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Analyzing Behavioral Refactoring of Class
Models

Wauliang Sun, Robert B. France, Indrakshi Ray

Colorado State University, Fort Collins, USA

Abstract. Software modelers refactor their design models to improve
design quality while preserving essential functional properties. Tools that
allow modelers to check whether their refactorings preserve specified es-
sential behaviors are needed to support rigorous model evolution. In this
paper we describe a rigorous approach to analyzing design model refac-
torings that involve changes to operation specifications expressed in the
Object Constraint Language (OCL). The analysis checks whether the
refactored model preserves the essential behavior of changed operations
in a source design model. A refactoring example involving the Abstract
Factory design pattern is used in the paper to illustrate the approach.
Keywords:Behavioral refactoring, UML/OCL, Alloy

1 Introduction

In Model-Driven Development (MDD) projects, one can expect design models
to evolve as developers explore design spaces for high quality solutions. Class
models are among the most popular models used in practice and given their
pivotal roles, there is a need to manage their evolution. Software refactoring
[4][15] is an important class of changes that is applicable to class models. The
goal of a refactoring is to improve software qualities such as maintainability
and extensibility, while preserving essential structural and behavioral proper-
ties. A number of model refactoring mechanisms have been proposed (e.g., see
[2][5][13][19][20][21]), and many (e.g., see [19][21]) provide support for checking
whether structural properties are preserved in refactored models. However, we
are not aware of any approach that supports rigorous analysis of behavioral
properties when operation specifications in class models are added, removed, or
modified. In this paper we describe a rigorous approach to analyzing the refac-
toring of design class models that involve changes to operation specifications
expressed in the Object Constraint Language (OCL) [16].

The model on which a refactoring is performed is called the source model,
and the model produced by the refactoring is called the refactored or target
model. A refactoring that involves making changes to operation specifications is
called a behavioral refactoring. In this paper, we present an approach to analyzing
behavioral refactorings to check that changes to operation specifications preserve
the net effect of the operation (i.e., its essential behavior) as specified in the
source model. The analysis is performed within a bounded scope of class objects.

As an example, consider a case in which the operation FlightManager ::
bookFlight() in a flight reservation system class model is refactored into the fol-
lowing four operations in the target model: Airline :: get Available Flights() re-
turns all flights that are available on a given day and airport, Flight :: get Availa—
bleSeats() returns all seats that are available on the flight on a given day and air-
port, Flight :: reserveSeat() reserves a seat on the flight, and Flight M anager ::
book Flight() books a flight by calling the previous three operations. The net ef-
fect of the FlightManager :: bookFlight() operation in the source model is
specified using an OCL pre-/post-condition stating that if there exists available



flight seats, at the end of the operation execution a seat will be reserved by a
flight manager. The behavioral refactoring performed on the source model re-
distributes the functionality of FlightManager :: bookFlight() across different
classes (i.e., Airline, Flight, and Flight M anager). It is tedious to manually de-
termine if the above behavioral refactoring preserves the net effect of the original
operation because it involves checking if a sequence of four operations associated
with different contexts preserve the net effect of Flight Manager :: bookFlight()
in the source model.

The above motivates the need for an automated analysis technique that sup-
ports rigorous analysis of behavioral refactorings. In the approach described in
this paper, an analysis of a behavioral refactoring involves determining whether
a sequence of operations in the target model preserves the net effect of an op-
eration in the source model in a bounded domain. The net effect of a source
model operation is preserved by a sequence of target operations if the sequence
starts in all the states that satisfy the pre-condition of the source model oper-
ation, and leaves the system in a state that satisfies the post-condition of the
source model operation. The analysis approach requires the software modeler
who performed the behavioral refactoring to provide a sequence diagram that
describes the sequence of target operations. The approach takes the sequence
of target operations, applies all the states that satisfy the pre-condition of the
source model operation in a bounded space, and checks if the sequence of target
operations produces any state that does not satisfy the post-condition of the
source model operation. The net effect of the source model operation is not pre-
served by the sequence of target model operations if a state that does not satisfy
the post-condition of the source model operation is produced by the sequence of
target model operations when it starts in a state that satisfies the pre-condition
of the source operation.

The Alloy Analyzer [9] is used at the back end to statically analyze a be-
havioral refactoring. The analysis involves using the Alloy trace mechanism to
determine whether operations in the target model can preserve the net effect of a
changed operation specification in the source model. The approach uses a UML-
to-Alloy transformation to shield the software modeler from the “back-end” use
of the Alloy Analyzer. Our transformation extends prior work on transforming
UML to Alloy models [1][3][7][11][18] by providing support for transforming a
class model and a sequence diagram to an Alloy model that specifies behavioral
traces.

The approach described in the paper is lightweight in that (1) it does not
expose the modeler to any formal notation other than the OCL, and (2) the net
effect preservation analysis is checked within a bounded domain. More heavy-
weight formal analysis techniques are needed in a setting where the net effect
preservation checking requires more exhaustive analysis.

The rest of the paper is organized as follows. Section 2 provides an overview
of the approach and Section 3 describes the approach and illustrates its use on
a small example. Section 4 presents a research prototype to support the analysis



approach. Section 5 discusses limitations of the approach. Section 6 describes
related work, and Section 7 concludes the paper.

2 Approach Overview

The analysis approach is used to determine whether the net effect associated with
a behavior specified in a source model can be preserved by distributed behaviors
specified in a refactored class model. The net effect preservation property that
is checked is defined as follows:

Definition 1: Net Effect Preservation. A sequence of operation invocations,
OpSegq, in a target model is said to preserve the net effect of an operation, Op0,
in the source model if the set of net effects (i.e., start and end system states
associated with an operation invocation) characterized by the specification of
Op0 is included in the set of net effects (i.e., start and end system states asso-
ciated with a sequence of operation invocations) characterized by the sequence
OpSeq. More precisely, a set of operations specified in a target model, {Opl,
Op2, ..., OpN}, is said to preserve the net effect of an operation Op0 specified
in the source model if there exists an invocation sequence of the target model
operations, OpSeq = [Opl; Op2; ...; OpN], such that the following holds:

1. OpSeq starts in all the states that satisfy the pre-condition of Op0.

2. If OpSeq starts in a state that satisfies the pre-condition of Op0 then the
sequence of operation invocations leaves the system in a state that satisfies
the post-condition of Op0.

The analysis approach requires a software modeler to provide the following
as inputs:

1. The specification of the source model operation, Op0, that is refactored.

2. The result of a refactoring (i.e., a target class model), and a sequence dia-
gram that describes how Op0Q’s redistributed behavior is used. The sequence
diagram provides the sequence of target operations that will be analyzed
against the source model specification of Op0.

The intermediate output of the approach is an analyzable model that can
be used to check the net effect preservation property between Op0 and OpSeq.
In this approach, the analyzable model takes the form of an Alloy model that
is produced from (1) the target class model, and (2) a sequence diagram that
describes OpSegq.

The specifications for Op0 and the operations involved in OpSeq are also
included in the Alloy model. The inclusion of Op0 in an Alloy model produced
from the target class model can be problematic when Op0 refers to elements
not included in the target model. For this reason the first step of the approach
checks that the elements referenced in Op0 operation specification also appear in
the target model. In future work we will develop support for checking behavior
preservation when elements referenced in Op0 are represented differently in the
target model.



The second step of the approach generates the base Alloy model that is
extended in following steps to check the preservation property. We use a UML-
to-Alloy transformation that builds upon our previous work on rigorous analysis
of UML class models [18].

The third step of the approach takes as input the specification of Op0 and
a sequence diagram, and produces an Alloy assertion (or predicate) that is used
to determine whether the sequence described in the sequence diagram (OpSeq)
preserves the net effect of Op0. The assertion (or predicate) is added to the Alloy
model generated in the second step of the approach. If a check of the assertion
(or predicate) by the Alloy Analyzer produces an Alloy instance then the net
effect specified by Op0 cannot be preserved by the operation sequence.

3 Approach

In this section we describe (1) the Maze Game class model used to illustrate our
approach, (2) the approach used to check that the target class model contains
the elements referenced by the source operation that has been refactored, (3)
the UML-to-Alloy transformation, and (4) the net effect preservation check.

3.1 Maze Game Class Model

A maze game class model from [6] (see Figure 1) is used in this paper to illustrate
the analysis approach. The MazeGame class is responsible for creating different
types of mazes (e.g., BombedMaze and EnchantedMaze) and their parts (e.g.,
RoomWithBomb and EnchantedRoom). A maze room consists of four sides
that can be doors, walls, or other rooms.

The operation createBombedMaze() : BombedMaze in class MazeGame is
used to create a bombed maze that consists of four walls. Its net effect in the
form of OCL specification is given below:

Context MazeGame::createBombedMaze() : BombedMaze

// Pre-condition: no maze has been created

Pre: self.maze—isEmpty/()

// Post-condition: a bombed maze has been created, and it includes a room
// with four walls

Post: result.ocllsNew() and

self.maze.bRooms—size() = 1 and

self.maze.bRooms— forAll(r : RoomWithBomb |

r.bwalls—size() = 4)

If a new type of maze, maze room, door or wall were added, the structure of the
class model would need to be changed significantly. Incorporating the Abstract
Factory pattern [6] into the class model results in a more flexible design in which
the maze creation responsibilities are localized in factories that the MazeGame
class can access.
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Fig. 2: Refactored Maze Game Class Model



Figure 2 shows a refactored maze game class model that incorporates an
instantiation of the Abstract Factory pattern. The original create BombedMaze
and create Enchanted M aze operations in MazeGame have been replaced by the
createMaze(f : MazeFactory) : Maze operation, that uses a factory to create
a specific type of maze. The net effects of the original operations in MazeGame
need to be preserved by the behavioral refactoring. The analysis approach de-
scribed in this paper can be used to check if the net effect of create BombedM aze
is preserved by relevant operations in the target model.

The OCL specifications for create M aze, make Room, add Room and addW all
are given below:

Context MazeGame::createMaze(f:MazeFactory) : Maze

// Pre-condition: a maze factory has been associated with a maze game
Pre: self.factory—includes(f)

Post: true

Context MazeFactory::makeRoom() : Room
Pre: true

// Post-condition: a room has been created
Post: result.ocllsNew()

Context EnchantedMazeFactory::makeRoom() : EnchantedRoom
Pre: true

// Post-condition: an enchanted room has been created

Post: result.ocllsNew()

Context BombedMazeFactory::makeRoom() : RoomWithBomb
Pre: true

// Post-condition: a room with bomb has been created

Post: result.ocllsNew()

Context Maze::addRoom(r:Room)

// Pre-condition: a room has not been associated with a maze
Pre: self.mazeRooms—excludes(r)

// Post-condition: a room has been associated with a maze
Post: self. mazeRooms—includes(r)

Context BombedMaze::addRoom(r:RoomWithBomb)
// Pre-condition: a room has not been associated with a bombed maze
Pre: self.bRooms—excludes(r)



// Post-condition: a room has been associated with a bombed maze
Post: self.bRooms—includes(r)

Context EnchantedMaze::addRoom(r:EnchantedRoom)

// Pre-condition: a room has not been associated with an enchanted maze
Pre: self.eRooms—excludes(r)

// Post-condition: a room has been associated with an enchanted maze
Post: self.eRooms—includes(r)

Context RoomWithBomb::addWall(w:BombedWall)

// Pre-condition: a wall has not been associated with a room with bomb
Pre: self.bwalls—excludes(w)

// Post-condition: a wall has been associated with a room with bomb
Post: self.bwalls—includes(w)

Context EnchantedRoom::addWall(w:OrdinaryWall)

// Pre-condition: a wall has not been associated with an enchanted room
Pre: self.walls—excludes(w)

// Post-condition: a wall has been associated with an enchanted room
Post: self.walls—includes(w)

Unlike the create BombedM aze operation, the createMaze operation dele-
gates its responsibility to other operations (i.e., makeMaze, make Room, add Ro-
om, makeWall, and addWall) in the target class model. A sequence diagram
(see Figure 3) is used to describe the result of the behavioral refactoring. It de-
scribes an invocation sequence of the target model operations that is intended to
preserve the net effect of the create Bombed M aze operation in the source model.

The major steps of the approach are described in the following subsections.

3.2 Step 1: Analyzing a Target Class Model

The specification of an operation is said to be invalid in the context of a class
model if there exists an element referenced by the operation specification that
is not included by the class model. Since the analysis approach described in the
paper uses the target class model to produce the Alloy model, it must be checked
to determine if all elements referenced in the source operation exist in the target
model.

If the specification of Op0 refers to elements not included in the the target
class model, one may choose to adapt the specification of Op0 to the target
class model, and use the adapted specification to check the net effect preserva-
tion property between Op0 and OpSeq. If this is done, then one is obligated to
show that the adaptation is equivalent to the original operation specification of
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Fig. 3: A Sequence Diagram that Describes an Invocation Sequence of the Target Model
Operations

the source operation. In this paper we do not adapt the specification of Op0
to the target class model. More details on OCL specification refactorings and
adaptations can be found in [12].

The first step of the approach uses a simple slicing technique to extract the
model elements referenced by the specification of Op0 from the source class
model. The slicing technique takes as input the OCL specification of Op0, tra-
verses an OCL syntax tree generated from the input specification, and collects
the model elements (i.e., classes and attributes) accessed by the specification
through navigation. If the target class model does not include all the model ele-
ments referenced by Op0 then the net effect preservation check is not performed.

In the maze game example, the model elements referenced by create Bombed-
Maze are MazeGame, Maze, Room, Wall, BombedM aze, RoomW ithBomb,



and BombedW all, and the target class model (see Fig. 2) includes all the model
elements needed by create BombedMaze. Therefore the target class model in
Fig. 2 can be used to check the net effect preservation property between Op0
and OpSeq.

3.3 Step 2: Generating an Alloy Model from a Refactored Class
Model

The second step of the approach described in the paper involves transforming a
refactored UML design class model to an Alloy model that specifies behavioral
traces. The UML-to-Alloy model transformation uses an intermediate model that
provides a static description of behavior in terms of sequences of state transitions,
where a transition represents an invocation of an operation described in the class
diagram. The snapshot transition model (STM) developed by Yu et al. [24][23][22]
is the intermediate model used in the UML-to-Alloy transformation.

In the remainder of this section we describe (1) the snapshot transition model
(STM), (2) the class-model-to-STM transformation, and (3) the STM-to-Alloy

model transformation.

Snapshot Transition Model Software behavior can be represented as a se-
quence of state transitions, where each transition is triggered by an operation
invocation. Yu et al. [24][23][22] describe how a design class model with operation
specifications can be transformed to a static model of behavior, called a snapshot
transition model (STM). A snapshot represents a system object configuration
at a particular time (i.e., a system state). A snapshot transition describes the
behavior of an operation in terms of how system state changes after the invoked
operation has completed its task. It consists of a before state, an after state,
and the operation invocation that triggers the transition. An operation invoca-
tion is described by the operation name and the parameter values used in the
invocation.

Generating a Snapshot Transition Model from a Refactored Class
Model Figure 4 shows a partial snapshot transition model generated from the
refactored maze game class model in Fig. 2. The instances of class Snapshot,
are snapshots, and the instances of class Transition are transitions that each
relates a before snapshot with an after snapshot. A snapshot consists of linked
instances of classes in a class model (i.e., an object configuration).

Each operation in the original design class model is transformed into a spe-
cialization of class Transition. The parameters (including the return type) of
each operation in the original design class model are transformed into references
(shown as attributes) in the Transition specialization. Moreover, if a parameter
has a class type, it is transformed into two references, one of which specifies the
parameter’s state before the execution of the operation and the other specifies
the parameter’s state after the execution of the operation. Also, two references
pointing to before and after states of the object on which the operation is called
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are generated and placed in the specialized Transition class representing the
operation. Operation specifications in the design class model are transformed
into transition invariants that specify the before and after snapshots that are
associated with Transition instances.

For example, the specification for the create M aze operation is transformed to
the following transition invariant on the Transition specialization, createMaze:

Context createMaze

inv:

before.games— includes(mazegamePre) and ...

after.games— includes(mazegamePost) and ...

// Generated from the pre-condition of the createMaze operation
mazegamePre.factory— includes(fPre) and

// Frame conditions

before.games - mazegamePre = after.games - mazegamePost

More details on the class model-to-snapshot transition model transformation can
be found in [22][23].

Generating an Alloy Model from a Snapshot Transition Model Alloy
[9] is a textual modeling language based on first-order relational logic. An Alloy
model consists of signature declarations, fields, facts and predicates. Each
field belongs to a signature and represents a relation between two or more
signatures. Facts are statements that define constraints on the elements of
the model. Predicates are parameterized constraints that can be invoked from
within facts or other predicates.



module MazeGame

open util/ordering[Snapshot] as SnapshotSequence

sig MazeGame{} sig Maze{} sig MazeFactory{} ...

abstract sig ID{}

one sig ID_createMaze, ID_addRoom, *++ ID_Null extends ID{}

sig Snapshot{

OperID: one ID,

/I Objects

games: set MazeGame, mazes: set Maze, factories: set MazeFactory...
/I Links

gamefactory: MazeGame set->set MazeFactory,

clientmaze: MazeGame one->lone Maze,

pred createMaze[disj before, after: Snapshot, mazegamePre,
mazegamePost: MazeGame, fPre, fPost: MazeFactory, resultPre,
resultPost: Maze]{

after.OperlD = ID_createMaze

mazegamePre in before.games ...

mazegamePost in after.games -

/{ Pre-condition

fPre in mazegamePre (before.gamefactory)

/I Frame conditions

after.games - mazegamePost = before.games — mazegamePre

/I More predicates

Fig. 5: Partial Alloy Model Transformed from the Snapshot Transition Model in Fig. 4

Figure 5 shows a partial Alloy model generated from the snapshot transition
model in Fig. 4. The figure identifies the parts that are generated by the three-
step transformation algorithm described in [18]. First, each part of the Snapshot
class in the snapshot transition model is transformed to a signature in Alloy. If
a class has attributes, its attributes are transformed to fields of the signature
corresponding to the class. The Snapshot signature is declared as an ordering
type (e.g., open util/ordering[Snapshot] as SnapshotSequence) representing se-
quences of snapshots.

Second, the Snapshot class is transformed to a Snapshot signature containing
fields that specify the object configuration within a snapshot. Two groups of
fields in the Snapshot signature are used to specify object configurations: fields
defining a set of objects (e.g., games : setMazeGame) and fields defining links
between objects (e.g., gamefactory : MazeGame set — set MazeFactory).



The Snapshot signature also includes a field, OperID, that is used to identify
the operation that causes a transition to the snapshot when the snapshot is part
of a sequence of transitions. There is an identifier type for each operation in the
original class model (e.g., ID_createMaze is the identifier that corresponds to
the operation createMaze).

Third, each Transition specialization in the snapshot transition model is
transformed to a predicate in Alloy that defines a relationship between before
and after states. If a Transition specialization has attributes, its attributes are
transformed to parameters of the predicate. Two more parameters, be fore and
after with the type Snapshot, are added to each predicate to represent the
system states before and after the transition. An equality that identifies the
operation causing the transition (e.g., after.OperID = ID_createMaze) is also
included in each predicate.

OCL invariants associated with each Transition specialization in the snap-
shot transition model are transformed into the body of the predicate correspond-
ing to the Transition specialization. Objects and links that are not changed
during the transition (i.e., frame conditions) are explicitly specified in the pred-
icate.

More details on the snapshot transition model-to-Alloy model transformation
can be found in [18].

3.4 Step 3: Checking Net Effect Preservation Property

When an operation invocation sequence (i.e., OpSeq) only consists of one oper-
ation (e.g., OpSeq = [Opl]), a software modeler can use the Alloy Analyzer to
check if the pre-condition of Op0 implies the pre-condition of Opl, and if the
post-condition of Opl implies the post-condition of Op0. If both implications
hold, OpSeq can preserve the net effect of Op0.

However, when OpSeq consists of more than one operation, OpSeq = [Opl;
...; OpN], the situation is more complex. The pre- and post-conditions of a
sequence of operations are not simply the pre-condition of the first operation
and the post-condition of the last operation in the sequence. The pre-condition
of a sequence of operations specifies only those start states that satisfy the pre-
condition of the first operation and that produce intermediate states that satisfy
the pre-condition of the next operation to execute in the sequence, for each
operation in the sequence. That is, the pre-condition of a sequence of operations
implies the pre-condition of the first operation. Similarly the post-condition of
a sequence of operations implies the post-condition of the last operation of the
sequence.

Thus, a software modeler cannot determine the net effect preservation prop-
erty between OpSeq and Op0 by simply checking if the pre-condition of Op0
implies the pre-condition of Opl since the pre-condition of Opl does not ensure
that the pre-conditions of all operations in the sequence will be satisfied when
the operations are invoked. Similarly, one cannot use the post-condition of OpN
to check if OpSeq can preserve the net effect of Op0 since the post-condition of



OpN does not ensure that the post-conditions of all operations in the sequence
will be satisfied after the operations have been invoked.

In addition, it is not a simple task to infer the pre-/post-condition of OpSeq
from the pre-/post-conditions of the operations in OpSegq since the pre-/post-
condition of OpSeq may be any combination of the pre-/post-conditions of the
operations in OpSeq. Thus, rather than using the pre-/post-conditions to deter-
mine the net effect preservation property between Op0 and OpSeq, a software
modeler can use the Alloy Analyzer to check if OpSeq starts in a state that
satisfies the pre-condition of Op0, and ends in a state that does not satisfy the
post-condition of Op0 (i.e., a state satisfies the negation of the post-condition of
Op0). If the Analyzer does not return an instance, OpSeq can preserve the net
effect of Op0 in the bounded scope. In the following we describe the two cases
in more details.

OpSeq consists of only one operation When OpSeq = Opl, OpSeq can
preserve the net effect of Op0 only if Pre_Op0 (i.e., the pre-condition of Op0)
implies Pre_Opl (i.e., the pre-condition of Opl), and Post_Opl (i.e., the post-
condition of Opl) implies Post_Op0 (i.e., the post-condition of Op0). Since the
Alloy Analyzer is an instance finder, it can be used to search a counterexample
for an assertion that specifies Pre_Op0 implies Pre_Opl and Post_Opl implies
Post_Op0. If the Analyzer finds such counterexamples, Opl cannot preserve the
net effect of Op0.

Suppose that we want to check that the net effect of create BombedMaze is
preserved by only one operation, addRoom. An example of the Alloy assertion
for checking if addRoom preserves the net effect of create BombedMaze is given
below:

assert Assertion{

all s: Snapshot | all mg : s.mazegames | all maze : s.mazes | all r : s.rooms
Pre_createBombedMaze[s, mg]

implies Pre_addRoom/[s, maze, r] and

b
where Pre_create BombedM aze, shown below,

pred Pre_createBombedMaze[s: Snapshot,
mg : MazeGame){
mg.(s.clientmaze) = none

2

is a predicate generated from the pre-condition of create BombedMaze, and
Pre_addRoom, shown below,

pred Pre_addRoom]s : Snapshot, maze : Maze,



r : Room/{

r not in maze.(s.mazemazerooms)

b

is a predicate generated from the pre-condition of addRoom.

The Alloy Analyzer checks whether there exists an instance violating the as-
sertion, that is, Pre_create BombedMaze implies Pre_addRoom and Post_addR-
oom implies Post_create BombedM aze. For this example, the Analyzer did find a
counterexample for the assertion, indicating that the net effect of create Bombed-
Maze cannot be preserved by add Room.

OpSeq consists of more than one operation An Alloy predicate is gener-
ated from the specification of Op0 and a sequence diagram that describes OpSeq.
The predicate specifies that the operations must adhere to the invocation order
described in the sequence, start in states satisfying the pre-condition of Op0,
and end in states satisfying the negation of the post-condition of Op0. The Alloy
Analyzer uses the predicate to determine if the net effect of Op0 is preserved by
OpSeq.

An example of the Alloy predicate generated from the operation sequence
shown in Fig. 3 is given below:

pred Predicate{

let first = SnapshotSequence/first|

let second = SnapshotSequence/next/first]|...
some mg:first.mazegames|

some bf:first.bombedmazefactories|

some bm:BombedMaze|...

// Start states specified using the pre-condition of create BombedMaze
mg. (first.clientmaze) = none

// An operation invocation sequence
createMaze[first, second, mg, mg, bf, bf] and
makeMaze[second, third, bf, bf, bm, bm] and

// End states specified using the post-condition negation of create BombedMaze
not (

bm in last.mazes

#mg. (last.clientmaze). (last.bmazebRooms) = 1

all r : mg.(last.clientmaze). (last.bmazebRooms)|

#r.(last.broombwalls) = 4 )

}

Note that SnapshotSequence represents a sequence of snapshots, and Snaps-
hotSequence/ first returns the first snapshot of the snapshot sequence. The
next[s : Snapshot] function returns the input snapshot’s next snapshot. Thus,
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SnapshotSequence /next|first] returns the second snapshot of the snapshot se-
quence. The clause result.oclIsNew() in the post-condition of createMaze is
semantically equivalent to the Alloy specifcation bm in last.mazes. The Alloy
Analyzer uses the above predicate to check whether there exists an instance rep-
resenting the given sequence that starts in a state satisfying the precondition of
Op0 and ends in a state satisfying the post-condition negation of Op0. For this ex-
ample, the Analyzer did not find such instances, indicating that the operation se-
quence described in Fig. 3 can preserve the net effect of the create BombedMaze
operation in the bounded scope. The analysis also showed that if we removed an
operation (e.g., addRoom) from the operation sequence in Fig. 3, the net effect
of create BombedM aze cannot be preserved by the rest of operations in Fig. 3.

We also used the same analysis approach to check if the net effects of other
source model operations are preserved by target model operations. Our analysis
results showed that all the operations in the source model (e.g., create Enchante-
dMaze, createRoomWithBomb, create Enchanted Room, createOrdinaryW all
and create BombedW all) can be preserved by relevant operations in the target
model.

4 Tool Support

We developed a research prototype to investigate the feasibility of developing tool
support for the approach. Figure 6 shows an overview of the prototype. It consists
of an Eclipse OCL parser, an Ecore/OCL transformer and an Alloy Analyzer.
The Ecore/OCL transformer is developed using Kermeta [14], an aspect-oriented
metamodeling tool. The inputs of the prototype are (1) an EMF Ecore [17] file
that specifies a target class model, (2) a textual OCL file that specifies the pre-
/post-conditions of Op0 and operations involved in OpSeq, and (3) a textual file
that describes a sequence diagram.

The inputs are automatically transformed to an Alloy model consisting of
signatures and predicates. The prototype then uses the APIs provided by the
Alloy Analyzer to pass the Alloy model to the Alloy SAT solver. The result
returned by the Alloy SAT solver is interpreted by the prototype. The interpreted
result provides the net effect preservation property between Op0 and OpSeq.

The prototype implementation uses a visitor pattern to transform a class
model with operation specifications into an Alloy model. The traditional vis-
itor design pattern keeps the separation of the structure (i.e., the metamodel
elements) and the behavior (i.e., the visitor) by using a specific class for the
visitor, and thus results in ping-pong calls between the objects of the structure

w Result showing if
> | OpSeq preserves the
Alloy J net effect of Op0



aspect class IteratorExpC5{

// Translate an OCL expression that includes iterators into an Alloy specification

J/ OCL expression format: <source> <iterator> ( [<variablel>[<variable2>]] | <body=)

[/ E.g., self.nodes->forAll{n | n.edges.size() > 2)

// Variable temp: a string buffer used to save the translation result

// Variable iterators: a hash table that maps an OCL iterator to an Alloy keyword

/{ E.g., forAll===> all, exists === > some, ...

method translate(temp : String, iterators : Hashtable<String, String>) : Void is do
var iteratarMame : String init self.simpleNameC5.™~value.toString
temp.append|iterators.getValue(iteratorName))

if self.variablel |= void then
temp.append|(self.variablel.name)

end

if self variable2 |= void then
temp.append(" , "}
temp.append(self.variahle2.name)

end

temp.append(": ")

self.source.translate(temp, iterators)

temp.append(" | ")

self. body.translate(temp, iterators)
end

Fig. 7: Excerpt of the OCL2Alloy Translation implemented using Kermeta

and the objects of the visitor. The Kermeta [10] language provides an aspect
weaving mechanism to simplify the visitor pattern by allowing a user to define
a visit method for each model element being visited in an aspect class that is
woven into an existing base class at runtime. There is thus no need to keep a
visitor class that is used to traverse each model element of a metamodel.

Figure 7 shows an excerpt of the OCL2Alloy translation implemented using
Kermeta. Class Iterator ExpCS is an element of OCL metamodel. An instance
of Iterator ExpC'S is an OCL expression that includes iterators such as forAll,
erists, and etc. The translate method is used to transform an OCL iterator
expression into an Alloy specification. The method takes as input a string buffer
that is used to save the translation result and a hash table that maps an OCL
iterator to an Alloy keyword. The method first uses the name of an OCL operator
(i.e., iterator Name) to find a corresponding Alloy keyword, and then visits the
variables, source and body of the iterator.



5 Discussion

In this section we discuss limitations of our work, and its scope of practice.
Specifically we discuss the scope of the OCL specifications supported in the
behavioral refactoring analysis approach.

We have developed a prototype to support the behavioral refactoring analysis
approach described in the paper. The prototype uses an Alloy Analyzer at the
back end to analyze the net effect preservation property between Op0 and OpSeq,
and thus requires a translation from OCL to Alloy. Therefore the scope of the
OCL specifications supported by the approach is determined by the OCL2Alloy
translation implemented in the prototype.

Most of the OCL operators have corresponding Alloy constructs. For exam-
ple, OCL operator forAll corresponds to Alloy construct all, exists corresponds
to some, includes corresponds to in, excludes corresponds to lin, sum corre-
sponds to sum, and closure corresponds to *. OCL expressions that involves
such operators can be directly transformed into Alloy specifications.

However, as pointed out by Anastasakis et al. [1], the translation from OCL
to Alloy is not seamless. There are some OCL operators that do not have corre-
sponding Alloy constructs, and thus OCL expressions including such operators
cannot be easily transformed into Alloy specifications. Some of them can be par-
tially supported by the prototype according to the Alloy libraries used for that.
For instance, OCL operators like select and collect are translated by the pro-
totype using Alloy functions that implement their semantics. Imperative flavor
operator iterate is partially supported by the transformation tool. The proto-
type provides support for OCL specifications including iterate expressions that
can be rewritten as forall with select/collect operators. However, the proto-
type cannot deal with iterate expressions that involve arithmetic accumulation
since Alloy is a purely declarative language that does not provide support for
imperative accumulators. Finally, the translation cannot deal with OCL casting
operators like ocl AsType since Alloy has a very simple type system that does
not support type casting.

The approach is also limited in that it currently does not support refactoring
in which the elements referenced by the source operation do not exist in the same
form in the target model. There are refactorings in which elements referenced by
a source operation have different, but equivalent forms in the target model. Our
future work will explore how mappings between equivalent source and target
forms can be used to support preservation checking in these situations.

6 Related Work

Two broad categories of related work are discussed in the section: work on model
refactoring and work on UML-to-Alloy transformation.



6.1 Model Refactoring

Refactoring has attracted much attention from the MDE community since it
was first introduced by Opdyke in his PhD dissertation [15]. Boger et al. [2]
applied the idea of refactoring to UML class diagrams, statechart diagrams,
and activity diagrams. Their approach, however, does not provide support for
rigorously reasoning about a behavioral refactoring.

Both Sunye et al. [19] and Van Gorp et al. [21] used OCL to formally specify
the refactoring for UML models. An operation is defined for each type of the
refactoring and its OCL pre-/post-condition specifies the model structure that
must be satisfied before and after the refactoring associated with the operation.
Their approach, however, can only be used to verify the refactoring involving
the changes to model structures.

France et al. [5] described a metamodeling approach to pattern-based model
refactoring in which refactorings are used to introduce a new design pattern in-
stance to the model. Mens and Tourwe [13] used logic reasoning to detect if a
design pattern instance that is introduced to a class model, limits the applica-
bility of certain refactorings.

Straeten et al. [20] proposed a behavior preserving refactoring approach for
UML class models. Unlike our approach, the behavior of a class model in their
approach is expressed using state machines and sequence diagrams. Gheyi et al.
[8] described a rigorous approach to verifying the refactoring for Alloy models.

However, based on our knowledge, none of the above approaches can be used
to verify operation-based model refactoring that involves changes to operation
specifications.

6.2 UML to Alloy Transformation

Georg et al. [7] used both Alloy and UML/OCL to specify the runtime config-
uration management of a distributed system. An ad-hoc comparison between
Alloy and UML/OCL is discussed in their paper.

Dennis et al. [3] used the Alloy Analyzer to uncover the errors in a UML
model of a radiation therapy machine. The operations in the design model are
specified using OCL. An informal description of OCL-to-Alloy transformation is
described in their approach. Their approach, however, does not provide support
for automated transformation between UML/OCL and Alloy.

Anastasakis et al. [1] described a tool, namely UML2Alloy, that automati-
cally transforms a UML class model with OCL invariants into an Alloy model.
Their tool builds upon a formal mapping between UML/OCL metamodel and
Alloy metamodel. Unlike their approach, our approach leverages Alloy’s trace
mechanism to generate an Alloy model with trace features from a UML/OCL
model.

Maoz et al. [11] developed a tool that implements the transformation between
UML class models and Alloy models. Unlike the approach described in [1], Maoz’s
tool produces a single Alloy module from two class models. Maoz’s approach,
however, does not provide support for class models with OCL invariants and
operation specifications.



7 Conclusion

We presented an approach to formally analyzing a behavioral refactoring that
involves making changes to operation specifications expressed in the OCL. The
behavioral refactoring analysis involves checking whether relevant operations in
the refactored model can preserve the net effects of the operations targeted by
the refactoring in the source model. The net effect preservation checking tech-
nique described in the paper builds upon the Alloy Analyzer and thus requires
a translation from UML class models and OCL operation specifications to Alloy
models. We developed a prototype for transforming UML+OCL models to Al-
loy models with traces to support the net effect preservation check. We applied
the approach to a pattern-based model refactoring to demonstrate how software
modelers can use the approach to analyze a behavioral refactoring.

We plan to extend the behavioral refactoring analysis approach by providing
support for more complex OCL operators. Specifically we are currently inves-
tigating how we can use SMT solvers (e.g., Microsoft Z3) at the back-end to
analyze the OCL specifications. Our future work will also explore how mappings
between equivalent source and target forms can be used to support the net effect
preservation checking.
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