Computer Science COlO%%(e)

Technical Report

University

The Stencil Processing Unit:
GPGPU Done Right

Sanjay Rajopadhye
Colorado State University
Sanjay.Rajopadhye@colostate.edu

Guillaume Iooss Tomofumi Yuki
Colorado State University INRIA, Rennes, France
iocoss@cs.colostate.edu tomofumi.yuki@inria.fr

Dan Connors
University of Colorado, Denver

dan.connors@ucdenver.edu

1 March 2013

Colorado State University Technical Report CS-13-103

Computer Science Department
Colorado State University
Fort Collins, CO 80523-1873

Phone: (970) 491-5792  Fax: (970) 491-2466
WWW: http://www.cs.colostate.edu



The Stencil Processing Unit:
GPGPU Done Right

Sanjay Rajopadhye Guillaume Iooss
Colorado State University Colorado State University

Sanjay.Rajopadhyelcolostate.edu iooss@cs.colostate.edu

Tomofumi Yuki Dan Connors
INRIA, Rennes, France University of Colorado, Denver

tomofumi.yuki@inria.fr dan.connors@ucdenver.edu

1 March 2013

Abstract

As computing moves to exascale, it will be dominated by energy-efficiency. We propose
a new GPU-like accelerator called the Stencil Processing Unit (SPU), for implementing
dense stencil computations in an energy-efficient manner. We address all the levels of the
programming stack, from architecture, programming API, runtime system and compila-
tion. First, a simple architectural innovation to current GPU architectures enables SPUs
to have inter-processor communication between the coarse-grain processors (SMs or TPs).
Despite this simplicity, the mere possibility of on-chip communication opens up many chal-
lenges, and makes the programming even more difficult than it currently is. We therefore
provide a solution to the programming challenge by limiting access to the communication
through a disciplined API and with a mechanism that can be statically checked. This al-
lows us to propose simple modifications to existing runtime systems for GPUs to manage
the execution of the new API on the SPU architecture. Based on our analytical models, we
expect an order of magnitude reductions in the energy cost when stencil codes are imple-
mented on the proposed architecture.

Keywords: co-design, GPGPU, exascale, energy efficiency, tiling

1 Introduction

General Purpose computing on Graphics Processing Units (GPGPU) has helped produce ad-
vances in a range of fields, including medicine, biology, chemistry, physics, and computational
engineering by enabling the fastest running supercomputers in the world. Yet, this progress
has been fortuitous, because of the realization that special purpose architectures (acceler-
ators), developed for a very narrow domain, had broader applicability. The future of such
accelerator systems represents both a unique opportunity and a challenge for the HPC and
general-purpose computing communities. In exascale computing, the dominating cost metric
will be energy, rather than speed, or possibly, energy in addition to speed. This paper ad-
dresses the evolution of General Purpose Computing on Graphics Processing Units (GPGPU)
towards this metric.



1.1 Shoehorning GPGPU onto GPUs

Current GPUs and APIs for GPGPU have a huge drawback under an energy-centric cost met-
ric. GPUs disallow communication/synchronization between the “large grain processors,” i.e.,
the streaming multiprocessors (SMs) of NVIDIA, or ATT’s thread processors (TP). Correspond-
ingly, the programming APIs disallow “outer level” communication, e.g., blocks in a CUDA
grid or cannot communicate between each other, and neither can work-groups in OpenCL.

For graphics processing—the original goals of GPUs—these choices were just right because
(i) the application matches them, (ii) they simplify the programming model, and (iii) they
provide portability. The justification is as follows.

First, graphics computations can be divided into “globally independent” parts or tasks,
that need minimal or zero communication or synchronization (they are “pleasantly paral-
lel,” often called “embarrassingly parallel”). However, these tasks are internally compute-
intensive and benefit from fine-grain, multi-threaded parallelism. Second, the corresponding
programming model also has two levels of parallelism—just like the architecture—with in-
dependent tasks at the “outer” level, and an “inner” level of fine-grain parallelism that may
communicate and synchronize. This model can be mastered relatively easily by computing
and HPC specialists, as evidenced by the growing popularity of CUDA and OpenCL. It is also
effective, as evidenced by the development of the ecosystem and support infrastructure that
seeks to provide easier solutions to non-specialists through directives. Finally, a critical ad-
vantage of this choice is that the runtime scheduler can be made non-preemptive, leading to
portable code that can run on any GPU-enabled card.

The success of GPGPU shows that many applications can be “massaged,” (shoehorned)
into such a two-level form. Usually, this involves making multiple kernel calls, and using
global memory as a mechanism by which different thread-blocks communicate across the
kernel calls. However, off-chip communications consume at least two orders of magnitude
more energy [3, 10]. Even the energy consumption of on-chip communication grows linearly
with distance. Hence, this shoehorning comes at a significant energy cost.

Such costs are unacceptable and avoidable. Evolving GPUs to non-graphics domains will
need energy-efficient inter-SM communication/synchronization. One way to do this is to in-
troduce caches and/or other on-chip memory. Efforts like the Echelon project [10] to extend
GPUs in this direction are already under way, and Intel’s MIC can be viewed as a “general
purpose accelerator” to compete directly with GPGPU.

We seek a new niche middle ground—dense stencil computations, for which we extend
accelerator functionality without losing many special purpose advantages of GPUs. Not sur-
prisingly, we call our proposed device the SPU: Stencil Processing Unit.

1.2 Why Stencils
We focus on stencils for three important reasons.

e Stencils are just the right extension of graphics computing. Beyond shaders, GPUs are
also used to efficiently simulate physical phenomena such as cloth and smoke [6], where
the computational core is a stencil computation to solve the Navier-Stokes’ equation.
Although this is currently only a small part of game computation, we expect this to
change as (i) architectures become available to do this efficiently and (ii) market demand
emerges for more physical realism.!

Tt is a chicken and egg problem, and we propose to lay the first egg.



e For general purpose computing, stencils are extremely important. One of the thirteen
Berkeley dwarfs/motifs (see http://view.eecs.berkeley.edu), is “structured mesh
computations:” nothing but stencils. Many instances of two other motifs, “dynamic pro-
gramming” and “dense linear algebra,” share similar dependence patterns. A recent
surge of publications on the broad topic of stencil optimization [12, 2, 7, 13, 11, 16]
ranging from optimization methods for implementing stencils on a vareity of target ar-
chitectures, to domain specific languages (DSLs) and compilation systems for stencils,
suggests that this importance has been noted by many researchers.

e We claim, and show in Sec 3 that the SPU can be built with very minimal tweaks to
the GPU architecture. Since the tweaks are minimal, the SPU will will subsume GPU
functionality as a special case. Moreover, the extensions to the programming API and
run-time system are also simple.

There are a number of strategies to parallelize stencil computations for various platforms
ranging from distributed memory machines, multi-core platforms, many-core accelerators like
GPUs, Cell, etc., to FPGA based dedicated hardware implementations. They include various
tiling schemes such as redundant computations through expanded halo regions, overlapped
tiling, tiling with concurrent starts, general time-skewing, and cache-oblivious tiling schemes.
While there has been much work on choosing the schemes optimally and also on selecting the
parameters of the strategies in an optimal manner, the notion of optimality has so far only
been speed. Little effort has been devoted to optimizing for energy, and we are not aware of
any work that seeks to do this with a quantitative model.

1.3 Contributions

In this paper, we (i) develop energy efficient parallelization for stencils, and propose modifica-
tions to (ii) the architecture of current GPUs, (iii) the CUDA programming API, and (iv) the
run-time scheduler. Specifically,

e We first propose a parallelization strategy for dense stencil computations over 1D and
2D data arrays (Section 2). We show its energy efficiency by comparing with other com-
peting strategies using a simple quantitative model based on counting the number of
off-chip memory accesses.

e We propose the architecture of SPUs (see Section 3), a simple, almost trivial, extension to
GPU architectures. The SPU allows local communication and synchronization between
SMs, enabling an SM to access the shared memory of neighboring SMs as cheaply—with
comparable energy cost—as its own.

e Unfortunately, this opens Pandora’s box in terms of impact on programming model, the
run-time system, and the compilation problem. We therefore reopen the box in Section 4
and offer Hope, by insisting that inter-SM communication is exposed to the program-
ming API only through a disciplined but simple extension to CUDA/OpenCL.

e We prove, in Section 5 that this indeed is safe by showing how to adapt current GPU run-
time systems so that GPU tasks can continue to be non-preemptively scheduled through
to completion—a feature that is essential to the portability and success of current GPU
programming APIs.



2 Energy Efficient Stencil Parallelization

We first use matrix multiplication to show why energy efficiency requires on-chip communica-
tion. For this simple case, such communication can be achieved through caches. Next we show
that dependent computations like stencils are much more complicated. We quantify the the
energy cost of standard, wavefront based mechanisms for parallelizing such programs, and
show how that our proposed strategy reduces the energy overhead by a factor of P, where P is
the number of processors on chip, for 1D dependent computations, and by /P for 2D stencils.

2.1 Matrix Multiplication

Consider the N x N matrix multiplication C = AB, using the standard tiled approach of the
CUDA programming guide (we could use the Volkov algorithm [17] implemented in cublas,
but the story would be similar). Each thread-block is responsible for computing a b x b sub-
matrix of the result. This requires an b x N submatrix of A, and an N x b submatrix of B.
Since the local memory is not large enough, we read, in a loop, smaller “data-blocks” of A and
B, i.e., copy these blocks from global memory to shared memory. So the memory footprint of
each threadblock? is 2Nb + b? (the first term dominates). Let n = %, so we have an n x n grid
of threadblocks. Note that n is, in general, much larger than P, the number of processors, so
there is a level of virtualization that the GPU runtime system manages under the hood. Since
there is no sharing of data between the threadblocks (indeed, even if two threadblocks were
to be allocated to the same processor, the runtime system and the programming model hides
this), the memory footprint of the entire program is n? * 2Nb = ¥ The program performs
2N?3 FLOPs, and therefore its balance—the compute-to-communicate ratio—is b.

We use a similar analysis to study energy efficiency. The total energy of the program is
the sum of the energy spent in the computation, and that in memory accesses. It has been
noted [3, 8] that the latter is two to three orders more than the former. Moreover, the energy
to perform the computation, once data are on-chip, is unavoidable and essential. Hence the
energy overhead of the program is, to a first approximation, simply the energy of the off-chip
data transfers, i.e., the memory footprint of the entire program, ¥

In order to improve this, we need to reduce the footprint, or equivalently, increase the bal-
ance. Note that the matrix multiplication algorithm has an arbitrarily scalable balance (IV3 to
N?), but our implementation only had a balance of b. The inability to share data between SMs
is a key reason. Assume that there is some architectural support for communication between
SMs. Say there are P SMs, arranged in a square p x p grid (so p = v/P). Now, two processors
on the same row need the same elements of A, and those on the same column similarly share
the same elements of B. To analyze this, we think of this as making all processors collectively
responsible for cooperatively computing a pb x pb block of C. Since n is usually much larger

than p, we need g—; passes to execute the algorithm, each with a footprint of 2/Npb. The total

memory footprint now becomes 2]%3, and the balance improves to pb, a v/P-fold improvement.
If the number of SMs approaches the hundreds, this would yield an order of magnitude re-
duction in the number of off-chip accesses. In fact, In fact, recent GPUs already provide the
necessary architectural support for this in the form of caches.

Fewer accesses to global memory may have an additional secondary benefit. Although this
may not happen for a well tuned matrix multiplication program, fewer accesses may even

speed up the program, and this further contributes to reduction in energy of all the system

2The total number of memory accesses performed by each threadblock.



Figure 1: Pipeline parallelization of a simple 2D computation over an N x M domain. Each
square represents an z x y tile, executed as as single threadblock; all inter-tile edges are not
shown, to avoid clutter. The (red) diagonal bands represent sets of tiles executed in a single
kernel call. Because the number of physical processors is limited, the GPU run-time system
partitions the red bands into blue bands (labeled ¢, ...t + 2) and serially executes them. The
total number of off-chip accesses is 2NM (mey) In an alternative parallelization, the whole
computation is divided into passes (light green swaths) and the wavefront is restricted to just
the pass: after the blue band at time step ¢, the green sequence of bands is executed. Now, the
2N M

total number of off-chip accesses is 5=, a factor of P reduction.

components (especially that due to static power). There is potential for a quadratic improve-
ment in (a dominant part of) the GFLOps/joule metric. The benefits of reducing memory
footprint are thus significant.

2.2 Dependent Computations

Consider (see Fig. 1) the simplest example with inter-iteration dependences: an N x M, 2D
iteration space with canonic dependences (the point (7, j) depends on its north and west neigh-
bors, (i,j — 1) and (i — 1, j), respectively). To parallelize this, we first tile it using x x y tiles,
yielding an n x m tile graph, where n = & and m = L.

Each tile is executed as a single threadblock, and “wavefronts” of tiles are executed by a
sequence of kernel calls (red bands in Fig. 1). However, the GPU has only a limited number of
processors, so the run-time system partitions each wavefront and executes them serially, as
illustrated by the blue sequence of bands marked ¢, ¢ + 1 ...in Fig. 1).

Let us quantify the energy overhead of this. The total number of tiles/threadblocks exe-
cuted is nm. Each tile performs x + y reads and x + y writes, and therefore has a footprint of
2(x 4+ y). Hence, the memory footprint of the program is 2N M (xxLy)

Now consider an alternative parallelization where we first partition the tile graph into
passes (light green swaths in Fig. 1) of height P tiles, and execute each pass with a wavefront

schedule—darker green bands marked with t+1,¢+2...). There are % passes, and each one



has (as we justify below) a memory footprint of 2(xP + M), the perimeter of the pass. Hence
the memory footprint of the program is 25—,{” + 2N, which is dominated by the first term. This
yields at least a P fold reduction!

To justify our claim that a pass can be completely executed with a footprint just equal
to its perimeter, we must provide an on-chip communication mechanism between processors
(see Section 3). However, that alone is not enough. We see from Fig. 1 that the parallelization
scheme cannot be simply specified by the sequence of red wavefronts, and unfortunately the
green wavefronts have a size, P, which is very machine dependent. Hence the challenge is to
expose the newly introduced communication capabilities of the architecture to the program-
mer through a simple API, and yet retain the portability of the program. We explain these
extensions, as well as the modifications to the run-time system in Sections 4 and 5. How-
ever, before proceeding further, we show why this multiple pass parallelization strategy is
also applicable to dense stencils.

2.3 Stencils are not so easy

Given sets N and A of vectors in Z? called neighborhoods for the previous and current time
steps, respectively, and associated sets of coefficients, VV and VW', a 2-dimensional dense stencil
computation (without convergence tests) consists of the iterative evaluation of an expression
for all points in a domain D = {7, ,t |0 < (4,j) < N;0 <t < T}

X'[z] = Z WXz 4 a) + Z Wa X'z + al
aeN aeN’

assuming that appropriate boundary/initial values are provided for points outside D. In the
Jacobi stencils N’ is empty, whereas in the Gauss-Seidel stencils AV and N have roughly equal
cardinality.

In the remainder of this paper, we assume Jacobi stencils, although our arguments carry
over directly to other stencils. We let 5 = |N/|. We shall analyze four schemes to parallelize
such stencils, from the perspective of off-chip data access. Fig. 2 pictorially illustrates the case
for a 1D data array, that is easier to visualize.

2.3.1 Standard Parallelization with Redundant Computation

In the most direct scheme, the N x N grid of data points is tiled into n x n grid of b x b tiles,
where N = nb. Again, n is much larger than p, so data is copied from global memory for
each tile at each iteration of the outer ¢ loop. This has a memory footprint of 2N?7, leading
to a very poor computation balance of only g A well known way to improve this is by using
larger “halo regions,” at the expense of a certain amount of redundant computation [15]. The
corresponding gain is usually by a small constant factor before memory capacity and the
additional work produce diminishing returns.

2.3.2 Cache Oblivious Tiling

Another important approach for tiling stencil-like computations is cache-oblivious tiling [4, 5].
These methods recursively tile the iteration space such that at some level of the tile, the
memory foot print is small enough to fit into a given cache. Therefore, the behavior of the
resulting program with respect to data locality is independent of—oblivious to—the cache
size. For the purpose of our analysis, we assume cache-oblivious methods to behave the same
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Figure 2: Stencil programs are trickier. Each square is a tile which is fine-grain parallelized
(many techniques for this are available) by a threadblock. Across tiles, each one needs data
from its north-west, west and south-west neighbors. The parallelization and corresponding
CUDA kernels (red bands) are now seemingly easier—all the tiles in a column are independent.
However, executing this in multiple passes as shown in the diagram on the left is illegal (cyclic
dependences between passes). However, oblique passes as shown in the right diagram are
legal provided the passes are executed from the bottom to the top. Furthermore, each pass can
be easilyparallelized (green ovals marked ¢, ¢ + 1. ...). The standard CUDA parallelization

(left diagram, red bands) makes 2N M =% (”y) off- ch1p accesses, and the parallelization on the

M

right makes only =3 2N , again, a factor of P reduction.

as tiled programs using the perfect (i.e., optimal) tile sizes. There are other parameters and
potential inefficiencies in cache-oblivious methods, e.g., recursive program structure, and this
serves as an upper bound estimate of its performance. Hence they will be no worse than the
nest case scenario of the time-skewed approach described below, both of which suffer from the
inherent architectural limitations.

2.3.3 Time Skewing with Wavefront Parallelization

Time skewing [20, 19, 1] is a well known technique that allows tiling to have scalable gran-
ularity. Applying it to our stencil consists of first skewing the two spatial dimensions, i and
j of the iteration space, by a factor d with respect to the ¢ dimension®, where d is the maxi-
mum component of the vectors a € N. After this preprocessing transformation, the iteration
space becomes a parallelepiped, and it is legal to tile it with tile boundaries perpendicular
to the unit vectors (orthogonal tiling). We assume, for the sake of simplicity, cubic, b x b x b
tiles. Furthermore, it is also well known that dependences in the resulting tile graph—the
graph whose nodes are the tiles and whose edges are dependences between the tiles—are bi-
nary linear combinations of the unit vectors, and the tile graph admits a simple wavefront
parallelization [9].

Each tile has a volume 5% and performs $b> multiply-add operations. Along the four “spa-

3There may be different factors, d; and d», in each of the spatial dimensions. This just complicates the analysis,
without contributing anything substantial.



tial” boundaries it has dependences of length d and along the ¢ dimension, the dependences
are of unit length, so the amount of data it needs is (4d + 2)b? and the computational balance
of each tile is ab for a constant o = %. Just as in matrix multiplication, there is an upper
bound on how large b can be made, based on tile-level resource constraints: size of the shared
memory, number of available registers, etc.

There is a fundamental reason why the balance is bounded by b. The architecture and pro-
gramming model prohibit tiles belonging to different wavefronts from communicating directly
(they are in different kernel calls).

2.3.4 Time Skewing with On-chip Communication

We now explain how to overcome these constraints. First, allowing SMs the ability to commu-
nicate will enable the tiles within a wavefront to communicate between themselves, thereby
reducing some of the constant terms in a. However, this alone is not sufficient. Inability to
communicate across kernel calls is the critical limiter here.

We seek to organize the parallelization of the tile graph into partitioned wavefronts where
a set of (virtual) processors in the parallelization can execute their wavefronts all the way to
completion before other processors even start. Such a partitioning is well known from the
30 year old literature on systolic array synthesis, and is called LPGS partitioning [14] for
“locally parallel, globally sequential.” It is also easy to prove that this can be achieved if, after
the parallelizing transformation, the projection of the inter-tile dependences on the virtual
processor dimensions lie in the first quadrant. Furthermore, this is always possible for a
dependence graph whose original dependences are in the first orthant, as is the case for our
tile graph.

The parallelization that we propose can therefore be described as follows. Organize the
P processors into a p x p grid and have this processor array sweep through the wavefront-
parallelized time-skewed graph in multiple passes. If the parallelization needs an n x n grid
of (virtual) processors, the parallelization uses n?/P passes. Only the data between passes
needs to be communicated to/from global memory. Hence the memory footprint is reduced by
a factor of p.

2.4 A Question of Balance

Balance is a critical metric [20] and is used in many analyses. It may be defined for a given
program/parallelization, for an algorithm (e.g., matrix multiplication has a balance of N: N3
FLOPs to N? floats, which is arbitrarily scalable), or even for an architecture/machine (peak
FLOPS/sec to peak bandwidth). As an example, if program balance can match or exceed
the machine balance, the implementation can be made compute bound, rather than memory
bound. This is indeed the case for matrix multiplication. This is why appropriately tuned
versions of the tiled program can achieve close to the machine peak performance.

Williams et al. [18] suggest how balance (which they call arithmetic intensity) can be used
to optimize “performance” (i.e., speed) on multi-cores. In their formulation it is viewed as
a constraint to be satisfied—if the balance can be improved beyond a certain threshold, the
program becomes compute bound—but the objective function of the optimization remains the
execution time. Our position is that in exascale, balance must factor into the objective func-
tion.

Balance provides us with a good model for energy efficiency. Of course, improving balance
by a factor x may not directly translate to z-fold reduction in total energy due to Amdahl’s



Law like effects—global memory access is only a part of the total energy budget. However, let
us view the total energy cost as the sum of two terms, o for the cost of computing the results
once all the necessary data has been copied into shared memory, plus 3, the cost of this copy.
The § term is a direct measure of the energy overhead, and the balance simply reports it
relative to the operation cost. Therefore, we claim that our proposed solution yields a v/P-
fold reduction of the energy overhead. With 100-processor GPU-like architectures already
available or announced, this is definitely nothing to sneeze at.

Furthermore, static energy is increasingly becoming the critical component. Now, note
that the improvement in balance affects not only the energy, but may also affect the speed of
the program—Ilocal accesses are also one to two orders of magnitude faster than global. Since
energy is the product of power and time, improving balance may reduce the energy consumed
by other components of the energy budget.

3 The SPU Architecture

Two concerns drive our architectural goals. First the “general purpose” goals cannot afford
to trump the primary one—graphics. Our architectural extensions should (i) be minimal,
and (ii) not interfere with core GPU functions. The second is that the changes must provide
extremely energy-efficient communication and synchronization. The processors in the SPU
are called Stencil Processors, SP and we refer to tightly connected groups of scalar proces-
sors within GPU processors as Streaming Multiprocessors (SMs) which borrows from Nvidia
original designation.

3.1 Mesh Topology

Guided by these goals, we choose a mesh topology for inter-SP communication. SMs on current
GPUs are already laid out in a 2D grid, and it is easy to assign (z,y) coordinates to each
SM. Thus, local communication in such a mesh translates to low-energy. Because of this,
our communication topology will be only nearest neighbor, any “long” communication will
have to be achieved through a “store-and-forward” mechanism, and will have to be explicitly
programmed.

Figure 3 illustrates this. Each processor has four communication buffers (CBs) one for
each of the North, East, West, South (NEWS) directions. The SMs in current GPUs already
have shared memory for their fine-grain SIMD parallel/vector units, and this memory is al-
ready partitioned into multiple banks to provide adequate bandwidth. Therefore, it may be
possible to use some of the banks, designated as “boundary” banks, as communication buffers.
Alternatively, they may be implemented with separate, dedicated banks of memory blocks.
The CBs are shared between the fine-grain threads on the SPU (just like shared memory on
current GPUs) and reads/writes from/to the buffers may have to be appropriately synchro-
nized. However, adequate mechanisms already exist on GPUs to provide this, especially if
they are logically viewed as specialized regions of the shared memory.

3.2 Instantaneous Communication

To communicate the data in the CBs, we use a simple toggling arbitration mechanism (see
Figure 3, right) to instantaneously transfer the “ownership” of a CB from one SP to the next.
The mechanism is again, trivially simple: at any time, an arbitration bit between two adjacent
SPs controls which of them owns each one of a pair of CBs. The memory system is oblivious to
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Figure 3: The SPU architecture (right) is a simple extension (lightly shaded blue parts are
added) of the standard GPU (left). These additional communication buffers allow a mesh
connected mechanism for inter processor communication

this—any memory access is automatically transfered to the bank that the processor “currently
owns.” When a communicaton is desired, this arbitration bit is toggled, thereby achieving a
complete exchange of (all the contents of) the CBs. This happens at some synchronization
point during execution. From this time on, until the next synchronization, memory accesses
to the CBs refer to values that the neighboring SP may have written into this bank prior to
the synchronization.

This mechanism has minimal disruption and is energy efficient. In fact, for standard GPU
applications, our mechanism could be completely bypassed, and therefore, if power gating
were used, we expect its overhead in time and energy to be essentially, zero, and the area
overhead to be small.

Next, we discuss how these mechanism are exposed to the programmer, and later on, the
implications of these choices.

4 The programming API

There are essentially two choices in exposing the communication fabric to the programmer:
(1) how to access data in the CBs, i.e., how to store to and retrieve from them, and (ii) how to
orchestrate the transfers. We now discuss them.

The first choice about access mechanisms is a direct consequence of our architectural
choices. Since CBs are logically to be viewed as sub-regions in shared memory, our API
allows CUDA variables that are declared as shared to have an additional transferable
annotation, to indicate that these variables are to be allocated to CBs. An additional at-
tribute/keyword indicates the (NEWS) direction of the transfer.

Orchestrating the transfers: Pandora’s box

There are really two choices here. We could allow individual threads to dynamically toggle the
arbitration bits in a possibly asynchronous, completely dynamic manner. This would lead to

10



anarchy. Alternatively, and this is our choice, we could allow the bits to be toggled through a
“global” command involving all the threads. We therefore have a synchronized transfer, where
the threads in a block must first all arrive at a common synchronization point. This simple
extension to a CUDA syncthreads is called syncblocks. When the control flow arrives at
a syncblocks, the thread

e waits until all the threads in all the blocks arrive at this point as in a syncthreads,
e Next, the arbitration bits are toggled so that the CBs get exchanged, and
e finally, all threads continue execution.

Note first, that this is a global synchronization across all the threadblocks in the grid. And
that this opens Pandora’s box. This simple and seemingly minimal extension breaks a key
GPU requirement.

Let us return to our stencil computation, consider our first standard parallelization, pos-
sibly with increased halo and redundant computation. To execute this on the SPU, we would
want to tweak the standard GPGPU code so that we make, instead of % kernel calls commu-
nicating through global memory, a single kernel call, that makes % calls to syncblocks. We
would expect to use the CBs of the SPU to do the typical “halo exchange,” and avoid using the
global memory for this communication.

Houwever, this would either lead to deadlock or defeat the entire purpose!! The main motiva-
tion behind GPGPU and the abstraction provided by CUDA and/or OpenCL is that a GPGPU
program must port to any CUDA-enabled card with no changes. In order to achieve this,
the threadblocks in a grid are actually viewed as virtual processors, that are mapped to the
physical SMs on the card by a runtime system. For maximum efficiency, the scheduler al-
most always non-preemptively executes individual threadblocks through to completion. This
is efficient and perfectly legal in the CUDA/OpenCL programming model.

If the SPU code proposed above is executed non-preemptively by such a run time, it would
produce incorrect answers—the halo regions read by a threadblock whose neighbor is not exe-
cuting concurrently, will be garbage!

5 Hope and Extended Runtime

This section provides hope through discipline.

There are two ways to solve the problem. The first is to extend the runtime with non-
preemptive scheduling, possibly by interleaving the execution of threadblocks. This is itself a
daunting task, made especially difficult by the fact that considerable prior GPGPU infrastruc-
ture has been developed, much of it proprietary, and details are often unavailable. Second, the
potential gains of on-chip communication may be lost with a heavy runtime system. Moreover,
it is likely to lead to significant programming difficulties. Finally, this is really not a solution,
because it reverts back to global memory transfers that we are seeking to avert—the thread-
blocks would have to be swapped in and out at each syneblocks and this would require their
state to be saved and restored.

Our solution is to impose a discipline to ensure that a non-preemptive scheduler remains
safe, by what we call unidirectional communication. This gives sufficient conditions for
safety—in exchange for limiting the communications to be unidirectional, we can guarantee
the legality of non-preemptive scheduling, with a few simple modifications.
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_ shared__ transferable N2S float Btrans[BLOCK_SIZE] [BLOCK_SIZE];
__shared_ transferable W2E float Atrans[BLOCK_SIZE] [BLOCK_SIZE];

for (t=0; t<bxtby; t++)
__syncblocks; // Dummy blocks (most can be optimized away)
for (int t=bx+by; t <= Maxbz+bx+by; t++) {
// Computation: code for internal blocks only
// (special case for boundary blocks are not shown)
for (int k=0; k<BLOCK_SIZE; ++k) {
Csub += Atrans.in (ty,k)*Btrans.in(k,tx);
}
// Transmitting data
__synchthreads () ;
Atrans.out (ty, tx) Atrans.in(ty, tx);
Btrans.out (ty,tx) = Btrans.in (ty,tx);
__syncblocks; // Subsumes a syncthreads
}
for (t=Maxbz+bx+tby+l; t < Maxt; t++)
_ _syncblocks; // Dummy blocks (most can be optimized away)

Figure 4: Matrix Multiplication in extended CUDA for the SPU

In order to achieve this, we impose a further restriction on the annotation that we allow
for transferrable variables. The direction for the transfer is not an arbitrary one of the
four NEWS, values, but a specific pair that indicates the direction. Moreover, all accesses to
transferrable variables is with additional qualifiers—. in to read the variables in neigh-
boring grid blocks, and . out to write the values that neighboring blocks will access later. For
example, the following declaration indicates that Bt rans is an array that will be transferred
from north neighbor to the south.

_ _shared__ transferable N2S float Btrans[BSIZE] [BSIZE];

The compiler must check that these constraints, across all the variables declared in the
program do not lead to any cycles. For example, in a CUDA program with a 1-D grid, no other
direction should be allowed: the following program will be flagged as erroneous:

_ _shared__ transferable N2S float Btrans[BSIZE] [BSIZE];
_ _shared__ transferable S2N float Atrans[BSIZE] [BSIZE];

Even if the declaration of At rans had the annotation, E2w it would be incorrect. In a CUDA
program with a 2-D grid of threadblocks, exactly two orthogonal and non-conflicting commu-
nication directions should be present. Given a legal set of annotations, the runtime system
can now determine a non-preemptive schedule. Of course a number of different choices are
possible (e.g., row-major, column-major or even blocked or wavefront orders, but this can be
predetermined by the runtime system.

The second important additional aspect that the runtime has to do is to manage the com-
munication buffers and transferrable arrays through spilling to global memory. At any time
during the execution, the system maintains a set S of the currently executing threadblocks.
Whenever a syncblocks is executed, all the arbitration bits are toggled. In addition, for
all threadblocks that need to write to another (using Var.out on the left hand side of an
assignment) that is not in S, the CB is spilled to global memory in a system-reserved area.
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Similarly, a read (Var.in) access from a threadblock that is not in S causes the runtime
system to refresh the buffers from previously spilled data.

We expect that in most cases the system memory for spills can be statically predicted, and
can even be optimized and tuned through prefefetching.

6 Conclusions

In this paper we have essentially argued that GPUs are not right for GPGPU (general purpose
computing). The moment there are dependences between the computations that are being
parallelized, the lack of on-chip inter-processor communication, means that all dependent
data that must be communicated must pass through global memory, and this is hugely energy
inefficient, and will not be acceptable in the exascale era.

The common wisdom is that these problems can be resolved by adding caches, but this
too has a significant energy cost—although they avoid off-chip accesses, they are nevertheless
shared resources on the chip, and imply long communications. We therefore argue that ap-
proaches that bolt general purpose solutions to GPUs would “throw away the baby with the
bathwater.”

The solution that we propose is a special purpose (domain specific) architecture, that is
dedicated to a niche domain: dense stencil computations. We have shown that our solution
can yield up to an order of magnitude reduction in the energy overhead of such computations,
and we have argued how the solution is simple to implement, although it needs us to revisit
the entire run-time stack from architecture, to programming API and runtime system. This
is our ongoing work.
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