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Abstract—Much software lacks test oracles, which limits au-
tomated testing. Metamorphic testing is one proposed method for
automating the testing process for programs without test oracles.
Unfortunately, finding the appropriate metamorphic relations
required for use in metamorphic testing remains a labor intensive
task, which is generally performed by a domain expert or a
programmer. In this work we present a novel approach for
automatically predicting metamorphic relations using machine
learning techniques. Our approach uses a set of features devel-
oped using the control flow graph of a function for predicting
likely metamorphic relations. We show the effectiveness of our
method using a set of real world functions often used in scientific
applications.

Index Terms—Software testing, Metamorphic testing, Meta-
morphic relation, Machine learning, Mutation analysis, Scientific
software testing, Test oracles, Decision trees, Support vector
machines

I. INTRODUCTION

One of the greatest challenges in software testing is the
oracle problem. Automated testing requires automated test
oracles, but such oracles may not exist. This problem com-
monly arises when testing scientific software. Many scientific
applications fall into the category of “non-testable programs”
[1] where an oracle is unavailable or too difficult to im-
plement. In such situations, a domain expert must check
that the output produced from the application is correct for
a selected set of inputs. Further, Sanders et al. [2] found
that, due to a lack of background knowledge in software
engineering, scientists conduct testing in an unsystematic way.
This situation makes it difficult for testing to detect subtle
errors such as one-off errors, and hinders the automation of
the testing process. A recent survey conducted by Joppa et
al. [3] showed that when adopting scientific software, only
8% of the scientists independently validate the software and
the others choose to use the software simply becuse it was
published in a peer-reviewed journal or based on personal
opinions and recommendations. Therefore undetected subtle
errors can affect findings of multiple studies that use the same
scientific software. Techniques that can make it easier to test
software without oracles are clearly needed.
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Metamorphic testing is a technique introduced by Chen et
al. [4] that can be used to test programs that do not have
oracles. This technique operates by checking whether the
program under test behaves according to an expected set of
properties known as metamorphic relations. A metamorphic
relation specifies how a particular change to the input of
the program would change the output [5]. Violation of a
metamorphic relation occurs when the change in the output
differs from what is specified by the considered metamorphic
relation. Satisfying a particular metamorphic relation does
not guarantee that the program is implemented correctly.
However, a violation of a metamorphic relation indicates that
the program could contain faults. Previous studies show that
metamorphic testing can be an effective way to test programs
without oracles [5], [6]. Enumerating a set of metamorphic
relations that should be satisfied by a program is a critical
initial task in applying metamorphic testing [7], [8]. Currently,
a tester or developer has to manually identify metamorphic
relations using her knowledge of the program under test;
this manual process can miss some important metamorphic
relations that could reveal faults.

In this work we introduce a novel automated method for
detecting metamorphic relations at the function level using a
set of features extracted from the function itself. We model
this problem as a machine learning classification problem.
The automated method operates by extracting a set of features
from a function’s control flow graph and building a predictive
model using machine learning techniques to classify whether
a function exhibits a particular metamorphic relation or not. In
addition, we show the effectiveness of these predicted meta-
morphic relations in detecting faults using mutation analysis.

Section II describes the metamorphic testing technique and
the machine learning algorithms used in our work. Section III
details our methodology. Section IV presents the evaluation
of our method. Section V describes threats to validity. In
Section VI we describe related work. We provide conclusions
and future work in Section VII.

II. BACKGROUND

A. Metamorphic Testing

Metamorphic testing supports the creation of follow-up test
cases from existing test cases [4], [5] as follows:
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public static int addValues(int a[]){
int sum=0;
for(int i=0;i<a.length;i++){

sum+=a[i];}
return sum;}

Fig. 1. Function for calculating the sum of elements in an array

1) Identify an appropriate set of metamorphic relations that
the program under test should satisfy.

2) Create a set of initial test cases using techniques such as
random testing, structural testing or fault based testing.

3) Create follow-up test cases by applying the input trans-
formations required by the identified metamorphic rela-
tions in step 1 to each initial test case.

4) Execute the initial and follow-up test case pairs to check
whether the output change complies with the change pre-
dicted by the metamorphic relation. A runtime violation
of a metamorphic relation during testing indicates a fault
or faults in the program under test.

Since metamorphic testing checks the relationship between
inputs and outputs of multiple executions of the program
under test, this method can be used when the correct result
of individual executions are not known.

Consider the function in Figure 1 that calculates the sum
of integers in an array a. Randomly permuting the order of
the elements in a should not change the result. This is the
permutative metamorphic relation in Table I. Further, adding
a positive integer k to every element in a should increase the
result by k × length(a). This is the additive metamorphic
relation in Table I. Therefore, using these two relations, two
follow-up test cases can be created for every initial test case
and the outputs of the follow-up test cases can be predicted
using the initial test case output.

Murphy et al. [9] identified the set of metamorphic relations
in Table I that are common in mathematical functions. A
function f is said to satisfy (or exhibit) a metamorphic relation
m in Table I, if the change in the output after modifying the
original input according to m can be predicted based on the
original output. For example, if the input to f is modified
by adding a positive constant, its output could either increase,
decrease or remain without a change. A function f satisfies the
additive metamorphic relation if we can predict the change
in the output when the initial input is modified by adding
a positive constant. In this work we apply machine learning
techniques to automatically determine whether a function
exhibits any of the metamorphic relations in Table I.

B. Machine Learning

Machine learning methods focus on providing the ability
of computer programs to make better decisions based on
experience [10]. Usually, the set of examples used by a
machine learning algorithm are divided into two subsets: called
a training set and a test set. The training set is used to create
the predictive model, while the test set is used to evaluate the
performance of the predictive model.

TABLE I
METAMORPHIC RELATIONS

Relation Change made to the input
Additive Add or subtract a constant
Multiplicative Multiply by a constant
Permutative Randomly permute the elements
Invertive Take the inverse of each element
Inclusive Add a new element
Exclusive Remove an element
Compositional Combining two or more inputs

Supervised learning is one machine learning method, where
a set of labeled examples is used to learn a target function.
The target function maps the input to a desired set of out-
puts (labels). Input to a supervised classification algorithm
is a set of training data S = {s1, s2, ..., sn}. Each vector
si = x1, x2, ..., xm, ci ∈ S is called a training instance, where
xj is a feature and ci is the class label of the training instance
si. A feature is a measurable property of an instance.

In this work, we model metamorphic relation prediction
as a supervised learning problem. For a given metamorphic
relation we create a supervised classification model using
features extracted from a set of functions already known to
satisfy or not satisfy the considered metamorphic relation.
Then the trained classification model is used to predict whether
a previously unseen function will satisfy the considered meta-
morphic relation or not. Since we focus on predicting whether
a function f exhibits a metamorphic relation m or not, this
problem can be treated as a binary classification problem, in
which the class label can take only one of two possible values
(+1/−1). We used Decision Trees [11] and Support Vector
Machines (SVMs) [12] as the classification algorithms.

1) Decision Trees (DT): In decision tree learning, the target
function is a decision tree. In classification, a decision tree
maps the input to a binary label. Internal nodes of a decision
tree test a feature in the input and leaf nodes assign a label. We
used the J48 Java implementation of the C4.5 [13] decision
tree generation algorithm, from the WEKA [14] tool kit. When
choosing a feature for an internal node, C4.5 chooses the
feature with the highest information gain [15].

2) Support Vector Machines (SVMs): SVM [12] is another
supervised learning algorithm that is used for classification.
SVM creates a hyper-plane in a high dimensional space that
can separate the instances in the training set according to their
class labels. When a linear separation cannot be found in the
original feature space, SVMs use kernel functions to map the
training data into a higher dimensional feature space. Then
the SVM creates a linear separator in this higher dimensional
feature space, which can be used to classify unseen data
instances. In this work we used the SVM implementation in
the PyML Toolkit1.

III. PROPOSED METHOD

Figure 2 shows an overview of our method. We start by
creating the control flow graph (CFG) from a function’s source

1http://pyml.sourceforge.net/



Fig. 2. Overview of the proposed method

code. Next, we extract a set of features from the CFGs, and
a machine learning algorithm uses these features to create a
predictive model. Finally, we use the developed predictive
model to predict the metamorphic relations in previously
unseen functions.

A. Function Representation

We hypothesize that the metamorphic relations in Table I are
related to the sequence of operations performed by a function.
Therefore, we represent a function using a statement level
CFG, since it models the sequence of operations. The CFG
G = (N,E) of a function f is a directed graph, where each
nx ∈ N represents a statement x in f and E ⊆ N × N . An
edge e = (nx, ny) ∈ E if x, y are statements in f and y is
executed immediately after executing x. Nodes nstart ∈ N
and nexit ∈ N represents the starting and exiting points of f.

We used the Soot2 framework to create CFGs. Soot gen-
erates control flow graphs in Jimple [16], a typed 3-address
intermediate representation, where each CFG node represents
an atomic operation. This representation should considerably
reduce the effects of different programming styles and models
the actual control flow structure of the function. Figure 3a
is the Jimple statement level CFG generated using the Soot
framework for the function in Figure 1. Converting Java code
to the Jimple 3-address intermediate representation would add
goto operations and labels to represent conditional jumps in the
original Java code. Then a labeled CFG is created by giving
a label to each node in the CFG in Figure 3a to indicate the
operation performed in the node. Figure 3b is the labeled CFG
created from the original CFG in Figure 3a.

B. Feature Extraction

We extracted two types of features based on the nodes and
paths in the CFG.

2http://www.sable.mcgill.ca/soot/

(a) Soot CFG (b) Labeled CFG

Fig. 3. CFG generated by Soot with 3-address code and Labeled CFG for
the program in Figure 1

1) Node Features: For a CFG, node features have the form
op−din−dout, where op is the operation performed in a node
n ∈ N , din is the in-degree of n and dout is the out-degree of
n. The value for a given feature is the number of occurrences
of nodes of type op− din − dout in the CFG. Table II shows
the node features calculated for the labeled graph in Figure 3b.

2) Path Features: Features based on paths are created by
taking the sequence of nodes in the shortest path from Nstart

to each node and the sequence of nodes in the shortest path
from each node to Nexit. A path feature takes the form op1−
op2− ...− opk where opi(1 ≤ i ≤ k) represents the operation
performed in the CFG nodes in the considered path. The value



TABLE II
NODE FEATURES CALCULATED FROM THE LABELED GRAPH IN FIGURE 3B

Feature Feature Value
start-0-1 1
if-1-2 1
add-1-1 2
assi-1-1 3
assi-2-1 1
goto-1-1 1
exit-1-0 1

of a path feature is the number of occurrences of that shortest
path node sequence in the CFG. Table III shows the set of
features extracted from the labeled graph in Figure 3b. For
the example considered here, each node sequence occurs only
once in the labeled graph in Figure 3b. Therefore each feature
value for this example takes the value one.

TABLE III
PATH FEATURES CALCULATED FROM THE LABELED GRAPH IN FIGURE 3B

Feature Feature
Value

start-assi-assi-goto-assi-if-assi-add 1
start-assi-assi-goto-assi-if-assi 1
start-assi-assi 1
start 1
start-assi-assi-goto-assi-if 1
start-assi-assi-goto-assi-if-exit 1
start-assi-assi-goto-assi 1
start-assi 1
start-assi-assi-goto-assi-if-assi-add-add 1
start-assi-assi-goto 1
assi-goto-assi-if-exit 1
exit 1
goto-assi-if-exit 1
assi-if-exit 1
if-exit 1
assi-add-add-assi-if-exit 1
add-assi-if-exit 1
assi-assi-goto-assi-if-exit 1
add-add-assi-if-exit 1

C. Prediction

In this work we focus on predicting whether a given
function f exhibits a metamorphic relation in Table I. We
selected the permutative, additive and inclusive metamorphic
relations for the initial experiment. These relations represent
three different categories of input modifications: (1) changing
the order of elements (permutative), (2) changing the ele-
ment values (additive, multiplicative and invertive) and (3)
adding/removing new element/s to/from the input (inclusive,
exclusive and compositional). The three selected metamorphic
relations represent a diverse initial set of relations for use in
evaluating our method. Although there could be a variety of
changes in the output when the input is modified using these
relations, we have considered only the specific output changes
given in Table IV for each metamorphic relation.

We modeled this problem as a machine learning classifi-
cation problem, where each function f has a class label with
the value 1 or -1 depending on whether f exhibits a specific

TABLE IV
METAMORPHIC RELATIONS AND ANTICIPATED CHANGES TO THE OUTPUT

Relation Output change
Permutative Remains constant
Additive Remains constant or Increase
Inclusive Remains constant or Increase

TABLE V
EXAMPLE DATA SET USED FOR PREDICTION

Function feat1 feat2 ... featn Class
f1 v11 v22 ... v1n c1
f2 v11 v22 ... v2n c2
. . . . . .
. . . . . .
. . . . . .
fm vm1 vm2 ... vmn cm

metamorphic relation or not, respectively. Table V depicts an
example data set used for learning the classifier, where fi rep-
resents a function in the data set and featj represents a node
or path feature extracted from the labeled CFGs of functions.
The feature value of featj for the function fi is represented by
vij ; ci represents the class label for the function fi indicating
whether fi exhibits a specific metamorphic relation or not.
Three data sets were created for each metamorphic relation in
Table IV and they were used as input to the SVM and decision
tree classification algorithms.

IV. EVALUATION

A. Data set

To measure the effectiveness of our proposed method, we
built a code corpus containing 48 mathematical functions that
take numerical inputs and produce numerical outputs. None
of these functions have an oracle to check the correctness of
the output for a randomly generated input. Table VI shows the
details of the functions used in the experiment. These functions
were implemented using the Java programming language.

B. Evaluation Procedure

Our evaluation procedure is two fold. We measured the
effectiveness of (1) our predictive model and (2) the predicted
metamorphic relations in detecting faults. The latter was con-
ducted to validate the usefulness of the metamorphic relations
predicted by our method.

1) Predictive Model Evaluation: We used accuracy, the
area under the receiver operating characteristic curve (AUC)
and false positive rate (FPR) as performance measures to
evaluate the predictive models. Accuracy is the percentage
of correct predictions made by the predictive model. AUC
is a measure of the quality of rankings given by a model
and is widely used to compare the performance of predictive
models in machine learning. AUC measures the probability
that a randomly chosen negative example will have a smaller
estimated probability of belonging to the positive class than
a randomly chosen positive example [17]. So a higher AUC
value indicates that the model has a higher predictive ability.
Further, AUC is a more reasonable estimate than accuracy



TABLE VI
DETAILS OF THE FUNCTIONS USED IN THE EXPERIMENT (P: PERMUTATIVE, A: ADDITIVE, I: INCLUSIVE, X: POSITIVE EXAMPLE FOR THE RELATION, ×:

NEGATIVE EXAMPLE FOR THE RELATION, -: NOT USED AS AN EXAMPLE FOR THE RELATION)

No. Function Name P A I
1. add values (Add elements in an array) X X X
2. add two array values (Adds elements at given index in 2 arrays) × X X
3. bubble sort (Implements bubble sort) X X ×
4. shell sort (Implements of shell sort) X X ×
5. binary search × X X
6. sequential search × X X
7. selection sort (Implements selection sort) X X ×
8. dot product × X X
9. array div (Divide array elements by k) × X -
10. set min val (Set array elements less than k equal to k) × × X
11. find min (Find minimum value in an array) X X X
12. find diff (Element-wise difference in two arrays) × X -
13. array copy (Deep copy an array) × - X
14. copy array part × - X
15. find euc dist (Euclidean distance between two vectors) × X X
16. find magnitude (magnitude of a vector) X X X
17. manhattan dist (Manhattan distance between two vectors) × × X
18. average X X X
19. dec array (Decrement elements by k) × X -
20. find max (Find the maximum value) X X X
21. find max2 (maximum value of addition of two consecutive elements in an array) × X ×
22. quick sort (Implements quick sort) X X ×
23. variance X X ×
24. insertion sort (Implements insertion sort) X X ×
25. heap sort (Implements heap sort) X X ×
26. merge sort (Implements of merge sort) X X ×
27. geometric mean X X ×
28. mean absolute error × × X
29. select k (Find the kth largest value from a set of numbers) X X ×
30. find median X X ×
31. cartesian product (Cartesian product between two sets) X × X
32. reverse (Reverse an array) × - -
33. check equal tolerance (Element-wise equality within a given tolerance in two sets of real numbers) × × -
34. check equal (Element-wise equality between two sets of integers) × × -
35. weighted average × X X
36. count k (Occurrences of k in an array) X × X
37. bitwise and × - -
38. bitwise or × - -
39. bitwise xor × - -
40. bitwise not × - -
41. clip (Values outside a given interval clipped to the edges of the interval in an array) × × -
42. elementwise max (Element-wise maximum) × × -
43. elementwise min (Element-wise minimum) × × -
44. cnt nzeroes (Number of non-zero elements in an array) X × X
45. cnt zeros (Number of zero elements in a given array X × X
46. elementwise equal (Check for element-wise equality and returns a boolean array) × × -
47. elementwise not equal (Check two for element-wise for nonequality and returns a boolean array) × × -
48. hamming dist - × -

when comparing the performance of predictive models since
AUC is statistically consistent and more discriminating than
accuracy [18], [19]. AUC takes a value in the range [0, 1].
A classifier with AUC = 1 is considered a perfect classifier
while, a classifier with AUC = 0.5 is considered as a classifier
that makes random predictions. A classifier with AUC > 0.9
is considered to be a highly effective classifier in the machine
learning community.

FPR is the percentage of negative examples that were
classified as positive.

FPR = false positives
false positives+true negatives

A classifier used for predicting metamorphic relations should
have a low FPR, since incorrectly classifying a program to
satisfy a specific metamorphic relation would ultimately result
in investing resources to find a fault that is not actually present
in the program.

We used stratified k-fold cross-validation to evaluate the
performance of classification. The k-fold cross-validation tech-
nique evaluates how a predictive model would perform on
previously unseen data. In k-fold cross-validation the data set
is randomly partitioned into k subsets. Then k− 1 subsets are
used to build the predictive model (training) and the remaining
subset is used to evaluate the performance of the predictive



TABLE VII
SUMMARY OF THE DATA SETS USED FOR PREDICTION

Metamorphic #Positive #Negative TotalRelation
Permutative 20 21 41
Additive 21 15 36
Inclusive 15 12 27

model (testing). This process is repeated k times in which
each of the k subsets is used to evaluate the performance. In
stratified k-fold cross-validation, k folds are partitioned in such
away that the folds contain approximately the same proportion
of positive (functions that exhibit a specific metamorphic
relation) and negative (functions that do not exhibit a specific
metamorphic relation) examples as in the original data set.

2) Fault Detection Effectiveness: We used mutation analy-
sis [20] to measure the effectiveness of the predicted metamor-
phic relations from our method in detecting faults. Mutation
analysis operates by inserting faults into the program under
test such that the created faulty version is very similar to the
original version of the program [21]. A faulty version of the
program under test is called a mutant. If a test identifies a
mutant as faulty that mutant is said to be killed.

Mutation analysis was conducted on 35 functions from
Table VI, which exhibits all or several of the three relations
in Table IV. We used the µJava3 mutation engine to create the
mutants for the functions in our code corpus. We used only
method level mutation operators [22] to create mutants since
we are only interested in the faults at the function level. Each
mutated version of a function was created by inserting only a
single mutation. Mutants that resulted in compilation errors,
run-time exceptions or infinite loops were removed before
conducting the experiment.

For each function f we randomly generated 10 initial test
cases. We then created follow-up test cases using the meta-
morphic relations shown by f, for each of the initial test cases.
Finally we checked whether the corresponding metamorphic
relations were satisfied by the initial and follow-up test case
pairs. A mutant of f is killed, if at least one pair of test cases
fail to satisfy the corresponding metamorphic relation m.

C. Predictive Model Evaluation Results

We conducted the evaluation of the prediction of the three
metamorphic relations in Table IV. Table VII gives the number
of positive and negative examples contained in each of the data
sets used for the evaluation. Using imbalanced proportions of
data to train a classifier may result in biases in the classification
algorithm [23]. Therefore, as reported in Table VII, each data
set was created using approximately 50% positive and negative
examples taken from the functions in Table VI.

Table VIII reports the Accuracy and AUC achieved by
the SVM and decision tree models respectively. Results in
Table VIII were obtained by applying stratified 6-fold cross

3http://cs.gmu.edu/∼offutt/mujava/

validation 10 times using a different seed each time. Conse-
quently, data is partitioned differently into the six folds for
the 10 runs. This gives better performance measures than
conducting the cross validation procedure one time. The p-
values are calculated using the paired t-test. Reported values
in the Table VIII are the average accuracies and AUC values
for the 10 cross validation runs with the standard devia-
tion reported inside parenthesis. Results for the SVM were
obtained using the linear kernel and the default parameters
(C=10) provided by PyML. As shown in Figure 4 and 5,
when compared with the decision tree model, SVM gives an
overall better performance with respect to accuracy and AUC
measures for all three metamorphic relations. As shown by the
p-values reported in Table VIII the difference in performance
between SVMs and decision trees are statistically significant
at the 0.05 significance level. This is expected because SVMs
tend to perform better than other machine learning methods
since they are less prone to overfitting [24]. For all the three
relations used for prediction, SVM achieves an accuracy higher
than 0.8 and AUC higher than 0.9. The high accuracy and
AUC achieved by the SVM model for the three metamorphic
relations shows that the feature set developed using the CFGs
can effectively predict metamorphic relations.

0.0 0.2 0.4 0.6 0.8 1.0

Accuracy

Permutative

Additive

Inclusive

SVM
Decision Tree

Fig. 4. Accuracy for SVM and Decision Tree models for predicting Permu-
tative, Additive and Inclusive Metamorphic Relations

0.0 0.2 0.4 0.6 0.8 1.0

AUC

Permutative

Additive

Inclusive

SVM
Decision Tree

Fig. 5. AUC for SVM and Decision Tree models for predicting Permutative,
Additive and Inclusive Metamorphic Relations

Table IX shows the FPR for SVMs and decision trees when
predicting the three metamorphic relations. When predicting
permutative and additive metamorphic relations SVMs and
decision trees does not show a significant difference of FPR at
the 0.05 significance level. But when predicting the inclusive
metamorphic relation, SVMs achieve a significantly low FPR
than decision trees.

Secondly, we evaluated how the performance of a classifier
varies with the training set size when predicting metamorphic



TABLE VIII
PREDICTION RESULTS FROM SVMS AND DECISION TREES

Metamorphic Accuracy AUC
Relation SVM DT p-value SVM DT p-value
Permutative 0.89 (0.04) 0.87 (0.03) 8.30E-14 0.93 (0.03) 0.81 (0.03) 6.37E-08
Additive 0.83 (0.04) 0.78 (0.05) 1.27E-11 0.90 (0.04) 0.82 (0.04) 1.35E-03
Inclusive 0.87 (0.02) 0.73 (0.02) 1.19E-14 0.94 (0.03) 0.66 (0.03) 1.51E-09

TABLE IX
FPR FOR SVMS AND DECISION TREES

Metamorphic Relation SVM DT p-value
Permutative 0.10 0.10 1.00
Additive 0.22 0.26 0.46
Inclusive 0.22 0.35 9.00E-5

relations. Using a large number of examples to train a classifier
will reduce the chance of the classifier being biased [25].
But using a large training set will increase the cost of this
approach since it requires identifying metamorphic relations
for the programs in the training set manually. Therefore we
plan to investigate whether effective classifiers can be learned
using a small set of programs.

We used SVMs in this evaluation since they performed
significantly better than the decision trees. We first randomly
partitioned each dataset in Table VII into two sets so that
each half would contain approximately the same proportions
of positive and negative examples as the original dataset. One
partition was used as the test set. From the other partition we
randomly selected training examples to train the classifier. For
each training set size we tested the trained classifier using all
instances in the test set.

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
Training set Size

0.0
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0.3

0.4

0.5
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0.7

0.8

0.9

1.0

Accuracy
AUC

Fig. 6. Variation of accuracy and AUC with training set size for predicting
permutative MR

Figures 6, 7 and 8 show the variation of the accuracy
and AUC of the classifiers for different training set sizes
in predicting permutative, additive and inclusive metamorphic
relations respectively. As expected, the accuracy and AUC of

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
Training set Size
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Fig. 7. Variation of accuracy and AUC with training set size for predicting
additive MR
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Fig. 8. Variation of accuracy and AUC with training set size for predicting
inclusive MR

the classifiers increase with the training set size. For the three
metamorphic relations, even classifiers built using the smallest
possible training set perform better than a random classifier.
For the permutative relation, the classifier achieves a 0.8 AUC
when trained with a set of five programs. For the inclusive
relation, even the smallest training set containing only three
programs achieved an AUC of 0.8. For the additive relation,



a 0.8 AUC was achieved with a training set of 15 programs.
These result show that our method works effectively with a
small number of training examples.

Finally we evaluated the performance of the classifiers when
the prediction is done on programs that contain at least one
fault. In practice, a test engineer may have a set of programs
that satisfies known metamorphic relations. The engineer can
apply our prediction method to determine which of these
metamorphic relations should be satisfied by a new, possibly
faulty program. To evaluate how our method works when
applied to such a scenario, we did the following for each
function f in the data set:

1) We removed f from the data set and trained the SVM
classifier using the remaining functions.

2) We generated predictions for the original function f and
for randomly selected mutants of function f using the
classifier produced in Step 1.

3) We compared the classification for each mutant to the
classification for the original function.

Table X shows the results of this evaluation. The third column
shows the number of mutants that were classified differently
than the original function. The classification of the mutants did
not match that of the original function for only 1%-5% of the
mutants, depending on the metamorphic relation. These results
indicate that the prediction model can provide a reasonably
accurate classification for functions that contain a fault.

TABLE X
RESULTS OF PREDICTING METAMORPHIC RELATIONS FOR THE FAULTY

VERSIONS OF THE FUNCTIONS

Metamorphic Relation # Mutants used # Classified differently
Permutative 171 3
Additive 146 7
Inclusive 131 2

D. Fault Detection Effectiveness Results

Table XI gives a summary of the mutants generated for
the mutation analysis performed to evaluate the effectiveness
of our approach in detecting faults. After removing mutants
that are obviously incorrect (mutants that gave exceptions
and infinite loops), 988 mutants in total were used for the
experiment.

Out of 988 mutants, 655 (66%) were killed using the pre-
dicted metamorphic relations. More than 50% of the mutants
were killed in 29 functions. This shows that we can apply
these predicted relations successfully to detect faults. Table XII
shows the percentages of mutants that were killed using
each metamorphic relation alone. The permutative relation
has the highest percentage of killed mutants. This result was
expected since, for the functions studied in this experiment, the
permutative metamorphic relation requires the outputs of the
initial and the follow-up test cases to be equal (see Table IV).
This equality relation is more restrictive and thus can be more
easily violated than the inequality relation of the additive and
inclusive metamorphic relations.

TABLE XI
SUMMARY OF MUTANTS USED IN THE MUTATION ANALYSIS

# Mutants generated by muJava 1717
# Mutants resulted in Exceptions 591
# Mutants resulted in Infinite loops 138
# Mutants used in the experiment 988

TABLE XII
PERCENTAGE OF MUTANTS KILLED BY EACH METAMORPHIC RELATION

Metamorphic # Mutants # Mutants
Relation possible to kill killed (%)
Permutative 566 374 (66%)
Additive 869 196 (23%)
Inclusive 400 150 (38%)

Several mutants could not be killed using any of the
predicted metamorphic relations. Some of these mutants are
making changes that could not be captured by the metamorphic
relations that we used in this study. Additional metamorphic
relations might be needed to kill them. Some of the survivors
are equivalent mutants that cannot be killed since they produce
the same output as the original program [21].

V. THREATS TO VALIDITY

The main threat to external validity is the limited set of
programs studied in this experiment. We used 48 mathemat-
ical programs that implements functions commonly used in
scientific programs. While these programs do not necessarily
represent all the programs without oracles, they perform a
variety of functionalities such as sorting, searching, calculating
common statistics, etc. Further, we focus on the problem
of predicting the likely metamorphic relations at the unit
level. Therefore, we used a set of programs that implements
a single functionality. Even though we only used a set of
small mathematical functions, the results demonstrate the
potential effectiveness of this novel approach for detecting
likely metamorphic relations. The path features contain the
shortest path from one node to every other node in the graph.
So, the features include information about sequences of nodes
that are fragments of paths. Therefore even if the training
set does not contain information regarding the entire path of
a larger function, the classifier should produce the correct
prediction using the information about the path fragments.
Therefore our approach should generalize to large functions
even if the model is not trained with functions of the same
size. In fact, functions used in the experiment vary in size
between 7 to 45 LOC.

The main threat to internal validity concerns the faults in
the implementations of these functions. We use an abstract
representation of the functions to teach the classifier. Based on
the competent programmer hypothesis [26], even though the
programmer might make some mistakes in the implementation,
the general structure of the program should be similar to the
fault-free version of the program. In addition, there may be
more relevant metamorphic relations and/or program features
for the programs studied.



The main threat to conclusion validity is the sample size
used in the validation. We used 48 programs that take numer-
ical inputs and produce numerical outputs in this study. We
limited the set of programs to 48 since we believe it is not
cost effective for the classifier to learn from a large set of
programs.

We used the Soot framework to generate CFGs of the
functions used in this experiment. Further we used the Net-
workX4 package for graph manipulation. Usage of these third
party tools represents potential threats to construct validity. We
verified that the results produced by these tools are correct
by manually inspecting randomly selected outputs produced
by each tool. Further, we used mutation analysis to measure
the fault detection effectiveness of predicted metamorphic
relations. Mutation analysis represents a threat to construct
validity because mutations are synthetic faults. However, pre-
vious studies have shown that mutations represent faults made
by a real human programmer [20].

VI. RELATED WORK

To our knowledge, this is the first time that machine learning
techniques have been used to predict metamorphic relations.
Murphy suggested using machine learning to detect likely
metamorphic relations [27]. Hasan [28] manually identified
several code patterns that exhibit some of the metamorphic
relations in Table I and proposed a method based on data flow
analysis to identify those patterns within code, but did not
evaluate the proposed method.

Metamorphic testing has been used to test applications
without oracles in different areas. Xie et al. used metamorphic
testing to test machine learning applications [7]. Metamorphic
testing was used to test simulation software such as health care
simulations [29] and Monte Carlo modeling [30]. Metamor-
phic testing has been used effectively in bioinformatics [31],
computer graphics [32] and for testing programs with partial
differential equations [33]. Murphy et al. [34] show how to
automatically convert a set of metamorphic relations for a
function into appropriate test cases and check whether the
metamorphic relations hold when the program is executed.
Murphy et al. specify the metamorphic relations manually.

Metamorphic testing has also been used to test programs
at the system level. Muphy et al. developed a method for
automating system level metamorphic testing [35]. In this
work, they also describe a method called heuristic metamor-
phic testing for testing applications with non-determinism.
All of these approaches can benefit from our method for
automatically finding likely metamorphic relations.

Machine learning, specifically decision trees and SVMs,
have been used in different areas of software testing. For
example, data collected during software testing involving test
case coverage and execution traces can potentially be used in
fault localization, test oracle automation, etc. [36]. Bowring
et al. used program execution data to classify program behav-
ior [37]. Briand et al. [38] used the C4.5 machine learning

4http://networkx.lanl.gov/

algorithm for test suite refinement. Briand et al. [39] used
machine learning for fault localization to reduce the problems
faced by other fault localization methods when several faults
are present in the code. They used the C4.5 machine learning
algorithm to identify failure conditions, and determined if the
failure occurred due to the same fault(s). Frounchi et al. [40]
used machine learning to develop a test oracle for testing an
implementation of an image segmentation algorithm. They
used the C4.5 algorithm to build a classifier to determine
whether a given pair of image segmentations are consistent
or not. Once the classification accuracy is satisfactory, the
classifier can check the correctness of the image segmentation
program. Lo used a SVM model for predicting software
reliability [41]. Wang et al. [42] used SVMs for creating test
oracles for reactive systems.

VII. CONCLUSIONS AND FUTURE WORK

We have presented a novel machine learning approach to
automatically detect likely metamorphic relations of program
functions using features extracted from a function’s control
flow graph. We have evaluated the performance of our predic-
tive model using a set of real world functions that do not have
oracles. Overall, SVMs performed significantly better than
decision trees. High accuracy and AUC achieved by the SVM
predictive model show that features developed using the CFGs
are highly effective in predicting metamorphic relations. In
addition, our method reports a low FPR making it suitable for
predicting likely metamorphic relations. We also showed that
our method can create effective classifiers using reasonably
small training sets making this approach cost effective for
use in practice. Further, we show that, when applied to
programs with an injected fault, our method produces the
same predictions as those produced for the original program
in at least 95% of the cases. Thus, the identified metamorphic
relations should be accurate even for faulty programs. Finally,
using mutation analysis we showed that the predicted relations
can effectively detect faults.

By automatically detecting metamorphic relations, our ap-
proach is a contribution towards reaching the goal of making
non-testable software testable [1]. Our approach will provide
the ability to fully automate the metamorphic testing process,
which will help to reduce the testing cost. This approach is
applicable to many scientific applications as well as other
programs without test oracles.

In the future, we plan to conduct experiments to evaluate
the effectiveness of our method in predicting the remaining
four metamorphic relations in Table I. In addition, we plan to
evaluate the effectiveness of features based on other aspects of
the program such as the data flow and predicates for predicting
metamorphic relations. Further, we plan to investigate the
possibility of using a multi-label classifier instead of creat-
ing binary classifiers for predicting individual metamorphic
relations. Since the best results were achieved by the SVMs,
we plan to investigate the application of SVMs that use graph
kernels that can directly measure the similarity between graphs
in different aspects. We have started applying the random walk



graph kernel [43] in the context of predicting metamorphic
relations.
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