
Computer Science
Technical Report

Automatic Parallelization of “Inherently
Sequential” Nested Loop Programs

Yun Zou and Sanjay Rajopadhye
Colorado State University

zou@cs.colostate.edu
Sanjay.Rajopadhye@colostate.edu

Technical Report CS-11-102

March 28, 2011

Computer Science Department
Colorado State University

Fort Collins, CO 80523-1873

Phone: (970) 491-5792 Fax: (970) 491-2466
WWW: http://www.cs.colostate.edu

Automatic Parallelization of “Inherently

Sequential” Nested Loop Programs

Yun Zou and Sanjay Rajopadhye
Colorado State University
zou@cs.colostate.edu

Sanjay.Rajopadhye@colostate.edu

March 28, 2011

Abstract

Most automatic parallelizers are based on detection of independent
operations, and most of them cannot do anything if there is a true de-
pendence between operations. However, there exists a class of programs,
for which this can be surmounted based on the nature of the operations.
The standard and obvious cases are reductions and scans (prefix compu-
tations), which normally occur within loops. We present a method for
automatically parallelizing such “inherently” sequential programs. Our
method is based on exact dependence analysis in the polyhedral model,
and matrix multiplication over a semiring. It handles both single loop
as well as arbitrarily nested loops. We also deal with mutually depen-
dent variables in the loop. Finally, we present some optimizations for the
code parallelization. Although the experimental results are preliminary,
it shows that scan and reduction parallelizations are effective on practical
applications.

Keywords: Automatic Parallelization, Polyhedral model, Recurrence
Equations, Scan, Reduction, Matrix Multiplication, Semiring

1 Introduction

Multi-core and many core processors are becoming dominant in all areas of
computing. Parallel programming is necessary to make efficient use of these
architectures. However, parallel programming by hand is a challenge for most
programmers, and automatic parallelization is therefore essential. Some tools [1,
2] have already been developed for automatic parallelization. Most automatic
parallelizers focus on distributing independent operations among processors or
threads, and they fail when there is a true (i.e., value based) dependence between
operations. To overcome this limitation, new sources for parallelism need to
be explored. One such source of parallelism allows the compiler to break a
certain class of dependences, when the underlying computations come from a
semantically-rich algebraic structure such as semiring. The most significant
cases are scans and reductions [3].

A scan is an operation which takes a binary associative operator � and an
ordered set of expressions [e0, e1, . . . , en−1], and returns an ordered set [e0, e0�
e1, . . . , e0� · · · � en−1]. A reduction is similar to a scan, but it only returns the
single expression e0 � e1 � · · · � en−1.

As is well known [3, 4], with P processors, a scan or reduction with size n can
be parallelized with a time complexity of O(nP + log2P). Since p � n in most
proactical applications, this is linearly scalable (i.e., iso-efficient) parallelism.

1

The standard reduction and scan is characterized by an expression of the
following form: xi = xi−1 � ei that is repeatedly evaluated for a range of
i. A compiler can recognize a scan by identifying expressions written in this
form, but many scans and reductions are not written in the standard form. In a
seminal paper, Kogge and Stone [5] showed that if we can transform a loop body
expression into a so-called “state-vector update” (SVU) form, we can parallelize
the loop as a scan or reduction. Look at the following example.

Example 1.

x[0] = b[0];
FOR i = 1 to n

x[i] = a[i]*x[i - 1] + b[i];
END FOR

The loop computes xi using expression xi = ai × xi−1 + bi, and this is not
in the standard form, so no scan can be recognized. However, the loop body
expression can be rewritten as an equivalent SVU expression:(

xi
1

)
=
(
ai bi
0 1

)(
xi−1

1

)

Let Xi =
(
xi
1

)
, Ai =

(
ai bi
0 1

)
, and X0 =

(
x0

1

)
=
(

0
1

)
the initial value for

Xi. Hence, the above program is equivalent to Xi = (
∏i
j=1Aj)X0. Since matrix

multiplication is associative, the product of the matrices can be parallelized as a
scan. Many authors have generalized this elegant, well-known idea to automatic
parallelization [6, 7, 8, 9].

We call an automatic parallelizer that first detects scans and reductions, and
then parallelizes programs based on this, a scan parallelizer. Since scans and
reductions normally occur within loops, most scan parallelizers analyze loop
programs. Analysis of nested loops is much more difficult than that for a single
loop, so most of the previous work only handles one dimensional loops [8, 9].
Redon and Feautrier [10] presented a method using the polyhedral model [11] to
detect scans and reductions in arbitrary nested Affine Control Loop programs.
However, they recognize scans based on pattern matching of the standard form,
and a heuristic partial normalization algorithm that manipulates epressions into
such a form.

In this paper, we present a more general and practical method for auto-
matic parallelization based on reductions and scans. Our method, based on
a formalism called the polyhedral model, is more general than previously pro-
posed methods in two important ways: we handle arbitrarily nested affine loop
programs, and we can detect a rich class of scans and reductions, based on ex-
traction of expressions involving semiring operations expressed as matrix-vector
products.

We integrated our technique into a polyhedral program transformation and
code generation system. The core of the method works on a limited class of

2

programs and we therefore developed and implemented a normalization algo-
rithm to bring a richer class of programs to this normal form. This allowed
us to discover many hidden scans. We also propose some optimizations for the
parallelization of reductions and scans.

The remainder of this paper is organized as follows: Section 2 gives some
background about the polyhedral model and the definitions that are used in the
rest of paper. Section 3 gives the examples that are used in the paper. Section 4
describes how to deduce the SVU form. Section 5 presents our normalization
method based on the Polyhedral Reduced Dependence Graph. Section 6 de-
scribes how to do parallelization and optimization about scan and reduction. In
Section 7, we discuss related work, and finally, we present our conclusions.

2 Preliminaries

2.1 Polyhedral model

The compute intensive parts of many applications often spend most of their
execution time in nested loops. This is particularly common in scientific and
engineering applications, signal and image processing, bioinformatics, etc. The
Polyhedral model provides a powerful abstraction to reason about a class of
loop programs, those that consist of arbitrary nested loop programs for which
the loop bounds and array accesses are affine functions of outer loop variables
and program parameters. Many authors [1, 11, 12] show that polyhedral model
is very useful in code generation and automatic parallelization.

Definition 1 (Domain). The domain of a statement describes the iteration
space in which the statement is defined, it is represented by a set of linear
inequalities. For example, the domain for x in Example 1 is represented as
{i|0 ≤ i < n}, i is the index for the iteration space.

Definition 2 (Dependence). Two iterations Si and Sj are said to be
dependent, written as (Si → Sj), if they access the same memory location and
one of them is a write. A true dependence exists if the source writes the memory
location and the target reads the memory location. In this paper, we handle a
class of programs for which a preprocessing analysis can precisely identify all
the the true dependence.

Definition 3 (Uniform Dependence and Non-uniform Dependence).
A uniform dependence is a dependence where distance between the source and
target iteration is a constant vector. In contract, if the distance is an affine
function but not a constant, the dependence is called non-uniform dependence.

2.2 Polyhedral Reduced Dependence Graph

An important representation that we will use later is the Polyhedral Reduced
Dependence Graph (PRDG).

Before we give the definition of PRDG, let us see Reduced Dependence Graph
(RDG) first. In the RDG, each vertex represents a statement in the program,

3

x a

S1

S2

S3

c

S4

S1:{(i->i-1), {i|1<=i<=n}}
S2:{(i->0), {i|i==0}}}
S3:{(i->i), {i|0<i<=n}}
S4:{(i->i), {i|0<i<=n}}

Figure 1: The PRDG for Example 1

there is an edge from vertex v1 to v2, if v1 depends on v2. A PRDG is an
RDG, where every edge is additionally labeled with a dependence, represented
as {f,D}, where f is the dependence function, and D is the domain where the
dependence is defined. Figure 1 shows the PRDG for Example 1.

2.3 Terminology

Here we define some terminology that is used in this paper:
Definition 4 (Recurrence Variables). A variable (scalar variable or

array variable) in a loop program is called a recurrence variable iff the variable
is directly or indirectly used in its own definition.

Definition 5 (Linear Recurrence Equations). A linear recurrence equa-
tion is defined as

xz = f(xz−d1 , . . . , xz−dm
)

Where z belongs to the domain of x, di is called a dependence vector. A loop
program can be transformed into a system of recurrence equations by exact data
flow analysis [13]. For example, Example 1 is transformed to:

x[i] =

{
a[0], i = 0
a[i]× x[i− 1] + b[i], 0 < i < n

Definition 6 (Semiring). A two-operator algebraic structure (R,⊕,⊗,0,1)
is called a semiring, if R is the carrier, ⊕ is an associative and commutative bi-
nary operator with identity element 0, ⊗ is an associative binary operator with
identity 1, and ⊗ distributes over ⊕.

4

Definition 7 (Matrix multiplication form). A system of recurrence
equations is in SVU form iff it can be rewritten as follows:

x1

x2

...
xn
1

←

e1,0 e1,1 · · · e1,m
e2,0 e2,1 · · · e2,m

...
...

. . .
...

0 0 · · · 1

×{⊕,⊗}

l1
l2
...
ln
1


2.4 Target system of recurrence equations

In our technique, we focus on a system of recurrence equations. The target
system of recurrence equations that can be handled by our method needs to
satisfy the following properties:

• The recurrence equations in the system are defined on the same domain
and the PRDG for the system of recurrence equations is a strongly con-
nected component.

• The dependence for the recurrence variables is uniform (except the depen-
dence in the initial values), which means each dependence vector needs to
be an integer vector.

• For each recurrence variable x, the dependence vectors on x are in the
same direction.

3 Examples

We now present a number of examples that have various types of prefix compu-
tations and scans. These examples are repreatedly used in this paper.

Example 2. The following example computes the maximum segment sum
(mss). Given an array, a, of n elements, the segment 〈i, j〉 is the subarray from
the i-th to the j-th elements, inclusive. A segment sum, S[i, j] is the sum of all
the elements in the segment 〈i, j〉, and the mss of the array is the maximum of
S[i, j] over the n2/2 segments.

x = a[0];
mss = x;
FOR i = 1 to n

x = max(a[i], x + a[i]);
mss = max(mss, x);

END FOR

5

The equivalent system of recurrence equations is:

x[i] =

{
a[0], i = 0
max(a[i], a[i] + x[i− 1]), 0 < i < n

mss tmp[i] =

{
x[0], i = 0
max(mss tmp[i− 1], x[i]), 0 < i < n

mss = mss tmp[n];

max is a binary operator which takes two values as input and returns the
bigger one. Most scan parallelizers fail since the x computed is immediately
used for computing mss.

Example 3. This example is simply Fibonacci. The following program
computes the first n fibonacci numbers, fib[i] = fib[i− 1] + fib[i− 2].

fib[0] = 0;
fib[1] = 1;
FOR i = 2 to n

fib[i] = fib[i-1] + fib[i-2];
END FOR

The equivalent system of recurrence equations is:

fib[i] =


0, i = 0
1, i = 1
fib[i− 1] + fib[i− 2], 1 < j < n

Example 4. The following example computes an array of scans. The com-

putation for the program is x[i][j] =
j∑

k=0

a[i][k].

FOR i = 0 to n
x[i][0] = a[i][0];

FOR j = 1 to m
x[i][j] = x[i][j-1] + a[i][j];

END FOR
END FOR

The equivalent system of recurrence equations:

x[i][j] =

{
a[i][0], 0 ≤ i < n, j = 0
x[i][j − 1] + a[i][j], 0 ≤ i < n, 0 < j < m

Example 5. The following program does a lexicographical prefix sum
computation on a triangular space with domain {i, j|0 ≤ i < n, 0 ≤ j ≤ i}.

x[i][j] =
i−1∑
k=0

k∑
l=0

a[l][k] +
j∑

k=0

a[i][k].

6

x[0][0] = a[0][0];
FOR i = 1 to n

x[i][0] = x[i-1][i-1] + a[i][0];
FOR j = 1 to i

x[i][j] = x[i][j-1] + a[i][j];
END FOR

END FOR

The equivalent system of recurrence equations:

x[i][j] =


a[0][0], i = 0
x[i− 1][i− 1] + a[i][0], 0 < i < n, j = 0
x[i][j − 1] + a[i][j], 0 < i < n, 0 < j ≤ i

Most scan parallelizers detect the trivial scans inside the innermost loop, but
will not detect the whole program as a lexicographical scan.

Example 6. The following program exhibits a mutual dependence between
variable x and y.

x[0] = a[0];
y[0] = b[0];
FOR i = 1 to n

x[i] = x[i-1] + y[i-1] + a[i];
y[i] = x[i-1] + y[i-1] + b[i];

END FOR

The equivalent system of recurrence equations:

x[i] =

{
a[0], i = 0
x[i− 1] + y[i− 1] + a[i], 0 < i < n

y[i] =

{
b[0], i = 0
x[i− 1] + y[i− 1] + a[i], 0 < i < n

4 Detection of scans

Our analysis, like Redon and Feautrier, first performs exact data-flow analy-
sis [13] of an affine control loop program to extract a System of Affine Recurrence
Equations (SARE, or SRE). Given such an SRE, the next step is to examine all
the self dependences of a variable on itself, either direcly or through a cycle in
the PRDG. If such a cyclic dependence exists, and is a uniform dependence, we
have identified a recurrence variable. A recurrence variable is a scan variable
if all the self dependences of this variable are uniform (i.e., translations) and
in the same direction. After identifying the scan variable, we try to determine
whether the computation that updates the scan variable at any iteration point
can be written as a linear semiring expression. If we do this, the final step is

7

Φ :: (Exp, x, Y)→ (Exp, boolean)
ΦJcK = (c, False)
ΦJxK = (1, T rue)
ΦJyK = (0, T rue)
ΦJvK = (v, False)
ΦJf eK = let (e′, b) = ΦJeK
in if b then error else (f e′, False)

ΦJe1 � e2K = let ((e
′

1, b1), (e
′

2, b2)) = (ΦJe1K,ΦJe2K)
in if b1 ∨ b2 then error else (e

′

1 � e
′

2, False)
ΦJe1 ⊕ e2K = let ((e

′

1, b1), (e
′

2, b2)) = (ΦJe1K,ΦJe2K)
in case (b1, b2) of

(True, True)→ (e
′

1 ⊕ e
′

2, T rue)
(True, F lase)→ (e

′

1, T rue)
(False, True)→ (e

′

2, T rue)
(False, False)→ (e

′

1 ⊕ e
′

2, False)
ΦJe1 ⊗ e2K = let ((e

′

1, b1), (e
′

2, b2)) = (ΦJe1K,ΦJe2K)
in if b1 ∧ b2 then error else (e

′

1 ⊗ e
′

2, b1 ∨ b2)

Figure 2: Algorithm Φ extracts the coefficient matrix for scan variable x from
expression Exp over semiring (R,⊕,⊗). Y denotes a list of scan variables other
than x, v denotes a non-scan variable, c denotes a constant, f denotes a unary
operator, � denotes a binary operator other than ⊕ or ⊗.

to extract the coefficient matrix for the scan variables. The algorithm to ex-
tracting the linear terms in the matrix is shown in Figure 2, and the one for
extracting the coefficient of the constant term is similar to it. This algorithm,
extends Kogge and Stones’s original work [5], and enhances those developed by
Xu et. al and Sato and Iwasaki [7, 9].

In this section, we first describe how to transform a single recurrence equa-
tion into matrix multiplication form, then show how to extend this to a system
of recurrence equations, and finally, how to detect lexicographic scans.

4.1 First order recurrence equation

Given a semiring (R,⊕,⊗), a first order recurrence equation is defined as follows:

z ∈ D : xz = a⊗ xz−d ⊕ b (1)

Where a and b are arbitrary expressions.These expressions may involve other
variables that do not have a cyclic dependence, and therefore are considered
as inputs to the computation of x. There might be additional subexpressions
a′xz−d on the right hand side involving the other self dependences on x, but
they all must have the same d, and these can be replaced, without loss of gen-
erality, by a single expression a. Since there is only one recurrence dependence,
the dependence for the recurrence variable is always in the same direction.The

8

following discusses how a matrix form can be extracted under different situa-
tions.

If gcd(d) = 1, then a matrix form can be extracted(
xz
1

)
←
(
a b
0 1

)
×{⊕,⊗}

(
xz−d

1

)
.

If gcd(d) = t > 1. For example, xi = xi−2 + ai, this computation can
be computed with two scans, one scan on odd elements and another on even
elements. Let d = tδ, where gcd(δ) = 1. We can transform equation (1) into a
matrix form by adding t − 1 temporary “accumulation variables.” The matrix
form for equation (1) is shown below.

xz
xz−δ
xz−2δ

...
xz−(t−1)δ

1


←



0 0 · · · a b
1 0 · · · 0 0
0 1 · · · 0 0
...

...
. . .

...
...

0 · · · 1 0 0
0 0 · · · 0 1


×{⊕,⊗}



xz−δ
xz−2δ

xz−3δ

...
xz−d

1


4.2 M-th order recurrence equation

Unlike first order recurrences, in an m-th order recurrence equation, the recur-
rence variable x occurs m times in the right hand side of equations. It can be
rewritten in the form,

z ∈ D : xz = (a1 ⊗ xz−d1)⊕ · · · ⊕ (am ⊗ xz−dm)⊕ b (2)

Where a is a set of m expressions and b is a single expression. As described at
the beginning of this section, x is a scan variable if all the dependences on x
are in the same direction, so first we check every dependence di, if di

gcd(di)
are

the same. If this does not hold, the computation is not a scan. Let us assume
that this holds, and the set {d1, d2, . . . , dm} is in ascending order of the value
of gcd di.

If gcd(d1) = 1 and di = id1 (i > 1), then equation (2) can be transformed to
the matrix form

xz
xz−d1
xz−d2

...
xz−dm−1

1


←



a1 · · · am b
1 · · · 0 0
0 · · · 0 0
...

. . .
...

...
0 · · · 0 0
0 · · · 0 1


×{⊕,⊗}



xz−d1
xz−d2
xz−d3

...
xz−dm

1


If gcd(d1) 6= 1 or di = kd1 (k 6= i), we can apply the trick that we used in the

first order recurrence, of adding some temporary accumulation variables, using
which we can also transform equation (2) into a semiring matrix form.

9

As we see above, as long as all the self dependences of the scan variable in the
recurrence equation are in the same direction, we can transform the recurrence
equation into matrix form, and compute it as a scan or reduction. However,
if all the directions are not the same, for example: xi,j = xi−1,j + xi,j−1 +
xi−1,j−1 + ai,j , we could try to obtain wavefront schedules using the classic
polyhedral scheduling algorithms [11] for this kind of dependence. Since this is
not the focus of this paper, we are not going to discuss it here.

4.3 System of recurrence equations

In a system of recurrence equations, there is more than one recurrence variables
and those recurrence variables are the nodes in a SCC. Example 6 is one of such
system of recurrence equations.

Now we are going to show how to transform a system of recurrence equations
into matrix multiplication form. For each recurrence variable v in the system,
we check if all the direct and indirect dependences on v are in the same direc-
tion. If all the dependences on each variable are in the same direction, then a
matrix multiplication form can be extracted, we can also add some temporary
“accumulator variables” if it is necessary.

In Example 6, there are two dependences on x, (i→ i− 1) and (i→ i− 1),
they are in the same direction, the dependences on y are also in the same
direction, so a matrix multiplication form can be extracted. The matrix multi-
plication form for Example 6 is shown below:xiyi

1

←
1 1 a[i]

1 1 a[i]
0 0 1

×{+,×}
xi−1

yi−1

1


4.4 Lexicographical Scan

For Example 5, most scan parallelizers only detect the scan inside the inner
most loop. Redon and Feautrier [10] showed that it is useful to detect the
scan as a lexicographical scan instead of arrays of scans. The parallelization for
lexicographical scan is more efficient than parallelization of sequence of scans.

Based on Redon and Feautrier’s [10] algorithm for detecting multi-directional
scan. We present a way for detecting the lexicographical scan. Whenever a
matrix form is extracted, which means a scan is detected, we check the initial
values of the detected scan. A branch of the initial values can be combined with
the detected scan if and only if it satisfies the following:

• It is a recurrence equation of the same recurrence variables with the de-
tected scan.

• The input value of the recurrence equation is the lexical maximum values
computed by the detected scan.

• The branch can be transformed into a matrix multiplication regarding to
the recurrence variables.

10

After we combine all the possible branches, if there is no more initial values or
the rest of the initial values only computes the initial value for lexical minimum
value for the scan, the detected scan is a lexicographical scan.

For example, in example 5, a scan about variable x is detected in the third
branch, the branch {i, j|0 < i < n, j = 0} compute the initial values of the
detected scan. The branch {i, j|0 < i < n, j = 0} is a recurrence equation
about x, and the lexical maximum values computed buy the scan x[i− 1][i− 1]

is the input for this branch. and the a matrix form
(

1 a[i][0]
0 1

)
can be extracted

for the branch, then the branch of the initial value into the scan. After that, no
more branches can be merged into the scan and there is no more initial values
to be merged.

4.5 Reduction

Until now, we have only focused on scan detection. Let us now address de-
tection of reductions. Based on the recurrence equations, we can say that a
reduction is a special case of scan, any value computed in the scan can be com-
puted as a reduction. If a scan is used only on a finite domain, then it is not
necessary to compute all the values, so we can recognize the values in this finite
domain as reductions and remove the scan. For example, in the mss example,
mss tmp is detected as a scan first, however, there is only one value of mss tmp
is used mss tmp[n] in the definition of mss, so we say that the variable mss is a
reduction.

5 Normalization

Most of the systems of recurrence equations is not written in the standard way
as we defined. Some strategies needs to be applied to rewrite the system without
changing the meaning of the code, so that a matrix form can be extracted, this
strategy is called normalization. Our normalization is based on the Strongly
Connected Components (SSCs) of the PRDG.

5.1 Preprocessing

A simple preprocessing can be used to filter out the parts that do not belong
to scans. As we described in the target recurrence system, all the recurrence
equations are defined on the same domain, which means all the dependences on
the recurrence variables are defined on the same domain and those dependences
need to be uniform. In other words, if there exists a non-uniform dependence d
on variable v with a domain D, it is impossible for our method to extract v as a
scan variable on domain D, so we can ignore all dependence on D. Moreover, we
do not want the non-uniform dependences in initial values occur in the analysis.
We can ignore those dependence by simply removing the edges from the PRDG.

11

yx

S1

S2

S3

S4

S5

S1:{(i,j->i,j-1), {i,j|0<=i<n,1<j<n}}
S2:{(i,j->i,j-1), {i,j|0<=i<n,n<j<2n}}
S3:{(i,j->i,j-1), {i,j|0<=i<n,1<j<n}}
S4:{(i,j->i,j-1), {i,j|0<=i<n,1<j<n}}

Figure 3: The PRDG for the splitting example

5.2 Splitting

Consider the following system of recurrence equations:

x[i][j] =


b, 0 ≤ i < n, j = 0
x[i][j − 1] + y[i][j − 1], 0 ≤ i < n, 1 < j < n

a[j − n], 0 ≤ i < n, j = n

x[i][j − 1] + a[j − n], 0 ≤ i < n, n < j < 2n

y[i, j] =

{
c, 0 ≤ i < n, j = 0
y[i][j − 1] + x[i][j − 1], 0 ≤ i < n, 1 < j < n

The SCC of the PRDG of this system is shown in Figure 3. It is easy to see
from the equations that the system contains two scans: on domain {i, j|0 ≤ i <
n, 1 < j < n}, variable x and y together construct a scan, the direction for x is
(0, 1) and (0, 1) for y; another scan is x on domain {i, j|0 ≤ i < n, n < j < 2n}
with direction (0, 1), it is a scan on array a.

To detect the scans in this kind of system, we need to do some proper
splitting on the system. Since the target system of recurrence equations we
solve requires all the uniform dependences of a recurrence variable are defined
on the same domain, in other words, one scan is defined on one domain, we are
going to do splitting according to the domain of the uniform dependence. The
algorithm is shown as below:

Algorithm 1. Splitting.

1. Construct the PRDG for the system.

2. In a SCC, for each vertex x, x is defined on Dx.

12

• For a uniform dependence d on x, d is defined on domain D0, the
initialization domain for this dependence is Dg0 . Find all the de-
pendence {d1, d2, . . . , dm} on v, where Ddi

∩ D0 6= ø, Ddi
is the

domain for di, compute the initialization domains for the set of
dependence, assume they are {Dg1 , Dg2 , . . . , Dgm

}. Define domain
D = D0 ∪Dgi , (0 ≤ i ≤ m).

• If Dx −D 6= ø. Split the definition for x according to D.

• Go back to step 1. This procedure is performed until there is no more
splitting can be performed.

In the above example, for vertex x, one of the dependences {i, j → i, j −
1} on x is defined on domain {i, j|0 ≤ i < n, n < j < 2n}, it is different
from the domains for other uniform dependence. The initialize domain for the
dependence is {i, j|0 ≤ i < n, j = n}, then we get D = {i, j|0 ≤ i < n, n ≤ j <
2n}. Do splitting on x according to D, we get the new system:

x1[i][j] =

{
b, 0 ≤ i < n, j = 0
x[i][j − 1] + y[i][j − 1], 0 ≤ i < n, 0 < j < n

x2[i][j] =

{
a[j − n], 0 ≤ i < n, j = n

x[i][j − 1] + a[j], 0 ≤ i < n, n < j < 2n

y[i][j] =

{
c, 0 ≤ i < n, j = 0
y[i][j − 1] + x[i][j − 1], 0 ≤ i < n, 0 < j < n

Now there is two SCCs in the PRDG of the system, and for each SCC, no
more splitting can be performed. Two scans can be detected based on the two
SCCs in the PRDG.

5.3 Substitution

Consider the following example:

x[i] =

{
a[0], i = 0
x[i− 1] + y[i− 1] + a[i], 0 < i < n

y[i] =

{
b[0], i = 0
y[i− 1] + x[i] + b[i], 0 < i < n

The PRDG for this system is shown in Figure 4. In this system, all the
uniform dependences of recurrence variable x and y are defined on the same
domain. However, the dependences on x are {(i→ i− 1), (i→ i)}, they are not
on the same direction. Our method will fail to detect this system of recurrence
equations as a scan.

We present a normalization method based on simple substitution. The sub-
stitution rule for a dependence between two variables is shown in Figure 5.

13

x

y

S1

S2

S3

S4
S1:{(i->i-1), {i|0<i<=n}}
S2:{(i->i-1), {i|0<i<=n}}
S3:{(i->i-1), {i|0<i<=n}}
S4:{(i->i), {i|0<i<=n} }

Figure 4: The PRDG for the system with mutual dependence

V1

V2
k1 edges

k0 edges

{f, P}

{f1, P1}

{f1’, P1’}

{fn, Pn}

{fm’, Pm’}

V1

V2

k0 edges

{f1, P1}

{fn, Pn}

k0 edges

k1 edges

{f1’, P1’}

{fm’, Pm’}

{fn o f, Pn}

{f1 o f, P1}

Substitution

Figure 5: Substitution rule for a dependence

14

As is shown in Figure 5, there are (k1 + 1) dependences for v2, one is on
x, k1 are on other variables. For v1, there are k0 dependences. Now we want
to remove the dependence from v2 to v1. We achieve this by substituting the
definition of v1 into v2. Assume the polyhedron for the dependence we want to
remove is {f, P}, where f represents the dependence function, P represents the
domain for the dependence, the new PRDG can be construct with the following
rules:

• For each variable v that v1 depends on, we add a new edge from v2 to v, if
the polyhedron for the dependence from v1 to v is {f ′, P ′}, the polyhedron
for the new edge from v2 to v is {f ′◦f, P}represents composition operator.

• Remove the edge from v2 to v1.

In this normalization, we only check the dependences between different vari-
ables, since a the self dependence can never be removed. A dependence can
be normalized only when it is identity or its direction is opposite of the given
direction. Since the latter situation will lead to a cyclic dependence, which will
not occur in a legal program, only normalization for the dependence with iden-
tity function will succeed. The following algorithm describes the algorithm for
substitution.

Algorithm 2. Substitution

• For each vertex v in the SCC.

1. Initialize the direction d for v with the direction of one of the self
dependences.

2. For each dependence di on v (di is from w to v), if di is not on the
same direction with d.

– If di is identity. Remove the dependence edge for di by substi-
tution.

– Else normalization fails, which means we are not able to normal-
ize the dependence on v to the same direction, so v is not a scan
variable, then we ignore the vertex v by removing the vertex and
all the dependence on v from the PRDG.

5.4 Partial normalization

Splitting and substitution are the main normalizations we need to do. To make
sure that the algorithm for scan detection works well, there are still some trivial
normalizations we need to do. Consider the following example:

X[i] = a[i] ∗X[i− 1]− b[i]

In the above equation, the recurrence variable is X, the binary operators
involved are × and −, which can not construct a legal semiring, our scan detec-
tion will fail. However, since − is the inverse of + we can rewrite the equation
to:

X[i] = a[i] ∗X[i− 1] + (−b[i])

15

C program

Normalization

Scan/Reduction Detection

Code Generator

Input Output

Equation Program

Parallelized C program
(OpenMp)

Parallel primitives
for Scan and
Reduction

Figure 6: Framework for the scan parallelizer

Now the binary operators involved become × and +, now a legal semiring
can be extracted. So a normalization according to the inverse of the semiring
operator is necessary to help detecting scans as much as possible.

5.5 Algorithm summary

For a dependence (z → I(z)), define the dependence level p as the greatest
integer that:

I(z)[1...p] = z[1...p]

Our method does scan detection level by level. At each level p we only
consider about the dependences at level p. The following algorithm gives a
summery about the detection of scans.

Algorithm 3. Scan Detections.

1. Let S be the system of recurrence equations we are going to solve.

2. Do splitting on S. The system after splitting is S′.

3. Do scan detection at level p from the maximum nesting level until 0.

• Construct the PRDG based on the dependences at level p.

• Do preprocessing.

• Compute the SCCs of the graph.

• For each SCC g, first check if all the dependences are defined on the
same domain. If they are defined on the same domain, do substitution
and apply the scan detection if substitution succeeded.

6 Automatic parallelization

The framework for our scan parallelizer is shown in Figure 6. We integrated our

16

⊕′ Z I C V
Z Z I C V
I I V V V
C C V V V
V V V V V

⊗′ Z I C V
Z Z Z Z Z
I Z I C V
C Z C V V
V Z V V V

Figure 7: Semantics for ⊕′ and ⊗′ with the abstract values

scan detection into a polyhedral program transformation and code generation
system. The automatic parallelization part is current not done yet.

In this section, we are going to talk about how we are going to parallelize
a scan or reduction. We also proposed some optimization strategies to improve
the performance.

6.1 Parallelization for scan and reduction

Many works have been done for the parallelization of scan and reduction [3, 8,
14, 15]. In our work, we will implement parallelized scans and reductions as
primitives using the strategy described in Merrill’s work [14].

The parallel algorithm for reduction consists of two phases: local reduction
and global reduction. Given an associative operator � an a set of expressions
[e0, e1, . . . , en−1], we want to do a reduction with p threads. Fist, we distribute
the n elements to the p threads, every thread performs a sequential reduction
on n

p elements. After p local reduction values are produced, a single thread
performs a global reduction on the p local reduction values.

We parallelize scan with three phases: local reduction, global scan and final
local scan. Similar to reduction, first, we distribute the n elements to the p
threads, every thread performs a sequential reduction on n

p elements. After p
local reduction values are produced, a single thread performs a global scan on
the p local reduction values. Finally, each thread performs a local scan with the
proper seeding value form the global scan.

6.2 Optimizations of Matrix Multiplication

Matsuzaki [6] presented an optimization based on abstract matrix multiplication
in the work for automatic parallelization of tree reductions. Their method
removes the redundant variables and computations by detecting the constant
propagations. Based on this idea, we proposed some optimizations of matrix
multiplication.

We use Z to denote 0, I to denote 1, C denotes the constant value and V
denotes non-constant values. The semantics for ⊕′ and ⊗′ is shown in Figure 7.
Let Mi =

∏i
j=0Ai, Mi = Ai×{⊕′,⊗′}Mi−1. In the optimization phase, we are

going to iterate through the matrix until the same matrix pattern appears.

17

Assume the following matrix is the initial matrix.(
V V
Z I

)
The iteration for the matrix yields the following results.(

V V
Z I

)
→
(
V V
Z I

)
→
(
V V
Z I

)
The stable matrix has two V elements, which indicates that we need those

two V elements for the computation. Similarly, if the initial matrix is similar to
the above matrix, but with the first element as I, we can find that it yields the
following computation.(

I V
Z I

)
→
(
I V
Z I

)
→
(
I V
Z I

)
So we only need one V element for the computation. Beside this kind of

optimization, we also try to look at the computations between the matrix mul-
tiplication. Since we handle higher order recurrence equations, we will have the
matrix Ai with the following pattern.V V V

I Z Z
Z Z I


There exists a unique permutation matrix P , by which A

′

i = PAi can be
permuted to the following pattern. I Z Z

V V V
Z Z I


We have Mi = Ai × {⊕′,⊗}Mi−1 = P−1PAi × {⊕′,⊗′}Mi−1 = P−1(A

′

i ×
{⊕′,⊗′}Mi−1), now let’s see A

′

i × {⊕′,⊗′}Mi−1, assume Mi−1 is an arbitrary
matrix, we can use V to represent every element for arbitrary elements. I Z Z

V V V
Z Z I

× {⊕′,⊗′}
V V V
V V V
V V V

→
V V V
V ′ V ′ V ′

V V V


Here we use the V ′ to represent the value for the corresponding element

changes. We can see that in this computation, the elements for the first row
and last row in the result matrix is the same as the first row and last row of
Mi−1, so we only need to do computation for the second row and permute the
matrix back after the computation.

There are some other trivial optimizations we can do. For example, if Ai is
a constant matrix, which never changes, then we can do the reduction for Ai

18

in logn step using the power of Ai. We can also do parallelization for matrix
multiplication when there is no optimization discovered. Moreover, in the local
reduction phase for scan, the last thread does not need to do reduction, since
its reduction value is never used in the following computation.

6.3 Experiment Results

To confirm the efficiency and scalability of the parallelization algorithm, we did
some hand parallelization experiments on the following examples.

Array Scan It performs a scan on a given array a, the computation is
xi =

∑i
j=0 a[j]. The parallelized code computes a scan on a (2, 2) matrix on

over the semiring (float,×,+). The test size for the array is 228.
Polynomial Scan The polynomial scan computes x[i] = cx[i − 1] + a[i].

The parallelized computation computes a scan on a (2, 2) matrix over semiring
(float,×,+). The test size for this problem is 228.

Maximum Segment Sum The computation for maximum segment sum
is shown in Example 2. MSS is used in some important applications in filter
design and bio-informatics. It is known as a programming pearl and have been
studied by many researchers. It is parallelized as a reduction on a 3 by 3 matrix
with a semiring (float,max,+). The test length of the input array is 229.

Fibonacci The fibonacci program is shown in Example 3. The Fibonacci
sequence is a well known math problem. It is used in the analysis of financial
markets, in strategies such as Fibonacci retracement, and also used in computer
algorithms such as the Fibonacci search technique and the Fibonacci heap data
structure. It is parallelized with a 3 by 3 matrix with a semiring (int64,×,+).
int64 represents the type for 64 bits integer. We generated a fibonacci sequence
with length 228.

Maximum subarray problem The maximum subarray problem is also
called two dimensional maximum segment sum. Given a two dimensional array
(m,n), it computes the subarray with the maximum sum among all the subar-
rays and returns the maximum sum. This computation is widely used in image
processing applications. Since this computation includes computation of arrays
of scans and arrays of maximum segment sum, we do parallelization among
independent scans. In the test, the input array size is (2000, 1000).

All the testing is done on a machine equipped with one Xeon3450 running on
double threads (4 cores; 2.66 GHz) and 8 GB memory. The running environment
is Fedora 14, each program is compiled gcc 4.5.1 with the O3 optimization. For
speedup, we compare with the sequential code without matrix multiplication.

The results are shown in Figure 8. Most of them show good scalability and
all of the implementations are no worse than the sequential code. For the array
scan and poly, we got more than 3 times speed up.

19

 0

 1

 2

 3

 4

 5

 1 2 3 4 5 6 7 8

sp
ee

du
p

number of threads

array scan
poly
mss

fib
msa

Figure 8: Speedup for the testing program

7 Related Work

The parallel implementation of recurrence equations was first discussed by Karp,
Miller and Winograd [16]. They treated program dependences as inviolate con-
straints that any parallelization had to respect. Later, in a seminal paper, Kogge
and Stone [5] described the first successful “dependence breaking” technique,
that proposed a parallelzation of a general class of recurrence equations. They
also introduced the “matrix notation” where the computation is described as
a small matrix-vector product, and the associativity of this operation leads to
efficient and scalable parallelization.

Lander and Fischer [17] descibed an efficient, general-purpose circuit for scan
operations. Blelloch [3] describes the implementation of prefix-sum computation
on parallel machines, and gives a strong motivation for using scan computations
as a “primitive” or a library. He presents a set of practical examples, such as
quicksort line-of-sight and watershed computations in topographical/geograph-
ical data, and spanning tree computations.

In the context of automatic parallelization, especially in the polyhedral
model, the earliest work on parallelization of reductions and scans is due to
Redon and Feautrier [10]. They present a scan detector which is based on an-
alyzing systems of recurrence equations extracted from an imperfectly neted
affine control loop program. They deal with scalar reductions, array reduction-
s/scans and arrays of reductions/scans. They also described a scan algebra for
the combination of scans, and some semantics preserving transformations on
recurrence equations that embody scans.

They propose and use a normal form on which the main algorithm is ap-
plicable, and a normalization technique to bring other more general programs

20

into such a form. They separate the system graph into strongly connected com-
ponents (SCCs), and use the core algorithm separately on each SCC. The core
algorithm effectively identifies a dependence cycle involving a node, performs
repeated substitution through a process called called total elimination seeking
to reduce he entire SCC into a single node. They then inspect the composition
of the computation along a dependence cycle to see if it matches the pattern
of a scan. If either total elimination or the patern matching fails, their algo-
rithm gives up, which prevents it from detecting many scans. For example, in
the system of equations xi = xi−1 + yi−1, yi = xi + ai, we can do a simple
substitution of y in the definition of x and remove the definition for y, and this
yields xi = 2xi−1 + ai. However, the total elimination will fail if there is no
common vertex for all the circuits in the SCC. In general, this situation occurs
when there is a mutual dependence, as in the example shown in section 5.3.
Furthermore, they recognize the scans base on pattern matching, one of the
common limitations for pattern matching method is that it will fail once the
target becomes too complicated.

Redon and Feautrier [4] also present a method to schedule programs with
reductions based on the recurrence equations. Although they assume an ideal
(PRAM) machine model, they show that the generated schedules can be adapted
to work on real parallel machines.

Matsuzaki et. al [6] proposed an algebraic approach for deriving reductions
from recursive tree programs. They extended the matrix multiplication model
to arbitrary semirings, which makes the systematic parallelization of reductions
become more practical. Xu [7] demonstrated an automatic type-based system
that detects parallelizability of sequential functional programs.

Han and Liu [18] describe a speculative parallelization method based on
detecting partial reduction variables, i.e., those that either cannot be proven to
be reductions, or that violate the requirements of a reduction variable in some
way.

More recently, Sato and Iwasaki [9] developed a sophisticated and pragmatic
system incorporating most of these algebraic approaches. Their system proposed
many enhancements to existing analysis techniques to optimize the generated
code, to detect hidden max operators from existing imperative codes, and an
extension of the algorithms of Xu et. al [7] and Matsuzaki et. al [6] to detect
semiring matrix operations from expressions.

All previous methods suffer from one limitation or the other. In particular,
the techniques of Redon and Feautrier does not use any of the work on matrix
operations on semirings, and the recent work on algebraic techniques [6, 7, 9]
are limited to only detect reductions or scans in single loops, and do not detect
multi-dimensional or lexicographic scans.

Our method based on the exact dependence analysis on systems of recurrence
equations, detects both scans and reductions in the nested loops. It also deals
with variables that have mutual dependence. The technique based on extract-
ing matrix multiplication form makes our method more general and powerful.
Overall, our method can handle a wider range of programs than the previous
work.

21

8 Conclusion

We presented a method for automatically parallelizing a class of “inherently”
sequential program. It is based on the classic recurrence parallelization tech-
nique of Kogge and Stone [5] but extended to nested loops, where the problems
are more difficult. Our method extends the previous works, it handles a wider
range of programs than them previous works. We can automatically detect re-
ductions, arrays of scans, lexicographic scan, and scans with mutually dependent
variables.

We implemented our method in a polyhedral program transformation and
code generation system. One of our future work that remains to be done is
the automatic parallelization part, although we present some optimizations in
this paper, there should be more room for improvement. One limitation of our
method is that every time the normalization step performs a splitting, we get
a new graph. Since the convergence process is in general undecidable, we use a
heuristic to stop the splitting. A better splitting method needs to be discovered.

References

[1] U. Bondhugula and J. Ramanujam, “Pluto: A practical and fully auto-
matic polyhedral program optimization system,” in In: Proceedings of the
ACM SIGPLAN 2008 Conference on Programming Language Design and
Implementation (PLDI 08), 2008.

[2] M. ParisTech, “Pips: Automatic parallelizer and code transformation
framework,” http://www.cri.ensmp.fr/pips/.

[3] G. E. Blelloch, “Scans as primitive parallel operations,” IEEE Trans. Com-
put., vol. 38(11), pp. 1526–1538, November 1989.

[4] X. Redon and P. Feautrier, “Scheduling reductions,” in Proceedings of the
8th international conference on Supercomputing, ser. ICS ’94. New York,
NY, USA: ACM, 1994, pp. 117–125.

[5] P. M. Kogge and H. S. Stone, “A parallel algorithm for the efficient solution
of a general class of recurrence equations,” IEEE Trans. Comput., vol.
22(8), pp. 786–793, August 1973.

[6] Z. H. M. Morita and M. Takeichi, “Towards automatic parallelization of
tree reductions in dynamic programming,” in Proceedings of the eighteenth
annual ACM symposium on Parallelism in algorithms and architectures,
ser. SPAA ’06. New York, NY, USA: ACM, 2006, pp. 39–48.

[7] S.-C. K. D. N. Xu and Z. Hu, “Ptype system: A featherweight paralleliz-
ability detector,” in IN PROCEEDINGS OF 2ND ASIAN SYMPOSIUM
ON PROGRAMMING LANGUAGES AND SYSTEMS (APLAS 2004),
LNCS 3302. Springer, LNCS, 2004, pp. 197–212.

22

[8] A. L. Fisher and A. M. Ghuloum, “Parallelizing complex scans and reduc-
tions,” in Proceedings of the ACM SIGPLAN 1994 conference on Program-
ming language design and implementation, ser. PLDI ’94. New York, NY,
USA: ACM, 1994, pp. 135–146.

[9] S. Sato and H. Iwasaki, “Automatic parallelization via matrix multiplica-
tion,” in Proc. 32nd ACM SIGPLAN Conference on Programming Lan-
guage Design and Implementation(PLDI 2011), to appear, 2011.

[10] X. Redon and P. Feautrier, “Detection of recurrences in sequential pro-
grams with loops,” in Proceedings of the 5th International PARLE Con-
ference on Parallel Architectures and Languages Europe, ser. PARLE ’93.
London, UK: Springer-Verlag, 1993, pp. 132–145.

[11] P. Feautrier, “Automatic parallelization in the polytope model,” The Data
Parallel Programming Model: Foundations, HPF Realization, and Scientific
Applications, pp. 79–103, 1996.

[12] C. Bastoul, “Code generation in the polyhedral model is easier than you
think,” in Proceedings of the 13th International Conference on Parallel
Architectures and Compilation Techniques, ser. PACT ’04. Washington,
DC, USA: IEEE Computer Society, 2004, pp. 7–16.

[13] P. Feautrier, “Dataflow analysis of array and scalar references,” Interna-
tional Journal of Parallel Programming, vol. 20, 1991.

[14] D. Merrill and A. Grimshaw, “Parallel scan for stream architectures,” Tech-
nical Report CS2009-14, pp. 373–381, 2009.

[15] S. Sengupta, M. Harris, Y. Zhang, and J. D. Owens, “Scan primitives
for gpu computing,” Proceedings of the 22nd ACM SIGGRAPH/EURO-
GRAPHICS symposium on Graphics hardware, pp. 97–106, 2007.

[16] R. M. Karp, R. E. Miller, and S. Winograd, “The organization of computa-
tions for uniform recurrence equations,” J. ACM, vol. 14(3), pp. 563–590,
July 1967.

[17] R. E. Ladner and M. J. Fischer, “Parallel prefix computation,” J. ACM,
vol. 27(4), pp. 831–838, October 1980.

[18] W. L. L. Han and J. M. Tuck, “Speculative parallelization of partial reduc-
tion variables,” pp. 141–150, 2010.

23

