
Computer Science
Technical Report

The CGPOP Miniapp, Version 1.0

Andrew Stone, John M. Dennis, Michelle Mills Strout

July 8, 2011

Technical Report CS-11-103

Computer Science Department
Colorado State University

Fort Collins, CO 80523-1873

Phone: (970) 491-5792 Fax: (970) 491-2466
WWW: http://www.cs.colostate.edu

The CGPOP Miniapp, Version 1.0

Andrew Stone, John M. Dennis, Michelle Mills Strout

July 8, 2011

Abstract

Miniapps provide performance proxies for larger applications thus enabling easier
evaluation of performance tuning and refactoring techniques. The CGPOP miniapp is
the conjugate gradient solver from Los Alamos National Laboratory’s Parallel Ocean
Program (POP) version 2.0. This paper describes the conjugate gradient algorithm
encapsulated in CGPOP, presents the organization of the CGPOP 1.0 release including
the implementations of CGPOP that are included in the release, evaluates CGPOP as
a performance proxy for POP, and describes how users of CGPOP can verify the
correctness of their own CGPOP rewrites.

1 Introduction

Miniapps enable developers of large programs to efficiently investigate the use of new pro-
gramming models, data structures, and program optimizations without having to initially
incorporate such changes into a much larger application. The miniapp [6] or skeleton app [5]

Figure 1: In POP and CGPOP the dipole grid is used to discretize the surface of Earth’s
oceans.

1

concept includes an application on the order of 1000 lines of code that incorporates a simple
build system and that accurately models the performance of a larger application. There-
fore, miniapps also enable high performance computing and parallel programming model
researchers to evaluate new techniques within the context of a reasonably-sized version of a
real application.

This paper presents CGPOP version 1.0, which is a miniapp for the Parallel Ocean
Program (POP) version 2.0 developed at Los Alamos National Laboratory. POP is a
global ocean modeling code and a component within the Community Earth System Model
(CESM) [1]. CGPOP encapsulates the performance bottleneck of POP, which is the con-
jugate gradient solver. The CGPOP miniapp is written in Fortran90 with MPI and is
about 3000 source lines of code (SLOC), whereas the POP application is 71,000 SLOC. We
have been using CGPOP to evaluate different subdomain data structures, computation and
communication overlap approaches, and different programming models such as Co-Array
Fortran and one-sided MPI. The CGPOP version 1.0 release includes prototypes of each of
these variants of the CGPOP miniapp.

In this paper, we overview the algorithms in CGPOP, describe the organization of the
CGPOP release, and present an evaluation of CGPOP as a performance proxy for POP.
Additionally, we describe how others can create their own CGPOP miniapp variants and
verify their correct execution. Our goal in releasing the CGPOP miniapp and some example
variants of it are to encourage other researchers to improve the performance of CGPOP in
ways that are applicable to POP. One caveat about CGPOP version 1.0 is that it is built on
POP version 2.0 that uses the dipole discretization instead of the tripole discretization that
is used in the current CESM POP for high resolution runs (0.1◦). We illustrate the dipole
discretization in Figure 1. Future work includes developing a tripole version of the CGPOP
miniapp that is a performance proxy for NCAR POP 2.1, which is being used in the CESM
1 release code.

2 Extracting the Conjugate Gradient Solver

Our first step when constructing the miniapp was to identify the most performance impacting
part of the POP code. To understand the performance characteristics of POP, we profiled the
scalability of three main parts of the application: the barotropic component, the baroclinc
solver, and the 3D-update. The barotropic component updates two-dimensional surface
pressure data and uses a single production version of a preconditioned conjugate gradient.
The POP solver is very sensitive to network latency and OS noise at large core counts [4].
The baroclinc component solves the equations of motion for the ocean model and involves
embarrassingly parallel calculations that stream data from the memory hierarchy to the CPU.
The 3D-update step is used to update 3-dimensional prognostic variables like temperature
and velocity at the end of each timestep.

In Figure 2 we provide a breakdown of the relative computational cost of the three
different components of the POP 2.0 0.1◦ benchmark when run using varying numbers of
cores on Kraken. The 0.1◦ has an average of 0.1◦ separation between neighboring grid points

2

10^2 10^3 10^4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
e
rc

e
n

ta
g

e
 e

x
e
c
u

ti
o

n
 t

im
e

of cores

Barotropic

3D−update

Baroclinic

Figure 2: Relative cost of the different components of the POP 0.1◦ benchmark on Kraken:
a Cray XT5

at equator. Kraken is a 99,072 core Cray XT5 system located at the National Institute
for Computational Science (NICS). While the relative cost of the baroclinic component is
dominant at fewer than 1000 cores, the relative contribution of the communication intensive
sections of the code, barotropic and the 3D-update dominate the total cost at greater than
1000 cores. For this reason we have the CGPOP miniapp consists of the conjugate gradient
component of POP.

The CGPOP miniapp implements a version of conjugate gradient algorithm, which uses
a single inner product [3], to iteratively solve for vector x in the equation Ax = b (see Fig-
ure 3). The matrix A, along with the initial guess vector x0, right hand side vector b, and
diagonal preconditioner vector M−1 are read from an intermediate state file and passed as
inputs into the function CGPOP-solver. The final surface pressure vector x is the output of
CGPOP-solver. The CGPOP-solver algorithm consists of a number of linear algebra com-
putations interspersed with two communication steps. The GlobalSum function performs a
3-word vector reduction, while UpdateHalo function performs a boundary exchange between
neighboring subdomains. The UpdateHalo function is passed an array that has been dis-
tributed across processes using the distribution described in the blocks data-structure of the
intermediate state file. The asterisk ∗ indicates a dot product between two vectors involving
all entries in the local subdomain, and the GlobalSum results in the full dot product being
completed.

3 Required Behavior of the CGPOP MiniApp

Broadly, the CGPOP miniapp is defined in terms of its input/output behavior and the
algorithm it must conduct. We illustrate this behavior in Figure 4 and list pseudocode for

3

x = function CGPOP-solver(A,x0,b,M−1)
!————————————————–
! Compute initial residual
!————————————————–
s = Axo

r = b− s

rr0 = (GlobalSum(r ∗ r))1/2

UpdateHalo(r)

!————————————————–
! Single pass of regular CG algorithm
!————————————————–
z = M−1r
s = z
q = As

UpdateHalo(q)

{ρ, σ} = GlobalSum({r ∗ z, s ∗ q})

!————————————————–
! Calculate coefficient
!————————————————–
α = ρ/σ

!————————————————–
! Compute next solution and residual
!————————————————–
x = x+ αs
r = r − αq

do 124 iterations:
!————————————————–
! Apply preconditioner
!————————————————–
z = M−1r
az = Az

UpdateHalo(az)

{ρ′, δ, γ} = GlobalSum({r ∗ z, r ∗ r, az ∗ z})

!————————————————–
! Calculate updated coefficients
!————————————————–
β = ρ′/ρ
σ = δ − β2σ
α = ρ/σ
ρ = ρ′

!————————————————–
! Compute next solution and residual
!————————————————–
x = x+ α(z + βs)
r = r − α(az + βq)
s = z + βs
q = az + βs

Figure 3: CGPOP’s preconditioned conjugate gradient algorithm.

Read intermediate state file
Construct communication metadata
Start Timer
CGPOP-solver()
Stop Timer
Check correctness
Output timing and verification info

TimingDomain
decomposition

generator

Intermediate
state file

Data:

Application Metadata:

Blocks

CGPOP miniappInput file

Stencil coefficients

Vector b

Initial guess for

Final solution for

Land mask

Blocked forms of

Data:

L2 Norm of
CG output

vector x

vector x

information

data from input
file

Neighbors graph
GDOF arrays

Figure 4: Architecture of the CGPOP Miniapp

the CG algorithm in Figure 3. The CGPOP application is passed an intermediate state file,
which is generated by the cginit domain decomposition generator.

The cginit domain decomposition generator is passed a single input file, which contains
a dipole grid stored as a 3600× 2400 two-dimensional array and the expected output of the
POP conjugate gradient computation for that same grid. The input file also includes the
stencil coefficients that are used with the discretization to construct the sparse matrix, a

4

mask to indicate if a grid point is ocean or land, and the initial guess and final solution for
vectors x and b of Figure 3. The data stored in the input file is in NetCDF format [7, 2].

The domain decomposition generator breaks the 3600× 2400 global domain into subdo-
main blocks and outputs these blocks into an intermediate state file (also known as a tile
file). The generator outputs a unique intermediate state file for each of the block sizes it
is configured to work with. By default the generator is configured to work with block sizes
of 180x120, 120x80, 90x60, 60x40, 48x32, 36x24, 24x16, and 18x12. Different block sizes
are better when different numbers of processors are used, generally smaller block-sizes work
better when greater numbers of processors are used.

In addition to the data component of the intermediate state file, there is a metadata that
describe the relationship between blocks. There is a set of block information records, a graph
of neighbors, and integer arrays that correspond to the global degree of freedom (GDOF) for
every point in each block. GDOF values are identifiers that are unique for each grid point in
the global domain. The block information records identify the location of each rectangular
block within the global domain in terms of two-dimensional indices in the global domain.

After being generated, the intermediate state file can be passed to CGPOP, which will
correctness and timing data. Timing information is needed for gathering performance infor-
mation. The correctness test, which is used for code verification, checks that the difference
between L2 norm for x as calculated by the CGPOP miniapp and that calculated by POP
is within machine precision.

4 Package Organization

We have implemented several variants of the CGPOP miniapp including the base variant
extracted almost directly from POP 2.0, which uses Fortran and MPI. The base implemen-
tation serves as a reference that new implementations can be compared against in terms
of performance. In this section we describe the existing variants of the miniapp that are
packaged in the 1.0 release and overview the organization of the release package.

4.1 Variants of the CGPOP MiniApp Version 1.0

There are several different variants of the CGPOP miniapp included in the 1.0 release pack-
age. These variants differ from one another based on how subdomain blocks are stored
(either in a one-dimensional or two-dimensional array), the communication mechanism (e.g.,
two-sided MPI, one-sided MPI, or Co-Array Fortran), and various optimizations such as
buffering of data, communication overlap, and whether data is pushed or pulled in for the
one-sided versions. We illustrate the variants that use the one-dimensional data-structure
in Figure 5, and we illustrate the versions that use the two-dimensional data-structure in
Figure 6. The leaf nodes of each tree correspond to implementations.

In both the one-dimensional and two-dimensional data structure variants there is a halo
region in the local data array that contains copies of data from neighboring subdomain

5

1-dimensional data-structure

Two-sided MPI One-sided MPI CAF/MPI Hybrid

Barrier
[mpi2s1D/]

Overlapped
[mpi2s1D_overlap/]

Buffered
Unbuffered
[mpi2s1D/]

Barrier Overlapped

Pull
[mpi1s1D/]

Push
[mpi1s1D/]

Buffered

Pull
[caf1D/]

Push
[caf1D/]

Buffered

Pull
[caf1D_sync_images/]

Push
[caf1D_sync_images/]

Unbuffered
[caf1D/]

Unbuffered
[caf1D_sync_images/]

Figure 5: Variants of the CGPOP MiniApp that use a one-dimensional data structure to
store each subdomain. The square brackets denote the subdirectory that contains the variant
code.

2-dimensional data-structure

Two-sided MPI
[mpi2s2D/]

CAF/MPI Hybrid

Pull
[caf2D/]

Push
[caf2D/]

Figure 6: Variants of the CGPOP miniapp that use a two-dimensional data structure to
represent each subdomain. Directories for each version are labeled in brackets.

6

Process A Process B

Process C Process D

Sender-side
data

Send buffer

Receive buffer

Receiver-side
data

Figure 7: Communication pattern when one-dimensional data structure is used to store
blocks.

blocks. (NOTE: the one-dimensional version uses a halo of size 1 and the two-dimensional
version uses a halo of size 2). This data is needed in order to update the local subdomain
blocks during an iteration of the conjugate-gradient algorithm. In Figure 8 we illustrate the
format of the array used in the two-dimensional variants, where two layers of halo cells are
used. For the two-dimenaional variants the size of the halo is set by the variable nghost

in source/simple blocks.F90. The operations to update this halo region are contained
in the UpdateHalo function. The variants that use a one-dimensional array to store local
data will only store data-points that correspond to ocean. This ocean-only data is stored
in compressed sparse-row (CSR) format. Note that in the two-dimensional data structure,
storage is allocated for points that correspond to land even though these points are not
updated.

Among the variants that use the two-dimensional data-structure, there is a two-sided
MPI implementation and two CAF/MPI Hybrid implementations. In the CAF/MPI Hybrid
version, MPI is used to implement the GlobalSum operation. We found it necessary to use
MPI for this operation because reduction operations are not currently supported in the CAF
standard. For the one-dimensional data structure variants, there are implementations that
use two-sided MPI communication, implementations that use one-sided MPI communication,
and implementations that use a hybrid of Co-Array Fortran and MPI.

In addition to examining the programming model used, we also look at the impact that
optimizations have when applicable for a given model. For the two-dimensional variants that
use two-sided MPI implementation and CAF, we include versions that include a barrier syn-
chronization step after performing an UpdateHalo and GlobalSum , and versions that overlap

7

(1,1) (nx_block,1)

(1,ny_block)

nghost

nghost{

{

Figure 8: A processor owns a two-dimensional array of points for a block. This array
also includes halo cells (shaded), that may have ownership with a different processor. The
CGPOP miniapp periodically executes a boundary exchange step to transmit data in order
to update halo cells.

communication and computation by only synchronizing between neighboring processes when
needed.

Another optimization we look at data buffering. Before data is sent in the two-sided MPI
versions, it is aggregated into a buffer so that a single message is sent between a processor and
its neighbor. This aggregation is necessary due to the fact that the local data that a neighbor
needs may not be stored contiguously in memory. However, for one-sided communication
models it is more convenient to not perform such a buffering step and instead work directly
with data. A downside to not buffering is that it requires multiple messages to be sent and
thus degrades performance. To examine how much impact buffering has we include variants
that both do and do not buffer data for one-sided MPI and CAF.

In addition to the decision of whether to buffer data or not, another decision that is
necessary with one-sided communication models is whether data is pushed so that each
processor issues communication calls to putting data to its neighbors, or pulled so that each
processor issues get calls to retrieve data from its neighbors. In two-sided communication
models both types of communication calls are specified. In order to examine the performance
impact of pushing versus pulling data we include variants that push and variants that pull.

4.2 Common Modules

All existing versions of the miniapp use the modules described in this subsection. These
modules can be found under the source and shared directories. Specifically, modules that
are shared between the different implementations are placed in the source directory, and
modules that are shared between the different implementations and the cginit tile file gen-
erator are stored in the shared directory.

8

broadcast Broadcast routines. This particular version contains MPI ver-
sions of these routines

check Routines to verify that the miniapp produced the correct answer.

communicate Routines and variables that are necessary for communicating
between processors. Routines include init communicate,
exit message environment, abort message environment,
and get num procs.

constants Physical and numerical constants used throughout the Parallel
Ocean Program.

domain size Parameters that define the size of the global model domain and
the block decomposition. It is used by the domain and block
modules for decomposing the model domain across processors.

exit mod Routine to provide a graceful means of exiting from POP when
encountering an error.

io serial Provides several methods to read and write data needed by the
miniapp.

IOUnitsMod I/O unit manager for tracking, assigning and reserving I/O unit
numbers.

kinds mod Default numerical data types for all common data types like
integer, character, logical, real4 and real8.

simple blocks Data types and tools for decomposing a global horizontal do-
main into a set of blocks. This module contains a data type
for describing each block and contains routines for creating and
querying the block decomposition for a global domain.

simple domain Model domain and routines for initializing the domain. This
module also initializes the decompositions and distributions
across processors/threads by calling relevant routines in the
block, distribution modules.

simple type This data structure describes the how blocks are distributed
across tasks.

timers This module contains routine for supporting multiple CPU
timers and accumulates time for each individual block and node
(task).

9

In addition to the proceeding modules each of the current CGPOP implementation also
include an implementation specific version of the following modules:

broadcast Broadcast routines. This particular version contains MPI.

cgpop Main driver file.

linear This module contains routines for converting to and from the
one-dimensional data structure used in the solver in the 1D ver-
sion of the miniapp.

gshalo This module includes the boundary exchange routine.

matrix mod Routines for multiplying a compressed sparse row matrix and a
vector (the linear data structure in the solver).

reductions This module contains all the routines for performing global re-
ductions like global sums, minvals, maxvals, etc.

solvers This module contains routines and operators for solving the el-
liptic system for surface pressure in the barotropic mode.

5 Installing and Using CGPOP

The CGPOP miniapp version 1.0 can be downloaded from http://www.cs.colostate.

edu/hpc/cgpop. If you would like to quickly tryout the MPI versions of CGPOP on a Linux
machine, then follow these instructions:

1. Setup environment for mpif90
mpif90 must be in your path whenever a new shell is started. If you are using C-shell
then you should have the following two lines in your .cshrc (with the path changed to
point to your local MPI implementation):

setenv PATH /usr/lib64/openmpi/bin:$PATH

setenv LD_LIBRARY_PATH /usr/lib64/openmpi/lib:$LD_LIBRARY_PATH

If you are using BASH then include these two lines in your .bashrc:

export PATH=/usr/lib64/openmpi/bin:$PATH

export LD_LIBRARY_PATH=/usr/lib64/openmpi/lib:$LD_LIBRARY_PATH

10

2. Setup environment for netcdf
You need to indicate where netcdf was installed. If you did a standard installation
in /usr/local/, then just set the NETCDF DIR environment variable to /usr/local/.
If you did a non-standard installation, then you need to set the LD LIBRARY PATH

environment variable as well. In .csrhc:

setenv NETCDF_DIR /fullpath/mstrout/software/

setenv LD_LIBRARY_PATH /fullpath/mstrout/software/lib:$LD_LIBRARY_PATH

In .basrhc:

export NETCDF_DIR=/fullpath/mstrout/software/

export LD_LIBRARY_PATH=/fullpath/mstrout/software/lib:$LD_LIBRARY_PATH

3. Build CGPOP miniapp

./build.linux

4. Run CGPOP miniapp (takes about 2 minutes on an 8 core machine)

cd mpi2s1D // or another directory

mpirun -np 24 ./cgpop.linux.180x120

// The result should be within roundoff error of the following:

CheckAnswers: MPI2S_1D

Pressure field: SUM(calc-read): -7.0421922819799061

The rest of the section provides more details about building and executing CGPOP on
capability computing systems.

5.1 Building the tile files

Tile files include the input data for the CGPOP miniapp blocked into subdomains as well as
how the subdomains relate. The appropriate tile file to use when executing CGPOP depends
on how many nodes you intend to run it across. Generally, files that use smaller block-sizes
are more appropriate when greater numbers of processors are used. For example, a block
size 180x120 is recommended when using 358 processors, while a block size of size 120x80 is

11

recommended when using 764 processors. A table of recommended tile sizes is included in
init/domain size.F90

The CGPOP version 1.0 release includes the 180×120 tile file (data/cgpoptile 180x120.nc),
which divides the 3600 × 2400 global domain into 400 subdomains of size 180 × 120. Ad-
ditionally other tile files are available for download from the CGPOP webpage at http:

//www.cs.colostate.edu/hpc/cgpop, or you can use the provided cginit.f90 driver to
generate the tile files.

Briefly, to generate tile files using the serial cginit.f90 driver:

1. Setup your environment to use netcdf as shown at the beginning of this Section.

2. cd into the init directory

3. Set the ARCHDIR environmental variable. The currently supported options are xt5 serial,
bgl fe, and linux, which correspond to a single node of an XT5, a frontend node of
a Blue Gene/L, or a generic linux machine that has the GCC compiler. For example,
to set this environment variable in bash execute:

export ARCHDIR="xt5_serial"

4. Run make to build the serial executable cginit.

5. Run the cginit executable.

When run, cginit will read in the POP state input file ../data/cgpopState.nc and
generate several tile files for different block sizes. Note that the cgpopState.nc file is
currently in netCDF4 format. The size of the blocks is set by the following statements that
describe three parallel arrays in the cginit.F90 file:

integer(i4), parameter :: nsize = 8

integer, dimension(nsize) :: bsx,bsy,maxb

data bsx /180, 120, 90, 60, 48, 36, 24, 18/

data bsy /120, 80, 60, 40, 32, 24, 16, 12/

data maxb /400, 900,1600,3600,5625, 10000,22500,40000/

The cginit executable will create the following files

../data/cgpoptile_{$bsx}x{$bsy}.nc

where {$bsx} and {$bsy} are block sizes defined by data statements in cginit.F90. The
{$maxb} data statement indicates the maximum number of blocks necessary when a given
block-size is used (for example, with a block size of 180x120 the 3600x2400 domain is broken
into 400 blocks arranged in a 20x20 grid; in practice fewer blocks are used because some
areas correspond solely to land).

12

5.2 Building CGPOP Executables

There are several ways to build the CGPOP miniapp variants. Note that each driver needs
to be built separately for each tile file configuration. We describe a method that simplifies
the collection of parallel scaling curves. First, based on the machine you are running on,
you need to determine the proper setting for the ARCHDIR environmental variable. The
supported options are:

xe6Cray Cray XE6 with Cray Compiler
xt5Cray Cray XT5 with Cray Compiler
xt5Pgi Cray XT5 with PGI compiler
bgl Blue Gene/L with XLF compiler
linux Standard Linux machine with GNU compiler

Each of these options corresponds to a {$ARCHDIR}.gnu file in each of the implementation’s
source directories. Additional .gnu files can be created in order to support new architectures.
Note that versions that use CAF can only be compiled with the Cray compiler.

5.3 Details of build.{$hostname} scripts

We provide host specific build files that simplify the build and creation of scripts for running
scaling curves on certain systems. The build scripts are of the form build.$hostname. Run-
ning one of these scripts will generate executables for the corresponding $hostname in one
or more of the directories, caf1D/, caf1D sync images/, caf2D/, mpi1s1D/, mpi2s1D/,

mpi2s1D overlap/, mpi2s2D.

Another script will build the run scripts for the machine {$hostname} and is of the form
buildscript.{$hostname}.

Inside a build.{$hostname} script there is a double nested foreach loop. The outer
loop iterates over problem sizes (defined by a variable szlist); the inner loop iterates over
versions of the CGPOP miniapp to compile (defined by the variable mdlist).

Note that szlist corresponds to the {$bsx}x{$bsy} values described previously. To
build a number of CGPOP miniapp executables with different blocks sizes simple edit the
build.{$hostname} script and execute it.

Build scripts for the following hosts are provided:

frost A Blue Gene/L at NCAR
kraken A Cray XT5 at NICS
lynx A Cray XT5 at NCAR
hopper A Cray XE6 at NERSC
linux A standard Linux machine

13

5.4 Executing

There are two steps to executing CGPOP on a large capability system:

1. Running the appropriate build script

2. Submitting the appropriate script to your system’s batch queue (for instance by using
the qsub command)

The buildscript.{$hostname} script creates a number of job submission scripts for
particular core counts. For example in the buildscript.kraken, we note that for block
size 120 × 80, run scripts for 96, 192, 384, and 768 cores are created. These job scripts
are placed in the directory run/120x80 with the name kraken.{96,192,384,768}.pbs re-
spectively. To execute the kraken scripts simply perform a qsub command on one or more
of the scripts. Note that job output is written to the directory run/results. Configura-
tion information is encoded into the name of the output file. An example output file is
cgpop lynx1 mpi2s1D xt5Pgi 60x40 576.log.101112-104405. The name can be decoded
in the following manner: CGPOP miniapp on hostname lynx, using the mpi2s1D version
with ARCHDIR=xt5Pgi. The block sizes were 60 × 40 on 576 cores. The string of integers
101112-104405 correspond to a timestamp.

6 Evaluation as a Performance Proxy

One of the characterizations of a miniapp as put forth by Heroux et al. [6] is that a miniapp
should be on the order of 1000 SLOC and include a simple build process to enable easy
porting. This size and simplicity requirement is critical to the POP developers’ need for
a miniapp that enables benchmarking in immature environments. CGPOP satisfies these
requirements in that each instance of the CGPOP miniapp is approximately 3000 SLOC
and we have shown that the build process can be performed on a number of platforms.
Additionally, to be of use to scientific application developers a miniapp should serve as a
performance proxy for the target full application. To be considered a performance proxy,
a miniapp should accurately model the performance bottleneck of the full application at
the range of cores that the full application typically targets. In this section, we show that
CGPOP is a performance proxy for POP by showing that the scalability of CGPOP’s base
MPI implementation is similar to that of POP.

Scalability can be affected by a number of factors including the machine and compiler
used. To ensure that the performance behavior of the CGPOP miniapp matches that of POP
we examined the scalability of CGPOP and POP across three different platforms: Hopper,
a Cray XE6 located at the National Energy Research Supercomputing Center (NERSC);
Frost, a BlueGene/L located at the National Center for Atmospheric Research (NCAR);
Lynx, a Cray XT5 also located at NCAR; and Kraken, a Cray XT5 located at the National
Institute for Computational Science (NICS). We list technical information about these com-
pute platforms in Table 1. The compilers we used in our examination were PGI Fortran,

14

10
1

10
2

10
3

10
4

10
5

10
0

10
1

10
2

10
3

10
4

of cores

E
x

e
c

u
ti

o
n

 t
im

e
 (

s
e

c
)

POP solver w/PGI [Hopper]

CGpop w/Cray [Hopper]

CGpop w/PGI [Hopper]

POP solver w/XLF [Frost]

CGpop w/XLF [Frost]

POP solver w/PGI [Kraken]

CGpop w/PGI [Kraken]

Figure 9: Execution time in seconds for 1 day of the barotropic component of the POP
0.1◦ benchmark and the MPI-2S version of the CGPOP miniapp on three different compute
platforms

Cray Fortran, and XL Fortran. We present our results in Figure 9, and as can be seen by
comparing the similarly colored lines for POP and CGPOP, the scalability behavior of the
two are comparable when the same compiler and machine are used.

System
Name Kraken Hopper Lynx Frost

Company Cray Cray Cray IBM
System Type XT5 XE6 XT5 BG/L

of cores 99,072 153,408 912 8192
Processor

CPU Opteron Opteron Opteron PPC440
Mhz 2600 2100 2200 700

Peak Gflops/core 10.4 8.4 8.8 2.8
cores/node 12 24 12 2

Memory Hierarchy
L1 data-cache 64 KB 64 KB 64 KB 32 KB

L2 cache 512 KB 512 KB 512 KB 2 KB
L3 cache 6 MB 12 MB 6 MB 4 MB

(shared) (shared) (shared) (shared)
Network

topology 3D torus 3D torus 2D torus 3D torus
of Links/per node 6 6 4 6

Bandwidth/link 9.6 GB/s 26.6 GB/s 9.6 GB/s 0.18 GB/s

Table 1: Description of compute platforms used for this study.

For Kraken, the execution time of the barotropic section of POP and CGPOP matches
well for all core counts. Note that considerable variability in execution time is observed on

15

Kraken for configurations with greater than 1,000 cores. This is an expected result of running
an OS noise sensitive application on a shared production supercomputer. Additionally the
loss of scalability in the CGPOP miniapp at large core counts on Kraken is a reflection of
number of factors including the cost of global reduction within the solver. At greater than
4,000 cores on Kraken, approximately 50% of the execution time is due to a three-word
global reduction.

On Frost the execution time for CGPOP and POP are also in close agreement. Not
surprisingly the execution time of the CGPOP continues to scale on Frost, which is a Blue
Gene/L system and therefore provides hardware support for global reductions.

On Hopper, the execution time of the POP barotropic solver and CGPOP for both the
Portland Group (PGI) and Cray Compiler agree to within the variability of the system. In-
terestingly, the execution time for CGPOP using the Cray compiler appears to be depending
on setting the following environment variable:

export HUGETLB_DEFAULT_PAGE_SIZE=512K

This environment variable enables the use of 512 KByte pages. By default the Cray compiler
uses 2 MByte large pages while the PGI compiler uses the much small 4 KByte pages.
Preliminary performance timings on Hopper indicated that use of the Cray compiler had a
significant negative impact on scalability at large core counts. Subsequent tests with 512
KByte pages revealed significantly smaller execution time for CGPOP. While this suggests
that reducing the page size positively impacts performance by a factor of 5, the performance
timings for the two different page sizes were not measured at the same time. Further because
our access has been during the pre-acceptance phase of Hopper, which potentially involves
modifications to the system OS, other system issues may be at play. We intend to closely
work with Cray and the technical staff at NERSC to resolve these issues. Regardless of the
outcome, this experience clearly demonstrates the utility of the CGPOP miniapp at helping
to identify potential scalability issues within compilers.

7 Conclusions

Miniapps that serve as performance proxies can be used to evaluate and compare parallel
programming models within the context of a larger application. In this paper we introduce
and document CGPOP, a miniapp that models the conjugate-gradient solver in the Par-
allel Ocean Program (POP). We establish that CGPOP is a performance proxy for POP
by comparing the scalability of POP and CGPOP on thousands and tens of thousands of
cores on a Cray XT5, Cray XE6, and BlueGene/L. We argue that CGPOP can serve as
a programmability proxy because it includes important code from the full application, is
incremental in that a modified version of the miniapp can be reincorporated into the full
application, and is representative of the implementation details that affect programmability
in the full application.

16

Acknowledgements

This work was supported by Department of Energy Early Career Award #DE-SC3956. This
work was financially supported through National Science Foundation Cooperative Grant
NSF01 which funds the National Center for Atmospheric Research (NCAR), and through
the grant: #OCI-0749206.

References

[1] Community Earth System Model.
http://www.cesm.ucar.edu/.

[2] NetCDF (Network Common Data Form) – website.
http://www.unidata.ucar.edu/software/netcdf/.

[3] E. F. D’Azevedo, V. L. Eijkhout, and C. H. Romine. Conjugate gradient algorithms
with reduced synchronization overhead on distributed memory multiprocessors. Technical
Report 56, LAPACK Working Note, August 1993.

[4] K. B. Ferreira, P. Bridges, and R. Brightwell. Characterizing application sensitivity to
OS interference using kernel-level noise injection. In Proc. of the 2008 ACM/IEEE Conf.
on Supercomputing, pages 1–12, 2008.

[5] W. Foster, P. H. Worley, and I. T. Foster. Parallel spectral transform shallow water model:
A runtime–tunable parallel benchmark code. In Proceedings of the Scalable High Perfor-
mance Computing Conference, pages 207–214. IEEE Computer Society Press, 1994.

[6] M. A. Heroux, D. W. Doerfler, P. S. Crozier, J. M. Willenbring, H. C. Edwards,
A. Williams, M. Rajan, E. R. Keiter, H. K. Thornquist, and R. W. Numrich. Improving
performance via mini-applications. Technical Report SAND2009-5574, Sandia National
Laboratories, 2009.

[7] R. K. Rew and G. P. Davis. The unidata netCDF: Software for scientific data access.
In Sixth International Conference on Interactive Information and Processing Systems for
Meteorology, Oceanography, and Hydrology, pages 33–40, Anaheim, California, American
Meteorology Society, February 1990.

17

