
Computer Science
Technical Report

Systematic Implementation of fast-i-loop in
UNAfold using AlphaZ

Tomofumi Yuki, Tanveer Patahan, Gautam Gupta, and Sanjay Rajopadhye

May 31, 2012

Colorado State University Technical Report CS12-102

Computer Science Department
Colorado State University

Fort Collins, CO 80523-1873

Phone: (970) 491-5792 Fax: (970) 491-2466
WWW: http://www.cs.colostate.edu

1 Introduction

In this paper, we show a detailed description of how a known optimization that reduce the complexity of
RNA folding algorithm from O(N4) to O(N3) can be semi-automatically applied via an implementation of
a technique called Simplifying Reductions [1].

RNA secondary structure prediction, or RNA folding, is a widely used algorithm in bio-informatics. The
original algorithm has O(N4) complexity, but O(N3) algorithm has been previously proposed by Lyngso et
al. [2]. However, there is no implementation of the O(N3) algorithm has been made publicly available to the
best of our knowledge.

The complexity reduction takes advantage of “hidden scans” in collections of reductions, where results
(possibly partial) of a reduction can be reused in computing other reductions. For example, consider the
following where Xi, 0 ≤ i < N is computed as sums of subsets of values in Ai; 0 ≤ i < N .

Xi =
i∑

k=0

Ak

This is actually a prefix (scan) computation, and can be written as the following:

Xi =

{
i = 0 : Ai

i > 0 : Ai +Xi−1

Note that the former equation takes O(N2) time while the latter takes O(N) time. This is the core of
the algorithm, and simplifying reductions consists of collection of analyses and transformations to detect
and transform such reductions to corresponding scan computations.

A much more complicated version of the above example was found by Lyngso et al. [2] in the RNA
secondary structure prediction algorithm. However, implementing such optimization require significant re-
structuring of the program. Moreover, although the Simplifying Reductions algorithm include the necessary
analyses to identify hidden scans, detecting scans from a real application is non-trivial.

This paper presents a systematic way of deriving reduced complexity implementation of a function in
UNAfold software package [3], using the AlphaZ system. The paper is organized as follows. Section 2
introduces polyhedral equational model and AlphaZ [4] system that we use for manipulating RNA folding
algorithm and derive reduced complexity algorithm. In Section 3, we illustrate the intuition behind the core
technique, Simplifying Reductions [1] with an example. The essential elements of Simplifying Reductions
are reviewed in Section 4, followed by a review of the algorithm to reach optimal complexity in Section 5.
Finally, in Section 6, we step through the algorithm in Section 5 to deduce the reduced complexity algorithm.

We also include sources of equational language used in AlphaZ, before and after the transformation, as
well as a script for AlphaZ that applies the sequence of transformations as appendices.

2 AlphaZ and Polyhedral Equational Model

In this section we provide the necessary background of the AlphaZ system and the polyhedral model to
understand the intuition behind Simplifying Reductions.

2.1 The Polyhedral Model

The polyhedral model is a framework for program analyses and transformations. The strength of this
model comes from its mathematical foundations. For example, closure properties provide composition of
transformations applicable to a restricted class of programs or program sections. Feautrier [5] showed that
a class of loop nests called Affine Control Loops (also called Static Control Parts) can be represented in the
polyhedral model. This allows compilers to extract regions of the program that are amenable to analyses and
transformations in the polyhedral model, and to optimize these regions. Such code sections are often found
in kernels of scientific programs, such as dense linear algebra, stencil computation, or dynamic programming.

In the polyhedral model, we represent each instance of each statement in a loop program as an iteration
point, in a space called iteration domain of the statement. Hence, each instance of each statement is viewed

1

as an operation and what a program computed is completely specified by the set of operations and the
interdependences between them. As noted by Feautrier, program memory and data-structures need not
figure in this representation. Our IR essentially adopts this view of programs.

The iteration domain is described with a set of linear inequalities forming a convex polyhedron using the
following notation, where z is iteration point, A is a constant matrix, and b is a constant vector.

D = {z |Az + b ≥ 0, z ∈ Zn}

For readability, we do not use matrices to represent the constraints and enumerate all inequalities. The
dependences in the program are expressed as affine functions1, expressed as (z → z′), where z′ consists of
affine expressions of z.

2.1.1 Properties of Polyhedral Objects

One of the advantages of modeling the program using polyhedral objects is the rich closure properties that
polyhedra and affine functions enjoy as mathematical objects. Preimage by function f , or image by its
relational inverse f−1, of a domain D is the set of points x such that f(x) ∈ D. Polyhedral domains (unions
of polyhedra) are closed under set operations. It is also closed under image by the relational inverse of an
affine function, also called preimage. Because of this closure property, transformations described as affine
functions can be guaranteed to produce another polyhedra after its application.

In addition, a number of properties from linear algebra can be used to reason about the program. In this
paper, we use one of such properties, the kernel of matrices as part of our analysis. The kernel of matrix A,
ker(A), is the set of vectors x such that Ax = 0. The space characterized by the kernel describes the set of
vectors that does not affect the result of the product. This can be used to find the set of points that share
the same value, characterizing reuse as we will show later in the paper.

We also define the kernel of domains and affine functions to be the kernel of the matrix that describes
the linear part of the domain and affine functions. The kernel of domain D represented as Ax + b ≥ 0 in
matrix representation, is ker(A).

2.2 Polyhedral Equational Model

The polyhedral model has its origin in analyses of System of Recurrence Equations (SREs) [6], where a
program is described as a system of equations, with no notion of schedule or memory. Hence, any affine
control loops can be viewed as SREs using results of array dataflow analysis. Thus, polyhedral representation
of programs can be given a concrete syntax and expressed as systems of equations. We use such a language,
similar to Alpha [7] language used in MMAlpha [8].

Alpha can be directly written as an alternative input to our system. Since polyhedral representations
extracted from loops often contain a large number of boundary conditions, directly specifying as equations
can lead to better performance.

In addition, our belief is that application programmers (i.e., scientists from non-CS domains), can benefit
from being able to program with equations, where performance considerations like schedule or memory
remain unspecified. Therefore, what needs to be computed and implementation details for performance can
be isolated.

In this paper, we focus on the equational side of the polyhedral model using Alpha described in Figure 1.
The language resembles mathematical equation in some ways, but it associates polyhedral domains to each
expression. These domains are what is necessary to perform our analysis and transformations.

2.2.1 Context Domain

Each expression is associated with a domain where the expression is defined, but the expression may not
need to be evaluated at all points in its domain. Context domain is another expression attribute, denoting
the set of points where the expression must be evaluated. Context domain of an expression E is computed
from its domain and the context domain of its parent.

1In the literature of the polyhedral model, the word dependence is sometimes used to express flow of data, but here the
arrow is from the consumer to the producer.

2

The context domain XE of the expression E is:

• DV ∩ DE if the parent is an equation for variable V.

• f(XE′) if E′ is E.f .

• f−1
p (XE′) ∩ DE if E′ is reduce(⊕, fp, E).

• XE′ ∩ DE′ if the parent E′ is any other expression.

This distinction of what must be computed and what can be computed is important when the domain and
context domain are used to analyze the computational complexity of a program.

Expression Syntax Expession Domain
Constants Constant name or symbol DP

Variables V (variable name) DV

Operators op(Expr1, . . . , ExprM)
M⋂
i=1

DExpri

Case case Expr1; . . . ; ExprM esac
M⊎
i=1

DExpri

If if Expr1 then Expr2 else Expr3 DExpr1
∩ DExpr2

∩ DExpr3

Restriction D′ : Expr D′ ∩ DExpr

Dependence f@Expr f−1(DExpr)
Index Expression val(f) (range of f must be Z1) DP

Reductions reduce(⊕, f, Expr) f(DExpr)

Figure 1: Structure of Alpha programs. Inputs, outputs, and local variables are declared after corresponding
keywords. Each expression in the program also has an associated domain denoting where the expression is
defined, computed using domain of its children. Domain DP in the table above, shown as the domain of
constants and index expressions, is the parameter domain. These expressions can be evaluated for the full
universe, and thus its expression domain is the intersection of universe with the parameter domain.

Each system of equations are given a name and a parameter domain that define symbolic constants
(program parameters) and constraints on them. In a system, input/output/local variables are declared with
an associated domain. Variables should not be confused with arrays, as it has nothing to do with the memory.

The equation for a variable defines the values to be computed for each point in the domain of a variable
using expressions in Figure 1. Expressions in Alpha also have an associated domain computed from the leaf
(either constants or variables, where the domain is defined on its own) using domains of its children. These
domains denote where the expression is defined and could be computed.

The semantics of each expression when evaluated at a point z in its domain is defined as follows:

• a constant expression is the associated constant.

• a variable is either provided as input or given by an equation; in either case, it is the value, at z, of
the expression on its RHS.

• an operator expression is the result of applying op on the values of its arguments at z. op is an
arbitrary, strict point-wise, single valued function.

• a case expression is the value at z of that branch whose domain contains z. Branches of a case expression
are defined over disjoint domains to ensure that the case expression is not uniquely defined.

• an if expression if EC then E1 else E2 is the value of E1 at z if the value of EC at z is true, and the
value of E2 at z otherwise. EC must evaluate to a boolean value. Note that the else clause is required.

• a restriction of E is the value of E at z.

3

• the dependence expression f@E is the value of E at f(z). The dependence expression in our variant
of Alpha use function joins instead of compositions. For example, f@g@E is the value of E at g(f(z)),
where the original Alpha wrote E.g.f .

• the index expression val(f) is the value of f evaluated at point z.

• reduce(⊕, f, E) is the application of ⊕ on the values of E at all points in its domain DE that map
to z by f . Since ⊕ is an associative and commutative binary operator, we may choose any order of
application of ⊕.

It is important to note that the restrict expression only affects the domain, and not what is computed
for a point. This expression is used in various ways to specify the range of values being computed for an
equation. In addition, identity dependence is assumed for variable expressions with out a surrounding de-
pendence expression. Similarly, function to zero-dimensional space from the surrounding domain is assumed
for constant expressions.

2.2.2 Reductions in Alpha

Reductions, associative and commutative operators applied to collections of values, are explicitly represented
in the intermediate representation of AlphaZ. Reductions often occur in scientific computations, and have
important performance implications. For example, efficient implementations of reductions are available in
OpenMP or MPI. Moreover, reductions represent more precise information about the dependences, when
compared to chains of dependences.

The reductions are expressed in the following form as reduce(⊕, fp, Expr), where op is the reduction
operator, fp is the projection function, and E is the expressions/values being reduced. The projection
function fp is a affine function that maps points in Zn to Zm, where m is usually smaller than n. When
multiple points in Zn is mapped to a same point in Zm, those values are combined using the reduction

operator. For example, commonly used mathematical notations such as Xi =
n∑

j=0

Ai,j is expressed as X(i) =

reduce(+, (i, j → i), A(i, j)). This is more general than mathematical notations, since reductions with non-
canonic projections, such as (i, j → i + j), require an additional variable to express with mathematical
notations.

2.2.3 Context Domain

Each expression is associated with a domain where the expression is defined, but the expression may not
need to be evaluated at all points in its domain. Context domain is another expression attribute, denoting
the set of points where the expression must be evaluated. Context domain of an expression E is computed
from its domain and the context domain of its parent.

The context domain XE of the expression E is:

• DV ∩ DE if the parent is an equation for variable V.

• f(XE′) if E′ is E.f .

• f−1
p (XE′) ∩ DE if E′ is reduce(⊕, fp, E).

• XE′ ∩ DE′ if the parent E′ is any other expression.

This distinction of what must be computed and what can be computed is important when the domain and
context domain are used to analyze the computational complexity of a program.

2.2.4 Array Notation

For readability, an abbreviated notation is used for dependence expressions in parts of the paper. In the
examples we encounter, the parent of a variable expression is almost always a dependence node. For example,
let A be a variable with one-dimensional domain, and it is used by another expression with 3D domain.

4

(a) Iteration Space and Reduc-
tions

(b) Reuse of A

Figure 2: Geometric illustration of the iteration space and reductions involved in prefix sum computation
for N=8. The iteration space has a triangular domain where all integer points represent a computation.
The reduction is along the vertical axis so that all points with the same i contributes to the same answer.
Because A is indexed only with j, all points with the same j shares the same value.

Then the variable must be accessed as A.f , where f is an affine function from Z3 to Z1. For example, if the
dependence function is (i, j, k → k), reading the value from A is A.(i, j, k → k).

However, when the index names are unambiguous from the context, we use array notations and only
write the RHS of the function. For the above example, the corresponding expression in array notation is
A[k] when it is clear from the “context” that the indices for 1st to 3rd dimensions are named i, j, k.

2.2.5 Complexity

We are interested in the asymptotic complexity of the program as a measure of complexity. Asymptotic
complexity analysis needs the notion of one or more size parameter(s) and parameterized polyhedra naturally
provide this: e.g., {i, j | 0 ≤ (j, i) < N} is implicitly a square, naturally parameterized with a size parameter,
N . The cost of a reduction in the above form would directly correspond to the number of points in the domain
DE .

To a first approximation, this is the number of index variables in the variable, e.g., the square domain has
quadratic complexity, since there are two index variables, i, and j. This breaks down when the domain has
equalities, e.g., a variable defined over the domain: {i, j | 0 ≤ j = i < N} has only linear complexity. Worse
still, there me be domains with “bounded thickness” such as {i, j | 0 ≤ (j, i) < N ∧ 0 ≤ i − j ≤ 10} where
there are no equalities, or others where equalities are not obvious to detect. More precise formalization of
complexity for such cases is in the original article describing Simplifying Reductions [1].

3 Intuition of Simplifying Reductions

We first illustrate the intuition using a simple example. The prefix sum computation can be expressed as
the following:

X[i] =
j=i∑
j=0

A[j] (1)

with DE = {i, j|0 ≤ j ≤ i < N}.
Figure 2 visualizes the iteration space of this program for N=8. The body of the reduction have a

triangular domain {i, j|0 ≤ j ≤ i < N}, and there are 7 independent reductions along the vertical axis.
Because A[j] is accessed within a 2D domain, it can be observed that all points along the horizontal access
that has the same j but different i all share the same value. Note that the reuse space, i.e., the set of points
that share the same value, is spanned by the vector [1,0].

Assume that some constant vector in the reuse space, reuse vector rE , is given as the input and the
simplification is performed so that an instance of reduction at z reuses the result of another instance at

5

(a) When reuse vector (1, 0) is
used

(b) When reuse vector (−1, 0)
is used

Figure 3: Visualization of the reuse and simplification. DE′ is the domain translated by the reuse vector.
The intersection of the two domains (striped and filled) is the value being reused. In Figure (a), the diagonal
strip of filled domain that does not have the stripe, Dadd = DE−DE′ is the domain that needs to be computed
in addition to the reuse. In Figure (b), the diagonal strip of unfilled domain, Dsub = DE′ −DE is the domain
of values that needs to be undone from the reused value.

z − rE . Unless the values used at different instances of reductions are identical, reusing the result of
another instance by itself is not enough. Because the iteration spaces are represented as polyhedra, the
additional computation required can be computed. Figure 3 illustrates the reuse space and how the required
computation in addition to the reuse is computed. Domain of additional computations are derived from the
original domain DE (filled domain) and its translation by the reuse vector DE′ (unfilled domain). Domain
with diagonal stripes is the intersection Dint = DE

⋂
DE′ . Dint is where the result of two reductions rE

apart overlaps and can be reused. Thus, the diagonal strip of filled domain that does not have the stripe,
Dadd = DE −DE′ is the domain that needs to be computed in addition to the reuse.

Depending on the shape of the domain and the direction of reuse being exploited, some computation
must be “undone” in addition to the reuse. In such cases, the reduction operator must have a corresponding
inverse operator in order to undo parts of the computation. For example, if the vector[-1,0] was used instead
in the above example, P (x) is computed from P (x + 1) by subtracting A[x + 1]. Such a domain, called
subtract domain, can be computed as well, and it must be empty if the operator does not have an inverse.

The core of Simplifying Reductions is in precisely computing these addition and subtraction domains
through geometrical analysis, by shifting polyhedra along the reuse space.

4 Simplifying Reductions

In this section, we describe the necessary elements of the Simplifying Reductions used in this paper. We
first introduce the notion of share space that characterize sharing of values, used to determine if a given rE
is legal or not. Then we introduce the simplification transformation, followed by other transformations that
enhance the applicability of Simplifying Reductions.

4.1 Sharing of Values

Consider a dependence expression E of the form:

X.f (2)

The expression E has the same value at any two index points z, z′ ∈ DE if f(z) = f(z′) since they map
to the same index point of X. We will say that the value of E at these index points is shared. Note, two
index points in DE share a value if they differ by a vector in ker(f). Thus, values of E are shared along the
linear space ker(f).

However, ker(f) may not be the maximal linear space along which values are shared in E. Observe, if
in turn, index points in X also share values, along ker(f ′) say, then a larger linear space along which values

6

of E are shared is ker(f ′ ◦ f). We denote the maximal linear space along which values are shared in E as
SE , and call it the share space of E. Below, we list the relationship between the share space of expressions.
We assume that the specification has been transformed to have just input and computed variables, and all
reductions are over expressions defined on a single integer polyhedron. The share space, SE is equal to

• φ if E is a constant.

• φ is E is an input variable. We assume that program inputs have no sharing.

• SX if E is a computed variable defined by E = X

•
M⋂
i=1

SEi if E is op(E1, . . . , EM)

•
M⋂
i=1

SEi
if E is caseE1, . . . , EM esac

• SX if E is D′ : X

• ker(T ◦ f) if E is X.f and SX = ker(T).

• fp(ker(Q) ∩ SX) if E is reduce(⊕, fp, X) and DX is a single integer polyhedron P ≡ {z|Qz + q ≥ 0}.

For brevity, we denote spaces spanned by a set of basis vectors as [< list of expressions >] when indices are
named in concrete examples. For example, a space spanned by basis vectors [1,0,0] and [0,1,1] where indices
are named as i, j, k would be denoted as [i, j + k].

4.2 Simplifying Reductions

The input reduction is required to be in the following form:

X = reduce(⊕, fp, E) (3)

where DE is a single integer polyhedron and equal to XE . For simplicity of explanation, we have the reduction
named by a computed variable X.

The Simplifying Reduction transformation takes as inputs; a reduction in the form of Equation 3, where
DE is a single integer polyhedron, and a legal vector specifying the direction of reuse rE ; and returns a
semantically equivalent equation:

X =
case

(Dadd −Dint) : Xadd;
(Dint − (Dadd ∪ Dsub)) : X.(z → z − rX);
(Dadd ∩ (Dint −Dsub)) : (Xadd ⊕X.(z → z − rX));
(Dsub ∩ (Dint −Dadd)) : (X.(z → z − rX)	Xsub);

(Dadd ∩ Dint ∩ Dsub) : (Xadd ⊕X.(z → z − rX)	Xsub);
esac;
Xadd = reduce(⊕, fp, (XE −XE′) : E)
Xsub = reduce(⊕, fp,

f−1
p (Dint) : (XE′ −XE) : E′)

where E′ = E.(z → z − rE), rX = fp(rE), 	 is the inverse of ⊕, Dadd, Dsub and Dint denote the domains
fp(XE−XE′), fp(XE′−XE) and fp(XE ∩XE′) respectively, and Xadd and Xsub are defined over the domains
Dadd and Dint ∩ Dsub respectively.

7

We require that the reuse vector rE to satisfy rE ∈ SE \ ker(fp) for the semantic to be preserved. Since
rE is the direction of reuse it must be in the share space. However, it must not be in the kernel of the
projection function fp. This is because the transformation involves the use of the value of X at an index
point to simplify the computation at another and so in order to avoid a self-dependence, we must ensure
that these index points are distinct (i.e., rX = fp(rE) 6= 0).

Note that the above transformation requires the inverse operator 	, which may not exist for some ⊕.
Then all branch of the case in transformed that use 	 must have empty context domains.

4.3 Simplification Enhancing Transformations

We have shown a transformation that resulted in the simplification of reductions. Here, we will present
transformations that, per se, do not simplify but enhance simplification. The goal of enhancing transfor-
mations is to increase the applicability of simplification by enlarging SE . We only present a subset of such
transformations used in simplification of RNA folding we show in Section 6.

4.4 Distributivity

Consider a reduction of the form
E = reduce(⊕, fp, E1 ⊗ E2)

where ⊗ distributes over ⊕.
If one of the expressions is constant within the reduction (E1, say), we would be able to distribute it

outside the reduction. For the expression E1 to be constant within a reduction by the projection fp, we
require

HDE
∩ ker(fp) ⊆ HDE

∩ SE1

where HD is defined as the linear part of the smallest affine subspace containing HD. HD becomes important
when the domains contain equalities. After distribution, the resultant expression is

E1 ⊗ reduce(⊕, fp, E2)

The resultant expression can potentially have larger share space, since share space of E1 no longer affects
that of the reduction body.

4.5 Reduction Decomposition

We will now introduce a transformation that has wide applicability in enhancing simplification.
An expression of the form

reduce(⊕, fp, E)

is semantically equivalent to
reduce(⊕, f ′′p , reduce(⊕, f ′p, E))

where fp = f ′′p ◦ f ′p.
This transformation enhances simplification primarily by exposing additional opportunities to apply

distributivity. When a reduction from Zn to Zm where m is at least 2 dimensions less than n, then some
expression that cannot be distributed may be distributed once the reduction is decomposed.

For example, consider the following reduction:

reduce(⊕, (i, j, k → i), E1 ⊗ E2)

where SE1 = φ, SE2 = [k], and ker(fp) = [j, k]. Since ker(fp) 6⊆ SE2 , E2 cannot be distributed out. However,
applying reduction decomposition with f ′p = (i, j, k → i, j) and f ′′p = (i, j → i) to obtain:

X = reduce(⊕, (i, j, k → i, j), E1 ⊗ E2)
reduce(⊕, (i, j → i), X)

allows E2 to be distributed out from the inner reduction.

8

Depending on its use, the reduction decomposition may or may not have side effects. However, the
case without side effects only occur when domains of reduction body contain equalities (or some constant
“thickness” variations of equalities) along certain dimensions. When there are equalities in the domain of
reductions, the space spanned by the equalities are separated by reduction decomposition as a pre-processing.
These cases, including constant “thickness” variants, are formalized as Effective Linear Subspace in the
original article [1]. It states that a polyhedron P have constant thickness along any vector not in its effective
linear subspace LP .

For the domains in UNAfold, LDE
is the universe, and we focus on reduction decomposition with side

effects. Reduction decomposition with side effects reduce the space of possible reuse directions, and affects
if simplification is applicable later in the sequence of transformations.

Recall that distributing an expression E out from the reduction with a projection fp requires ker(fp) ⊆
SE . Therefore, we may decompose fp into f ′′p ◦ f ′p to distribute an expression with available reuse space SE

outside the inner reduction by choosing f ′p such that

ker(f ′p) = ker(fp) ∩ SE

4.6 Normalizations

There are a number of transformations for taking equations with reductions into the form required by the
simplification transformation (Equation 3). We introduce two of such transformations that are used later in
Section 6.

4.6.1 Normalize Reductions

Normalize Reductions is a transformation that takes expression containing reductions:

E = · · · reduce(⊕, fp, E1) · · ·

and isolates reductions by adding vairables:

E = · · ·X · · ·
X = reduce(⊕, fp, E1)

After this transformation, all reduce expression in the Alphabets program will be top-level expressions
(the first expression in the right hand side of an equation). This is purely a pre-processing to obtain reductions
of the form required by the simplification algorithm. We also provide another transformation, called Inline,
to replace variables with its definition, so that the variables introduced by this transformation can eventually
be removed.

4.6.2 Permutation Case Reduce

Permutation Case Reduce, presented as a theorem by Le Verge [9], takes reduce expression of the form:

E = reduce(⊕, fp, case E1;E2; esac)

and returns a semantically equivalent equation:

E = case
D1 : X1;
D12 : (X1 ⊕X2);
D2 : X2;

esac;

9

where D12 = fp(DE1) ∩ fp(DE2), D1 = fp(DE1) \ fp(DE2), D2 = fp(DE2) \ fp(DE1), and X1, X2 are defined
as follows:

X1 = reduce(⊕, fp, E1)
X2 = reduce(⊕, fp, E2)

The transformation essentially moves case expressions out of the reduction. Since the simplification
transformation requires that the domain of the reduction body to be a single polyhedron, and not unions of
polyhedra, case expressions must be moved out.

5 Optimality and Algorithm

In the original article, we present an algorithm to apply the set of transformations, and optimality result
with respect to the presented transformations. In this paper, we outline a simplified version of the algorithm
used when applying the algorithm to UNAfold shown in Algorithm 1.

Algorithm 1 The Simplification Algorithm: Subset for UNAfold
Input:
An equational specification in the polyhedral model.

1. Preprocess to obtain a reduction over an expression whose domain is a single polyhedron and equal to
its context domain.

2. Other pre-processing not used for UNAfold, if applicable.

3. Perform any of the following transformations, if applicable.

(a) Distributivity.

(b) Other side-effect free enhancing transformations not used for UNAfold.

4. Repeat steps 1-3 till convergence.

5. Dynamic Programming Algorithm to optimally choose:

(a) The simplification transformation along some rE .

(b) A reduction decomposition with side effects.

(c) Other enhancing transformations with side-effects, not used for UNAfold.

6. Repeat from step 1 on residual reductions until convergence.

Output:
An equivalent specification of optimal complexity.

For the dynamic programming in Step 5 to work, we must show that from the infinite search space of
parameters for the various transformations, we need to consider only a finite set of choices and the global
optima can be reached through such choices. The intuition behind our formal argument in the original
article [1] is as follows:

Simplification Transformation: From the infinitely many choices of reuse vectors rE in a share space,
we show that there are only finitely many equivalence classes. The intuition is that the result of applying
the simplification transformation with different reuse vectors from the same equivalence class are identical
except for the “thickness” of the residual reductions. The residual reductions corresponds to the addition
and subtraction domains (Dadd,Dsub). The constant “thickness” of reductions do not affect the asymptotic
complexity.

10

Reduction Decomposition with Side Effects for Distributivity: Of the infinite possible decompositions of
the projection fp, we only need to consider a finite subset, since the transformation is needed to distribute a
set of subexpressions outside the inner reduction. The number of candidates are finite, with the equivalence
classes formed by the basis vectors of its kernels.

6 RNA folding in UNAfold

Finally, we show that the application of the simplification algorithm described in Section 5 leads to the
reduced complexity algorithm.

The RNA folding algorithm is a dynamic programming algorithm. There are multiple variations of the
algorithm based on the cost model used. UNAfold [3] uses a prediction model based on thermodynamics
that finds a structure with minimal free energy. For an RNA sequence of length N , the algorithm computes
multiple tables of free energy for each subsequence from i to j such that 1 ≤ i ≤ j ≤ N . The three tables
Q(i, j), Q′(i, j), and QM(i, j) corresponds to the free energy for three different substructures that may be
formed.

The following equations taken from the original algorithm:

Q(i, j) = min



b+Q(i+ 1, j)
b+Q(i, j − 1)
c+ END(i, j) +Q′(i, j)
b+ c+ E5′D(i+ 1, j) +Q′(i+ 1, j)
b+ c+ E3′D(i, j − 1) +Q′(i, j − 1)
2b+ c+ EDD(i+ 1, j − 1) +Q′(i+ 1, j − 1)
QM(i, j)

(4)

Q′(i, j) = min



EH(i, j)
ES(i, j) +Q′(i+ 1, j − 1)

mini<i′<j′<j

{
EBI(i, j, i′, j′)
Q′(i′, j′)

a+ c+ END(j, i) +QM(i+ 1, j − 1)
a+ b+ c+ E3′D(j, i) +QM(i+ 2, j − 1)
a+ b+ c+ E5′D(j, i) +QM(i+ 1, j − 2)
a+ 2b+ c+ EDD(j, i) +QM(i+ 2, j − 2)

(5)

QM(i, j) = min
i+1≤k≤j−2

{
Q(i, k − 1) +Q(k, j) (6)

where a,b, and c, are constants and functions of the form EXX are all energy functions for different sub-
structures.

The third term in Equation 5 is the dominating term that makes the algorithm O(N4). Notice that the
term uses four free variables i,j,i′ and j′ and has a 4D domain {i, j, i′, j′|1 ≤ i < i′ < j′ < j ≤ N} and hence
4D complexity. The term corresponds to a substructure called internal loops, and the algorithm with O(N4)
to evaluate this term is referred to as fast i-loop.

6.1 Simplification

We focus on the dominating term in calculating the energy associated with internal loops to illustrate the
simplification. The term rewritten as a separate equation using our notation of reductions, and named QBI
(since it is the term that involves EBI) is the following:

QBI[i, j] = reduce(min, (i, j, i′, j′ → i, j), EBI(i, j, i′, j′) +Q′(i′, j′)) (7)

The sequence of transformations to obtain the above corresponds to Step 1 in Algorithm 1.

11

Before simplification, the energy function EBI must be inlined to expose the reuse. This inlining is not
part of the algorithm, and requires human analysis to deduce that the inlining is necessary at the moment.

EBI has two different definitions, one for generic case and another to handle special cases. These special
cases are when the size of the internal loop is very small (less than 4) and thus resembles other kind of
substructures. Since the special case can be described as polyhedral domains, we focus on the generic case
for simplicity.

The function EBI for generic case is defined as follows:

EBI(i, j, i′, j′) = Asym(i′ − i− j + j′) + SP (i′ − i+ j − j′ − 2) + ES(i, j) + ES(i′, j′) (8)

Inlining Equation 8 into Equation 9 gives the following:

QBI[i, j] = reduce

min, (i, j, i′, j′ → i, j),



Asym(i′ − i− j + j′) +
SP (i′ − i+ j − j′ − 2) +
ES(i, j) +
ES(i′, j′) +
Q′(i′, j′)

 (9)

Computing the share space for each sub-expressions in the reduction body (recall Section 4.1) gives:

Asym(i′ − i− j + j′) [j − i, i+ i′, i+ j′]
SP (i′ − i+ j − j′ − 2) [i+ j, i+ i′, j′ − i]
ES(i, j) [i′, j′]
ES(i′, j′) [i, j]
Q′(i′, j′) [i, j]

In addition, the kernel of the projection function ker(fp) = [i′, j′]. Since the share space of ES(i, j)
contains ker(fp), it can be distributed out from the reduction in Step 3a of Algorithm 1 to produce: 2

QBI [i, j] = ES(i, j) + reduce

min, (i, j, i′, j′ → i, j),


Asym(i′ − i− j + j′) +
SP (i′ − i+ j − j′ − 2) +
ES(i′, j′) +
Q′(i′, j′)

 (10)

Taking the intersection of share spaces of the remaining terms gives the zero vector, and therefore no
reuse can be exploited. This takes us to Step 5b of Algorithm 1. We analyze the share space of expressions
in the reduction body and the projection function to find candidate decompositions. The candidate f ′p are:3

ker(f ′p) = ker(fp) ∩ SAsym(i′ − i− j + j′) SAsym(i′ − i− j + j′) = [j − i, i+ i′, i+ j′]

ker(f ′p) = ker(fp) ∩ SSP
(i′ − i+ j − j′ − 2) SSP

(i′ − i+ j − j′ − 2) = [i+ j, i+ i′, j′ − i]
ker(f ′p) = ker(fp) ∩ SES

(i′, j′) SES
(i′, j′) = [i, j]

ker(f ′p) = ker(fp) ∩ SQ′(i′, j′) SQ′(i′, j′) = [i, j]

where ker(fp) = [i′, j′].
The latter two candidates have no feasible f ′p because [i′, j′] ∩ [i, j] = φ. Similarly, SAsym(i′ − i− j + j′)

do not have any feasible f ′p. The only feasible candidate is ker(f ′p) = [i′ + j′] with SSP
(i′ − i+ j − j′ − 2).

One instance of f ′p with ker(f ′p) = [i′ + j′] is f ′p = (i, j, i′, j′ → i, j, j′ − i′), and its corresponding f ′′p
is (i, j, d → i, j). The choice of the instance does not affect the resulting complexity. Decomposing the
reduction with f ′p and naming the inner reduction QBI ′ gives the following two equations.

2HDE
is universe for this program.

3Note that once we have fp and f ′p, f ′′p can be deduced with standard linear algebra.

12

QBI[i, j] = ES(i, j) + reduce(min, (i, j, d→ i, j), QBI ′[i, j, d]);

QBI ′[i, j, d] = reduce

min, (i, j, i′, j′ → i, j, j′ − i′),


Asym(i′ − i− j + j′) +
SP (i′ − i+ j − j′ − 2) +
ES(i′, j′) +
Q′(i′, j′)


After the decomposition, the expression SP (i′ − i+ j − j′) can be distributed out from the inner reduction,
because its share space [i+ j, i+ i′, j′ − i] contains ker(f ′p) (combining i+ i′ and j′ − i gives i′ + j′).

QBI ′[i, j, d] = reduce

min, (i, j, i′, j′ → i, j, j′ − i′),


Asym(i′ − i− j + j′) +
ES(i′, j′) +
Q′(i′, j′)


+ SP (−i+ j − d− 2)

Then the remaining expressions have a common share space [j − i], the space spanned by the vector
[-1,1,0,0].a Applying the simplifying reduction transformation using [-1,1,0,0] as the reuse vector yields an
equivalent equation of the following form:

QBI ′[i, j, d] =

{
Dinit : Xadd

Dadd : min(Xadd, QBI
′[i+ 1, j − 1, d])

(11)

+ SP (−i+ j − d− 2)

Xadd =


Asym(i′ − i− j + j′)+
ES(i′, j′)+
Q′(i′, j′)

Domains Dinit, and Dadd are computed following the definitions in Section 4. The full Alphabets program
after transformation in the appendix show the domains as the domain of corresponding Alpha variables.

In the following, we show a fragment of the Alphabets after sequence of transformations described above
has been applied. We can observe that equations QBI SR1 init and QBI SR1 add both have equalities in the
restrict expression. These equations respectively correspond to branches of QBI ′ in Equation 11. Because
of The equalities the context domains of these reductions are 3D domains embedded in 4D space. Hence,
we confirm that the complexity is reduced to O(N3). We also note that the term SP was factored out since
the simplification algorithm require reduce expression to be the top-level expression.

// Simplifying Reduction result

QBI_SR1[i,j,ip] = case

{|i-j+ip+7>= 0} : QBI_SR1_init; // D_init case

{|j-1-ip -8>= 0} : (QBI_SR1_add min QBI_SR1[i+1,j-1,ip]); //D_add case

esac;

//X_add for D_init

QBI_SR1_init[i,j,ip] = reduce(min , (i,j,ip,jp->i,j,jp-ip),

{|ip-i==2} || {|j-jp==4 && ip-i==3} :

((Ebi_stacking ([jp],[ip]) + Ebi_asymmetry ([ip-i-1],[j-jp -1])) + Qprime[ip,jp])

);

//X_add for D_add

QBI_SR1_add[i,j,ip] = reduce(min , (i,j,ip,jp->i,j,jp-ip),

{|ip-i==2} || {|j-jp==4} :

((Ebi_stacking ([jp],[ip]) + Ebi_asymmetry ([ip-i-1],[j-jp -1])) + Qprime[ip,jp])

);

13

200 400 600 800 1000 1400

0
50

0
10

00
15

00
20

00
25

00
Execution Time of UNAfold

Sequence Length (N)

E
xe

cu
tio

n
T

im
e

in
 S

ec
on

ds original
simplified

(a) Raw Execution Time

2.0 2.2 2.4 2.6 2.8 3.0 3.2

0
1

2
3

4
5

6
7

8

Log plot of Execution Time

Log of Sequence Length
Lo

g
of

 E
xe

cu
tio

n
T

im
e original

simplified y = 4x + b1

y = 3x + b2

(b) Log-Log Plot

Figure 4: Execution Time of UNAfold after simplifying reduction compared with the original implementa-
tion. The two lines show are with slopes 4 and 3 with constant offsets (b1, b2) to make the lines meet the
points at log(N)=3.2.

6.2 Validation

We have applied the above transformation using AlphaZ to the UNAfold 3.8 [3]. The function fillMatrices 1
in hybrid-ss-min.c was written in our equational language, and the simplifying transformation was applied.
One of the code generators in AlphaZ that produce sequential C code was used to generate the simplified
version of fillMatrices 1 and replaced with the original function.

Both original and the simplified versions were compiled with GCC/4.5.1, with -O3 option and the execu-
tion times were measured a machine with Core2Duo 1.86GHz and 6GB of memory running Linux. Because
the default option of UNAfold limits the internal loop size to 30, we also set the limit to infinity when
running hybrid-ss-min.

Figure 4 shows the measured performance, and its log-log scaled version. The log-scale plot clearly shows
the reduction in complexity, and, as expected, the speedups with transformed code becomes greater and
greater as the sequence length grows.

7 Conclusion

We have presented a detailed walk-through of application of Simplifying Reductions to a RNA folding
application in UNAfold package. The ability to (semi-)automatically reduce the asymptotic complexity of
programs is a very powerful feature of AlphaZ. However, the algorithm and the necessary formalism to
understand the simplification is complicated. We hope that this paper can help understanding the algorithm
in depth.

References

[1] G. G. and R. S., “Simplifying reductions,” in Conference record of the 33rd ACM SIGPLAN-SIGACT
symposium on Principles of programming languages, ser. POPL ’06. New York, NY, USA: ACM, 2006,

14

pp. 30–41. [Online]. Available: http://doi.acm.org/10.1145/1111037.1111041

[2] R. Lyngs, M. Zuker, C. Pedersen et al., “Fast evaluation of internal loops in rna secondary structure
prediction.” Bioinformatics, vol. 15, no. 6, pp. 440–445, 1999.

[3] N. Markham and M. Zuker, “Software for nucleic acid folding and hybridization,” Methods Mol. Biol,
vol. 453, pp. 3–31, 2008.

[4] T. Yuki, V. Basupalli, G. Gupta, G. Iooss, D. Kim, T. Pathan, P. Srinivasa, Y. Zou, and S. Rajopadhye,
“Alphaz: A system for analysis, transformation, and code generation i n the polyhedral equational
model,” Technical Report CS-12-101, Colorado State University, Tech. Rep., 2012.

[5] P. Feautrier, “Dataflow analysis of array and scalar references,” International Journal of Parallel Pro-
gramming, vol. 20, no. 1, pp. 23–53, 1991.

[6] R. Karp, R. Miller, and S. Winograd, “The organization of computations for uniform recurrence equa-
tions,” Journal of the ACM (JACM), vol. 14, no. 3, pp. 563–590, 1967.

[7] H. Verge, C. Mauras, and P. Quinton, “The ALPHA language and its use for the design of systolic
arrays,” The Journal of VLSI Signal Processing, vol. 3, no. 3, pp. 173–182, 1991.

[8] C. IRISA, “The MMAlpha environment.”

[9] H. Le Verge and P. Quinton, “Un environnement de transformations de programmes pour la synthèse
d’architectures régulières,” 1992.

A Alphabets version of fill matrices 1 in UNAfold

The following is the original Alphabets program corresponding to fill matrices 1 in UNAfold. The list
of external functions corresponds to function calls or table look up in the C implemention. All of these
functions are assumed to be side effect free functions by AlphaZ analyses.

Ebi asymmetry, Ebi sizePenalty, and Ebi stacking respectively correspond to Asym, SP , and ES in
the equations in Section 6. Aside from syntactic sugar, the Alpha program below roughly corresponds to the
original equations describing the RNA secondary structure prediction algorithm. One important difference
is that the Alpha program is quite verbose and precise about the domains and boundary conditions.

// External functions

int Es(int , int);

int Eh(int , int);

int End(int , int);

int Ed3(int , int);

int Ed5(int , int);

int Etstackm(int , int);

int a(int);

int b(int);

int c(int);

int INFINITY_VAL(int);

int Eval_isFinite(int);

int nodangle(int);

int noisolate(int);

int Eval_ssOK(int , int);

//Ebi spilt functions

int Ebi_sizePenalty(int);

int Ebi_stacking(int , int);

int Ebi_asymmetry(int , int);

int Ebi_Bulge1(int , int , int , int);

int Ebi_Bulge(int , int , int , int , int);

int Ebi_iloop1x1(int , int , int , int);

int Ebi_iloop1x2(int , int , int , int);

15

int Ebi_iloop2x1(int , int , int , int);

int Ebi_iloop2x2(int , int , int , int);

affine fillMatrices1_unafold {N, MAXLOOP|N>7 && MAXLOOP >7}

input

int Qprime_ip {i,j|1<=i<=N && 2<=j<=N};

output

int Q {i,j|1<=i<=N && 2<=j<=N};

int Qprime {i,j|1<=i<=N && 2<=j<=N};

int QM {i,j|1<=i<=N && 2<=j<=N};

local

int QBI {i,j|1<=i<=N && 2<=j<=N};

int EBI {i,j,ip ,jp|1<=i<ip <jp <j<=N && ip -i-1+j-jp -1<= MAXLOOP };

int EBI_special

{i,j,ip ,jp|ip -i==1 && j-jp==2 &&

1<=i<ip<jp<j<=N && ip-i-1+j-jp -1<= MAXLOOP }||

{i,j,ip ,jp|ip -i==2 && j-jp==1 &&

1<=i<ip<jp<j<=N && ip-i-1+j-jp -1<= MAXLOOP }||

{i,j,ip ,jp|ip -i==1 && j-jp >2 &&

1<=i<ip<jp<j<=N && ip-i-1+j-jp -1<= MAXLOOP }||

{i,j,ip ,jp|ip -i>2 && j-jp==1 &&

1<=i<ip<jp<j<=N && ip-i-1+j-jp -1<= MAXLOOP }||

{i,j,ip ,jp|ip -i==2 && j-jp==2 &&

1<=i<ip<jp<j<=N && ip-i-1+j-jp -1<= MAXLOOP }||

{i,j,ip ,jp|ip -i==2 && j-jp==3 &&

1<=i<ip<jp<j<=N && ip-i-1+j-jp -1<= MAXLOOP }||

{i,j,ip ,jp|ip -i==3 && j-jp==2 &&

1<=i<ip<jp<j<=N && ip-i-1+j-jp -1<= MAXLOOP }||

{i,j,ip ,jp|ip -i==3 && j-jp==3 &&

1<=i<ip<jp<j<=N && ip-i-1+j-jp -1<= MAXLOOP };

int EBI_generic

{i,j,ip ,jp|ip -i>=2 && jp -ip >=1 && j-jp >=4 &&

1<=i<ip<jp<j<=N && ip-i-1+j-jp -1<= MAXLOOP }||

{i,j,ip ,jp|j-jp==3 && ip -i>=4 && j-ip >=4 &&

1<=i<ip<jp<j<=N && ip-i-1+j-jp -1<= MAXLOOP }||

{i,j,ip ,jp|j-jp==1 && ip -i==1 && j-i>=3 &&

1<=i<ip<jp<j<=N && ip-i-1+j-jp -1<= MAXLOOP }||

{i,j,ip ,jp|j-jp==2 && ip -i>=4 && j-ip >=3 &&

1<=i<ip<jp<j<=N && ip-i-1+j-jp -1<= MAXLOOP };

let

Q[i,j] = case

{|i>=j-3}: INFINITY_VAL (0);

{|i<j-3}: min((b(0) + Q[i+1,j]), (b(0) + Q[i, j-1]),

(c(0) + End([i],[j]) + Qprime[i,j]),

QM[i,j]);

esac;

Qprime[i,j] = case

{|i>=j-3}: INFINITY_VAL (0);

{|i<j-3}: if (Eval_isFinite(Qprime_ip[i,j]) > 0) then

min(Eh([i],[j]),

(Es([i],[j]) + Qprime[i+1,j-1]),

(QBI[i,j]),

(a(0) + c(0) +

End([i],[j]) + QM[i+1, j-1])

)

else

INFINITY_VAL (0);

esac;

16

QM[i,j] = case

{|i>=j-8}: INFINITY_VAL (0);

{|i<j-8}: reduce(min , [k], {|i+3+1<=k<=j-3 -2}: (Q[i,k-1] + Q[k,j]));

esac;

EBI_special[i,j,ip,jp] = case

{|ip -i==1 && j-jp==2} ||

{|ip -i==2 && j-jp==1} : Ebi_Bulge1 ([i],[j],[ip],[jp]);

{|ip -i==1 && j-jp >2}: Ebi_Bulge ([i],[j],[ip],[jp],[j-jp -1]);

{|ip -i>2 && j-jp==1}: Ebi_Bulge ([i],[j],[ip],[jp],[ip-i-1]);

{|ip -i==2 && j-jp==2}: Ebi_iloop1x1 ([i],[j],[ip],[jp]);

{|ip -i==2 && j-jp==3}: Ebi_iloop1x2 ([i],[j],[ip],[jp]);

{|ip -i==3 && j-jp==2}: Ebi_iloop2x1 ([i],[j],[ip],[jp]);

{|ip -i==3 && j-jp==3}: Ebi_iloop2x2 ([i],[j],[ip],[jp]);

esac;

EBI_generic[i,j,ip,jp] = Ebi_sizePenalty ([ip-i-1+j-jp -1]) + Ebi_stacking ([i],[j]) +

Ebi_stacking ([jp],[ip]) + Ebi_asymmetry ([ip-i-1],[j-jp -1]);

let

EBI[i,j,ip ,jp] = case

EBI_special[i,j,ip,jp];

EBI_generic[i,j,ip,jp];

esac;

QBI[i,j] = case

{|i>=j-6}: INFINITY_VAL (0);

// jp = ip + d

{|i<j-6} : reduce(min , [ip,jp],

{|jp-ip <=j-i-3 && jp-ip >=4 && jp-ip >=j-i-2-MAXLOOP &&

i<ip<j-jp+ip && ip <=N}:

(EBI[i,j,ip,jp] + Qprime[ip ,jp])

);

esac;

.

B AlphaZ Script for Applying Simplifying Reductions

The following is the AlphaZ script used to appy the sequence of transformations described in Section 6. The
commands used in the script is briefly described in the following.

• ReadAlphabets; Parse an alphabets program and return a program object.

• Inline; Replace references to a variable with its definition.

• Normalize; Apply a set of normalization rules. This transformation is often used as a pre-processing
before applying transformations, so that transformations only need to support normalized (simpler)
instances of Alpha programs. The resulting program do not have nested case/dependence/restrict
expressions.

• FactorOutFromReduction; Implementation of the simplification enhancing transformation to take ad-
vantage of distributivity.

17

• ReductionDecomposition, NormalizeReduction, PermutationCaseReduce; Implementations of the
corresponding simplification enhancing transformations.

• RenameVariable; Renames a variable. Used to rename variables with automatically generated names
during other transformations to more meaningful names.

• SplitUnion; Splits an expression that has unions of polyhedra as its expression domain to multiple
variables such that resulting variables each have a single polyhedron as its expression domain (one of
the unions in the original domain).

• SimplifyingReduction; The simplifying transformation illustratred in this paper.

• RemoveUnusedVariables; Removes all variables not when computing output variables.

Fore more detail, see http://www.cs.colostate.edu/AlphaZ/AlphaZCommandRef.pdf.
Also, most commands take the program object and system name as the first two inputs, and the rest

of the argument usually specified variable names or an expression in the AST of Alphabets. Currently we
use expression ID as the most general way to specify the target expression, represent as a vector of integers.
This vector uniquely identifies the target expression by specifying which “branch” to take in the AST at
each level in the tree. For example “0,1,0” denotes the first system in the program (0-th branch), second
equation (1-th branch), and first expression (0-th branch).

prog = ReadAlphabets("./ unafold.ab");

system = "fillMatrices1_unafold";

#inline Ebi_A = Ebi

Inline(prog , system , "QBI", "EBI");

RemoveUnusedVariables(prog);

Normalize(prog);

#isolate QBI for EBI_generic

PermutationCaseReduce(prog , system , "QBI");

NormalizeReduction(prog , "0,5,0,1,0,1,0,1");

RenameVariable(prog , system , "NR_QBI", "QBI_generic");

#Inline EBI_generic

Inline(prog , system , "QBI_generic", "EBI_generic");

Normalize(prog);

#distribute out EBI_stacking(i,j)

FactorOutFromReduction(prog , "0,6,0,0,0,0,0,0,1");

Normalize(prog);

#decompose reductions

ReductionDecomposition(prog , "0,6,0,0", "(i,j,d->i,j)", "(i,j,ip ,jp ->i,j,jp -ip)");

NormalizeReduction(prog , "0,6,0,0,0");

RenameVariable(prog , system , "NR_QBI_generic", "QBI_inner");

#factor out SizePenalty

FactorOutFromReduction(prog , "0,7,0,0,0,0,0,0");

Normalize(prog);

#normalize reduction to take the QBI_generic in SR form

NormalizeReduction(prog , system , "QBI_inner");

RenameVariable(prog , system , "NR_QBI_inner", "SR_QBI");

#simplifying reductions

#split the union of polyhedra of the context domain of the reduction body

SplitUnion(prog , "0,8,0,0");

PermutationCaseReduce(prog , system , "SR_QBI");

18

NormalizeReduction(prog , system , "SR_QBI");

#apply SR to one of the domains split from the union

SimplifyingReduction(prog , system , "NR_SR_QBI", "1,-1,0,0");

#cannot apply SR in the other domain that was split due to subtract domain

#SimplifyingReduction(prog , system , "NR_SR_QBI_1", "1,-1,0,0");

Normalize(prog);

Simplify(prog , system);

#rename variables introduced by SR to be shorter

RenameVariable(prog , system , "NR_SR_QBI", "QBI_SR1");

RenameVariable(prog , system , "NR_SR_QBI_1", "QBI_SR2");

#get ride of extra variables

Inline(prog , system , "QBI_inner", "SR_QBI");

Inline(prog , system , "QBI_generic", "QBI_inner");

Inline(prog , system , "QBI", "QBI_generic");

Inline(prog , system , "QBI", "EBI_generic");

Inline(prog , system , "QBI", "EBI_special");

Inline(prog , system , "Qprime", "QBI");

Normalize(prog);

RemoveUnusedVariables(prog);

C Alphabets After Transformation

Since the Alphabets that matches UNAfold implementation has a number of complex constraints, it also
requires some minor transformations not explained in the above. One is caused by the domain of QBI ′

being a union of polyhedra, rather than a single polyhedron. Simplifying Reductions require that each
reduction have a polyhedron as its context domain, and therefore QBI ′ was split into two using another
transformation.

Out of the two resulting reductions, one has a non-empty subtraction domain (Dsub), and thus cannot be
simplified because inverse operator for min does not exist. However, the domain of this reduction is actually
“thin”, and does not affect the overall complexity of the algorithm after simplification. The equation QBI SR2
in the following Alphabets fragment corresponds to this reduction. Note that it does not have equalitiese,
but you can observe that j − jp is either 2 or 3, and hence it is an slice of size 2, and thefore, it also has
O(N3) complexity.

int Es(int ,int);

int Eh(int ,int);

int End(int ,int);

int Ed3(int ,int);

int Ed5(int ,int);

int Etstackm(int ,int);

int a(int);

int b(int);

int c(int);

int INFINITY_VAL(int);

int Eval_isFinite(int);

int nodangle(int);

int noisolate(int);

int Eval_ssOK(int ,int);

int Ebi_sizePenalty(int);

int Ebi_stacking(int ,int);

int Ebi_asymmetry(int ,int);

int Ebi_Bulge1(int ,int ,int ,int);

19

int Ebi_Bulge(int ,int ,int ,int ,int);

int Ebi_iloop1x1(int ,int ,int ,int);

int Ebi_iloop1x2(int ,int ,int ,int);

int Ebi_iloop2x1(int ,int ,int ,int);

int Ebi_iloop2x2(int ,int ,int ,int);

affine fillMatrices1_unafold {N,MAXLOOP|N>7 && MAXLOOP >7}

input

int Qprime_ip {i,j|j<=N && 0<i && 1<j && i<=N};

output

int Q {i,j|j<=N && 0<i && 1<j && i<=N};

int Qprime {i,j|j<=N && 0<i && 1<j && i<=N};

int QM {i,j|j<=N && 0<i && 1<j && i<=N};

local

int QBI_SR1 {i,j,ip|0<i && 6<=j-i-ip && 4<=ip && j-i-ip -2<= MAXLOOP && j<=N};

int QBI_SR2 {i,j,ip|0<i && 6<=j-i-ip && 4<=ip && j-i-ip -2<= MAXLOOP && j<=N};

int Qprime_body1 {i,j|0<i && 7<=j-i && j-i<=9 && j<=N};

int Qprime_body2 {i,j|j<=N && j-i<=10 && 0<i};

int Qprime_body3 {i,j|j<=N && j-i<=10 && 0<i};

int QM_body {i,j|j<=N && -i+j-9>= 0 && 0<i};

int QBI_SR1_init {i,j,ip|0<i && 6<=j-i-ip && 4<=ip && 7<=j-i-ip && j<=N};

int QBI_SR1_add {i,j,ip|0<i && 8<=j-i-ip && 4<=ip &&

j-i-ip+2<= MAXLOOP && j<=N};

let

Q[i,j] = case

{|i-j+3>= 0} : INFINITY_VAL (0);

{|-i+j-4>= 0} : min((b(0) + Q[i+1,j]),

(b(0) + Q[i,j-1]),

((c(0) + End([i],[j])) + Qprime), QM);

esac;

Qprime[i,j] = case

{|i-j+3>= 0} : INFINITY_VAL (0);

{|-i+j-4>= 0} :

if ((Eval_isFinite(Qprime_ip) > 0)) then

(min(Eh([i],[j]),(Es([i],[j]) + Qprime[i+1,j-1]),

case

{|i-j+6>= 0} : INFINITY_VAL (0);

{|-i+j-7>= 0 && i-j+9>= 0} : Qprime_body1;

{|-i+j-10>= 0} : min(Qprime_body2 ,

Qprime_body3

+ Ebi_stacking ([i],[j])

);

esac ,

(((a(0) + c(0)) + End([i],[j])) + QM[i+1,j -1])))

else (INFINITY_VAL (0));

esac;

QM[i,j] = case

{|i-j+8>= 0} : INFINITY_VAL (0);

{|-i+j-9>= 0} : QM_body;

esac;

QBI_SR1[i,j,ip] = case

{|i-j+ip+7>= 0} : QBI_SR1_init;

{|-i+j-ip -8>= 0} : (QBI_SR1_add min QBI_SR1[i+1,j-1,ip]);

esac;

QBI_SR2[i,j,ip] =

reduce(min , (i,j,ip,jp->i,j,jp-ip), {|-i+4<=ip && -j+jp+3>= 0 && j-jp -2>= 0} :

20

((Ebi_stacking ([jp],[ip]) +

Ebi_asymmetry ([ip-i-1],[j-jp -1])) +

Qprime[ip,jp]));

Qprime_body1[i,j] = reduce(min , (i,j,ip,jp->i,j),

case

{|j-jp==2 && ip -i==1} ||

{|j-jp==1 && ip -i==2} : (Ebi_Bulge1 ([i],[j],[ip],[jp]) + Qprime[ip,jp]);

{|ip -i==1 && 3<=j-jp} : (Ebi_Bulge ([i],[j],[ip],[jp],[j-jp -1]) + Qprime[ip,jp]);

{|j-jp==1 && 4<=ip-i} : (Ebi_Bulge ([i],[j],[ip],[jp],[ip-i-1]) + Qprime[ip,jp]);

{|j-jp==2 && ip -i==2} : (Ebi_iloop1x1 ([i],[j],[ip],[jp]) + Qprime[ip,jp]);

{|-i+jp -6== 0 && ip-i==2 && j-i==9} :

(Ebi_iloop1x2 ([i],[j],[ip],[jp]) + Qprime[ip ,jp]);

{|-i+jp -7== 0 && ip-i==3 && j-i==9} :

(Ebi_iloop2x1 ([i],[j],[ip],[jp]) + Qprime[ip ,jp]);

esac);

Qprime_body2[i,j] = reduce(min , (i,j,ip,jp->i,j),

case

{|j-jp==2 && ip -i==1} ||

{|j-jp==1 && ip -i==2} : (Ebi_Bulge1 ([i],[j],[ip],[jp]) + Qprime[ip,jp]);

{|ip -i==1 && 3<=j-jp} : (Ebi_Bulge ([i],[j],[ip],[jp],[j-jp -1]) + Qprime[ip,jp]);

{|j-jp==1 && 3<=ip-i} : (Ebi_Bulge ([i],[j],[ip],[jp],[ip-i-1]) + Qprime[ip,jp]);

{|j-jp==2 && ip -i==2} : (Ebi_iloop1x1 ([i],[j],[ip],[jp]) + Qprime[ip,jp]);

{|j-jp==3 && ip -i==2} : (Ebi_iloop1x2 ([i],[j],[ip],[jp]) + Qprime[ip,jp]);

{|j-jp==2 && ip -i==3} : (Ebi_iloop2x1 ([i],[j],[ip],[jp]) + Qprime[ip,jp]);

{|j-jp==3 && ip -i==3} : (Ebi_iloop2x2 ([i],[j],[ip],[jp]) + Qprime[ip,jp]);

esac);

Qprime_body3[i,j] = reduce(min , (i,j,d->i,j),

((QBI_SR1 min QBI_SR2) + Ebi_sizePenalty ([-i+j-d -2])));

QM_body[i,j] = reduce(min , (i,j,k->i,j),

{|4<=k-i && 5<=j-k} : (Q[i,k-1] + Q[k,j]));

QBI_SR1_init[i,j,ip] =

reduce(min , (i,j,ip,jp->i,j,jp-ip), {|ip-i==2} || {|j-jp==4 && ip-i==3} :

((Ebi_stacking ([jp],[ip]) +

Ebi_asymmetry ([ip-i-1],[j-jp -1])) +

Qprime[ip,jp]));

QBI_SR1_add[i,j,ip] =

reduce(min , (i,j,ip,jp->i,j,jp-ip), {|ip-i==2} || {|j-jp==4} :

((Ebi_stacking ([jp],[ip]) +

Ebi_asymmetry ([ip-i-1],[j-jp -1])) +

Qprime[ip,jp]));

.

21

