
Computer Science
Technical Report

Folklore Confirmed:
Compiling for Speed = Compiling for Energy

Tomofumi Yuki Sanjay Rajopadhye

August 27, 2013

Colorado State University Technical Report CS13-107

Computer Science Department
Colorado State University

Fort Collins, CO 80523-1873

Phone: (970) 491-5792 Fax: (970) 491-2466
WWW: http://www.cs.colostate.edu

Abstract

As we move towards exa-scale computing, energy is becoming increasingly important, even in the high
performance computing arena. However, the simple equation, Energy = Power × Time, suggests that
optimizing for speed already optimizes for energy, under the assumption that Power is constant. When
power is not constant, a strategy that achieves energy savings at the cost of slower execution is Dynamic
Voltage and Frequency Scaling (DVFS). However, DVFS is currently applicable only to the processor,
and the entire system has many other sources of power dissipation. We show that there is little to gain
in compilers by trying to trade off speed for energy using DVFS. It is best to produce code that runs
full-throttle, completing as quickly as possible, an approach called “race to sleep.” Our result is based on
analyses of a high-level energy model that characterizes energy consumption, related to survey of power
consumption trends of recent processors for both desktop and server, as well as Cray supercomputers.

1 Introduction

The main motivations behind the arrival of multi-core processors were power and energy considerations.
Increasing power density coupled with heat problems rendered untenable the premise that steadily increased
performance could be achieved merely by steadily increasing processor clock speed. Multi-core processors
were introduced based on the observation that multiple processors with lower frequency consume less total
power, while preserving performance throughput [8]. Power and energy have been of great interest in the
embedded systems community, where they were constrained by limited power capacity or battery life.

Even in the High Performance Computing (HPC) community, where the term “performance” had previ-
ously been synonymous with speed, power and energy are becoming more and more important. The annual
cost for powering supercomputers, including their associated cooling systems, is now reaching 50% of the
purchase cost of the machines and is expected to grow even further [24]. Power and energy are acknowledged
to be the most difficult and pervasive challenges in order to achieve exa-scale computing [6]. In fact, if
current hardware trends hold, there will remain a significant gap (a factor of 10 to 100) between predicted
and required performance per watt, even under optimistic assumptions. It is therefore natural to explore
possible compiler optimizations for power/energy efficiency.

It is known that current compiler optimizations also reduce total energy cost [29, 32]. Since the basic
optimizations seek to speed up the computation, the equation, Energy = Power × Time, implies that
optimizing for speed also optimizes energy, provided the average power remains constant. Moreover, many
of the speed enhancing optimizations have a second order benefit that also reduces the power. For example,
locality improving transformations like tiling increase the number of references that access local memory,
such as caches, rather than off-chip memory. In addition to the low latency, caches also consume less power
per access. Many authors have made this observation, and there seems to be a view in the folklore that in
order to optimize for energy, compilers need to do no more than what they have always been doing—optimize
for speed.

However, this näıve analysis assumes that power remains constant, which may not be true. Dynamic
Voltage and Frequency Scaling (DVFS) is a technique that allows to dynamically change the operating
frequency and voltage. As we shall see, DVFS implies that energy can be minimized by running as slowly as
possible, or at least, as slow as one can get away with, until the response time becomes unacceptable and/or
the components of the system, not governed by DVFS rules, come into play.

A number of studies [7, 14, 17, 27, 31] show that a significant fraction of the total power (more than
30%) comes from various components of the system that are not influenced by DVFS, such as motherboard,
power supply unit, and memory. Moreover, around half of the power consumed by the processor comes from
leakage power, where DVFS is significantly less effective. Thus, the effectiveness of DVFS must be considered
with the energy consumption of the entire system included in the picture.

These considerations lead to the question whether there is any trade-off, where compilers need to perform
any “special” optimizations that solely target energy savings, without necessarily reducing, or possibly even
increasing execution time. We want to answer the question whether “is compiling for speed also compiling
for energy,” with respect to the use of DVFS. In this paper, we present analyses based on a high-level energy
model that characterize this trade-off.

The main focus of our work is compute-bound programs, including as a limiting case, compute-I/O
balanced programs and DVFS for processors. For these class of programs, we identify conditions under

1

which using the highest frequency is most energy efficient. We show that on a large number of recent
machines this condition is met. Therefore, we conclude that compilers should simply work on optimizing for
speed.

2 Background

We first present an overview of various power/energy related aspects of processors that influence our model
and analyses. Energy (E), Power (P), and Time (T) are related by the equation: E = PT (more precisely,
it is the integral over T when P changes over time). If an optimization keeps P unchanged, and reduces T ,
total energy consumption will decrease. The claim that optimizing for speed implicitly optimizes for energy
comes from this observation.

Equation 1 below gives the simplified model of power dissipation of CMOS circuits [8]. The first term
models the dynamic power consumption, where C is the total capacitance, V is the supply voltage, f is the
clock frequency, and α is the “activity rate.” The second term is the static power consumption (the power
dissipated regardless of switching activity) where I0 is the leakage current.

Pproc = αCfV 2 + I0V (1)

Dynamic Voltage and Frequency Scaling (DVFS) is an architectural feature that allows the supply voltage,
and the corresponding running frequency to be changed at run time. Voltage and frequency are known to be
linearly related. From Equation 1, power dissipation increases quadratically with voltage and linearly with
operating frequency, DVFS can lead to cubic improvement in power dissipation. However, because of the
linear relationship between voltage and frequency, there is also a linear degradation in speed. But reduction
in power dissipation is cubic, and the degradation in execution time is only linear. To a first approximation,
this leads to a quadratic reduction of energy as supply voltage is reduced.

Only the dynamic power component is amenable to DVFS optimization, the static power component
decreases only linearly, and there is no net energy savings (in fact it is worse as we shall see later). Previously,
dynamic power dominated the power consumption by processors, and thus power/energy optimizations
focused on this component. It was predicted, and now observed, that static power consumption would reach
50% of the total power [14, 23].

3 Energy Model and Implications

We now present our energy consumption model, starting from a base model and progressively enhancing it.
The following equation gives the energy consumption at maximum voltage and frequency:

Ebase = (αCfmaxV
2
max + I0Vmax + Pc)Tmin = (Pd + Ps + Pc)Tmin (2)

where the variables are defined as follows:

• Pd: maximum frequency dynamic power consumption of the processor,

• Ps: maximum frequency static power consumption of the processor,

• Pc: constant power; power consumed by various system components not influenced by DVFS, but
excluding those due to program activity (such as memory/disk accesses), and

• Tmin : is the execution time at the maximum frequency,

The energy consumed per access to memory/disk is not included in the model, since the number of accesses to
memory/disk does not change as a result of frequency scaling. This is essentially a combination of E = P×T
and Equation 1.

The above is a crude approximation as DVFS may indirectly influence energy consumption of various
system components. For example, frequency of disk accesses may change, which in turn make the disk to
switch between active and idle states more often, leading to larger energy consumption and vice versa.

2

Although we mentioned that the energy is the integral over time, product is sufficiently precise for our
analysis. This is because when applying DVFS, programs are separated into relatively large regions where
the frequency is fixed for each region. Since changing the frequency via DVFS comes with a cost in terms of
both energy and time, frequent changes are not desirable.

3.1 Normalized Energy model for DVFS

Under DVFS, let the operating voltage be V = xvvmax , where xv is the scaling factor, 0 < xv,≤ 1.
Similarly, for frequency, let the operating frequency be f = xf fmax , with 0 < xf ≤ 1. Finally, let the
increased execution time be T = xtTmin , with xt ≥ 1. We express energy as a function of the three scaling
factors

E(xf , xv, xt) = (αC(xf fmax)(xvVmax)2 + I0(xvVmax) + Pc)xtTmin

=
(
xf x

2
vPd + xvPs + Pc

)
xtTmin

We now normalize this by dividing by PdTmin to obtain the normalized energy consumption,

En(xf , xv, xt) =
(
xf x

2
v + xvRs +Rc

)
xt (3)

where

• Rs: ratio of static power with respect to dynamic power, and

• Rc: ratio of constant power with respect to dynamic power.

3.2 Relationship between Voltage and Frequency scale factors

Although voltage and frequency are linearly related, a few subtle issues arise when we precisely model their
combined effect. The two scale factors are related as given below. The widely accepted formula is based on
a study of recent processors, by a number of authors [16, 20, 30].

xv =
2

3
xf +

1

3
(4)

We use this to eliminate xv in Equation 3 to obtain:

En(xf , xt) =

(
xf

(
2

3
xf +

1

3

)2

+

(
2

3
xf +

1

3

)
Rs +Rc

)
xt (5)

3.3 Properties of the Energy Model

For now, we let the slowdown factor, be xt = 1
xf

. For compute-bound programs, execution time scales

directly proportional to scaling of frequency [14]. Since xf is normalized, execution time for such programs
can be expressed as 1

xf
(a more nuanced analysis is provided in Section 3.4).

Let us show some of the important properties of our model that give insights to how dynamic, static,
and constant powers influence overall energy consumption.

Distributing 1
xf

and further expanding x2v gives:

En(xf) =

(
4

9
x2f +

4

9
xf +

1

9

)
+

(
2

3
+

1

3
x−1f

)
Rs +Rcx

−1
f (6)

Taking the derivative of the above with respect to xf yields:

dEn

dxf
(xf) =

(
8

9
xf +

4

9

)
− 1

3
Rsx

−2
f −Rcx

−2
f

3

Further taking the second derivative with respect to xf yields:

d2En

dx2f
(xf) =

8

9
+

2

3
Rsx

−3
f + 2Rcx

−3
f

The second derivative is always positive if Rs, Rc > 0, which leads to:

• dEn

dxf
= 0 will give the frequency with minimal energy consumption, and

• optimal frequency is less than 1 iff dEn

dxf
> 0 when xf = 1.

Based on the above, we compute the condition for optimal frequency being 1 (fmax):

dEn

dxf
(1) ≤ 0

=⇒
(

8

9
+

4

9

)
−
(

1

3
Rs +Rc

)
≤ 0

=⇒ 4 ≤ Rs + 3Rc

When static power is 50% of the processor power, Rs = 1, we obtain Rc ≥ 1 as the solution, indicating
that if components of the system unaffected by DVFS consume about as much as the dynamic power of
processors, then executing at the highest frequency level is the optimal choice.

One additional remark we make is that the static power also works against DVFS, and its degree is
related to the fraction of voltage that do not scale along with frequency in Equation 4. This is because its
linear power saving is cancelled by the linear increase in execution time.

3.4 Reducing the Impact on Execution Time

In the above, the influence of xf on execution time was expressed as xt = 1
xf

. One may argue that many

programs do not slow down as rapidly as frequency is scaled. Although accurate modeling of the impact on
execution time is out of our scope, we provide additional analysis to show the implications of reduced impact
on execution time. As mentioned earlier, the impact on execution time as a direct inverse of the normalized
frequency may seem too steep for some programs that frequently access memory. In this section, we extend
our model in Equation 3 and add a variable to control the speed degradation.

We use a variable x, 0 ≤ x ≤ 1 and let xt = 1 +x(1
xf
− 1). The variable x controls the speed degradation

as frequency is scaled in a linear fashion. At x = 1, xt = 1
xf

, which is what we used in the above, and at

x = 0, xt = 1, no degradation as frequency scales. We substitute xt in Equation 3 to obtain:

Ex
n(xf , xv, x) =

(
xf x

2
v + xvRs +Rc

)(
1 + x(

1

xf
− 1)

)
To simplify our analysis, we write the energy as Ex

n = EA
n +EB

n , the sum of two different sub-functions:

EA
n (xf , xv) =

(
xf x

2
v + xvRs +Rc

)
EB

n (xf , xv, x) =
(
xf x

2
v + xvRs +Rc

)(x

xf
− x
)

4

The respective derivatives1 after eliminating xv with Equation 4 are:

dEA
n

dxf
(xf) =

(
12

9
x2f +

8

9
xf +

1

9

)
+

2

3
Rs

d2EA
n

dx2f
(xf) =

(
24

9
xf +

8

9

)
dEB

n

dxf
(xf , x) = x

[(
8

9
xf +

4

9

)
− 1

3
Rsx

−2
f −Rcx

−2
f

]
− x

[(
12

9
x2f +

8

9
xf +

1

9

)
+

2

3
Rs

]
d2EB

n

dx2f
(xf , x) = x

(
2

3
Rsx

−3
f + 2Rcx

−3
f −

24

9
xf

)

We can again observe that the second derivative of Ex
n(xf , x),

d2Ex
n

dx2
f

(xf , x) =
d2EA

n

dx2
f

(xf) +
d2EB

n

dx2
f

(xf , x), is

always positive if Rs, Rc > 0, 0 < x ≤ 1, and 0 ≤ xf ≤ 1. The second derivative also always positive if
Rs, Rc > 0, 0 < x ≤ 1, and 0 ≤ xf ≤ 1. Thus, the optimal frequency is 1 (fmax) when:

dEx
n

dxf
(1, x) ≤ 0

=⇒
(

21

9
+

2

3
Rs

)
+ x

(
12

9
− 1

3
Rs −Rc

)
− x

(
21

9
+

2

3
Rs

)
≤ 0

=⇒
(

7

3
+

2

3
Rs

)
− x (1 +Rs +Rc) ≤ 0

The above leads to the following remarks:

• As expected, the above indicates that as x decreases, which means as penalty on execution time with
DVFS decreases, the inequality is less likely to be satisfied.

• Static power (Rs) work for DVFS when x < 2
3 . This is when the linear decrease in static power

dissipation by DVFS starts to benefit overall energy consumption.

• With lower x, especially below 2
3 , much larger Rc will be required to satisfy the condition for fmax to

be optimal.

The key implication is that as the program is less and less penalized by scaling the operating frequency,
the ratio of constant power (Rc) to processor must become larger for the “go as fast as possible” strategy to
hold, but the general property is unchanged.

When the program execution time is not dominated by processor speed, we can expect that other system
components, such as the memory or network card, are stressed, and therefore ratio of processor power in the
total system load to decrease [7, 17, 28].

Therefore, the behavior when degradation in speed is scaled is largely dependent on the application
characteristics. When the x is small, it is likely that slowing the processor will be beneficial, since it is
approaching memory-bound programs. For relatively large x, required Rc will become larger, but it is
probable that going as fast as possible is still optimal. We also note that some of the recent machines have
Rc much larger than 1 as we show in Section 4, further increasing the likelihood of this being the case.

3.5 Parallelism

So far, our analysis was completely independent of parallelism, although energy is intimately tied to par-
allelism. Indeed, the advent of multi-core and many-core processors was dictated by the needs of energy

1Derivations are not shown, as they are similar (but slightly more complicated) to the derivation from Equation 3.

5

efficiency. We now tie the results to parallelization. Our main message remains that energy efficiency is
attained by optimizing for speed, and that using DVFS to slow down the application to achieve total en-
ergy gains will yield limited benefits at best. However, optimizing for speed is not necessarily the same as
maximizing parallelism, and hence there are a few special considerations.

Let us first assume that the program is perfectly parallelizable on an N -core processor. Even in this
optimistic situation, some of the components of the processor, like cache or other on-chip memory, are
shared among the cores. In addition, regardless of the number of cores, the thermal envelope/budget is
usually allocated for a processor chip, and therefore, Rc is computed for a processor chip, and not on a
per-core basis. Therefore, if only one of the N cores is being used, it is likely that the constant power is
greater than 1

N . This leads to the conclusion that utilizing all the cores if possible, is the optimal strategy,
unless parallel efficiency is low.

Now consider the situation where the program is not perfectly parallelizable. The question of whether
or not to parallelize, and if so, how aggressively, is beyond the scope of this paper, and we do not attempt
to answer it. Rather, let us suppose that the decision to use some number p out of the N cores has been
made. Our analysis indicates that now, the best strategy is to make the program execute as fast as possible.
Basically, if a processor cannot save energy by slowing down in sequential case, then trying to slow down
processors in parallel case cannot save energy as well. Note that one may apply our analysis to each core, if
per-core DVFS is supported, but the result remains the same.

The choice of the optimal pmay involve a trade-off similar to that pointed out by Cho and Melhem [10, 11],
but is also related to the application itself and how scalable its parallelization is. If the program has poor
parallel speedup, and the decision is nevertheless to allocate an increasing number of processors to it, then
some of the other, non-energy related issues (i.e., the response time of the program) are deemed to be
important enough, to possibly override the gains of energy savings by using fewer cores. This means that
any compiler (and possibly the programmer) should seek to provide the maximally scalable parallelization
possible.

4 Trends in Recent Machines

In this section, we present trends in recent machines based on a survey ranging from desktop processors to
Cray supercomputers. The goal of this section is to verify the observation based on previous studies that the
constant power is around 1

3 of the total power consumption under load, so that even if a significant fraction
of the remaining 2

3 is used by processor, Rc ≥ 1 would still be true, satisfying the condition for fmax to be
the optimal frequency for energy efficiency [7, 17, 27, 31].

For desktop and server processors, we show that, even with conservative estimates, ratio of constant
power in the total system power under load is close to 1

3 . We also show that the ratio of constant power
has been relatively constant over the last 5+ years. This is to be expected, since designers of different
components of the system try and fit their component to the same thermal envelope as previous generations.
Therefore, if the ratio of static power consumption increases in processor power, then Rc will also increase.

For Cray supercomputers, we present estimates of Rc for two recent machines, and show that they are
highly likely to exceed 1, also satisfying the condition.

4.1 Sources of Constant Power

Let us first describe various sources of constant power we use to estimate the lower bound. Constant power is
power consumed under high load that are not affected by DVFS. Although there may be some relationship,
it is not closely related to idle power. Especially with recent architectures, where aggressive power-gating is
performed, idle power is likely to be much less than the constant power.

4.1.1 Stand-By Memory Power Consumption

One of the sources of constant power consumption is stand-by memory power. Recent study show that a
4GB DDR3 memory consume around 4W in stand-by state [13]. Although memory can also be put into
low-power states that consume less power, unless the program does not use memory at all, it cannot be put

6

into low-power states for long under heavy load. Therefore, we count 1W per 1GB of memory as part of the
constant power consumption.

4.1.2 Power Supply Unit

When a system draws power, alternate current must be transformed to direct current, and significant amount
of power may be lost during this process. Efficiency varies greatly depending on the quality of Power Supply
Unit (PSU) and load, and it is considered efficient if the efficiency is higher than 80% [1]. We assume 85%
efficiency for commodity desktop machines, 90% for servers, and 95% for supercomputers.

4.1.3 Chipsets and Fans

Prior studies show that older chipsets consuming 20-30W, while some new designs reduce its consumption
to 6W [12, 15, 28]. Fans also consume 10-15W when active [15, 28]. For the purpose of our estimation, we
consider 20W per chip for processors with 45nm or older process, and 10W for 32nm and 22nm processors
as constant power for both chipset and fan combined. We believe this to be a safe lower bound based on the
numbers above.

4.2 Desktop and Server Processors

We have collected a number of power consumption measurements for desktop and server processors under
heavy load. We show that the ratio of conservative estimate of constant power; the sum of memory stand-by
power, efficiency loss by PSU, and estimated power consumption by chipsets and fans; is more than 30% in
most cases. This means that even if most of the remaining power is used by the processor, the value of Rc

will be around 1. Since there are other sources of power consumption that are not included, such as accesses
to memory/HDD, and network cards, it is highly likely that Rc is well above 1 in most cases.

We collected total system power consumption measurements from AnandTech [2], an online hardware
review site, for various desktop processors. They provide measurements under compute-intensive workload
(x264 encoding), and many components are kept consistent across different processors (e.g., same memory
and video card, but not motherboard). Since GPUs consume significant amount of idle power, we exclude
GPU idle power (25W) from the measured power consumption (the benchmark does not use GPU). The
data set contains 46 data points, with Intel and AMD processors from 2008 to 2012. All machines measured
were equipped with 4GB of memory.

The data set for server processors are from published SPECpower ssj2008 results [4]. The data set
contains 255 data points, with Intel and AMD processors from 2007 to 2012; excluding results that are
either for a system with multiple nodes, labeled non-compliant, or with imprecise processor name (i.e., only
Xeon with out specifying which model). The benchmark models server applications with large number of
user requests (“ssj” in the name stands for “Server Side Java”). The metric we use from the published results
is Average Active Power (W) with 100% target load, where the target load is calibrated to be the maximum
throughput of the server computed as part of the benchmark run. Due to the nature of the work load, 100%
load does not necessarily mean 100% processor utilization.

Figure 1 shows individual data points and means for each year for both desktop and server processors.
The means are more than 30% in all cases, where 79% of desktop processors, and 69% of server processors
have more than 30% of constant power. This is an indication that the constant power is large enough such
that Rc will exceed 1. Moreover, we emphasize that our estimate of constant power is conservative, and that
actual constant power is likely to be higher than our estimate.

Also, the benchmark used for server processors stress both disk and memory to a great extent. In addition
to our assumption that servers use more efficient PSU, the difference in work is another explanation that we
can provide for the estimated constant power to consist lesser fraction of the total power in server machines.

4.3 Cray Supercomputers

We also show that Rc is likely to be higher than 1 for Cray supercomputers. Since precise power breakdown
of supercomputers are not available, our analysis is based on specifications of recent Cray supercomputers,

7

2007 2008 2009 2010 2011 2012

0
.0

0
.1

0
.2

0
.3

0
.4

0
.5

0
.6

Constant Power Trends in Recent Processors

year

c
o
n
s
ta

n
t
p
o
w

e
r

/
to

ta
l
p
o
w

e
r

u
n
d
e
r

lo
a
d

2007 2008 2009 2010 2011 2012

0
.0

0
.1

0
.2

0
.3

0
.4

0
.5

0
.6

2007 2008 2009 2010 2011 2012

0
.0

0
.1

0
.2

0
.3

0
.4

0
.5

0
.6

2007 2008 2009 2010 2011 2012

0
.0

0
.1

0
.2

0
.3

0
.4

0
.5

0
.6

desktop (individual data points)

 server (individual data points)

desktop (mean)

 server (mean)

Figure 1: Constant power in
recent machines. Constant
power is more than 30% of
the total power under load in
many cases. Also, the frac-
tion of estimated constant
power in total system power
is staying flat at the same
level for both cases. There-
fore, increase in static power
will gradually increase Rc

used in our model.

Table 1: Power consumption of a recent Cray supercomputer cabinet, based on manufacturer specifica-
tions [3]. All these machines use AMD Opteron processors.

chips memory total TDP total memory
Cray nodes per per system per chip stand-by

node node power chip TDP power
XT5 96 2 16-32GB 32-42.7kW 95W 18.24kW 1.54-3.07kW
XT6 96 2 32-64GB 45-54.1kW 115W 22.08kW 3.07-6.14kW
XE6 96 2 32-128GB 45-54.1kW 115W 22.08kW 3.07-12.29kW

summarized in Table 1. Thermal Design Power (TDP) is the thermal envelope assigned to the Opteron
processor used within Cray, and we use TDP as the upper bound on power dissipation by the processor.

We assume that Cray machines have PSU with 95% efficiency, and only 5% is counted towards constant
power. We further assume that 10% of the power is used for cooling fans, based on the measurements from
Cray XT5 in Oak Ridge National Laboratory [33].

In Table 2, we present estimates of Rc based on Table 1. Since the total system power is specified as
range, we compute the percentages for 2 scenarios, highest and lowest total power. For each scenario, we
estimate Rc where constant power is memory + PSU (5%) + cooling fans (10%) and dynamic power is 50%
of the total chip TDP. The estimate on Rc is further divided into 2 cases, one with largest memory and the
other with smallest memory. Finally, we compute how much additional constant power (as a percentage of
the total power) is required to make Rc ≥ 1, when smallest memory size, which alway give the smallest Rc,
is used.

In the newer machines (XT6 and XE6), power consumed by processor as a fraction of total power is lower
than the previous generation. Although the higher total power consumption is likely to be a combined effect
of various factors, part of the increase may be attributed to increase in memory capacity. As a result, Rc is
at least 0.89 for the new generation of machines.

For the earlier generation (XT5), the processor power can dominate up to 57% of the total power, and
Rc can be as low as 0.69. However, the first scenario assuming lowest total system power is likely to be too
strong, since we assume processor is running at its TDP. When we assume the highest total system power
and largest memory, all of the three machines exhibit Rc ≥ 1.

Moreover, we have not included power consumed by the network among nodes and other cabinets, which
is likely to add another few percent to constant power. Thus, we conclude that current generations of Cray
supercomputers is highly likely to have Rc greater than 1, satisfying the conditions for the optimal frequency
to be fmax.

8

Table 2: Estimated Rc for Cray machines assuming different total system power. Rc is computed by
assuming dynamic processor power is 50% of the TDP, constant power is the sum of memory stand-by
power, cooling fan (10%), and PSU loss (5%). The last column is the fraction of total power that must be
additionally included as constant power for Rc ≥ 1 to hold, assuming the Cray was configured with smallest
memory size.

assumed percentage percentage percentage Rc Rc additional
Cray system CPU memory memory max min Ps for

power TDP (min) (max) memory memory Rc ≥ 1

XT5 32kW 57% 5% 10% 0.86 0.69 8.70%
42.7kW 43% 4% 7% 1.04 0.87 2.76%

XT6 45kW 49% 7% 14% 1.17 0.89 2.71%
54.1kW 41% 6% 11% 1.29 1.01 0.00%

XE6 45kW 49% 7% 27% 1.72 0.89 2.71%
54.1kW 41% 6% 23% 1.85 1.01 0.00%

5 Impact of DVFS for Memory

In the energy model we presented in Section 3, the power consumed to keep the memory in active state was
included as part of constant system power consumption. When memory with DVFS support becomes widely
available, power consumed by memory can no longer be considered as constant. In this section we extend
our analysis handle this case.

David et al. [13] show that the power consumption of memory with respect to voltage scaling also has
components that scale linearly and quadratically with V . The components that scale with V 2 also scale
with frequency and thus the high-level power model for memory looks similar to that for the processor
(Equation 1):

Pmem = αmfV
2 + ImV

= Pcircuit + Parray

where we name the V 2 scaling component Pcircuit as it mostly comes from I/O circuitry of the memory, and
V scaling component Parray as it comes from storage arrays. The authors also report that about 25% scales
with V 2 and the remaining 75% scales with V [13].

5.1 Compute-Bound and Memory-Bound States

When there are two components, processor and memory, that can utilize DVFS, the frequency scalings can
heavily influence whether a program (region) is compute-bound or memory-bound. In fact, any program
may be both compute-bound and memory-bound, assuming that it has both some computation and memory
accesses to perform. Instead of compute- and memory-bound programs, we use the notion of compute- and
memory-bound phases or states of a given program to emphasize the transition.

The program is in compute-bound state if slowing down the memory does not affect the execution time.
Similarly, the program is in memory-bound state if slowing down the processor does not change the execution
time.

Let a program be in compute-bound state at some initial frequency settings for processor and memory.
Then scaling the processor frequency down will keep the program compute-bound, since the compute power
decreases as frequency is scaled. However, scaling down the memory frequency will eventually make the
program memory-bound. As frequency is scaled, tolerable bandwidth is reduced [13], and at some point,
the bandwidth requirement by the program can no longer be satisfied. Thus, the memory accesses will start
having impact on overall execution time due to increased latency.

Conversely, consider a program in memory-bound state at the initial frequency. Then scaling down
memory frequency will keep it memory-bound, and scaling the down the processor frequency will eventually
reduce the compute power such that the amount of data being read cannot be processed fast enough, and
thus increasing execution time.

9

With the exception of programs that do not use any memory, DVFS of processor or memory will, at some
point, change a program from compute-bound to memory-bound and vice versa. Since when a program is
compute-bound or memory-bound with respect to DVFS is highly dependent on the program characteristics,
we use the above definition to keep our analysis independent of detailed program analysis.

5.2 Compute-I/O Balanced State

Given the above definition there are two obvious cases where DVFS can provide energy savings. One is
scaling down memory frequency of compute-bound programs, and the other is scaling down the processor
frequency of memory-bound programs. Since execution time is not traded off with power savings, frequency
and voltage scaling will improve energy efficiency.

We define the program to be in compute-I/O balanced state when neither scaling the processor or memory
give these obvious savings. Again, a program will eventually reach this state, but when is highly dependent
on the program.

There are a number of techniques already developed for reaching the balanced state for memory-bound
programs using processor DVFS [19, 20]. Once DVFS for memory become available, we can expect similar
techniques to be developed to achieve the balanced state for compute-bound programs.

5.3 Energy Model with Memory DVFS

Once the balanced state has been reached, further improvement in energy efficiency involves trading off with
speed. Our analysis in Section 3 focused on such cases when only processor DVFS was available. Now we
extend the model to the case where we have the capability to independently scale memory frequency/voltage.

We take the base model without memory DVFS (Equation 2), and introduce Pcircuit and Parray to obtain:

E′base = (Pd + Ps + Pc′ + Pcircuit + Parray)Tmin

The power components of memory were previously modeled partially as Pc (stand-by power) and were
partially excluded from the model as constant energy (access cost).

One additional difference is that in the above equation the frequencies are set to the highest frequencies
that make the program balanced. In other words, when both processor and memory are at the highest
frequency, one of the two that has “slack”; i.e., the one that is not currently the bottleneck; can be scaled
to reach the balanced state. This is the new starting point in analyzing the trade-off of power and speed.

Now, recall that Pcircuit and Pd both scale with fV 2, and that Parray and Ps both scale with V . Thus
the terms can be merged to produce:

Emerged = (Pq + Pl + Pc′)Tmin (7)

where

• Pq: maximum power consumption, at highest frequencies that make the program in balanced state, of
the power component that scales quadratically with V ,

• Pl: maximum power consumption, at highest frequencies that make the program in balanced state, of
the power component that scales linearly with V ,

• Pc′ : constant power; as defined as Pc in Section 3, but now without including memory power,

• Tmin : execution time at the maximum frequencies.

Thus, with this level of abstraction, the model essentially does not change from Section 3. However, the
ratio of Pl, and Pc′ with respect to Pq will be different from Rs or Rc.

10

5.4 Influence on the Condition to “Race to Sleep”

Since a portion of the constant power has now been moved to Pq and Pl, the ratio of constant power will de-
crease. Thus, DVFS for trading off power with execution time may become viable again with the introduction
of DVFS for memory. The power consumption benchmarks for desktop processors were compute-intensive,
and thus the memory power consumption is on average only 3.1% of the total power under load. However,
the numbers we have collected for server processors show that memory power consumption is on average
6.5% of the total power under load, ranging from 2 to 20%. Since the constant power was around 30% of
the total power, memory power consumption and its DVFS capability can significantly change the picture.

We have shown in Section 3 that the optimal frequency is always greater than the maximum ifRs+3Rc ≥ 4
holds. This relationship directly translates to the ratio of Pl and Pc′ with respect to Pq in Equation 7 with
memory DVFS taken into account. Let Rl and Rc′ be the ratio of Pl and Pc′ with respect to Pq then we are
interested in the values of Rl and Rc′ that satisfy Rl + 3Rc′ ≥ 4.

Since the power component that linearly scales with V is significantly larger than that which scales
quadratically (75% of memory power scales linearly [13]), Pq is likely to be smaller than Pl. In addition, it
has been projected and observed that the power density of a chip due to leakage power exhibits exponential
growth following Moore’s Law. Although new technologies have been developed to mitigate this exponential
growth, the ratio of leakage power to total power consumption is increasing and is expected to continue
increasing. As this ratio increases, the ratio of Pl with respect to Pq also increases, and as a result DVFS
will become less and less effective.

To understand when “race to sleep” is optimal as Pl grows, we re-formulate the condition Rl + 3Rc′ ≥ 4
with two parameters l and c where

• l = Pl

Pq+Pl
is the fraction of dynamic power (non-constant power) that scales linearly; this corresponds

to the aggregate of Ps in processors and Parray in memory, and

• c = Pc′
Pq+Pl+Pc′

is the fraction of total power consumption that is constant system power, such as PSU

loss, chipset, and cooling fans.

The resulting function e(l, c) is the following:

e(l, c) =
l

1− l
+ 3

c

(1− l)(1− c)

where

Rl =
Pl

Pq
=

Pl

Pq+Pl

Pq

Pq+Pl

=
l

1− l

and

Rc′ =
Pc′

Pq
=

Pc′
Pq+Pl+Pc′

Pq

Pq+Pl+Pc′

=

Pc′
Pq+Pl+Pc′

Pq

Pq+Pl

Pq+Pl

Pq+Pl+Pc′

=
c

(1− l)(1− c)

Based on power measurements we have collected, constant power is still around 30% for desktop pro-
cessors, since they only had 4GB of memory, and is around 16% on average for servers, and 15% for Cray
supercomputers.

Figure 2 shows the values of e(l, c) evaluated for various range of l when c = 0.3 (desktop) and when
c = 0.15 (server and Cray). The figure shows that when l > 0.7, or when linearly scaling component is
larger than 70% of the sum of non-constant power, the optimal strategy becomes “race to sleep” for desktop
machines. Similarly, server and Cray machines require around l > 0.75 for “race to sleep” to become optimal.

Since 75% of the memory power is linearly scaling, this suggests that the “race to sleep” becomes optimal
when the fraction of static power in the total power consumed by a processor exceeds 70%. Although current
processor may not have reached this line, we believe that it will in the near future.

11

When should we "Race to Sleep"

Fraction of Linearly Scaling Component Pl / (Pq+Pl)

V
a
lu

e
 o

f
e
(l
,c

)

Server/Cray

Desktop

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

0
1

2
3

4
5

6

e(l,c) > 4

Figure 2: Plot of e(l, c) evaluated with c = 0.15,
c = 0.3 with l ranging from 0 to 0.8. As we saw in Sec-
tion 3, we need around 70% of the non-constant power
to scale linearly with respect to voltage for “race to
sleep” to be optimal.

6 Related Work

Our work is definitely not the first to show that simply going as fast as possible can also be energy efficient.
Cho and Melhem [10, 11] developed an analytical model of energy consumption under DVFS with multiple
processors. They identify that there are cases where slowing the processor may not lead to reduced energy
consumption, and that it is related to the fraction of total power unaffected by DVFS. We distinguish our
work in three key aspects:

• (i) we tie our analysis results back to current machines, to verify that the constant power is significant
enough for running as fast as possible to be optimal,

• (ii) our model separates the influence of dynamic and static power consumption of the processor, since
the ratio of the two is also important, and

• (iii) we also extend the model to gain some insights for the case when execution time does not linearly
degrade as frequency is scaled.

Dawson et al. [14] have empirically shown that constant power dominates (50% to 80%) total power by
measuring power consumption of two processors. They also conclude that running as fast as possible and
then going to sleep is likely to be energy efficient. However, they do not have a model of how much constant
power is required for “racing-to-sleep” to be optimal. We complement their work by showing that it holds
for large range of more recent processors, and also with Cray supercomputers. Our estimate of constant
power is much more conservative, since we do not include GPU idle power, and assume much lower power
consumption for chipsets. They have included 50W for chipset and GPU as constant power, whereas we only
include 10-20W for chipset and cooling fan combined.

Our work focus on compute-bound (including compute-I/O balanced) applications. For memory-bound
programs, where DVFS is considered more beneficial due to reduced degradation in speed as frequency is
scaled, the work by Le Sueur and Heiser [25] had shown that the benefits of DVFS is also diminishing. One
of the observations was also that the constant power of the full system, which has been overlooked in some
energy optimizations based on DVFS, plays a significant roll in the overall picture.

When DVFS Can Help

In this paper, we show that trading off speed with energy with DVFS is not possible in most cases. However,
there are a number of prior work that use DVFS to save energy without increasing the execution time [9,
18, 19, 20, 21, 22, 26]. The common idea behind these work is to utilize load imbalance across components
of the system.

For example, memory-bound computations allow processors to be slowed down without affecting the
execution time [19, 20]. Similarly, different components such as disks [18], or link interconnects [22, 26] that

12

are not utilized all the time, can be turned off for energy efficiency. Load imbalance in parallel applications [9,
21] is another candidate for saving energy.

All of the above corresponds to techniques to bring programs into compute-I/O balanced state in our
terms, and are still useful optimizations to improve energy efficiency. However, these techniques should
be applied as a “last resort”, after optimizing for speed. For instance, it does not make sense to make a
program (more) memory-bound such that DVFS can be applied. Efficient access to memory will reduce
the execution time and energy consumption. Similarly, it does not make sense to increase load imbalance
of parallel applications such that DVFS can be applied. Developing methods for better load balancing will
simultaneously improve speed and energy efficiency.

In addition to the above, recent processors employ sophisticated frequency/voltage scaling themselves,
such as the Turbo Boost on Intel processors [5] These hardware controls are likely to be able to detect
memory-bound regions of programs, and employ scaling themselves. Therefore, even such opportunities for
energy saving by compilers may also be diminishing.

Another domain where DVFS may help is embedded systems, where you have much more flexibility
than general purpose processors. Although the analysis in this paper remains the same, the significance of
processor power with respect to the whole system power can vary widely between applications.

For some applications, the processor may be the dominant source of power usage, and hence DVFS is
more effective. However, the opposite is also true. For example, the screen and the wireless card are the
dominant power consumers in a smartphone, making DVFS even less interesting.

7 Conclusion

We have presented our analysis based on our high-level model of power consumption under DVFS. When the
constant power in a system is comparable to the dynamic power consumption of the processor, using DVFS
to trade speed with energy efficiency cannot be done, and it is best to run as fast as possible to completion.

We showed through a survey of number of recent machines that it is highly likely that most machines
today fall under the condition where running as fast as possible wins in terms of energy.

Therefore, we confirm the “folklore” we have been hearing regarding energy optimization, and conclude
that simply compiling for speed will also give better overall energy efficiency.

Our analysis is based on a high-level model, and it is possible that some class of problems can still benefit
from DVFS. However, in this paper we have ignored the cost of changing DVFS states, and also assumed
that arbitrary frequency/voltage can be selected. In practice, the cost of transition is not negligible, and
available frequency/voltage configurations are limited, further limiting the applicability of DVFS.

Our result may seem negative, but from compilers’ perspective, the problem has been made simpler. We
can focus on speed, and the resulting code will be energy efficient. Until the time when the leakage power
becomes a negligible component again, which is when the game entirely changes, invalidating many analyses
including ours, compilers should focus on speed.

13

References

[1] 80plus power supplies. www.plugloadsolutions.com/80PlusPowerSupplies.aspx.

[2] Anandtech. www.anandtech.com.

[3] Cray products. www.cray.com/Products/Products.aspx.

[4] Specpower. Published at www.spec.org as of 6 May 2012. SPEC and the benchmark name
SPECpower ssj2008 are registered trademarks of the Standard Performance Evaluation Corporation.
For more information about SPECpower ssj2008, see www.spec.org/power ssj2008/.

[5] Intel R© Turbo Boost Technology in Intel R© Core
TM

Microarchitecture (Nehalem) Based Processors. White
Paper, November 2008.

[6] Keren Bergman, Shekhar Borkar, Dan Campbell, William Carlson, William Dally, Monty Denneau,
Paul Franzon, William Harrod, Kerry Hill, Jon Hiller, et al. Exascale computing study: Technology
challenges in achieving exascale systems. Defense Advanced Research Projects Agency Information
Processing Techniques Office (DARPA IPTO), Tech. Rep, 2008.

[7] W.L. Bircher and L.K. John. Complete system power estimation: A trickle-down approach based on
performance events. In Proceedings of the IEEE International Symposium on Performance Analysis of
Systems & Software, pages 158–168, 2007.

[8] A.P. Chandrakasan, S. Sheng, and R.W. Brodersen. Low-power CMOS digital design. IEEE Journal
of Solid-State Circuits, 27(4):473–484, 1992.

[9] Guangyu Chen, Konrad Malkowski, Mahmut Kandemir, and Padma Raghavan. Reducing power with
performance constraints for parallel sparse applications. In Proceedings of the 19th IEEE International
Parallel and Distributed Processing Symposium, pages 8–pp, 2005.

[10] S. Cho and R. Melhem. Corollaries to Amdahl’s law for energy. IEEE Computer Architecture Letters,
7(1):25–28, 2008.

[11] S. Cho and R.G. Melhem. On the interplay of parallelization, program performance, and energy con-
sumption. Parallel and Distributed Systems, IEEE Transactions on, 21(3):342–353, 2010.

[12] B.G. Chun, G. Iannaccone, G. Iannaccone, R. Katz, G. Lee, and L. Niccolini. An energy case for hybrid
datacenters. ACM SIGOPS Operating Systems Review, 44(1):76–80, 2010.

[13] H. David, C. Fallin, E. Gorbatov, U.R. Hanebutte, and O. Mutlu. Memory power management via
dynamic voltage/frequency scaling. Memory, 300:400, 2011.

[14] S. Dawson-Haggerty, A. Krioukov, and D.E. Culler. Power Optimization–a Reality Check. Technical
report, Technical Report UCB/EECS-2009-140, EECS Department, University of California, Berkeley,
2009.

[15] X. Fan, W.D. Weber, and L.A. Barroso. Power provisioning for a warehouse-sized computer. In ACM
SIGARCH Computer Architecture News, volume 35, pages 13–23, 2007.

[16] V.W. Freeh, N. Kappiah, D.K. Lowenthal, and T.K. Bletsch. Just-in-time dynamic voltage scaling:
Exploiting inter-node slack to save energy in MPI programs. Journal of Parallel and Distributed Com-
puting, 68(9):1175–1185, 2008.

[17] R. Ge, X. Feng, S. Song, H.C. Chang, D. Li, and K.W. Cameron. Powerpack: Energy profiling and anal-
ysis of high-performance systems and applications. Parallel and Distributed Systems, IEEE Transactions
on, 21(5):658–671, 2010.

[18] Taliver Heath, Eduardo Pinheiro, Jerry Hom, Ulrich Kremer, and Ricardo Bianchini. Application
transformations for energy and performance-aware device management. In Proceedings of the 2002
International Conference on Parallel Architectures and Compilation Techniques, pages 121–130, 2002.

14

[19] C. Hsu and W. Feng. A power-aware run-time system for high-performance computing. In Proceedings
of the 2005 ACM/IEEE conference on Supercomputing, page 1, 2005.

[20] C.H. Hsu and U. Kremer. The design, implementation, and evaluation of a compiler algorithm for CPU
energy reduction. In Proceedings of the ACM SIGPLAN 2003 conference on Programming language
design and implementation, page 48, 2003.

[21] I. Kadayif, M. Kandemir, G. Chen, N. Vijaykrishnan, MJ Irwin, and A. Sivasubramaniam. Compiler-
directed high-level energy estimation and optimization. ACM Transactions on Embedded Computing
Systems (TECS), 4(4):850, 2005.

[22] E.J. Kim, K.H. Yum, G.M. Link, N. Vijaykrishnan, M. Kandemir, M.J. Irwin, M. Yousif, and C.R.
Das. Energy optimization techniques in cluster interconnects. In Proceedings of the 2003 international
symposium on Low power electronics and design, pages 459–464, 2003.

[23] N.S. Kim, T. Austin, D. Blaauw, T. Mudge, K. Flautner, J.S. Hu, M.J. Irwin, M. Kandemir, and
V. Narayanan. Leakage current: Moore’s law meets static power. Computer, 36(12):75, 2003.

[24] Jonathan G. Koomey, Christian Belady, Michael Patterson, Anthony Santos, and Klaus-Dieter Lange.
Assessing trends over time in performance, costs, and energy use for servers. Technical report, Lawrence
Berkeley National Laboratory, Stanford University, Microsoft Corpotation, Intel Corporation, Hewlett-
Packard, Coporation, 2009.

[25] E. Le Sueur and G. Heiser. Dynamic voltage and frequency scaling: The laws of diminishing returns.
In Proceedings of the 2010 international conference on Power aware computing and systems, pages 1–8,
2010.

[26] F. Li, G. Chen, and M. Kandemir. Compiler-directed voltage scaling on communication links for reducing
power consumption. In Proceedings of the 2005 IEEE/ACM International conference on Computer-aided
design, page 460, 2005.

[27] A. Mahesri and V. Vardhan. Power consumption breakdown on a modern laptop. Power-Aware Com-
puter Systems, pages 165–180, 2005.

[28] David Meisner, Brian T. Gold, and Thomas F. Wenisch. Powernap: eliminating server idle power. In
Proceedings of the 14th international conference on Architectural support for programming languages
and operating systems, pages 205–216, 2009.

[29] John S Seng and Dean M Tullsen. The effect of compiler optimizations on pentium 4 power consumption.
In Proceedings of the 7th Workshop on Interaction Between Compilers and Computer Architectures,
pages 51–56, 2003.

[30] A. Sinha and A.P. Chandrakasan. Jouletrack-a web based tool for software energy profiling. In Pro-
ceedings of the 38th Design Automation Conference, pages 220–225, 2001.

[31] B. Subramaniam and W. Feng. Understanding power measurement implications in the green500 list. In
Green Computing and Communications, 2010 IEEE/ACM International Conference on & International
Conference on Cyber, Physical and Social Computing, pages 245–251, 2010.

[32] V. Tiwari, D. Singh, S. Rajgopal, G. Mehta, R. Patel, and F. Baez. Reducing power in high-performance
microprocessors. In Proceedings of the 35th Design Automation Conference, page 737, 1998.

[33] T. Wenning and M. MacDonald. High performance computing data center metering protocol. Federal
Energy Management Program, US Department of Energy, Resources on Data Center Energy Efficiency,
2010.

15

