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Abstract—To fully embrace the challenge of securing software,
security concerns must be considered at the earliest stages of
software development. Studies have shown that this reduces the
time, cost and effort required to integrate security features into
software during development. In this paper we describe a loop-
hole analysis technique for uncovering potential vulnerabilities
in software requirements specifications and describe its use using
an example.

I. INTRODUCTION

Security requirements are seldom explicitly stated at the
outset of a project [1]. Typical security considerations at the re-
quirements development stage are: confidentiality of sensitive
information [2]; potential system threats and exploits [1], [3],
[4]; privacy and trust concerns [5], [6]; and profiles of potential
attackers [4], [7]. Requirements engineers and security experts
attempt to address security issues by using approaches such as
misuse cases [1], abuse cases [4], UMLSec [7], the SQUARE
method [8], KAOS [9] and security patterns [10]. Many of
the current approaches, however, rely heavily on the expertise
and subjective judgement of security professionals. As an
example of the subjectivity that comes into play when using
these approaches, consider the use of misuse cases. A misuse
case is a description of behavior that should not occur in a
system. Misuse cases are described alongside use cases. The
development and analysis of misuse cases may proceed as
follows:

1) Describe the services that the users want, regardless of
any security considerations. Use cases are used for this
purpose

2) Introduce the major misuse cases and mis-actors. A
misuse case is a special kind of use case, initiated by a
mis-actor, that describes behavior that the system/entity
owner does not want to occur.

3) Investigate the potential relations between misuse cases
and use cases, and describe as use-case includes-relations.
This step is quite important since many threats to a
system can be achieved by using the system’s normal
functionality.

4) Introduce new use cases that detect or prevent misuse
cases.

Steps two and three are key to the process, but they are
subjective and the results of their application are completely

dependent upon a security expert’s judgement. We are
aware that there are many flaws that currently require human
expertise to uncover, but there are, nevertheless, security flaws
that can be identified using less subjective methods during the
early stages of software development [11]. Examples of such
flaws are SQL and command injection which take advantage
of improper input validation. Input validation functions can
be specified as early as the requirements phase.

Although a requirements engineer has the task of specifying
what an intended software system should do, a requirements
engineer is not expected to be a security expert. Security is
usually grouped with and considered as, a non-functional
requirement [9], [12]. Non-functional requirements have
traditionally been included during the coding, implementation
or maintenance stages of software development i.e. at the end
of the development process [13].

In this paper we present a technique that provides a means
by which the knowledge of security experts can be captured,
retained, used, refined and shared among requirements
engineers and other software engineering practitioners,
thus assisting them in their task of considering security
concerns at the earliest stages of software development. The
expertise is captured in the form of a type of dependency
between requirements. The technique is incorporated into a
less subjective approach we developed to uncover potential
vulnerabilities that can augment those that require human
expertise. The approach is summarised as follows:

Given a set of use cases, each scenario step is
transformed into a concise, normalised statement
that captures interactions in a structured analysable
form. The next step involves using pre-defined
dependencies between elements of normalised
statements to identify potentially vulnerable
interactions across the normalised statements.
This is done by forming the transitive closure of
the dependency relationship and highlighting the
interactions involving the related elements that
violate security or other policies.



Fig. 1. Overview of the Loophole Analysis

II. BACKGROUND

The proposed technique, called the loophole analysis,
addresses the problem of functional fixation in the context of
requirements analysis. Functional fixation is the inability to
see uses for something beyond its presented use [14]. In other
words, it is the belief that something can only be used for its
stated purpose. In the context of software systems we can and
do use functionality provided by software in unintended ways.

For example, a Windows XP user with no administrator
priviledges can acquire them by creating a shortcut to IE6,
enable the ‘Run with different credentials’ option, and open
a shell as a local administrator. From a security standpoint,
each step involved in accomplishing the task is allowed, but
this particular usage leads to undesirable situations. Another
example is provided by Linux, Android and other UNIX-
based operating systems where automatic file completion is a
very useful feature but, it also helps intruders to find target
files more quickly [1]. Everyday objects, including software,
may fulfill their stated goals and yet, may allow undesirable
behaviour.

The loophole analysis seeks to identify such undesirable
interactions during the process of specifying requirements (see
Figure 1). Uncovering and mitigating potential vulnerabilities
during requirements analysis, reduces the time, effort and
cost of fixing these problems, when compared to addressing
them later in the development process [7], [8]. At such an

early stage of development, it is the potentially vulnerable
interactions in use case scenarios that must be identified.
Use case scenarios typically describe a system from a user’s
perspective, and thus focus on user-system interactions. A
scenario is an ordered set of interactions between partners,
usually between a system and a set of actors external to the
system.

Scenarios are typically written in a natural language to
facilitate their understanding by as many of the stakeholders of
an intended system as is possible. Such general understanding
by many is furthered by consistency, precision and the lack
of ambiguity in the expression of requirements. Consistency
means that requirements should not have contradictory
definitions [15]. Imprecision in a requirements specification
is the cause of many software engineering problems. It is
natural for a system developer to interpret an ambiguous
requirement in a way that simplifies its interpretation [15].
For example, the requirement shown here seems to conform
to good requirements specification practice,

The user shall be able to create a
password

But what should it mean to an engineer, in the context of
security, to “create”? With respect to passwords and other
types of authentication data, the term “create” may mean
different things to different people. To one engineer, the
creation of a password simply involves its conceptualisation
and subsequent entry by a user. To another, it may mean the
same but be subject to restrictions in length and composition,
and understood to be one factor in a multi-factored approach
to authentication.

We believe that security considerations in software
development have necessitated the specificity in meaning of
terms when developing requirements, and in particular for
the process of identifying potential vulnerabilities in software
systems during requirements engineering. We suggest that
such specificity can be achieved using a consistent description
of requirements terms. The number and variety of terms is
however, potentially large due to synonymity. For example,
edit, change and modify all have similar meanings. Therefore,
rather than attempt to describe every term, we suggest a
model that will specify the terms used by a requirements
engineer that incorporates security considerations.

The primary issue, with incorporating aspects related to
the security of a system during the requirements engineering
process is that they typically remain unstated or unrecorded
i.e they are included implicitly [16] . A system’s security
requirements therefore tend to remain excluded from
requirements specifications or are the subject of many
an assumption by members of development teams. What
engineers and developers alike assume, in part due to
implicit requirements, can (and often does) lead to varied



interpretations of explicit requirements. Implicit requirements
should be made explicit.

The technique we describe aims to improve a requirements
document with respect to its security requirements by
attempting to uncover implicit security requirements by a
process that uses an imposed security dependence (ISD) [17].
We impose security dependencies between requirements terms
by stating that the inclusion of one term in a requirement
necessitates the inclusion of another term and requirement,
upon which a dependency has been defined based on security
considerations. For any two requirements terms (RT) α and
β, we define an ISD as,

RT α has an ISD on RT β when the use of
α in a requirement dictates the use of β
in a separate requirement.

Two requirements therefore have an ISD relation when an
ISD exists between requirements terms contained in each. We
represent an ISD between two RTs using the −] symbol and
parentheses. /−] indicates that two RTs do not have an ISD
relation.

Commonly used requirements terms and their imposed
security dependencies are created by a requirements engi-
neer/domain expert and a security expert (see Figure 1). These
experts use their knowledge and experience to create an ontol-
ogy of requirements terms that is independant of any specific
project. The ontology is however, created within the context
of a specific domain. The ontology is then used to develop
a table of ISDs. The domain specific ISD table is stored
for subsequent use in individual, domain specific projects.
Once such a table of terms and ISDs has been created, the
knowledge and expertise of the domain and security experts
will be captured and retained in the ISD table. Through its
use in various software development projects, the table and its
content can be shared, refined and improved upon by other
practioners.

III. THE LOOPHOLE ANALYSIS

To uncover the types of interactions previously discussed
we use the notion of a path. A path is a sequence of use case
scenario steps, where the sequence can cut across many use
cases. Use case scenarios typically describe a system from a
user’s perspective, and thus focus on user-system interactions.
A scenario is an ordered set of interactions between partners,
usually between a system and a set of actors external to the
system. We define path fixation as the belief that the simple
paths described in a specification document are the only ones
that will exist in the implemented system. The discovery of
paths that overturn such beliefs is the basis of our loophole
analysis. Piessens defines a vulnerability as any aspect of a
computer system that allows for breaches in its security policy
[18]. In the context of requirements analysis, loopholes are

paths that lead to violations in security or other policies that
govern system behaviour.

A. Overview of the Technique

The input to our technique is a requirements document
consisting of a set of requirements statements. The steps
involved in the loophole analysis are given below:

1) Develop use case scenario descriptions from the require-
ments statements and then transform each use case step
into a more concise, normalised form that focuses on the
interactions embodied in the requirements statement.

2) Analyse the scenarios, using dependency relationships be-
tween elements of the normalised statements, to identify
implicit security requirements. These security require-
ments are then explicitly stated.

3) Analyse the scenario descriptions with security require-
ments for loopholes.

4) Improve the requirements document by including
requirements that rectify or “plug” any discovered
loopholes.

We developed a prototype tool called the Secure Require-
ments Writer (SECREt) to assist engineers in completing these
activities. In the following sections we describe these steps in
greater detail and discuss the SECREt.

B. Converting Requirements Statements

Given the input set of requirements statements, a
requirements developer uses templates to create use case
descriptions that describe interactions captured by the initial
requirements statements. Each use case and its constituent
steps are associated with reference numbers that indicate the
ordering of steps within a use case. Each use case step is then
converted into a concise form that presents the interactions
it describes in a structured, analysable form. The result is
called an access control policy (ACP).

Using the prototype tool we developed, a requirements
engineer creates use case scenarios by completing and
grouping parameterised statements. These statements in
turn, are created by choosing an appropriate template from
the tool’s collection and filling-in the chosen template by
selecting arguments from drop-down lists. The templates are
created by domain experts. For example, the template

The <subject> shall be able to <action>
<object> within <quantity> <time unit(s)>
of <event>

can be completed and used to create the following use case
statement/requirement,

The driver shall be able to stop the
automobile within 3 seconds of applying
the brakes



The arguments used to complete the template are the
requirement terms upon which security dependencies are
imposed. They are stored in the tool’s ISD table. The
selected arguments are then copied and the tool generates the
associated ACP. We call these arguments ACP arguments.

An ACP describes the action a subject performs on an
object as either a capability or a constraint [19]. The ACP
format is based on the four important characteristics of
a good notation that are described by Iverson [20]. The
characteristics of such notations are that they should,

1) allow for convenient expression of interactions
2) facilitate some degree of reasoning through subordination

of the details inherent in requirements specifications
3) facilitate suggestivity of relationships among expressions
4) be economical - a relatively small vocabulary with

simple grammatical rules

In general, the format of an ACP is,

ref [subject clarifier : action clarifier : object clarifier

]cap/con | comment

where:
• ref is a reference to a use case from the specification

document from which the ACP was created
• subject is a type of actor that is capable of using an

object. Types of actors can be users, processes or systems
• action describes a task performed on an object
• object is a system or application resource (something

that can be used)
• clarifier identifies an attribute or instance of a

subject, action or object and is used for refinement or
distinction

• cap/con identifies whether the requirement is an in-
tended system capability or constraint

• comment is a single line elucidation or exemplification
of the requirement

For example, the use case statement,

2.1.5 The CFO shall have write access to
the inventory file,

would be expressed in the ACP format as,

2.1.5[userCFO : accesswrite : fileinventory ]cap |

where the subject is ‘userCFO’, the action is ‘accesswrite’
and the object is ‘fileinventory’. In the ACP format, CFO,
write and inventory are clarifiers. The clarifiers and other
variables (subject, action, object, capability or constraint, and
the requirement reference) are the parameters of an ACP [19].
By transforming a requirements document to a set of ACPs

we are able to reduce its size while capturing the information
related to interactions that can be used to identify potential
vulnerabilities.

Template arguments are stored in an ISD table. Table 1
depicts a subset of typical entries in an ISD table. The ‘Type’
attribute corresponds to one of the ACP format’s parameters
subject, object, action or clarifier, while ‘Bound to’ indicates
another ACP argument that the one being defined must
be used with. Only clarifiers can be bound to other ACP
arguments.

TABLE I
SAMPLE ISD TABLE ENTRIES

TERM TYPE DESCRIPTION CLARIFIER
REQ’D

BOUND
TO

ISD

access action a right provided to an
actor by the intended
system

yes - -

verify action a process of compari-
son of a ACP argument
or combination of ACP
arguments with an as-
sociated standard of the
intended system

no - -

write clarifier a process of recording
data into an object by
an actor

no access verify

Returning to example requirement statement 2.1.5, and
referring to Table 1, ACP argument ‘write’ has an imposed
security dependence on another argument, ‘verify’. This
dependency causes SECREt to generate a requirement stating
that the system must verify the CFO has the permission to
write to the inventory file. The ACP that would be generated
would be,

2.1.5.1[system : verify : fileinventory ]cap | CFO write

ISD relations are neither reflexive nor symmetrical but are
transitive i.e.,

(ACP1 /−]ACP1), (1)
(ACP1−]ACP2) /⇒(ACP2−]ACP1), (2)
(ACP1−]ACP2) and (ACP2−]ACP3)⇒(ACP1−]ACP3)

(3)

C. The Loophole Algorithm

Having converted a specification document into a more
concise form and developed a more complete set of
requirements, we analyse them for loopholes by examining
ACPs and their successors. An ACP’s successors are those
requirements that are directly reachable from it, i.e. they are
elements of the sequence of activities described in use case
scenarios that form a path.



We examine a set of requirements by defining a relation
R. Let D be the set of all ACPs that are obtained from a
particular requirements document, and R be a relation that
maps an element of D to its successor element(s).

To represent the possible transitions from one requirement
to another we defined R with the following properties,

R : D ×D (4)
∀r : D • (r, r) /∈ R (5)
∀r, q : D • (r, q) ∈ R 6⇒ (q, r) ∈ R (6)
∀r, q, s : D • (r, q) ∈ R ∧ (q, s) ∈ R⇒ (r, s) ∈ R (7)

Because we are representing intended interactions in a
system under development, intuitively, R is anti-reflexive,
transitive (statements 5 and 7) and must therefore also
be anti-symmetric (statement 6). Using R, a hierarchy of
ACPs and their successors is created. These hierarchies can
be conceptualised and depicted as simple digraphs. The
requirement references (node values) and directed edges are
used to represent the associations and sequence of interactions
among requirements respectively.

We want to identify security policy breaches by utilising
R. A policy is described by the allowed interactions of the
intended system’s users and objects i.e. the members of D. To
identify breaches, we analyse representations of the activities
by analysing R.

For this purpose, however, R is not sufficient as some of
the possible paths are typically not explicitly included in a
requirements document. These are the paths we are interested
in. We therefore include the set of all reachable paths by
finding the transitive closure of R.

The steps of the loophole analysis are as follows:
1) Represent the relation R as a binary matrix M.
2) Find the transitive closure of R, using the Floyd-Warshall

algorithm [21]. Call this new relation R*.
3) Represent R* as a binary matrix M′.
4) Perform the bit-wise XOR of corresponding elements of

M and M′. This will identify maplets created as a result of
step 2 i.e. the indirect relationships that are not included
in the original.

5) Where a 1 exists in M′ but not M, excluding any that
are reflexive or symmetric (statements 5 and 6), create a
temporary ACP by combining the subject of the initial
ACP of the path (start point) with the action and object
of the final ACP (end point) of the path. In a two
dimensional matrix representation of M′ the start point
will correspond to a row identifier and the end point a
column identifier.

6) Compare each temporary ACP with every ACP in D
expressed as a constraint.

7) A loophole (i.e. a vulnerability) exists when there is a
match.

Fig. 2. A set of paths

D. Applying the Algorithm

Figure 2 is the digraph of a selection of paths from a
requirements specification that describes required interactions
between a user and a system when the user wants to login
to perform services provided by the system. On one of these
paths for example, the user logs in to the system, has her
credentials checked, if accepted the system checks whether
she has another open session and if there is no open session
on the system, retrieves her permissions and displays her
interface. Below is the set of associated ACPs that represent
these activities.

R.4.1.5.5[user : login : system ]cap |
R.4.1.5.6[system : validate login : system ]cap |
R.4.1.5.9[system : check : sessions active ]cap |
R.4.1.5.10[system : retrieve : permissions user ]cap |
R.4.1.4.5[system : display : interface ]cap |

One of the options the ordinary user now has available is
the activity called ‘become administrator’ (this is similar to
the ‘Run as Administrator’ option available to ordinary users
on some Windows operating systems, without requiring the
presentation of credentials).

R.3.4.1.e[user : select : processbecome admin ]cap |

Selecting this option takes her along a path originating at
R.4.1.6.5 (see Figure 2). This allows her to perform tasks
such as the installation of small applications. All of her
activities described thus far are completely legitimate and
would comply with what is intended for the system under



Fig. 3. The digraph of a loophole

development. When the loophole algorithm is now applied to
the set of ACPs depicted in Figure 2, one of the reachable
paths it discovers (step 5, section C), takes the user along a
sequence of activities, beginning at statement R.4.1.5.5 (start
point) and terminating at statement R.3.1.1.7.a.i (end point).
This path allows her to create another ordinary user’s account.

R.3.1.1.7.a.i[useradmin : create : accountuser ]cap |

We now complete step five of the algorithm by combining
the subject of the start point (R.4.1.5.5) with the action and
object of the end point (R.3.1.1.7.a.i) to create the temporary
ACP,

[user : create : accountuser]cap |

The capability represented by this ACP however, violates
constraint R.4.2.1.2 (not shown in Figure 2 but associated
with ACP R.4.2.1.2.i) which states,

R.4.2.1.2[user : create : accountuser]con |

All the steps involved in completing the activity are
legitimate, yet the outcome violates the policy. This is a
loophole and therefore constitutes a potential vulnerability
in the system. Figure 3 is a replica of the digraph shown in
Figure 2 with the identified loophole highlighted.

IV. THE SECRET

SECREt is designed to be applied towards the end of the
requirements engineering phase, after the use of existing
approaches such as misuse cases. Its main features are

Fig. 4. Overview of the SECREt

described below:

1) It permits the entry of requirements. The Volere [22]
requirements shell and boilerplates [23] are used

2) It extracts the required data and creates properly format-
ted ACPs

3) It permits the maintainence of sets of ACPs: save to a
file, print, sort and load from a file

4) It permits the maintainence of the ISD table of template
arguments and imposed security dependencies

5) It automatically generates ACPs based on imposed secu-
rity dependencies

6) It identifies policy breaches using the loophole algorithm
7) It generates a basic requirements document using an

ACP set, the Volere requirements shell and boilerplates

Figure 4 depicts the main set of activities that an engineer
can perform using the SECREt, with the exception of items
4 and 7 listed above.

Figure 5 depicts the architecture of the SECREt’s primary
functions. The function analyzeISD() identifies omitted
security related requirements based on the ISD table stored
in one of the prototype’s SQLite databases. It incorporates
the use of four functions that each loop through the set of
ACPs and check for omissions related to actions, objects,
action and object clarifiers. The four functions themselves call
upon two others. relReqExist() identifies requirements
statements that are unrecorded, but must be included, based
on ISDs contained in the tool’s ISD table. genDR()
generates the requirement statements that must be included,
but were unrecorded, using templates selected from the



Fig. 5. Architecture of the SECREt’s primary functions

tool’s collection. The function analyzeISD() successfully
completes when no new requirements statements have been
generated. It is these functions that are responsible for
detecting the ISD on clarifier ‘write’ and generating the ACP
statement 2.1.5.1 in section 3B.

The function findLoopHoles() governs the application
of the loophole analysis by executing(among others) the
following processes:

• verifies that all successor requirement entries are valid. A
successor is deemed invalid if a corresponding ACP does
not exist. findLoopHoles() cannot continue until all
successor requirement entries have been validated.

• builds the binary, n x n matrix M (where n=|D|) using
multi-dimensional arrays, and makes a copy of M. This
copy is used to complete the transitive closure of M, M′.

• performs the Floyd-Warshall algorithm to complete the
transitive closure of R.

findLoopHoles() then compares the arrays used to
represent M and M′. When a difference is found, the bit-wise
XOR is performed on the arrays, temporary ACPs are built,
and the function loops through an array of ACPs expressed
as constraints. The function then compares the temporary
ACPs with these constraints and displays any matches that
are found as potential flaws. These matches correspond to
loopholes or vulnerabilitites that exist in the system’s design.

V. CONCLUSION AND FUTURE WORK

Although preliminary, we believe the results are promising.
Loopholes are unknown, reachable paths that would exist
if a system were to be developed in accordance with the
specification document in the form prior to the loophole
analysis. The analysis did not include nor require the motives,
resources and skills of an attacker, or possible threats to
the system to be postulated. Its foundation is based on the
statement of policy, expressed as a ACP.

SECREt, although tested using documents between 80-
150 pages, has not been tested with documents that detail
large and very large systems. This is primarily due to
the unavailability of such documents for our research due
to the reluctance of organisations to disclose such information.

We are pursuing a number of enhancements to the SECREt.
For example, we would like to provide the ability to step
through loopholes, represented as digraphs, to visualise
the points along the paths that raise concerns. This will
provide an engineer with the ability to develop appropriate
countermeasures with minimal effect on the intended system’s
features.

Perhaps the most important feature to be included will be
the SECREt’s security assurance rating of proposed systems.
This rating will assert that the requirements engineers of a
proposed system have satisfactorily considered and addressed
particular classes of vulnerabilities during the design process.
The rating, however, will only be applicable if the system is
developed in strict accordance with the specification, after the
SECREt’s analyses and modifications have been performed
and made to the specification.
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