved deterministically in O(n*) time [14], or
stochastically with negligible error in O(n?logn) time [10]. If there are m nonzero Walsh
coefficients, Choi et al. [3] present an O(mlogn) adaptive randomized algorithm for finding
all of them with high probability.

1.2 Preliminaries

We first give a brief introduction of the notation and concepts used in this paper. A pseudo-
Boolean function is a function f : {0,1}" — R that maps strings over a binary alphabet into
the real numbers. We say a pseudo-Boolean function is k-bounded if it can be expressed as
the sum of subfunctions that each depend on at most k bits (where k is a constant). Let
x,y € {0,1}" be two points in the domain of f. We define their inner product as

n

(x,y) =Y x[b]y[b),

b=1



where z[b] € {0,1} denotes the b*™® element of . The Hamming distance D(x,y) between
and y is the number of positions in which x and y differ. We can write

D(z,y) = (v Dy,zDy),

where @ denotes componentwise exclusive or. The Hamming neighborhood of a point x €
{0,1}" is the set N(z) of all points y such that D(z,y) = 1. The points in {0,1}" along
with the Hamming neighborhood form a distance transitive graph on 2" vertices which is
typically referred to as a hypercube graph. We can define the adjacency matriz as

1 ifye N(z)
Axy = .
0 otherwise.

Note that A is a 2" x 2" matrix. Consider a pseudo-Boolean function
f:{0,1}" — R.
We will write the ' power of f as f¢ where
foA0 1 =Ry f2) = (f(2))"

The ¢® moment of a discrete random variable Z can be written as

fe = ch Pr{Z = 2z},

where Pr{Z = z} is the probability mass function of Z.

Let X C {0,1}" be a set of points. Moments of f over X are defined as moments of
a random variable that assumes the value of f evaluated at a point drawn uniformly at
random from X. Since each element of X is drawn with equal probability, the probability

mass function is |71| and we can define

1 C
fe(X) = X > foa) (1)

zeX

to be the ¢'" moment of f over the set X. For any nonempty set X, it should be clear that
to(X) = 1. The first moment, p;(X), is the average value of the function f evaluated over
each point in X. The variance of f (the second central moment) over the set X can be
written as

0% = p12(X) — m (X)*.
In general, the ¢ central moment of f over the subset X can be computed as
- ¢ c—1 c—1
Z ; (=) (X ) pa (X))
=0
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Higher central moments correspond to statistical quantities such as skewness and kurtosis
which further characterize the shape of the distribution of the random variable in question.

We identify the elements of {0, 1} with the integers 0, 1,...,2" — 1 in the natural way.
Specifically, each bitstring is the n-digit binary representation of a unique integer in the
interval [0,2"). For example, the integer 0 corresponds to the point (000...0), and the
integer 2% (where 0 < a < mn — 1) corresponds to the point x where

x[b]:{l ifa="0

0 otherwise.

Note that by identifying binary strings with integers in this way, we can characterize a
function f as an element of a real vector space of dimension 2" by associating each state
x € {0,1}" with a standard basis function e,. Thus f(x) can be written as

f@)=e, f,

This characterization will be useful for studying landscapes algebraically. In particular,
2™ x 2™ matrices can be considered as linear operators on f.

For example the matrix-vector product A f also lies in R?" and can in turn be seen as
a discrete function over {0,1}". In particular, the 2 element of this vector is the inner
product of f with the row of A corresponding to x.

Af(z)=e]Af
- Z Asyf(y)
ye{0,1}

= ) ). 2)
yeEN (z)
So we can view
AR - R”
as a linear map acting on f. The image of f under A,

Af:{0,1}" - R,

can be treated as a function that gives the sum of f evaluated over the neighborhood of each
state.
The Hamming sphere of radius r around a point z is defined as the set

SO (z) ={y € {0,1}" : D(z,y) = r}.

Of course the Hamming sphere is a straightforward generalization of the Hamming neigh-
borhood since

N(z) = SD(z).

The Hamming ball of radius r around a point x consists of the union of all Hamming spheres
of radius less than or equal to r around z:

B (z) = {y € {0,1}" : D(z,y) <r}.



2 Eigenfunctions of the neighborhood structure

In order to study the relationship of a k-bounded pseudo-Boolean function to the Hamming
neighborhood structure, we will utilize a decomposition of the function into eigenfunctions
of the neighborhood structure. We say a pseudo-Boolean function g is an eigenfunction of
the Hamming neighborhood structure if and only if

Ag=Ag
for a scalar \. That is, we have Vx € {0,1}",
Ag(x) = e, Ag
—e! \g
= A\g(x).

In other words, the image of x under the function Ag can be compactly represented by
the image of x under g multiplied by a constant A. Functions with this property (up to
an additive constant) together with the neighborhood structure are exactly the so-called
elementary landscapes of Stadler et al. [20].

For 0 < i < 2" — 1, the i*" Walsh function is defined as

vilw) = ()",

where the inner product is taken over x and the length-n binary string representation of
i. The order of the i®® Walsh function is (i,4), that is, the number of ones in the length-n
binary string representation of ¢. The following simple identity will become useful.

Wi(z);(z) = (=1)B)+)
= (_1)<iEBj,:v) = gy (). @

In this paper, we will rely on the fact that the Walsh functions form an orthogonal basis of
eigenfunctions of the Hamming neighborhood matrix A. This is partially captured by the
following Lemma.

Lemma 1 (Walsh Eigenfunction Lemma). The i'" Walsh function is an eigenfunction of A

Proof. Let x € {0,1}" be arbitrary. We have

Adi(x) = > dily) by (2);

yEN ()



For each y € N(z), because x and y differ by a single bit, there exists a unique 0 < a < 2"—1
for which z & y = 2% Thus we can make the following case distinction. Let A denote
componentwise conjunction in the binary representation. If i A 2% =0 (i.e., (i, (z ® y)) = 0)
then (i, y) = (i, z) and ¢;(y) = 1¥;(x). On the other hand, if iA2* = 2% then |(i,y) — (i, x)| =1
and (—1)%% = —(=1)® or equivalently, 1;(y) = —;(z).

Since each Hamming neighbor differs from x in each of the n possible bit positions, there
are n — (i,1) elements y of N(x) that satisfy the first condition and (i,4) that satisfy the
second. Hence

D dily) = ((n— (@,8) dilx) — (G, i)y ()
YyEN(z)
= (n — 2(i, 7)) ¥i(x).

Since we chose x arbitrarily, the property holds for any basis function e, and we have the
general equation

A = (n = 2(i,4)) ¥i,

and 7; is an eigenfunction of A. O

From Lemma 1 it is easy to show the following is true. Summing over all ¢ with (z,7) = p,
we have

A Z ah; | = (n — 2p) Z a; ;. (4)
ix(i,i)=p

i:(ii)=p

where a; is an arbitrary coefficient. Therefore the Walsh functions of a particular order p
form the basis of an eigenspace corresponding to eigenvalue n — 2p. Thus any function that
can be expressed as a linear combination of Walsh functions of a given order p is also an
eigenfunction of A. This is critical because it supports analysis by decomposition.

Proposition 1. If g is an eigenfunction of A that lies in the eigenspace spanned by a set of
Walsh functions of the same order p then the first moment of g over the neighborhood of an
arbitrary point x is

(¥ = (1-2) gto).

Proof.
mVE) = S gly)
yEN(z)
= Ag() by (2)
- (1-2) o by (4)



This means that for such an eigenfunction, the first moment of g over the entire Hamming
neighborhood of z is directly proportional to the image of z under g. Soif N(z) = {y1,v2,...}
is the set of points that compose the Hamming neighborhood of an arbitrarily selected
point x, we can immediately compute the mean of their images under g, i.e., the mean of
{9(v1),9(y2), ...}, without enumerating any of the elements of N(x).

2.1 Decompositions of k-bounded pseudo-Boolean functions

Eigenfunctions of the Hamming neighborhood structure are a very restricted class of func-
tions and thus their properties may not seem immediately clear. The power of these functions
however comes from the fact that we can represent arbitrary pseudo-Boolean functions as
linear combinations of component eigenfunctions of the neighborhood structure. Any linear
map applied to a pseudo-Boolean function can be represented as a sum of the images of its
component eigenfunctions under that map.

The Walsh basis is functionally complete over {0,1}™ [23], that is, any arbitrary pseudo-
Boolean function f : {0,1}" — R can be written as a linear combination of at most 2"
orthogonal Walsh functions

i=0
where w; is a scalar called the i*® Walsh coefficient. We can group each term by its order
fl@) =Y op@), (5)
p=0
where ¢y, is an eigenfunction of order p defined as
o) = Y wabi(x). (6)

3:(i,0)=p

Hence ¢y, is a linear combination of Walsh functions of order p. In other words, ¢, is a
component eigenfunction of f that lies in the eigenspace of A corresponding to eigenvalue
n — 2p. Since there are (Z) orthogonal Walsh functions of a given order p, ¢y, contains at
most (Z) terms.

We now prove some simple bounds on the order of non-zero Walsh coefficients which will
later be used in our main theorems. This is critical to demonstrating the tractability of these
computations.

Lemma 2 (Heckendorn, Rana, and Whitley [9]). Let f be a k-bounded pseudo-Boolean
function on {0,1}". For any length-n binary string i,

wi #0 = (i,3) <k,

where w; is the i coefficient in the decomposition of f.



Proof. Since f is k-bounded it can be expressed as a sum of subfunctions f; that each depend

on at most k bits. Denote as w'™” the i Walsh coefficient on the 4" subfunction. Since

the Walsh transform is linear, the i*" Walsh coefficient of f is the sum of the i*" Walsh
coefficients of the subfunctions, i.e.,

w; = sz(fj)'
J

Since any f; depends on at most k bits, if (i,7) > k then Vj, wffj) = 0. Thus (i,i) > k =
w; = 0 which gives the contrapositive. O

Lemma 2 generalizes easily to collections of binary strings and the corresponding coeffi-
cients.

Lemma 3. Let f be a k-bounded pseudo-Boolean function on {0,1}". Let T be a set of
length-n binary strings. Consider the string

We have
VieZ,w; #0 = (&(Z),8(1)) < |Z|k,

where w; is the i coefficient in the decomposition of f.

Proof. By induction on |Z|. In the base case we have |Z| = 1 which is proved by Lemma 2.
Let J be a set of length-n binary strings with | 7| > 1. Consider the string

o) =P
JjeJ
By the inductive hypothesis assume for strings of length n

w; 20 VieJ = @7),0T)) <|T|k.

Now consider a string h such that wy # 0 in the Walsh decomposition of f. By Lemma 2
we know (h,h) < k. Let
IT=JUh.

We are interested in the string



But the order of h is bounded by k and the order of @&(7) is bounded by | J|k so we have

@®I),d2) =@®T)®h,a&(T)®h)
<|JTk+k
= (|J7]+ Dk
= |T|k.

]

We are now ready to prove theorems about the decomposition of k-bounded pseudo-
Boolean functions (and their powers) into eigenfunctions. Lemma 2 constrains the order of
nonzero coefficients in the Walsh representation of a k-bounded pseudo-Boolean function.
This means we can write any such function as a linear combination of exactly those Walsh
functions with nonzero coefficients. This is captured by the following theorem.

Theorem 1 (Decomposition Theorem). Fvery k-bounded pseudo-Boolean function f can be
written as a linear combination of k + 1 eigenfunctions of A.

Proof. We can write f in the Walsh representation
flw) = withi(x).
i
By the contraposition of Lemma 2, w; is zero for all (i,i) > k so we may write

f(x) = Z w;;(x)

i:(i,1) <k

k
= Z So[p] (ﬂf) 9
p=0

where ¢y, is defined as in (6). Each ¢y, is a linear combination of at most (’;) Walsh functions
of order p and is thus an eigenfunction of A corresponding to eigenvalue n — 2p. ]

We are thus taking advantage of the fact that f has a sparse representation in the Walsh
basis. It is important to see that, for any f bounded epistatically by k, there are at most
k+1 eigenfunctions ¢y, each of which consists of a linear combination of at most (") terms.
Since p < k, the number of terms in the linear combination is bounded by a polynomial in
n of degree at most k.

In order to compute higher moments of f, it will be necessary to work with higher powers
of f. If f can be written as a linear combination of Walsh functions, then clearly f¢ can be
written as a degree ¢ polynomial in the Walsh functions.

To understand this more clearly, we will first present the case for ¢ = 2. In other words,
we will show that if f is a k-bounded pseudo-Boolean function, f? can be written as a second

10



degree polynomial in the Walsh functions. Using the identity in (3) and Lemma 3, we can
carry the bounds on the order of nonzero Walsh coefficients over to this case. This leads to
the following theorem.

Theorem 2 (Square Decomposition Theorem). Every k-bounded pseudo-Boolean taken to
the second power can be written as a sum of 2k + 1 eigenfunctions of A.

Proof. Again, writing f? in the Walsh representation we have

fx) = (Z wz‘%’(@)
= sz‘wa’%@)%(%’)

By Lemma 2, the order of each 7 and j are bounded by k so we can first define the following
set of strings,

Q={i1e{0,1}": (i,i) <k}, (7)
then take the sum over the Cartesian square of Q.
Pla)y= > wwjig().
(1.7)€QxQ

We can again group together all the terms by Walsh function order,

Py () = > wiw; i (). (8)

(6,5)€Qx Q:(ihyj,i®7) =p

Obviously, the term corresponding to pair (¢, j) is only non-zero if both w; and w, are non-
zero. Hence, by Lemma 3, the order of i @ j is at most 2k so we can write f2 as a linear
combination of each ¢y, as defined in Equation (8):

@) => op),

and each ¢, is an eigenfunction of A corresponding to eigenvalue n — 2p. O

Generalizing this decomposition to higher powers of f is now simply an exercise of writing
f¢ as a degree ¢ polynomial in the component eigenfunctions and carrying the order bounds
into this case in a similar manner to the above theorem.

Theorem 3 (General Power Decomposition Theorem). Every k-bounded pseudo-Boolean
function taken to the c™ power can be written as a sum of ck + 1 eigenfunctions of A.

11



Proof. To simplify notation, we define the set
QC:QXQX“'XQﬂ

C

where Q is as defined in (7). An element of Q° is hence a c-tuple of bitstrings ¢;:
q=(q1,42, -, q).

We write f¢ in the Walsh representation.

f(z) = (Z wz‘%(@)
5 (1) (f1)
qeQ° =1 i=1

Letting ®(q) = (D a:
i=1

=> ( wqi> Va(g) (2) by (3).

qeQc \i=

Finally, grouping the terms by Walsh function order,

P () = > (H wqi> Vo (q) (2)- (9)

q€Q°:(®(q).®(q))=p \i=

The term corresponding to the c-tuple ¢ is only non-zero if all the w,, are nonzero. Hence,
by Lemma 3, the order of ®(q) is at most ck so we can write f¢ as a linear combination of
each ¢y, as defined in Equation (9):

Fol@) =) oy (), (10)

and each ¢, is an eigenfunction of A corresponding to eigenvalue n — 2p. O

Finally, we would like to bound the number of individual terms involved in the linear
combination ¢p,. This bound will become useful later when we analyze the complexity of
this approach.

Lemma 4. FEach ¢y, defined in Equation (9) above is a linear combination of at most O(n?°)
individual terms.

Proof. Let Q = {i : (i,i) < k}. Clearly |Q| = O ((Z)) is a polynomial of degree p in n.

The number of terms in each ¢y, is [Q°| = |Q|° which is a polynomial of degree pc in n.
Hence the number of Walsh coefficients involved in the linear combination defined by ¢y, is
O(n¥°). ]
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3 Computing the moments in polynomial time

In this section we use the decomposition of an arbitrary k-bounded pseudo-Boolean function
into eigenfunctions of the Hamming neighborhood structure to compute the ¢t" moment of f
over regions in polynomial time. Perhaps it is most illustrative to begin by giving a general
formula for computing moments over the immediate Hamming neighborhood.

3.1 Hamming neighborhoods

We have already seen that the first moment of f over the Hamming neighborhood can be
calculated using the following expression.

Lar
n

Specifically, %A f(z) gives the first moment of f over the Hamming neighbors of x. Since f
can be written as a linear combination of a bounded number of component functions, the
first moment of f can be characterized as the sum of images of these components under the
linear map. Furthermore, since each of these components are eigenfunctions of that map,
the calculation of their images under the map reduces to multiplication by a scalar.

It is useful to note that the ¢ moment of f over the neighborhood is equal to the first
moment of f¢ over the neighborhood. Since we have seen that f¢ is representable by a
bounded number of component functions, we can extend the above reasoning to f¢.

To compute the ¢ moment of f over the neighborhood N(z) of an arbitrary point ,
we simply use the fact that f¢ can be decomposed into ck + 1 eigenfunctions of A.

peN@) =~ 3 fl)
)

yEN(z
= Af) by (2)
=AY o) by (10);
ck
= (1 _ %) ol (). (11)

Assuming ¢ and k are constants, the calculation of p.(N(z)) is bounded by the number
of individual terms in the series in (11). There are (ck + 1) component eigenfunctions g,
in the series. By Lemma 4, each of these eigenfunctions is a linear combination of no more
than O(n?¢) individual terms. Since p is bounded by ck and there is only one order zero
term, there are at most ck x poly(n) + 1 individual terms where poly(n) is O(n<’*). We point
out that this bound is relatively non-tight.

13



3.2 Hamming balls of arbitrary radius

We have characterized the ¢® moment of f over the neighborhood as a function given by the
image of f¢ under the linear operator A. We have also taken into account the fact that f¢
is decomposable into a bounded number of eigenfunctions of A to show that the moments
over the neighborhood of any given point can be computed in polynomial time. Of course,
the members of the Hamming neighborhood itself can be enumerated in linear time so this
approach offers no computational advantage in this case (though it may prove useful when
analyzing the expected value of the Walsh coefficients over a problem distribution as in [22]).

However, we note that if f has a sparse representation in the eigenbasis of any linear
map, the above analysis holds. In this section we will see that the adjacency structure for
any general radius-r Hamming sphere provides such a map.

We begin by characterizing the adjacency structure for radius-r Hamming spheres. Let
x be an arbitrary but fixed point in {0,1}". Consider a vertex y at some distance D(x,y).
All Hamming neighbors of y are either one vertex closer to x or one vertex further away.
Define the approaching set

Oé('x?y) = {Z < N(y) : D<I7Z) - D(I,y) - 1}
and the retreating set

B(z,y) ={z € N(y) : D(z,2) = D(x,y) + 1}.

Thus the approaching and retreating sets partition the neighborhood set of y and

a(r,y) U B(z,y) = N(y). (12)

See Figure 1 for an illustration.

The set S (z) consists of all strings at Hamming distance r from x: those strings that
differ from z in exactly r positions. Hence |S™)(z)| = (7). Consider a state y on this sphere,
that is, D(z,y) = r. Since y differs from x in exactly r positions, there are r Hamming moves
that result in some state z; with D(z, 21) = r — 1. Thus we have |a(z,y)| = r. Furthermore,
there are n —r Hamming moves from y that result in a state zo with D(x, z5) = r+1. Hence,
6(z,y)| =n—r.

A generalization of the adjacency matrix A which we will call the sphere matriz of radius
r we define as

S —

zy

1 ify € SU)(x), that is, D(z,y) = r
0 otherwise.

This matrix identifies all vertex pairs in which one is contained in the radius-r sphere of the
other. We construct the sphere matrix S(™ of radius r recursively in terms of A. In order
to do so, we will first prove some useful properties about sphere matrices.

The set {0,1}" together with the Hamming distance function form a metric space so
we have for all z,y € {0,1}", D(z,y) = D(y,z) and sphere matrices of any radius are
symmetric:

St =) (13)

14



S+ ()

Figure 1: Illustration of approaching set a(x,y) and retreating set 5(z,y). For some y with
D(x,y) =r.

Given any two sphere matrices, their product is a matrix that gives the number of ele-
ments in the intersection of the spheres they represent. Formally, let S and S be sphere
matrices of radius r and s respectively. The product is the matrix

(578),, = Y88
=) ss by (13);
= |S"(x) NS (y)|. (14)

We now characterize the particular matrix product (S"~YA) which will be used in our
recursive expression for S,

Lemma 5. Over {0,1}" we have,

T ify € ST (x)
(SU DAY, =S n—r+2 ifye S ()
0 otherwise.

Proof. By (14) we have
(ST VA),y =[S V(@) NN (),
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since A = S and N(z) = SW(z). Consider the neighbor set N(y) of y. Recall from
Equation (12) that the approaching and retreating sets a(z,y), B(x,y) partition N(y).
Suppose y € S (x). For all z € a(x,y), D(z,2) = D(x,y) — 1 = r — 1. The neighbors
of y that are in ST~ (z) are exactly the approaching set «(x,%). Thus we have
(SUVA) =[S V(z) N N(y)|
= |z, )]
=r.
Now suppose y € ST~ (z). For all z € B(z,y), D(x,2) = D(x,y) + 1 = r — 1. Thus the
neighbors of y that are in S~ (z) are exactly the retreating set 3(x,y). Thus we have
(S""YA),, = ST V(@) N N(y)l

= |5(z,y)l
=n-—r+2.

Finally suppose ¥ is in neither sphere S (z) nor ST~2(z). Then D(z,y) # r and D(x,y) #
r—2. So
(STVA)yy = [ST V(@) N N(y)|
= |(a(z,y) U Bla,y)) N STD(x)]
= [0]
since D(z,y) —1#r—1and D(z,y) +1#r— 1. O

The following lemma uses the above result to provide a matrix expression for the char-
acteristic function of y € S (z). The expression involves the sphere matrices of radius
r — 1 and r — 2. This will allow us to define S(" recursively in terms of lower radius sphere
matrices.

Lemma 6. Let x and y be arbitrary points in {0,1}". Given sphere matrices SU=V and
S=2) we have the following identity.
1 ifyeSW(z)

. (15)
0 otherwise.

S| =

(8" DAY — (=7 +2)802) = {

Proof. We prove this result by cases.

Case 1: y € S)(z) By Lemma 5 we have S""V A, = r. Furthermore, since y ¢ S"~2 (z)
we have S, ? = 0. Thus Equation (15) evaluates to

1 r—1 r—2 1
. (8" VA)yy — (n—r+2)8S02) = ;(T’—O)
= 1.
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Case 2: y € S""2(x) By Lemma 5 we have S""VA,, = (n —r +2). Since y € ST (),

89(5272) = 1 and Equation (15) evaluates to

1

(8" Ay = (n—r +2)8(7) = %<<n —r+2)—(n—r+2))

=0.

Case 3: y ¢ S (z) and y ¢ S"?(z) By Lemma 5 we have S""VA,, = 0. Furthermore,
since y ¢ S~ (z) we have S{;, 2 = 0. Thus Equation (15) evaluates to

1 . . 1
- (S VA)py — (n—r+2)80,) = ~(0-0)
=0.
O
Hence, by Lemma 6 we can now define the sphere matrix recursively.
1
S = — (SU"VA — (n—r+2)S?). (16)
r

We have the two base cases SV = A and S = I, where I is the 2" x 2" identity matrix
(this corresponds to the degenerate sphere S (x) = {z}). We now show that if f is an
eigenfunction of A with eigenvalue ), it is also an eigenfunction of the sphere matrix S
with an eigenvalue that is a degree-r polynomial in \.

Let f be an eigenfunction of A. Consider the matrix-vector product S f evaluated at
state x.

ST f(z) =e, 8" f
= > shfy)

ye{0,1}n

= > W (17)

yeS) (x)

since &) =1 < ye 5™ (x), otherwise it is equal to zero. Clearly, Equation (2) is the

special case when r = 1.

It is now straightforward to show that eigenfunctions of the immediate Hamming neigh-
borhood structure are also eigenfunctions of the radius » Hamming sphere. In particular, if
f is an eigenfunction of A with eigenvalue \,, it must also be an eigenfunction of S with
eigenvalue 7]9“): a scalar that can be defined recursively using 71(,1) = A, and %(,O) =1 as base
cases. We capture this in the following theorem.

Theorem 4. If f is an eigenfunction of A with eigenvalue A,, then f is an eigenfunction of

S with eigenvalue %S” given by the recurrence yz(f) =1 ()\p%(f_l) —(n—r+ 2)7;(7T_2)) with

T

%S” =\, and 71&0’ =1.
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Proof. We proceed by induction on r. We have two base cases,

SOf=1f = f

SWf=Af=\7
Thus ’y,go) =1 and 7}(}1) = \,. Suppose for induction that

S(rfl)f _ ,YI()Tfl)f
and

S(r72)f — ,yl()r72)f
for scalars v and 7%, Thus,

1

SN f == (SCVA = (n—r+2)S02) f by (16):
r
1
= — ()\pS(Tfl)f _ (n —r 4 2)S(r72)f)
r
1
-, ()‘p%(;r_l) —(n—r+ 2)71(,r_2)) / by induction,

so we have the recurrence

(r) —

W ==y = (=275 (18)

]

S|

Corollary 1. The quantity ’yi(,r) is a degree-r polynomial in A\, and is computable in time

linear in r.

Proof. Clearly ’y,go) =1 and 7,8” = ), are degree zero and one polynomials in A, respectively.

Again, using induction on 7 it is immediately clear that the recurrence in Equation (18)
describes a degree-r polynomial in A,. Furthermore, %(77’) is computable in linear time using
dynamic programming starting first with 7,(,1) = ), and using the recurrence in Equation

(18) to compute ’y,gi) fori=2,...,r. O
By Equation (18), for the eigenfunction ¢, we have

SW () =7y (2),

, n—2p . n—r+2 -
%p:( - )7; 1)_(#>%§ 2)

5! = (n—2p)

71()0) = 1.

where
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We are now ready to prove the main results of the paper. The first moment of f¢ (i.e., the
™ moment of f) over the sphere of radius r around an arbitrary point x can be calculated
using a function corresponding to the image of f¢ under the linear map S). Using the fact
that f¢ can be decomposed into a constant number of eigenfunctions of S we have the

following.

Theorem 5. Fiz ¢ and k. Let f be any k-bounded pseudo-Boolean function. Let S")(x) be
a sphere of radius v around an arbitrary state x. The quantity u.(S™(z)) (the ¢™ moment
of f over the sphere) can be computed in time polynomial in n.

Proof.

r - 1 c
pe(S7 () = EGIE] > fw)

yesm(z)
1
_ g(r) e by (17);
ck
1
= =S D vw(@) by (10);
150 (2)] ; [p]
1 ck
— (r)
=———> 7o (T) by Theorem 4,
5™ ()] Z v

and since Vz € {0,1}", |S")(z)| = (n)’

r

n -1 ck
= (T> > 1 ().
p=0

The terms in the series are polynomially bounded as shown in Section 3.1 and the complexity
of 4\ is given by Corollary 1. O

Since a Hamming ball of radius r is a union over all spheres of radius at most r, the
moment calculation can be trivially generalized to Hamming balls in the following manner.

Theorem 6. Fiz ¢ and k. Let f be any k-bounded pseudo-Boolean function. Let B")(x) be
a Hamming ball of radius v around an arbitrary state x. The quantity pu.(B") (x)) (the
moment of f over the ball) can be computed in time polynomial in n.
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Proof.

MC(B(”(@):WZ Sy

5=0 yeS() (x)

; Z) ) il ; é 701 ()
(; (Z) ) i i P () ; 209,

p=0

As in Section 3.1, there are only O(n¢*) individual terms to compute in the series

ck

> ().

p=0

Hence the calculation can be performed in time polynomial in n for a Hamming ball of any
radius. O]

It immediately follows that central moments of the distribution of f over Hamming
regions can be computed in polynomial time in this way.

Corollary 2. Fiz c and k. Let f be any k-bounded pseudo-Boolean function. Let X be a
Hamming region (sphere or ball) of some radius around an arbitrary state. The c*® central
moment of f over X can be computed in time polynomial in n.

Proof. This follows from the definition of central moments in terms of ..

i (j> (= 1) (X ) pa (X))

1=0

3.3 Algorithm to compute moments

Let us compute p. (B (x)) for a function f. We first compute the nonzero Walsh coefficients
of f and store them in a data structure W which is an array of (bitstring, value) pairs such
that, for the j*" nonzero Walsh coefficient of f in some arbitrary order, W{[j] = (i, w;). We
shall assume that arrays are indexed from zero. Since f is k-bounded, this data structure
can be constructed in polynomial time [8]. The eigenvalue %(J) which is stored in an array
gammal[pl[r] is computed using the recurrence in Equation (18).

We first must compute the sum of the needed coefficients over spheres of radius s < 7.
Let the function TUPLES(c, d) return the set of all c-tuples over the index set {0,1,...,d—1}.
The sum of f¢ evaluated over a sphere of radius s around = can be computed as
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SPHERESUM(z, s, ¢, W)
1 if c=0return 1

2 sum 0
3 for each ¢ € TUPLES(c, length[W])

4 do prod «— 1
5 bits < (000...0)
6 for j—~0toc—1
7 do (i, w;) < Wlg[j]]
8 bits «— bits 1
9 prod < prod Xw;
10 p «— (bits, bits)
11 sum <« sum + prod x gammalp][s] x (—1)@bits)

12 return sum

Since k and c are constants, the number of tuples is a polynomial in n. Note that since
multiplication and exclusive or are commutative operations, there are a large number of
symmetries in the sum over all c-tuples. Thus the efficiency of the outer loop in lines 3
to 11 may be improved further using combinatorial enumeration techniques to remove these
symmetries.

The ball moment p. (B (x)) is computed as follows.

BALLMOMENT(x, 7, ¢, W)

vol +— 0
sum «— 0
for s— 0Otor
do sum « sum +SPHERESUM(z, s, ¢, W)
vol «— vol —i—(Z)
return sum / vol

DO W N~

4 Computing the expected fitness of mutations

Genetic algorithms operating on {0, 1}" often employ some form of mutation in which each
bit of a state (genotype) under consideration is flipped with some probability p, the so-called
mutation rate. If the fitness function used is a k-bounded pseudo-Boolean function, we can
also apply the decomposition presented in Section 3 to exactly compute the expected fitness
of a mutated offspring.

We assume that the fitness function f : {0,1}" — R is k-bounded. Let x € {0, 1}" be the
state under consideration. Mutation is a stochastic process that produces an offspring state
z by changing components of z. Since the process is stochastic, we can characterize f(z) as a
random variable. We can calculate the expected value of this random variable as a function
of f(x): the fitness of the current state. In other words, we are interested in calculating the
first moment of f over a ball of radius n around x, but now the sampling is no longer uniform
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throughout the region as it was in Equation (1). Indeed, the probability mass function of the
random variable corresponding to f(z) now depends on Hamming distance from z, which is
captured by sphere membership.

To produce z, each bit of x is flipped with probability p. Thus z lies in a sphere of radius
r around x with probability p"(1 — p)"~". The total fitness value in the sphere at radius r

around x is
> fw),

yeS™ (x)

so the contribution to the expectation in a sphere at radius x can be obtained by multiplying
this sum by the probability of the offspring lying in the sphere.

PL=p" " Y fy)

yes(™ (z)

Since all spheres around x are disjoint, the expected fitness of the offspring of x under
mutation can be computed as the sum of the expectation contributions from each sphere:

DIA=p)" Y fw) =) (1= p) S f(x) by (17);

yeS) (z)

n k
=> p1=p)" Y Aoy ().
r=0 p=0

Thus the expected fitness of the offspring of x under mutation with mutation rate p can
be computed by modifying the BALLMOMENT computation in Section 3.3. Let W be the
appropriate Walsh coefficient data structure corresponding to the fitness function f.

EXPECTEDFITNESS(z, p, W)

1 sum «—0

2 forr—0ton

3 do sum «— sum+ (p"(1 — p)"~") x SPHERESUM(z, 7,1, W)
4 return sum

In this case ¢ = 1 so the time complexity of each call to SPHERESUM is O(n*). Summing
over all n spheres gives a total complexity of O(n**!). Since the offspring can lie any-
where in {0,1}", a brute-force calculation of the exact expectation would require complete
enumeration which has a time complexity of ©(2").

Higher moments of the distribution of f under mutation can be obtained in an analogous
manner.

5 Discussion

The class of k-bounded pseudo-Boolean functions plays an important role in many fields.
In NK-landscape models [15], for instance, the fitness of a genotype (a string over a binary
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alphabet) is computed as a sum over individual k-ary gene interactions. NK-landscapes
have also been employed to simulate landscapes that arise from RNA folding [4]. Another
important family of k-bounded pseudo-Boolean functions are those of MAX-k-SAT problems.
Local search algorithms such as variants of WALKSAT [18] have long been counted as among
the state-of-the-art for solving critically constrained satisfiability problems. Since local search
algorithms typically use the Hamming neighborhood as a search operator, they can be seen
as exploring the landscapes described in this paper.

The results presented in this paper provide a general approach to computing moments
of a k-bounded pseudo-Boolean function f over arbitrary radius regions (Hamming spheres
and balls) in polynomial time. This is significant for the following reasons.

1. The calculation is exact, i.e., the moments are not approximated.

2. The calculation is computationally efficient with respect to naive enumeration since,
in general, the size of these regions is exponential in the bitstring length of the domain
of f (for instance, spheres of radius n/2 or Hamming balls of radius O(n)).

Exact calculation of the moments affords opportunities not previously available for heuris-
tic search algorithms that rely on directed sampling. The moments {po(X), 1 (X), p2(X), ...}
characterize the distribution of values in the codomain of f over particular regions X of the
landscape. In the context of local and genetic search, an algorithm might exploit this infor-
mation by computing statistical information about unexplored regions of the landscape to
determine how promising such a region might be for further exploration.

In the evolutionary computation community, the analysis of hyperplanes is important
since the distribution of function values over hyperplanes influences the dynamics of evolu-
tionary algorithms. By definition, a hyperplane of order m in {0, 1}" is obtained by fixing
m bit values in the neighborhood function, and allowing all other bits to vary. Since (:1)
is a polynomial when m is a fixed constant, summary statistics for all hyperplanes up to
m can be computed in polynomial time on k-bounded pseudo-Boolean functions [7]. This
information is useful for making statistical inferences about sampling hyperplanes.

Fixing certain variables during search effectively induces a hyperplane in {0, 1}" to which
the search space becomes constrained. For example, assume we fix a binary variable to a spe-
cific variable assignment in a MAX-k-SAT problem. In effect, this transforms the objective
function to a new objective function defined over the subspace (in this case a hyperplane) of
{0,1}". These “partial” Hamming neighborhoods may arise in current heuristic search tech-
niques for constraint satisfaction problems such as MAX-k-SAT where only certain variables
are changed. Fixing a set of variables transforms an objective function f to a new objective
function f’, and, so long as f is k-bounded, the ¢® moment of f’ over arbitrary Hamming
spheres in the induced subspace can also be computed in polynomial time.

The method we present in this paper computes the moments of the distribution of f over
regions of the landscape. Hence, if we can approximate the distribution of f over a region
by a probability density function parameterized by the known moments, this approximation
may provide information about the best values of f in the region. Integrating this density
with respect to codomain value supplies us with a cumulative distribution function over the
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region that could be used to estimate the probability of an optimal solution belonging to the
region.

6 Conclusion

In this paper we have presented a general mechanism for computing moments of a k-bounded
pseudo-Boolean function over arbitrary radius Hamming spheres. Our approach uses the fact
that any epistatically bounded pseudo-Boolean function taken to a constant power can be
characterized as a bounded linear combination of polynomially-computable eigenfunctions
of radius-r sphere neighborhood structures.

These results hold the promise of changing the way sampling is done in evolutionary al-
gorithms and local search algorithms since the methods provide a principled way of quickly
assessing moments of the fitness in regions of the search space without doing explicit sam-
pling. The method we have presented applies to all k-bounded pseudo-Boolean functions
such as MAX-k-SAT and its variants, NK-landscapes, spin glass models, and graph opti-
mization problems such as MAX-CUT.
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