
Computer Science
Technical Report

An Approach for Code Generation in the
Sparse Polyhedral Framework

Michelle Mills Strout, Alan LaMielle,
Larry Carter, Jeanne Ferrante,

Barbara Kreaseck, and Catherine Olschanowksy

December 24, 2013

Technical Report CS-13-109

Computer Science Department
Colorado State University

Fort Collins, CO 80523-1873

Phone: (970) 491-5792 Fax: (970) 491-2466
WWW: http://www.cs.colostate.edu



An Approach for Code Generation in the Sparse Polyhedral

Framework

Michelle Mills Strout, Alan LaMielle,
Larry Carter, Jeanne Ferrante,

Barbara Kreaseck, and Catherine Olschanowksy

December 24, 2013

Abstract

Applications that manipulate sparse data structures contain memory reference patterns that are un-
known at compile time due to indirect accesses such as A[B[i]]. To exploit parallelism and improve
locality in such applications, prior work has developed a number of run-time reordering transformations
(RTRTs). This paper presents the Sparse Polyhedral Framework (SPF) for specifying RTRTs and com-
positions thereof and algorithms for automatically generating efficient inspector and executor code to
implement such transformations. Experimental results indicate that the performance of automatically
generated inspectors and executors competes with the performance of hand-written ones in some cases.

1 Introduction

Many scientific computing applications and virtually all graph algorithms use sparse data structures that are
typically accessed using indirect array references such as A[B[i]]. Such applications are commonly called
irregular applications, and examples include solving partial differential equations over irregular grids, molec-
ular dynamics simulations, and sparse matrix computations. These computational simulations of physical
phenomena are becoming increasingly important in the natural sciences. For example, molecular dynamics
simulations are used to aid drug design and study protein interactions [65]. The performance of computa-
tional simulations is important because improved performance enables finer-grained modeling for a larger
number of time steps.

Unfortunately, indirect array accesses often result in irregular memory reference patterns that exhibit poor
locality and consequently can result in poor performance. Processors always move blocks of contiguous data
into cache, so whenever a program references a single array element, the entire enclosing block is moved into
cache. If the other elements of the block are used before the block is evicted, the program can often achieve
acceptable performance. However, irregular memory references often do not have much localized reuse. In
fact, a typical irregular application only achieves 5–10% of the advertised peak processor performance [25].
Poor data locality is becoming even more of a performance problem with multicore architectures where
shared memory results in more cores competing for both space in cache and memory bandwidth; also, access
to shared memory is becoming non-uniform.

There have been many program optimizations and transformation frameworks developed for improving
the memory reference patterns for codes that are limited to affine references [23, 37, 54, 34, 10, 31, 32, 73,
29, 12, 66]. Currently, the dominant transformation framework for affine transformations is the polyhedral
framework [72, 23, 54, 31, 13, 8, 48, 6]. There are two reasons these techniques cannot be applied when there
are indirect memory references. The first is that indirect references inhibit the data dependence analysis
needed to determine if a transformation preserves the semantics of the program. The second reason is more
fundamental: it is usually impossible to know at compile time whether a particular indirect reference will
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lead to a good or bad access pattern — the access pattern depends on values in the index arrays that are
only known at run-time.

To overcome these problems, Run-Time Reordering Transformations (RTRTs) have been developed [14,
15, 56, 51, 2, 19, 40, 24, 28, 58, 39, 26]. Typically, an RTRT is implemented using an inspector and an
executor. The inspector is code that analyses the memory reference at runtime, perhaps by looping over the
index array (the B array in A[B[I]]), to generate a new mapping for the data or a new order to execute the
computation (e.g. by reordering entries in B[]) that improves the data locality or enhances parallelism. The
executor is a modified version of the original code that incorporates the new data and computation orders.
The inspector is called outside of a loop that calls the executor, so the time required by the inspector is
amortized over many iterations of the executor. In this paper, we present the Sparse Polyhedral Framework
(SPF) for the specification of computation with indirect memory references and program transformations on
such computations, which are then implemented with generated inspectors and executors. The focus of this
paper is code generation for data locality RTRTs.

Previous work has made some progress toward the automation of run-time reordering transformations.
Initially, such transformations were incorporated into applications manually for parallelism [15]. Next,
libraries with run-time transformation primitives were developed so that a programmer or compiler could
insert calls to such primitives [16, 55]. Currently, there are run-time reordering transformations for which a
compiler can automatically analyze and generate the inspectors [74, 19, 40, 26]. In general, theses techniques
focus on individual inspector/executor strategies. Other than a small subset of “hard-coded” compositions,
the generation of inspectors that implement a set of RTRTs has not been automated.

The components of a general automatic RTRT system should include:

1. A framework for specifying irregular computations and compositions of RTRTs to apply to these
computations.

2. A library of RTRTs including compile-time and run-time support that can easily be applied to particular
computations.

3. Program analysis algorithms that update information summarizing the effects of a sequence of RTRTs
to determine when additional RTRTs are legal.

4. A guidance system to choose a sequence of RTRTs given various evaluation criteria such as minimizing
execution time, maximizing throughput, and/or minimizing memory footprint.

5. A code generator capable of generating inspector and executor code.

Creating a complete automated system is beyond the scope of this paper. In particular, creating a
good guidance system capable of automatically selecting effective program optimization strategies is a very
challenging problem. Before one can automate the selection of a sequence of transformations, one must gain
extensive experience with user-selected transformations. The contributions described in this paper aim at
facilitating such experiments. In particular, we focus on goals (1), (2) and (5) listed above, leaving some of
the analysis and all of the guidance to be provided by the experimenter.

In summary, the contributions of this paper are:

• A unified framework called the Sparse Polyhedral Framework (SPF) for specifying irregular/sparse
computations and Run-Time Reordering Transformations (RTRTs) on such computations (goal 1). .

• Illustrating goal 2 with data and iteration reordering examples.

• Description of a code generator prototype, called the Inspector/Executor Generator in Python (IEGen
in Python), that enables the user to specify computations and transformations as a substitute for goals
3 and 4. The code generator fulfills goal 5 through the use of two new intermediate representations:
(1) the Inspector Dependence Graph (IDG) to represent the components of a composed inspector and
(2) the Mapping IR (MapIR) to represent the executor.
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// Outer time−s tepping loop .
for ( s =0; s<Ns ; s++) {

// Update pos i t i on for each atom .
for ( i =0; i<Nv ; i++) {

S1 : x [ i ] + = . . . fx [ i ] . . . vx [ i ] . . . ;
}

// Update forces on each atom due to pairs of atom in t e rac t i ons .
for ( e=0; e<Ne ; e++) {

S2 : fx [ l e f t [ e ] ] += . . . x [ l e f t [ e ] ] . . . x [ r i g h t [ e ] ] . . . ;
S3 : fx [ r i g h t [ e ] ] += . . . x [ l e f t [ e ] ] . . . x [ r i g h t [ e ] ] . . . ;
}

// Update v e l o c i t y for each atom .
for ( k=0; k<Nv ; k++) {

S4 : vx [ k ] += . . . fx [ k ] . . . ;
}

}

Figure 1: Simplified moldyn example. Ns is the number of simulated time steps, Nv is the number of
atoms/vertices, and Ne is the number of pairwise atom interactions, or edges.

• Experimental results that explore how well our automatic generators compare against hand-coded and
optimized inspectors and executors.

Before diving into the formalisms of our framework, Section 2 illustrates applying some example RTRTs
to a molecular dynamics code fragment. Section 3 presents the Sparse Polyhedral Framework (SPF) and
how the example transformations in Section 2 can be specified. Section 4 presents techniques for generating
inspector and executor implementations from the Inspector Dependence Graph (IDG) and the Mapping
Intermediate Representation (MapIR), and Section 5 describes how transformations can be implemented as
manipulations of the IDG for the inspector and the MapIR for the executor. Section 6 evaluates the code
generation techniques in terms of their performance in the context of a molecular dynamics benchmark and
an sparse matrix vector product benchmark. Section 7 describes related work, and Section 8 concludes.

2 Example Run-Time Reordering Transformations

This section uses the simplified code fragment of Figure 1, derived from the molecular dynamics benchmark
moldyn [44], to review some existing run-time reordering transformations. Molecular dynamics simulations
typically maintain a list of pairs of molecules that interact; in our code, each value of e indexes the pair
(left[e],right[e]). The outer loop indexed by s steps through time. The cost of running an inspector
before this outer loop will be amortized over its multiple iterations. Statement S1 updates the position
of a molecule as a function of the velocity and acceleration of the molecule (the example only shows the
computations for the x-coordinate.) Statements S2 and S3 in the j loop compute the forces on each atom by
summing the forces from the atoms it interacts with. Statement S4 in the k loop uses the forces to compute
new velocities for each molecule.

RTRTs fall into two main classes. Data reorderings change the mapping of data to storage locations.
They attempt to improve the spatial locality of the memory reference pattern, for instance, by placing values
that will be referenced by nearby iterations in the same cache blocks. Iteration reorderings change the order
that iterations of a loop (or loop nest) are executed. Here the goal might be to increase the temporal
locality of iterations that access the same data. Often performance can be further improved by applying a
sequence of RTRTs. A typical scenario is to first perform a data reordering, and follow it with an iteration
reordering. We illustrate some existing data and iteration reorderings on the e loop, and also show a sparse
tiling technique that improves the locality between the i, e, and k loops.
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count = 0 ;
// I n i t i a l i z e the array tha t ind i ca t e s whether an atom has been packed .
for ( i =0; i<Nv ; i++) { as s i gned [ i ]= f a l s e ; }

// I t e r a t e over the atom in te rac t i on pairs and pack atoms into σ reordering .
for ( e=0; e<Ne ; e++) {

i f ( ! a s s i gned [ l e f t [ e ] ] ) {
σ [ l e f t [ e ] ] = count++;
as s i gned [ l e f t [ e ] ] = true ;

}
i f ( ! a s s i gned [ r i g h t [ e ] ] ) {

σ [ r i g h t [ e ] ] = count++;
as s i gned [ r i g h t [ e ] ] = true ;

}
}

// Place atoms not invo lved in an in t e rac t i on into the σ reordering .
for ( i =0; i<Nv ; i++) {

i f ( ! a s s i gned [ i ] ) { σ [ i ] = count++; }
}

Figure 2: The cpack inspector for the simplified moldyn example iterates over the atom interactions that are
stored in the left and right index arrays. The first time an atom index appears in the index arrays, it is
“packed” into the σ reordering array.

2.1 A Run-time Data Reordering

Consecutive packing (or “cpack”) is a data reordering method introduced by Ding and Kennedy in [19]. For
the example in Figure 1, cpack reassigns memory locations for the x and fx arrays according to the order
in which the data are referenced in the e loop. Because these indirect memory references are not known
at compile time, cpack requires inserting inspector code such as that in Figure 2 before the nested loops of
Figure 1.

In Figure 2, the second loop of the inspector computes the data reordering permutation σ, which records
the order that elements of the x array are first referenced in the e-loop of the original code. The third loop
assigns memory for any unreferenced data.

The original code of Figure 1 is replaced by the executor shown in Figure 3. First, the permutation
σ is applied to x and fx to produce the remapped arrays new x and new fx. Next, each occurrence of
x[...] in the original code is replaced by new x[σ[...]]. Similarly, occurrences of fx[...] are replaced
by new fx[σ[...]]. Finally, a loop must be inserted after the s-loop to restore the data in new x and
new fx back to x and fx in the original order.

The executor in Figure 3 contains extra indirect accesses such as new fx[σ[i]] in the i loop and second
level of indirection added to accesses in the e loop. In this example, all of these extraneous levels of indirection
can be removed by performing pointer update, data alignment, and iteration alignment transformations.
Pointer update [19] modifies the values in index arrays like left and right so that the effect of a reordering
like σ is incorporated (e.g., A[ B[C[i]] ] becomes A[ BC[i] ] where BC is a new index array). Data
alignment reorders arrays such as vx that parallel the data arrays being reordered. Iteration alignment
capitalizes on the lack of loop carried data dependences and matching of the iteration domain with the data
domain to remove unnecessary indirect array accesses from loops such as the i and k loops in the example.
Ding and Kennedy [19] initially introduced data alignment and iteration alignment as two separate parts of
an optimization called array alignment.

Figure 4 shows the additional inspector code needed to implement pointer update. The additional
inspector loop generates σleft and σright, the index arrays for the updated locations of the data in new x.
Figure 5 shows that in the executor any occurrence of σ[left[...]] is replaced by the more efficient
σleft[...], and similarly for σ[right[...]]. The effect of data alignment is seen in Figure 5 where the vx

array is remapped before and after the s loop in the same fashion as the x and fx arrays. Iteration alignment
removes the indirect accesses from the i and k loops due to the index array σ.
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// Copy data into reordered array .
for ( i =0; i<Nv ; i++) {

new x [σ [ i ] ] = x [ i ] ;
new fx [σ [ i ] ] = fx [ i ] ;

}

// moldyn computation
for ( s =0; s<Ns ; s++) {

for ( i =0; i<Nv ; i++) {
new x [σ [ i ] ] += . . . new fx [σ [ i ] ] . . . vx [ i ] . . . ;

}
for ( e=0; e<Ne ; e++) {

new fx [σ [ l e f t [ e ] ] ] += . . . new x [σ [ l e f t [ e ] ] ] . . . new x [σ [ r i g h t [ e ] ] ] . . . ;
new fx [σ [ r i g h t [ e ] ] ] += . . . new x [σ [ l e f t [ e ] ] ] . . . new x [σ [ r i g h t [ e ] ] ] . . . ;

}
for ( k=0; k<Nv ; k++) {

vx [ k ] += . . . new fx [σ [ k ] ] . . . ;
}

}

// Copy data out of reordered array .
for ( i =0; i<Nv ; i++) {

x [ i ] = new x [σ [ i ] ] ;
fx [ i ] = new fx [σ [ i ] ] ;

}

Figure 3: Executor for moldyn using cpack

for ( i =0; i<Ne ; i++) {
σleft [ i ] = σ [ l e f t [ i ] ] ;
σright [ i ] = σ [ r i g h t [ i ] ] ;

}

Figure 4: Additions to inspector for the simplified moldyn example that implement pointer update, data
alignment, and iteration alignment

// Copy data into reordered array .
for ( i =0; i<Nv ; i++) {

new x [σ [ i ] ] = x [ i ] ;
new fx [σ [ i ] ] = fx [ i ] ;
new vx [σ [ i ] ] = vx [ i ] ;

}
// moldyn computation
for ( s =0; s<Ts ; s++) {

for ( i =0; i<Ns ; i++) {
new x [ i ] += . . . new fx [ i ] . . . new vx [ i ] . . . ;

}
for ( e=0; e<Ne ; e++) {

new fx [σleft [ e ] ] += . . . new x [σleft [ e ] ] . . . new x [σright [ e ] ] . . . ;
new fx [σright [ e ] ] += . . . new x [σleft [ e ] ] . . . new x [σright [ e ] ] . . . ;

}
for ( k=0; k<Nv ; k++) {

new vx [ k ] += . . . new fx [ k ] . . . ;
}

}
// Copy data out of reordered array .
for ( i =0; i<Nv ; i++) {

x [ i ] = new x [σ [ i ] ] ;
fx [ i ] = new fx [σ [ i ] ] ;
vx [ i ] = new vx [σ [ i ] ] ;

}

Figure 5: Executor for moldyn using cpack, pointer update, data alignment, and iteration alignment
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Figure 6: Data for moldyn examples

Iteration:

Edge:

Node:

Memory cell:

Iteration:

Edge:

Node:

Memory cell:

Original moldyn memory reference pattern

After CPACK data reordering

Figure 7: Change in memory reference pattern due to cpack

The transformed executor performs exactly the same computation on the same data in the same order
as the original code; the only difference is where the data are located. The effect cpack has on performance
depends on how much time is saved by the improved spatial locality of the remapped code, compared to the
time taken by the inspector and the final permutation, amortized over the Ns iterations of the transformed
code.

We illustrate via an absurdly small example how cpack and a few other transformations affect moldyn’s
memory reference pattern. Suppose the pairs of interacting molecules are given by the graph in Figure 6.

Figure 7 shows the memory reference pattern for the e loop of moldyn on this example. The top two
rows of each diagram show the order that the edges are processed; in both cases, they are handled in the
natural order. The bottom two rows of each diagram show the mapping of data to memory. We see that
in the original code, the data are stored sequentially, but after the cpack transformation, they are stored in
the order that they are first referenced, 0, 3, 6, 1, and so on. The arrows indicate which data items and
therefore memory addresses are accessed by each iteration. The figures suggest that, as program execution
moves from left to right, the memory references in the transformed code exhibit better spatial locality (i.e.,
less jumping around) than in the original code.
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We can quantify the improvement for the e loop on a toy architecture. Suppose the memory of our
computer is partitioned into cache lines, each holding the x and fx data for exactly two molecules. Thus
for the untransformed code and data, atoms 0 and 1 are in the first cache line, 2 and 3 in the second, and
so on. We make additional simplistic assumptions: there is fully-associative cache that can hold only two
cache lines, the cache uses the least recently used replacement strategy, and the cache is only used for x and
fx (or after data reordering new x and new fx). The following table shows exactly which cache line resides
in each cache slot at each iteration of the e loop, with the notation 01 indicating the cache line in memory
that contains the x and fx values for nodes 0 and 1 is being brought into the cache slot.

Iter 0 1 2 3 4 5 6 7 8 9 10 11
Edge e0 e1 e2 e3 e4 e5 e6 e7 e8 e9 e10 e11

Nodes 0 3 3 6 1 4 4 7 2 5 5 8 0 1 3 4 6 7 1 2 4 5 7 8

Cache slot 1 01 67 45 23 8- 23 67 23 67
Cache slot 2 23 01 67 45 01 45 01 45 8-

In the above table, there are 18 cache misses for the e loop. When cpack is used to reorder the data in
the x and fx arrays, the cache lines become (0,3), (6,1), (4,7), (2,5), and (8). The resulting cache behavior
is shown in the following table, where there are only 12 cache misses for the e loop.

Iteration 0 1 2 3 4 5 6 7 8 9 10 11
Edge e0 e1 e2 e3 e4 e5 e6 e7 e8 e9 e10 e11

Nodes 0 3 3 6 1 4 4 7 2 5 5 8 0 1 3 4 6 7 1 2 4 5 7 8

Cache slot 1 03 47 8- 61 47 25 8-
Cache slot 2 61 25 03 61 47

2.2 A Run-time Iteration Reordering

In the aforementioned paper [19], Ding and Kennedy also introduce the iteration reordering transformation
locality grouping. This transformation rearranges the iterations so that all iterations referencing node 0 occur
together, then all iterations referencing node 1, and so on. For the running example, the resulting iteration
order for the e loop is shown in the upper diagram of Figure 8. This diagram appears less “jumpy” than the
two in Figure 7, and indeed, the simulation in the following table shows that the toy architecture has only
10 cache misses in the e loop.

Iteration 0 1 2 3 4 5 6 7 8 9 10 11
Edge e0 e6 e2 e9 e4 e1 e7 e3 e12 e5 e8 e11

Nodes 0 3 0 1 1 4 1 2 2 5 3 6 3 4 4 7 4 5 5 8 6 7 7 8

Cache slot 1 01 45 67 45 67
Cache slot 2 23 45 23 67 8-

The Sparse Polyhedral Framework introduced in this paper is designed to facilitate applying a sequence
of data and iteration reorderings. This can result in additional performance improvements. A common
approach is to perform a data reordering and then an iteration reordering [19, 26]. For instance, suppose we
first apply cpack to give the data mapping 0, 3, 6, 1, 4, 7, 2, 5, 8 as before. Then locality grouping gives
the iteration order beginning e0, e6, (the uses of node 0), followed by e1, e7 (the uses of node 3), and so on.
Simulating the toy architecture shows there are only 8 cache misses in the e loop (see the following table).

Iteration 0 1 2 3 4 5 6 7 8 9 10 11
Edge e0 e6 e1 e7 e8 e2 e9 e3 e10 e11 e4 e5

Nodes 0 3 0 1 3 6 3 4 6 7 1 4 1 2 4 7 4 5 7 8 2 5 5 8

Cache slot 1 03 61 47 25
Cache slot 2 61 47 25 8-
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Memory cell:

Iteration:

Edge:

Node:

Memory cell:

After Locality Grouping iteration reordering

Iteration:

Edge:

Node:

Optimal data and iteration reordering

Figure 8: Memory reference patterns for locality grouped and for optimal code

Finally, we illustrate in the lower diagram of Figure 8 and the following table a combined data and
iteration reordering that has only six cache misses in the e loop! The cache lines for this example are (6),
(3,7), (0,8), (1,5), and (2,4). These reorderings were found by hand; in general, finding the best reorderings
is an NP-complete problem [19], making it impractical to solve the problem precisely.

Iteration 0 1 2 3 4 5 6 7 8 9 10 11
Edge e1 e8 e0 e11 e5 e6 e9 e4 e10 e2 e7 e3

Nodes 3 6 6 7 0 3 7 8 5 8 0 1 1 2 2 5 4 5 1 4 3 4 4 7

Cache slot 1 37 15 37
Cache slot 2 6- 08 24

2.3 Full Sparse Tiling Example

The iteration reordering techniques illustrated so far are limited to rearranging the order of iterations within
a single loop. Full sparse tiling [58, 61] and related methods [20, 41] consider a larger context, either adjacent
loops or multiple executions of an inner loop that are iterated by an outer loop. It is possible to aggregate
computations between different loops, even when data dependences prevent compile-time optimizations,
because the new iteration order is chosen at runtime by inspector code that respects the run-time ordering
constraints.

Full sparse tiling begins by choosing one of the loops and creating a seed partition of the iterations of
that loop. Selecting a middle loop leads to smaller memory footprints per tile and therefore is the heuristic
selection approach [57]. Then, for each cell of the partition, a tile is grown to include all the iterations of the
preceding loops that are needed to allow the execution of the iterations in the cell, along with iterations in
the following loops that are enabled by this choice. The name full sparse tiling arises from the fact that we
are tiling a computation that iterates over a sparse data structure and that the tile growth phase creates tiles
that fully cover the iteration space. The executor code has an outer loop over the tiles. If the seed partition
is chosen well, then the computation within each tile will have good locality, perhaps fitting entirely in cache.
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Figure 9: FST moldyn example

As an example, consider the three inner loops, indexed by i, e, and k, of the moldyn example of Figure 1.
Because the cache of our toy architecture is so small, we are not able to select tiles that fit in cache, but we
can still improve the temporal locality. After a consecutive packing of the data (i.e., node data is ordered
as follows: 0, 3, 6, 1, 4, 7, 2, 5, 8), we apply full sparse tiling by first partitioning the e loop into five very
small cells, {e0,e6}, {e1,e7}, {e8,e3}, {e5,e11}, {e2,e10}, and {e4,e9}. Figure 9 shows the result of growing
the tiles across the three loops.

The new schedule involves executing all of the iteration points in a tile before doing the next tile. For
instance, the first tile (tile number 0) first executes statement S1 for i = 0, 3, and 1, then it executes S2 and
S3 for edges e0 and e6 (which reference nodes 0, 3 and 0, 1 in the x and fx arrays), and finally it executes
statement S4 for k = 0.

In the below tables, our toy cache simulation shows that there are a total of 14 cache misses for all
three loops when full sparse tiling is utilized. When consecutive packing data reordering followed by locality
grouping is used for loop e, the total number of cache misses for all three loops is 18. Thus, in this small
and not necessarily representative example, full sparse tiling is the superior method.

Tile number 0 1 2

Nodes in i loop 0 3 1 6 4 7

Edges of e loop e0 e6 e1 e7 e8 e3

Nodes in k loop 0 3 6

Array references 0 3 1 0 3 0 1 0 6 4 3 6 3 4 3 7 6 7 4 7 6

Cache slot 1 03 47 61 47
Cache slot 2 61 03 61

Tile number 3 4 5

Nodes in i loop 5 8 2

Edges of e loop e5 e11 e2 e10 e4 e9

Nodes in k loop 7 8 4 1 2 5

Array references 5 8 5 8 7 8 7 8 1 4 4 5 4 2 2 5 1 2 1 2 5

Cache slot 1 25 47 61 25
Cache slot 2 8- 47 61

In summary, the example in this section reviews some of the run-time data and iteration reordering
transformations that have been shown to improve performance with real sparse data sets. Different com-
positions of reordering heuristics work best for differing input data sets. Implementing inspector/executor
strategy variants to enable autotuning selection of the best approach is inhibited by the lack of automation in
applying these transformations. In this paper, we present techniques for automatically generating inspectors
and executors that can be expressed in the Sparse Polyhedral Framework.
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3 The Sparse Polyhedral Framework

Specifying run-time data and iteration reorderings in a compile-time framework has several advantages.
First, both run-time and compile-time transformations are uniformly described. Secondly, a framework
supported with code generation algorithms enables experimenting with different compositions of existing
RTRTs. Third, the sparse polyhedral framework enables the development and the eventual automatic
selection of RTRT compositions. Finally, the transformation legality checks provide constraints on the
compile-time specification of RTRT compositions and on the run-time library of algorithms that generate
run-time reordering functions.

In general, a transformation framework includes

• an intermediate representation for representing computations,

• transformation specifications,

• formal methods for applying transformations,

• formal methods for checking transformation legality, and

• algorithms for generating efficient code that implements the specified transformations.

Example frameworks include the unimodular transformation framework [3, 71] and various instances of
the polyhedral framework [72, 23, 54, 31, 13, 8]. In the polyhedral framework, the static control parts
(SCoP) [21, 5] of a program can been represented with some statement representation (e.g., an abstract
syntax tree), an affine function for each memory accesses within each statement, affine functions to represent
data dependences due to the memory accesses, and an affine scheduling function for each statement. Trans-
formation specifications and data dependences are formalized as integer tuple functions. Transformations
are performed within a polyhedral framework by applying affine transformation functions to the statement
scheduling functions. Transformation legality checks can be performed by applying the transformation to
the dependence abstraction and determining if the result is legal. Code generation algorithms generate code
that will execute the transformed iteration space in lexicographical order.

This section reviews the Sparse Polyhedral Framework (SPF) for specifying irregular computations and
Run-Time Reordering Transformations (RTRTs) on such computations. The SPF enables the explicit com-
position of run-time data and iteration-reordering transformations and was initially presented in [59]. As
the name indicates, the Sparse Polyhedral Framework (SPF) is based heavily on polyhedral transformation
frameworks, especially that of Kelly and Pugh [31]. Polyhedral frameworks focus on specifying transfor-
mations that can be completely specified and performed at compile time. The SPF enables the combined
compile-time and run-time specification of run-time reordering transformations. Similar to the work in [46],
the SPF uses uninterpreted function symbols such as B(i) to represent non-affine memory references such as
the indirect memory references A[B[i]]. Additionally, we can express run-time data and iteration-reordering
within the SPF using uninterpreted function symbols.

3.1 Abstract Sets and Relations

Abstract sets and relations are the fundamental building blocks for the SPF. Data and iteration spaces are
represented with abstract sets and access functions; transformations are represented with abstract relations.
We use the term abstract to differentiate between sets and relations specified at compile time, which are
abstract, and sets and relations that are explicitly constructed at runtime with all of their members, which
are referred to as explicit sets and relations. This section defines abstract sets, abstract relations, and
operations that can be performed on them.

Abstract sets are integer tuple sets with inequality and equality constraints on set membership,

{[i0, i1, ..., id−1] | inequality and equality constraints }.
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for ( s =0; s < Ns ; s++) {
for ( i =0; i < Nv ; i++) {

S1 : x [ i ] + = . . . fx [ i ] . . . vx [ i ] . . . ;
}
for ( e=0; e < Ne ; e++) {

S2 : fx [ l e f t [ e ] ] + = . . . x [ l e f t [ e ] ] . . . x [ r i g h t [ e ] ] . . . ;
S3 : fx [ r i g h t [ e ] ] + = . . . x [ l e f t [ e ] ] . . . x [ r i g h t [ e ] ] . . . ;

}
for ( k=0; k < Nv ; k++) {

S4 : vx [ k ] + = . . . fx [ k ] . . . ;
}

}

Figure 10: Simplified moldyn example. Copied from Figure 1 for exposition purposes.

The arity of the set is the dimensionality of the tuples, which for the above is d. The constraints can be affine
expressions of the tuple variables ik, symbolic constants, existential variables, and uninterpreted function
symbols.

Symbolic constants are computation parameters that do no change during the course of the computation.
For example, the following set is a set of integer d-tuples parameterized by the symbolic constants N and B:

{[i0, i1, ..., id−1] | (i0 > 0) ∧ (i0 < N) ∧ ... ∧ (B + i0 < id) ∧ (id ≤ B + 2 ∗ i0)}.

Existential variables are those not declared as tuple variables or symbolic variables.

Uninterpreted function symbols, f(p1, p2, ..., pq), are functions whose value is unknown at compile time.
As in [46], we assume that if ~p = ~x then f(~p) = f(~x). We also allow the actual parameters pk passed to
any uninterpreted function symbol to be affine expressions of the tuple variables, symbolic constants, free
variables, or uninterpreted function symbols, whereas in [46] uninterpreted function symbols are not allowed
as parameters to other uninterpreted function symbols. In addition, in this prototype we require that the
input domain and the output range for each uninterpreted function each be specified as a union of polyhedra
that are not dependent on uninterpreted function symbols1.

Abstract relations specify a set of integer tuple relation pairs with the same kinds of constraints allowed
for abstract sets. For example, the following relation maps all three-dimensional tuples to a one-dimensional
tuple where the value is their third element in the original tuple:

{[i0, i1, i2]→ [i2]}.

There are no constraints on the above relation so it is a set of infinite size with integer tuple pairs such as
{[0, 0, 0] → [0]}, {[0, 0, 1] → [1]}, {[42, 7, 99] → [99]}, etc. An abstract relation has an input tuple arity and
an output tuple arity. As a notational convenience we subscript the names of abstract relations to indicate
which sets are the domain and range of the relation. For example, the relation AI→X has the abstract set I
as its domain and abstract set X as its range.

Operations performed on abstract sets and relations include taking the inverse of a relation, applying a
relation to a set, composing two relations, and taking the union or intersection of two relations or two sets.
In [62], we provide more details about the implementation of these operations.

3.2 Specifying the Computation

Computations consist of symbolic constants, data and index arrays, statements, scheduling functions, access
functions, and data dependences. This section describes each of these computation components in detail.

1Our current implementation is restricted to the input domains being specified as a union of rectilinear domains and the
output parameter being one-dimensional.
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3.2.1 Symbolics

Symbolic constants represent a constant value that is unchanging for the duration of the computation, but
is not known at compile time. Examples of symbolics in Figure 10 are Ns, Nv, and Ne.

3.2.2 Data and Index Arrays

The SPF categorizes each array as either a data array or an index array. A data array typically contains the
data being read and written within the computation and cannot be used to index into another array. An
index array is an integer array that is used to index into data arrays or other index arrays.

Each data array has an associated data space represented with an abstract set with the same dimension-
ality as the array. The data space bounds can be affine functions of constants and symbolic constants. The
original data space for the x array in Figure 10 is

x0 = {[m] | 0 ≤ m < Nv}.

The subscript “0” indicates that x0 is the data space for data array x in the original, untransformed program.
Note that the data space is the index domain of the data array.

Each index array is represented with an uninterpreted function symbol of the same name. As an unin-
terpreted function symbol in SPF, the domain of the index array, or its index space, must be specified along
with the range of values that can be in the index array. For the index array left in Figure 10, its input
domain is {[e] | (0 ≤ e < Ne)}, and its output range is {[m] | (0 ≤ m < Nv)}.

3.2.3 Statements

Computation occurs when statements access data and index arrays and apply various operations to them.
Each iteration of a statement within a loop nest is represented as an integer tuple, ~p = [p1, ..., pn], where pq
is the value of the iteration variable for the qth loop in the loop nest. Thus, a statement’s original iteration
space is a polyhedral set of integer tuples with constraints indicating the affine loop bounds,

{[p1, ..., pn] | lb1 ≤ p1 ≤ ub1 ∧ · · · ∧ lbn ≤ pn ≤ ubn}.

For statement S2 in Figure 10, the original iteration space is

IS2 = {[s, e] | 0 ≤ s < Ns ∧ 0 ≤ e < Ne}.

3.2.4 Scheduling Functions

In the SPF, a scheduling function maps each iteration of a statement into a shared iteration space. The
schedule is then a lexicographical traversal of the points in the shared iteration space. Scheduling statements
into imperfectly nested loops in this fashion was also used by Ahmed et al. [1], Kelly-Pugh [31], and is imple-
mented as scattering functions in CLooG [4]. The statements in the simplified moldyn example in Figure 10
are mapped to a five-dimensional space (i.e., two dimensions for the loops and the other dimensions to denote
loop and statement placement). The following relation specifies the scheduling function for statement S2 in
Figure 10:

SI0,S2→Φ0,S2
= {[s, e]→ [0, s, 1, e, 0]},

where I0,S2 denotes the original iteration space for statement S2 and Φ0,S2 denotes the shared iteration
space. Each loop nest level corresponds to a pair of dimensions, where the first dimension of the pair is the
numerical order of the loop as a statement, and the second dimension is a value of the index variable. The
last value in the tuple corresponds to the statement’s position with respect to other statements at the same
level. The above scheduling function can be interpreted as first statement located within the second loop
nested within the first loop when the iterator values are s and e.
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We refer to the union of all the statement images in the shared iteration space as the full iteration space.
Iteration reordering transformations are specified in terms of the full iteration space. The full iteration
space is computed by applying the scheduling functions to each statement and then taking the union of the
resulting sets.

The full iteration space Φ0 for the (untransformed) program in Figure 10 is the following set:

Φ0 = Φ0,S1 ∪ Φ0,S2 ∪ Φ0,S3 ∪ Φ0,S4

= {[0, s, 0, i, 0] | (0 ≤ s < Ns) ∧ (0 ≤ i < Nv)}
∪ {[0, s, 1, e, 0] | (0 ≤ s < Ns) ∧ (0 ≤ e < Ne)}
∪ {[0, s, 1, e, 1] | (0 ≤ s < Ns) ∧ (0 ≤ e < Ne)}
∪ {[0, s, 2, k, 0] | (0 ≤ s < Ns) ∧ (0 ≤ k < Nv)}.

For instance, using this representation, the [s, k]-th iteration of S4 is denoted [0, s, 2, k, 0] since S4 is in the
third statement (loop k) of the outer loop, and its the first statement within the k loop.

3.2.5 Access Functions

Given a specification of the original iteration space for each statement and its scheduling function, the next
step is to specify how each statement accesses the data arrays. We define an access function as a function
between the original iteration space for a statement and the storage location being accessed in data space
a for a single memory access. We define an access relation AI→a from sets of iterations to sets of storage
locations into data space a, so that for each iteration ~p ∈ I, AI→a(~p ) is the set of locations that are referenced
by iteration tuple ~p. Notice that the subscript “I → a” gives the domain and range of the mapping.

In the SPF, we use uninterpreted function symbols to abstractly represent the access relations that involve
indirect array addressing through index arrays. The Figure 10 example has the following access relation for
statement S2:

AI0,S2→x0 = {[s, e]→ [p] | p = left(e)} ∪ {[s, e]→ [q] | q = right(e)}.

The relation AI0,S2→x0 is the result of the two separate access functions (i.e., one for x[left[e]] and another
for x[right[e]]) for S2 being unioned together into one relation for the whole statement.

Note that the relation AI0,S2→x0 is expressed in terms of the original iteration space for S2. Applying
transformations to this access function requires that it be expressed in terms of the shared iteration space,
Φ0,S2. The desired relation is therefore, AΦ0,S2→x0

.

AΦ0,S2→x0 = AI0,S2→x0 ◦ S−1
I0,S2→Φ0,S2

= AI0,S2→x0 ◦ SΦ0,S2→I0,S2

= {[0, s, 1, e, 0]→ [p] | p = left(e)} ∪ {[0, s, 1, e, 0]→ [q] | q = right(e)}.

3.2.6 Data Dependences

The final step in specifying the computation is to specify the data dependences between iterations of state-
ments in the original unified iteration space. The dependence relation DΦ→Φ = {~p → ~q | constraints }
contains all pairs of iteration points in the full iteration space ~p, ~q ∈ Φ such that iteration ~p must execute
before ~q due to a data dependence. It is also convenient to refer to subsets of DΦ→Φ in terms of dependences
between particular statements. We refer to subsets of DΦ→Φ with the notation dSv,Sw, where v and w are
statement numbers. For example, the dependences between statements S1 ([0, s, 0, i, 0]) and S2 ([0, s, 1, e, 0])
due to the x and fx arrays can be specified with the following dependence relation:

dS1,S2 = {[0, s, 0, i, 0]→ [0, s′, 1, e, 0] | (s ≤ s′) ∧ i = left(e)}
∪{[0, s, 0, i, 0]→ [0, s′, 1, e, 0] | (s ≤ s′) ∧ i = right(e)}.
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3.3 Specifying RTRTs

The last section described how to express computations in the Sparse Polyhedral Framework (SPF) and this
section describes how to express run-time reordering transformations (RTRTs) that can be applied to the
computations. At compile time, the SPF enables the specification of RTRTs and the automatic determination
of the effect an RTRT has on the scheduling function, access function, and data dependence specifications.
The data and iteration reorderings that do not become explicit until runtime are expressed with the help
of uninterpreted function symbols. At run-time the generated inspectors traverse and construct explicit
relations to determine the current state of access functions, scheduling functions, and data dependences and
to create reorderings and tilings, which are also stored as explicit relations. One of the key ideas in the
SPF is that the effect of run-time reordering transformations can be expressed at compile time through
formal manipulations of the computation specification (i.e., statement schedules, access functions, and data
dependences), thus enabling the compile-time specification of a sequence of RTRTs.

3.3.1 Data Reorderings

Formally, a data reordering transformation is expressed at compile time with a data reordering specification
Ra→a′ , where the data that was originally stored in some location m will be relocated to Ra→a′(m). The
compile-time result of reordering an array a is that all access functions with the a data space as their range
are modified to target the reordered data space a′,

AΦ→a′ = {~p→ Ra→a′(m) | m ∈ AΦ→a(~p ) ∧ ~p ∈ Φ}.

The above equation for AΦ→a′ is equivalent to composing the data reordering relation Ra→a′ with the access
function AΦ→a,

AΦ→a′ = Ra→a′ ◦AΦ→a.

For example, assume that we apply a data permutation reordering to the data arrays x in Figure 10. The
data reordering specification for data space x can be specified as follows:

Rx0→x1
= {[p]→ [q] | q = σ(p)},

where σ is an uninterpreted function symbol that denotes the data permutation reordering to be generated
at runtime. At runtime, Rx0→x1 can be realized with an explicit relation, which is a generalization of a
one-dimensional index array.

The key idea in the SPF is that we can express at compile time how RTRTs will affect statement
scheduling functions, access functions, and data dependences and therefore statically plan a series of such
transformations and generate the code for an inspector and executor that implement the composition of a
series of RTRTs. A data permutation reordering only affects access functions whose range is the reordered
data space. Scheduling functions and data dependences are not affected because they relate iterations to
time and iterations to iterations respectively. For the Figure 10 example, the Rx0→x1 data permutation
causes the incorporation of the σ uninterpreted function symbol into any access functions targeting the data
array x. For example, the access relation for statement S2,

AΦ0,S2→x0 = {[0, s, 1, e, 0]→ [q] | q = left(e)}
∪ {[0, s, 1, e, 0]→ [q] | q = right(e)},

will become an access relation between the original full iteration space and the new x data space, x1,

AΦ0,S2→x1 = Rx0→x1 ◦AΦ0,S2→x0

= {[0, s, 1, e, 0]→ [q] | q = σ(left(e))}
∪ {[0, s, 1, e, 0]→ [q] | q = σ(right(e))}.

Figure 11 shows how the executor code will change after applying the data reordering Rx0→x1
to the x and

fx data arrays (i.e., Rfx0→fx1
= Rx0→x1

).
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for ( s =0; s < Ns ; s++) {
for ( i =0; i < Nv ; i++) {

S1 : x [σ [ i ] ] + = . . . fx [σ [ i ] ] . . . vx [ i ] . . . ;
}
for ( e=0; e < Ne ; e++) {

S2 : fx [σ [ l e f t [ e ] ] ] + = . . . x [σ [ l e f t [ e ] ] ] . . . x [σ [ r i g h t [ e ] ] ] . . . ;
S3 : fx [σ [ r i g h t [ e ] ] ] + = . . . x [σ [ l e f t [ e ] ] ] . . . x [σ [ r i g h t [ e ] ] ] . . . ;

}
for ( k=0; k < Nv ; k++) {

S4 : vx [ k ] + = . . . fx [σ [ k ] ] . . . ;
}

}

Figure 11: Simplified moldyn example after reordering data arrays x and fx with σ.

3.3.2 Iteration Reorderings

An iteration-reordering transformation is expressed with a mapping TΦ→Φ′ that assigns each iteration ~p in
iteration space Φ to iteration TΦ→Φ′(~p ) in a new iteration space Φ′. The new execution order is given by
the lexicographic order of the iterations in Φ′.

In the Figure 11 example, the σ data permutation of the x and fx arrays introduces indirect accesses to
those arrays in the i and k loops. A transformation we call iteration alignment is an iteration permutation
reordering that will cause the i and k loops to access the x and fx arrays sequentially in this example. The
σ data permutation also introduced an additional level of indirection in the e loop, but we will remove that
with a transformation called pointer update [19], which composes nested index arrays into a single index
array.

The iteration alignment transformation is mathematically specified as a function on the full iteration
space to a new full iteration space as seen here:

TΦ0→Φ1 = {[0, s, 0, i0, 0]→ [0, s, 0, i1, 0] | i1 = σ(i0)}
∪ {[0, s, 1, e, q]→ [0, s, 1, e, q] | 0 ≤ q ≤ 1}
∪ {[0, s, 2, k0, 0]→ [0, s, 2, k1, 0] | k1 = σ(k0)}.

Notice that the transformation permutes the i and k loops, but does not affect the e loop. Also notice
that this RTRT does not require a new explicit relation to be created at runtime, because it is using the
reordering function σ that will be generated by the initial data permutation reordering transformation.

In general, an iteration reordering affects the scheduling function, access functions, and data dependences
representing a computation. The scheduling function for a statement SX in the transformed iteration space
Φ′ is

SISX→Φ′
SX

= {~p → TΦ→Φ′(~q )}
or

SISX→Φ′
SX

= TΦ→Φ′ ◦ SISX→ΦSX
,

where {~p → ~q } ∈ ΦSX .

The dependences of the transformed iteration space are

DΦ′→Φ′ = {TΦ→Φ′(~p )→ TΦ→Φ′(~q ) | ~p→ ~q ∈ DΦ→Φ}

or
DΦ′→Φ′ = TΦ→Φ′ ◦ (DΦ→Φ ◦ T−1

Φ→Φ′)

and the new access function AΦ′→a for each data space a is

AΦ′→a = {TΦ→Φ′(~p )→ AΦ→a(~p ) | ~p ∈ Φ}

or
AΦ′→a = AΦ→a ◦ T−1

Φ→Φ′ .
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for ( s =0; s < Ns ; s++) {
for (i1=0; i1 < Nv ; i1++) {

S1 : x [ i1 ] + = . . . fx [ i1 ] . . . vx [σ−1 [ i1 ] ] . . . ;
}
for ( j =0; j < Ne ; j++) {

S2 : fx [σ [ l e f t [ j ] ] ] + = . . . x [σ [ l e f t [ j ] ] ] . . . x [σ [ r i g h t [ j ] ] ] . . . ;
S3 : fx [σ [ r i g h t [ j ] ] ] + = . . . x [σ [ l e f t [ j ] ] ] . . . x [σ [ r i g h t [ j ] ] ] . . . ;

}
for (k1=0; k1 < Nv ; k1++) {

S4 : vx [σ−1 [k1 ] ] + = . . . fx [k1 ] . . . ;
}

}

Figure 12: Simplified moldyn example after aligning the loops i and k with the reordered data arrays x and
fx.

Given the transformed access functions, scheduling functions, and dependences, we can specify further run-
time reordering transformations (RTRTs).

In the Figure 11 example, the iteration alignment iteration permutation reordering TΦ0→Φ1
performs a

loop permutation of the i and k loops. The effect of TΦ0→Φ1 on the scheduling function for statement S1

SI0,S1→Φ0,S1
= {[s, i]→ [0, s, 0, i, 0]}

is the following:

SI0,S1→Φ1,S1
= TΦ0→Φ1

◦ SI0,S1→Φ0,S1

= {[s, i]→ [0, s, 0, i1, 0] | i1 = σ(i)}.

The transformed full iteration space will use i1 as the iterator for the first loop nested within the s loop.
There will be the constraint that i1 = σ(i), where i is an existential variable. Since σ is a permutation, the
code generation process does not have to place a guard for the constraint i1 = σ(i) around S1.

The access function for statement S1 accessing array x, AΦ0,S1→x1
{[0, s, 0, i, 0]→ [q] | q = σ(i)}, becomes

AΦ1,S1→x1 = {[0, s, 0, i, 0]→ [q] | q = σ(i)]} ◦ T−1
Φ0→Φ1

= {[0, s, 0, i, 0]→ [q] | q = σ(i)]} ◦ {[0, s, 0, i1, 0]→ [0, s, 0, i0, 0] | i1 = σ(i0)}
= {[0, s, 0, i1, 0]→ [q] | i0 = i ∧ i1 = σ(i0) ∧ q = σ(i)}
= {[0, s, 0, i1, 0]→ [q] | i1 = σ(i0) ∧ q = σ(i0)}
= {[0, s, 0, i1, 0]→ [q] | i1 = q}.

Above we use the fact that σ is a permutation and therefore bijective to rewrite q = σ(i0) as i0 = σ−1(q)
and find that i1 = σ(σ−1(q)) = q.

The data dependences between statements 1 and 2,

dS1,S2 = {[0, s, 0, i, 0]→ [0, s′, 1, e, 0] | (s ≤ s′) ∧ i = left(e)}
∪ {[0, s, 0, i, 0]→ [0, s′, 1, e, 0] | (s ≤ s′) ∧ i = right(e)}.

become

dS1,S2 = {[0, s, 0, i, 0]→ [0, s′, 1, e, 0] | (s ≤ s′) ∧ i = σ(left(e))}
∪ {[0, s, 0, i, 0]→ [0, s′, 1, e, 0] | (s ≤ s′) ∧ i = σ(right(e))}.

Figure 12 shows the executor for the example code after iteration alignment.
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3.4 Composing a legal sequence of RTRTs

The legality of a sequence of transformations depends on the general legality constraints for data and iteration
reorderings, the legality constraints for each individual transformation, and legality constraints between
transformations. In general, any run-time reordering transformation (RTRT) specified in the SPF is legal if
all current data dependences are respected in the new schedule.

Any permutation data reordering is legal in the SPF. If the data array x is permuted with the permutation
σ, then all access functions targeting x can be updated with an additional indirect access. For example, x[
ia[i] + ja[i] ] would become x[ sigma[ia[i] + ja[i]] ]. Dependences between the data order and
index arrays that occur in sparse matrix data structures such as compressed sparse row (i.e. the non-zeros
for each row should be adjacent in the data array) are not allowed in the SPF due to the restriction that
all loop bounds are affine expressions of the surrounding loop iterators. This means that computations over
sparse matrix data structures other than coordinate storage will need to be flattened with some form of loop
restructuring [67].

For iteration-reordering transformations, the new execution order must respect all the dependences of
the original. Thus for each {~p→ ~q } ∈ DI→I , TI→I′(~p ) must be lexicographically earlier than TI→I′(~q ),

∀~p, ~q : ( ~p→ ~q ) ∈ DI→I ⇒ TI→I′(~p ) ≺ TI→I′(~q ).

Lexicographical order on integer tuples can be defined as follows [30]:

[p1, ..., pn] ≺ [q1, ..., qn]⇔
∃m : (∀i : 1 ≤ i < m⇒ pi = qi) ∧ (pm < qm).

Since the dependences may involve uninterpreted function symbols, compile-time legality checking is not
straightforward. It requires computing pre and post conditions that individual explicit relations or index
arrays must satisfy for the transformation to be legal and then either checking those conditions at runtime
or performing a compile-time pre and post condition analysis of the run-time library routines that generates
the explicit relations or index arrays in question. We show how this can be done for a sparse tiling of the
Gauss-Seidel computation in [60].

Between transformations there are some simpler legality checks that can be leveraged to provide helpful
error messages to users of the sparse polyhedral framework. These checks include determining if an iteration
transformation has been properly specified for the full iteration space, checking that any run-time reorderings
are providing input of the appropriate domain to uninterpreted function symbols, ensuring that uninterpreted
function symbols are placed in equality constraints with expressions whose domain matches the function
range, and verifying that an iteration transformation matches the dimensionality of the full iteration space.
As an example of the last check, if the first transformation maps the iteration space into a 2D iteration
space, then the second transformation on the iteration space must map a 2D iteration space to its target.

3.5 Example RTRT Compositions

Data and iteration reordering RTRTs can be applied in a sequence. Appropriate composition of the trans-
formations with the statement schedule functions, access functions, and data dependences determines the
effect of the transformations on the resulting executor code. Table 1 summarizes the examples of the data
permutation consecutive packing (cpack) and the iteration permutation iteration alignment described in Sec-
tions 3.3.1 and 3.3.2. The net effect of cpack followed by iteration alignment on the executor code can be seen
in the code fragment that includes statement S1. The schedule function is implemented with appropriate
loop nesting, and the access functions specify the index expressions for data array accesses.

Tables 2 and 3 summarize some subsequent RTRTs for the running example. Table 2 shows how a data
permutation transformation called data alignment removes the additional indirect reference through σ−1

that was introduced due to consecutive packing followed by iteration alignment. Table 2 also shows the
effect of an iteration permutation on the e loop. For this iteration permutation, the user indicates which
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Table 1: Summary of the data permutation and iteration permutation examples described in Sections 3.3.1
and 3.3.2. The summary shows the RTRT specification, the specification of the input for the run-time
reordering algorithm, and the RTRT’s effect on parts of the executor code.

Name RTRT class

Input Abstract Relations

Transformation Specification

Composed effect on executor for Figure 10

cpack data permutation on x and fx

AIe→x0
= {[e]→ [q] | q = left(e) ∧ 0 ≤ e < Ne}
∪ {[e]→ [q] | q = right(e) ∧ 0 ≤ e < Ne}

Rx0→x1
= {[p]→ [q] | q = σ(p)}

f o r ( s =0; s < Ns ; s++) {
f o r ( i =0; i < Nv ; i++) {

S1 : x [σ [ i ] ] + = . . . fx [σ [ i ] ] . . . vx [ i ] . . . ;
}
f o r ( e=0; e < Ne ; e++) {

S2 : fx [σ [ l e f t [ e ] ] ] + = . . . x [σ [ l e f t [ e ] ] ]
. . . x [σ [ r i g h t [ e ] ] ] . . . ;

. . .

iter align iteration permutation on i and k

since the σ function is already available, this transformation does not have a run-
time component that needs input

TI0→I1 = {[0, s, 0, i0, 0]→ [0, s, 0, i1, 0] | i1 = σ(i0)}
∪ {[0, s, 1, e, q]→ [0, s, 1, e, q]}
∪ {[0, s, 2, k0, 0]→ [0, s, 2, k1, 0] | k1 = σ(k0)}.

f o r ( s =0; s < Ns ; s++) {
f o r (i1=0; i1 < Nv ; i1++) {

S1 : x [ i1 ] + = . . . fx [ i1 ] . . . vx [σ−1 [ i1 ] ] . . . ;
. . .

loop should be permuted based on how that loop is accessing certain data arrays (e.g., x and fx in the
example). One possible iteration permutation reordering algorithm is locality grouping [19]. The reordering
algorithm selected is responsible for generating the δ permutation at runtime. In the executor, the statements
all maintain the same scheduling function, because the transformation is an iteration permutation, which
does not require changing the loop structure. In other words, the loop being permuted will still need the
same bounds. The permutation of the iterations is reflected in changes to the access relations and the data
dependences (i.e., instead of e using δ−1(e2)). Note that pointer update [19] is used to compose nested index
arrays seen at the end of Table 2 into a single index array.

Table 3 summarizes an RTRT called sparse tiling. A sparse tiling is a transformation that maps a space
of iteration points into a set of tiles. The new schedule for the iteration space is then to execute the iteration
points by tile. Therefore, the transformed code includes a new loop that iterates over the tiles. One goal of
a sparse tiling transformation is to group iterations such that iterations that reuse the same data are within
the same tile and therefore the computation as a whole can experience improved temporal data locality.
Another possible goal is to create task-level parallelism.
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Table 2: Sequence of RTRTs applied to e loop after cpack and iteration alignment. Specifically data
alignment is applied to array vx and an iteration permutation is applied to the e loop.

Name RTRT class

Input Abstract Relations

Transformation Specification

Effect on example computation in Figure 10

data
align

data permutation on vx

no input abstract relations

Rvx0→vx1
= {[p]→ [q] | q = σ(p)}

f o r ( s =0; s < Ns ; s++) {
f o r (i1=0; i1 < Nv ; i1++) {

S1 : x [ i1 ] + = . . . fx [ i1 ] . . . vx [ i1 ] . . . ;

locality
grouping

iteration permutation on the e loop based on accesses to x

AIe→x1
= {[e]→ [q] | q = σ(left(e))} ∪ {[e]→ [q] | q = σ(right(e))}

TI1→I2 = {[0, s, 0, i, 0]→ [0, s, 0, i, 0]}
∪ {[0, s, 1, e1, q]→ [0, s, 1, e2, q] | e2 = δ(e1)}
∪ {[0, s, 2, k, 0]→ [0, s, 2, k, 0]}.

f o r ( s =0; s < Ns ; s++) {
. . .
f o r (e2=0; e2 < Ne ; e2++) {

S2 : fx [σ [ l e f t [ δ−1 [ e2 ] ] ] ] + = . . . x [σ [ l e f t [ δ−1 [ e2 ] ] ] ]

. . . x [σ [ r i g h t [ δ−1 [ e2 ] ] ] ] . . . ;

In Table 3, we sparse tile across the i, e, and k loops. The sparse tiling algorithm partitions the
iterations in one of those loops and then place iterations from the other loops into tiles so that when the
tiles are executed in order, the dependences of the computation are satisfied. Note that the dependences
between the i and e, and the e and k loops are input to the sparse tiling inspector that will execute at
runtime. Full sparse tiling [58, 61] is one possible sparse tiling algorithm that places iterations into disjoint
tiles. Unstructured cache blocking [20] is another approach. The communication-avoiding algorithms of
Demmel et al. [18] also create sparse tiles, but those tiles overlap so as to enable parallel execution of the
tiles and minimal communication between tiles.

A sparse tiling inspector creates an explicit function, which we call θ, that maps points in an iteration
sub-space to tiles. Note that in the resulting code in Table 3 the tiling function θ is used to guard statements
in the i, e, and k loops. Guard encapsulation [7] removes the guards and makes the i, e, and k loops only
execute the iterations specific to the current tile by using a sparse data structure similar to compressed
sparse row (CSR).

3.6 Sparse Polyhedral Framework Summary

A transformation framework provides a formal way to represent all aspects of the transformation process.
The Sparse Polyhedral Framework (SPF) represents computations with indirect memory accesses and run-
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Table 3: Sparse tiling RTRT applied to i, e, and k loops after all data and iteration permutations.

Name RTRT class

Input Abstract Relations

Transformation Specification

Effect on example computation in Figure 10

sparse
tiling

groups iterations across loops i, e, and k based on dependences between those loops

DI2→I2 = {[0, s, 0, i, 0] → [0, s, 1, e, q] | i = σ(left(δ−1(e)))}
∪ {[0, s, 0, i, 0] → [0, s, 1, e, q] | i = σ(right(δ−1(e)))}
∪ {[0, s, 1, e, q] → [0, s, 2, k, 0] | k = σ(left(δ−1(e)))}
∪ {[0, s, 1, e, q] → [0, s, 2, k, 0] | k = σ(right(δ−1(e)))}

TI2→I3 = {[0, s, 0, i, q] → [0, s, 0, t, 0, i, q] | t = θ(0, i)}
∪ {[0, s, 1, e, q] → [0, s, 0, t, 1, e, q] | t = θ(1, e)}
∪ {[0, s, 2, k, q] → [0, s, 0, t, 2, k, q] | t = θ(2, k)}

f o r ( s =0; s < Ns ; s++) {
f o r ( t =0; t < Nt ; t++) {

f o r ( i =0; i < Nv ; i++) {
S1 : i f ( t == θ (0 , i ) ) { x [ i ] = . . . fx [ i ] . . . vx [ i ] . . . ; }

}
f o r ( e=0; e < Ne ; e++) {

S2 : i f ( t == θ (1 , e ) ) { fx [σ [ l e f t [ δ−1 [ e ] ] ] ]

+= . . . x [σ [ l e f t [ δ−1 [ e ] ] ] ]

. . . x [σ [ r i g h t [ δ−1 [ e ] ] ] ] . . . ; }
S3 : i f ( t == θ (1 , e ) ) { fx [σ [ r i g h t [ δ−1 [ e ] ] ] ]

+= x [σ [ l e f t [ δ−1 [ e ] ] ] ]

. . . x [σ [ r i g h t [ δ−1 [ e ] ] ] ] . . . ; }
}
f o r ( k=0; k < Nv ; k++) {

S4 : i f ( t == θ (2 , k ) ) { vx [ k ] + = . . . fx [ k ] . . . ; }
}

}

time reordering transformations with integer tuple sets and relations with affine constraints and constraints
involving uninterpreted function symbols. A composed transformation is a sequence of data and iteration
transformation mappings. The reordering heuristics that the inspector will apply for each transformation use
as input the transformed data dependences and access functions that result from all previous transformations.
A composition of transformations is legal if the final data dependences can be shown to be lexicographically
positive, and it is possible to check post-conditions on the reordering functions generated by inspectors. This
section shows how the SPF could be used to represent a molecular dynamics computation and various RTRT
transformations.

The SPF can be used to generate an inspector containing all of the run-time reordering algorithms
being applied in the appropriate order and an executor that implements the transformed code and uses
the reordering functions provided by the inspector. The next sections describe how we generate code for
composed inspectors and their corresponding executors and enable the authoring of run-time reordering
transformations (RTRTs).
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4 Inspector/Executor Code Generation

Run-time reordering transformations are typically implemented with inspector/executor strategies. When a
series of RTRTs are expressed within the Sparse Polyhedral Framework (SPF) as shown in Section 3, the
code for most of the inspector and all of the executor can be automatically generated. This section presents
intermediate representations for both the inspector and executor, a run-time library that provides support
for the inspectors, and algorithms for generating inspector and executor code.

4.1 Intermediate Representations (IRs) for RTRTs, Inspectors, and Executors

As is typical with a transformation framework, SPF includes a mechanism for specifying the original com-
putation and data spaces and transformations on those spaces. The Mapping IR is a data structure that
implements the SPF and as such represents the executor, which is a (un)transformed version of the origi-
nal computation. The Mapping IR also represents the run-time reordering transformations (RTRTs) as a
sequence of data and/or iteration reordering relations. The Inspector Dependence Graph (IDG) represents
various computations the inspector must perform to generate the necessary reordering functions and relations
and reorder data.

4.1.1 The Mapping IR (MapIR)

The Mapping Intermediate Representation (MapIR) encodes the computation specification, which includes
statements, symbolic constants, data and index arrays, access relations, and data dependences. Section 3.2
describes the computation specification components of the Sparse Polyhedral Framework (SPF) in detail.
The MapIR implementation in our prototype Inspector/Executor Generator Python prototype (IEGen in
Python) provides a Python interface for specifying integer tuple sets and relations for the various components
of the computation specification. As an example, the index array left in the molecular dynamics example
in Figure 1 can be specified in the IEGen Python prototype as follows:

spec.add_index_array(

name=’left’,

type=’int * %s’,

input_bounds=’{[q]: 0<=q && q<N_e}’,

output_bounds=’{[q]: 0<=q && q<N_v}’)

The RTRTs are represented in the MapIR as a sequence of iteration and data reordering relations.
For iteration reorderings, the transformation is specified for the full iteration space. For data reorderings,
information about which data spaces will be affected by the reordering is included. Table 4 summarizes the
sequence of transformations for the molecular dynamics example.

When transformations are applied to the computation, they modify the statement scheduling functions,
access functions, and data dependences in the MapIR to indicate their compile-time effect on the com-
putation. Section 3.3 formalizes the effect of data and iteration reordering transformations on scheduling
functions, access relations, and data dependences. A transformation implemented in IEGen Python uses the
mathematical framework provided by SPF to automate the application of run-time reordering transforma-
tions (RTRT).

4.1.2 Inspector Dependence Graph (IDG)

In addition to the application of a transformation modifying the computation specification in the MapIR,
each transformation typically involves run-time reordering functionality that the inspector will perform.
Therefore, the application of a sequence of transformations leads to a set of related inspector tasks. The
Inspector Dependence Graph (IDG) represents these tasks, the data structures consumed and generated by
the inspector, and the dependences between data and tasks within the inspector.
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Table 4: Sequence of data and iteration reordering transformations that are applied in the running example
in Tables 1, 2, and 3.

Name Transformation Specification

cpack data reordering Rx0→x1
= Rfx0→fx1

= {[p]→ [q] | q = σ(p)}

iteration alignment

TI0→I1 = {[0, s, 0, i0, 0]→ [0, s, 0, i1, 0] | i1 = σ(i0)}
∪ {[0, s, 1, e, q]→ [0, s, 1, e, q]}
∪ {[0, s, 2, k0, 0]→ [0, s, 2, k1, 0] | k1 = σ(k0)}.

data alignment Rvx0→vx1
= {[p]→ [q] | q = σ(p)}

locality grouping iteration re-
ordering

TI1→I2 = {[0, s, 0, i, 0]→ [0, s, 0, i, 0]}
∪ {[0, s, 1, e1, q]→ [0, s, 1, e2, q] | e2 = δ(e1)}
∪ {[0, s, 2, k, 0]→ [0, s, 2, k, 0]}.

sparse tiling

TI2→I3 = {[0, s, 0, i, q] → [0, s, 0, t, 0, i, q] | t = θ(0, i)}
∪ {[0, s, 1, e, q] → [0, s, 0, t, 1, e, q] | t = θ(1, e)}
∪ {[0, s, 2, k, q] → [0, s, 0, t, 2, k, q] | t = θ(2, k)}

Figure 13 shows an example IDG, where the rectangular nodes represent data structures and the elliptical
nodes represent tasks. An edge that starts at a data node and ends at a task node indicates that the task
will be using that data. An edge that starts at a task node and ends at a data node indicates that the task
will be generating that data.

The IDG in Figure 13 represents the inspector that along with the corresponding executor implements
the consecutive packing and iteration alignment RTRTs summarized in Table 1. Recall that in the molecular
dynamics example, the interactions between atoms are encoded in the index arrays left and right, where
left[i] and right[i] are the indices for interacting atoms. In Table 1, the input to the consecutive packing
data reordering heuristic is an abstract relation describing how the e loop is accessing the x and fx arrays
associated with atoms. The IDG in Figure 13 shows that the left and right index arrays are used as input
to an inspector task that will construct an explicit relation, which will then be passed to the consecutive
data reordering algorithm to generate the σ explicit relation that represents the data permutation. After
reordering σ has been generated, the reorderArray function applies the σ permutation to the x and fx data
arrays. Note that the data arrays in the IDG include a version number to represent versions of the same
array, where the array is undergoing in-place data reorderings.

In the example, the application of iteration alignment can be performed entirely at compile time as
modifications to the access functions for the x and fx arrays in the i and k loops. Therefore, no tasks are
added to the IDG for iteration alignment in this example, because the σ uninterpreted function has already
been generated by the inspector, and the cancelation of σ by σ−1 in the access function for the array vx

occurs at compile time.

In general, there are two main kinds of computation nodes within the IDG: explicit relation generation
loops and function calls. Explicit relation generation loops are loops that construct an explicit relation at
runtime. These loops are automatically generated by our code generator prototype called IEGen Python.
These loops iterate over the domain of the abstract relation (e.g. the domain of AIe→x0

is {[e] | 0 ≤ e < Ne})
and compute all of the relations for insertion into the explicit relation data structure. Function call nodes
within the IDG represent function calls to run-time library routines either written by the transformation
writer to support a transformation (e.g. cpack) or general run-time support routines such as reorderArray.
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 right : index array

construct explicit relation

cpack(...)

 fx0 : data array  Rx0→x1 = {[p] → [q] | q = σ(p)}  x0 : data array

reorderArray(...) reorderArray(...)

 fx1 : data array  x1 : data array

 left : index array

 AIe→x0 = {[e] → [q] | q = left(e) ∧ 0 ≤ e < Ne}
∪ {[e] → [q] | q = right(e) ∧ 0 ≤ e < Ne}

Figure 13: The Inspector Dependence Graph (IDG) after the compile-time application of data permutation
on the data arrays x and fx based on how x and fx are accessed in the e loop.

void ERG cpack (ER U1D∗ inputRelat ion , EF 1D∗ sigma ) {
// assigned [ i ] i nd i ca t e s whether the output va lue i has been reordered
bool ∗ as s i gned ;
int N = EF 1D in domain s ize ( sigma ) ;
a s s i gned = ( int ∗) mal loc ( s izeof ( int )∗N) ;
for ( i =0; i<N; i++) as s i gned [ i ]= f a l s e ;

// Loop over the [ in ] −> [ out ] r e l a t i on va lues and reorder out va lues
// based on a f i r s t−come−f i r s t−served po l i cy .
int count = 0 ;
for ( int in=ER U1D in domain lb ( inputRe lat ion ) ;

in<=ER U1D in domain ub ( inputRe lat ion ) ;
in++)

{
for ( int out=ER U1D out begin ( inputRelat ion , in ) ;

out !=ER U1D out end ( inputRelat ion , in ) ;
out=ER U1D out next ( inputRelat ion , in ) )

{
i f ( ! taken [ out ] ) {

EF 1D set ( sigma , out , count ) ;
a s s i gned [ out ] = true ;
count++;

}
}

}

// Reorder any va lues in the output domain tha t were not in the e f l i s t .
for ( int i =0; i<N; i++) {

i f ( ! a s s i gned [ i ] ) EF 1D set ( sigma , count++);
}

}

Figure 14: Consecutive packing inspector that uses specialized implementations of the explicit relation data
structure for performance reasons, but not specific to any single input code.
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4.2 Explicit Relation Run-Time Library

Run-time Reordering Transformations (RTRT) consist of compile-time and a run-time components. The
compile-time components include an interface for the RTRT user to specify the abstract relation for the
transformation and any transformation-specific parameters. Other compile-time components include rou-
tine(s) for modifying the MapIR and IDG to show the effects of the transformation. The run-time com-
ponent of a transformation includes any routines that the inspector will call at runtime. In the example,
the reorderArray utility routine takes a one-dimensional array with specified size and element size and a
permutation and then reorders the array. Also, as can be seen in the example IDGs in Figures 13, 15, and 16,
explicit instances of sets and relations are built in the inspector as inputs and outputs of the reordering algo-
rithms such as consecutive packing (cpack), locality grouping (locgroup), and sparse tiling (fullSparseTile).
These run-time components of the run-time reordering transformations are performed by the generated in-
spector code with support from a run-time library with routines that manipulate the explicit relation data
structure and that implement reordering algorithms that operate over instances of the explicit relation data
structure.

The explicit relation abstract data type represents any m-to-n-dimensional relation and is the core concept
in the IEGen run-time library. By using the explicit relation concept, the run-time library routines do
not need to be specific to data structures within each application being transformed. The IEGen Python
prototype generates the parts of the inspector that are specific to an individual application such as the
names of index and data arrays. However, since a fully general explicit relation data structure is not efficient
enough to compete with inspectors written for specific index array usage, our prototype run-time library
contains the following specializations:

• explicit relations that are functions and have 1D to 1D arity (EF 1D),

• explicit relations that have 1D to 1D arity and can be represented as a union of 1D to 1D explicit
functions (ER U1D),

• explicit relations with 1D to 1D arity and 2D to 1D arity where the relations are not inserted in the
order of the input tuples (ER 1Dto1D and ER 2Dto1D),

• explicit relations that are functions and have 2D to 1D arity (EF 2D), and

• explicit relations that represent 1D to 1D arity dependences between loops
(ExplicitDependence).

For example, the consecutive packing reordering, which was shown in Figure 2 being applied to the specific 2-
to-1-dimensional data structure involving the index arrays left and right, can be more generally rewritten
to be applicable to a specialized 2-to-1-dimensional explicit relation as shown in Figure 14. Future work
includes automating the process of specializing the explicit relation implementations.

4.3 Code Generation for Inspectors

The inspector code generation algorithm consists of three topological visits of the IDG where the computation
nodes (ellipses) in the IDG trigger the generation of explicit relation construction loops or function calls, and
the data nodes (rectangles) trigger the generation of the appropriate parameter list, variable declarations,
and deallocation code at the end of the inspector. The first pass over the IDG determines which data nodes
have no incoming or outgoing edges and therefore will become parameters to the inspector function. The one
exception for this selection of parameters is that data arrays are represented as multiple versions in the IDG
and only one instance of the data array exists at any one time during the execution so only one parameter
per data array is necessary. During the second pass over the IDG, the inspector code generator produces
an explicit relation declaration and initialization for each of the explicit relation and index data nodes.
Specialized explicit relation implementations are selected based on the characteristics of the corresponding
abstract relation. As a final step, we generate the main body of the inspector and cleanup code by performing
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a topological visit to all of the computational nodes and keeping track of which IDG data nodes are only
used within the IDG and therefore need to be deallocated at the end of the inspector.

4.4 Code Generation for Executors

The two main steps of executor code generation are: statement generation and loop structure generation.
In the IEGen Python prototype, each statement is represented as a string with holes for access functions.
Additionally, each statement has an iteration space and a scheduling function that maps the statement
iteration space to a full iteration space that includes all statements. To generate each statement, we plug
the access function holes with the transformed access functions. The statement is defined as a C macro with
the iterators of the loop as input parameters to the macro. We use CLooG [4] to generate loops that scan
all of the iteration points in the part of the iteration space that is constrained by affine constraints.

As CLooG is not able to generate code to iterate over sparse sets, we have a final step that adds code
to do this within the IEGen Python prototype. Any constraints involving uninterpreted function symbols
equalities in the executor set representation will be placed in the statement macro as a wrapper around the
new version of the statement. Table 3 shows an example of updated data array references and uninterpreted
function constraints resulting in if-statement guards within the innermost loops of the computation. A
portion of that example is repeated here for illustrative purposes:

f o r ( s =0; s < Ns ; s++) {
f o r ( t =0; t < Nt ; t++) {

f o r ( i =0; i < Nv ; i++) {
S1 : i f ( t == θ (0 , i ) ) { x [ i ] = . . . fx [ i ] . . . vx [ i ] . . . ; }

}
. . .

}

Introducing guards into the innermost loops is a performance problem because guards cause a conditional
branch within the innermost loops and because they result in a significant amount of loop overhead since
many more iterations are visited than actually executed. For the molecular dynamics example, the number
of iterations after straight-forward sparse tiling code generation is the number of tiles times the number of
original iterations in each of the i, e, and k loops, which is significantly greater than the number of original
iterations. Guard encapsulation [7] solves this performance overhead problem.

Past work has included run-time reordering transformations (RTRTs) for which a compiler can automat-
ically analyze and generate the inspectors [74, 19, 40, 26] for specific run-time reordering transformations.
Through the manipulation of the SPF abstract sets and relations at compile time and the use of explicit
relation data structures at run time, we are able to generate inspectors and executors for more general
compositions of RTRTs.

5 Authoring RTRTs

The SPF can be thought of as the assembly-language level for specifying Run-Time Reordering Transforma-
tions (RTRTs). Much like in the CHill project [50], we suggest that specific RTRTs should be made available
to performance programmers as higher-level concepts such as “consecutive packing based on the memory
references in loop e” and “sparse tiling of the three loops using the second loop as the seed partition”.
Therefore the IEGen Python prototype code generator provides implementations of the abstract relations
and sets in addition to the explicit relation implementation in the run-time library, so that transformation
writers can provide a higher-level interface to users. This section describes how a transformation writer
might implement the data reordering consecutive packing and the iteration reordering full sparse tiling.

Our experiences with the IEGen Python prototype is that authoring and using the RTRT transformations
require an expert user. More work is needed to ease the use of the IEGen transformation tool. Possible
improvements include automating the data dependence analysis based on previous research in value-based
dependence analysis [9, 22, 38, 47] and dependence analysis in irregular applications [35], and computing
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the SPF transformation specification based on high-level information such as which data arrays should be
reordered and which loops should be sparse tiled.

5.1 Data Reordering Example

A transformation writer is responsible for (1) providing the user a way to specify transformation parameters,
(2) providing an implementation of the transformation that modifies the inspector and executor intermediate
representations the IDG and MapIR to reflect the effect of the transformation, and (3) providing any functions
needed for the run-time generation of reorderings. For an example instance of each of these transformation
components, we describe applying data reordering to the molecular dynamics example in Figure 10.

In Figure 10, the e loop is accessing the x and fx arrays in an irregular fashion. Therefore a data permu-
tation reordering of the x and fx arrays could improve spatial locality and consequently the performance in
the loop. The parameters for a data reordering permutation transformation include an indication of which
data arrays should be permuted (i.e. x and fx) and which access functions should be inspected to determine
a heuristic permutation (i.e. the access relation between the e loop and the x and fx arrays).

The transformation writer implements the transformation by enabling the user to specify the needed
parameters and then using those parameters to modify the inspector and executor intermediate representa-
tions, the IDG and the MapIR. In the molecular dynamics example, the access functions between the e loop
for data arrays x and fx are used as input to the data reordering for the creation of σ (see Figure 13). A user
of the data permutation transformation provides parameters indicating the run-time reordering algorithm to
use (e.g. cpack), the access functions to use as input to the reordering algorithm (e.g. AIe→x0

in Figure 13),
and the data arrays that should be reordered based on the generated data permutation (e.g. x and fx).

Given the transformation parameters, the transformation compile-time component is responsible for
modifying the MapIR and IDG representations to record the compile-time effect of the RTRT. For example,
the data permutation transformation creates the initial IDG in Figure 132. A transformation modifies
the MapIR by leveraging the Sparse Polyhedral Framework, which indicates the effect of data and iteration
reordering transformations on access functions, scheduling functions, and data dependences. For the example,
the cpack data permutation transformation modifies the access functions as shown indirectly in Table 1 (i.e.,
x[i] becomes x[σ[i]]).

5.2 Sparse Tiling Reordering Example

For a more complex example, consider the sparse tiling transformation whose modifications to the MapIR
are shown indirectly in Table 3 and whose modifications to the IDG are shown in the white nodes of Fig-
ure 15 (e.g., x[i] = ... fx[i] ... vx[i] ... ; becomes if (t == θ(0,i)) x[i] = ... fx[i]

... vx[i] ... ; ). The full sparse tiling transformation applied to the moldyn example schedules some
iterations of each of the i, e, and k loops to be executed atomically before moving on to another tile with
the goal of improving temporal locality and possibly exposing task graph parallelism.

For the molecular dynamics example, the full sparse tiling transformation is applied after the iteration
permutation called locality grouping (i.e., locgroup() in Figure 15). The light grey nodes in Figure 15
represent the nodes inserted into the IDG due to the locality grouping transformation described in Section 3.5.
Note that the invert() call is inserted due to the modifications that occur to the data access functions after
the locality grouping transformation (i.e., fx[σ[left[e2]]] becomes fx[σ[left[δ−1[e2]]]]).

The white nodes in the IDG are those inserted for the full sparse tiling transformation. The sparse
tiling algorithm fullSparseTile() performs a block partitioning of the iterations in the e loop for the seed
partitioning and then inspects all the dependences to and from the seed space within the sub space of the
full computation that is being sparse tiled. The full sparse tiling transformation implementation includes
methods for updating the MapIR and IDG given input from the transformation user. Currently the user of

2There are utility functions available in the IEGen Python prototype that help ease the task of constructing subgraphs
within the IDG and connecting nodes with edges
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construct explicit relation

 
AIe→x1 = {[e] → [q] | q = σ(left(e))} ∪ {[e] → [q] | q = σ(right(e))}

 δ−1 = {[j] → [i] | j = δ(i)}

 {[i] → [j] | j = δ(i)}

 {[0, i] → [1, e] | i = σ(left(δ−1(e)))} ∪ {[0, i] → [1, e] | i = σ(right(δ−1(e)))}

 {[x, y] → [t] | t = θ(x, y)}

 right : index array

construct explicit relation

cpack(...)

 fx0 : data array
  

Rx0→x1 = {[p] → [q] | q = σ(p)}  x0 : data array

reorderArray(...) reorderArray(...)

 fx1 : data array  x1 : data array

 left : index array

fullSparseTile(...)

locgroup(...)

invert(...)

construct explicit relation

 AIe→x0 = {[e] → [q] | q = left(e) ∧ 0 ≤ e < Ne}
∪ {[e] → [q] | q = right(e) ∧ 0 ≤ e < Ne}

Figure 15: The inspector dependence graph after the compile-time application of sparse tiling on the i and
e loops based on the dependences between the i and e loops.
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construct explicit relation

 AIe→x1 = {[e] → [q] | q = σ�
left(e)} ∪ {[e] → [q] | q = σ�

right(e)}

 δ−1 = {[j] → [i] | j = δ(i)}

 {[i] → [j] | j = δ(i)}

 {[0, i] → [1, e] | i = σ��
left(e)} ∪ {[0, i] → [1, e] | i = σ��

right(e)}

 {[x, y] → [t] | t = θ(x, y)}

 right : index array

construct explicit relation

cpack(...)

 fx0 : data array  Rx0→x1 = {[p] → [q] | q = σ(p)}  x0 : data array

reorderArray(...) reorderArray(...)

 fx1 : data array  x1 : data array

 left : index array

fullSparseTile(...)

locgroup(...)

invert(...)

construct explicit relation

construct explicit relation construct explicit relation

 σ
�
left = {[i] → [j] | j = σ(left(i))}  σ

�
right = {[i] → [j] | j = σ(right(i))}

construct explicit relation construct explicit relation

 σ
��
right = {[i] → [j] | j = σ�

right(δ
−1(i))} σ

��
left = {[i] → [j] | j = σ�

left(δ
−1(i))}

 AIe→x0 = {[e] → [q] | q = left(e) ∧ 0 ≤ e < Ne}
∪ {[e] → [q] | q = right(e) ∧ 0 ≤ e < Ne}

Figure 16: The inspector dependence graph after the compile-time application of pointer update.
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Table 5: Table of input data files used with moldyn benchmark.

Name Num atoms Num interactions Average Footprint
inter/atom in MB

HIV-6.graph 11414 412623 36 3
apoa1-2.graph 92224 139351 1 7
apoa1-6.graph 92224 3864429 41 35
er-gre-6.graph 36573 1482904 40 13

fibronectin-2.graph 55480 3104517 55 27
mol1-2.graph 131072 1179648 9 18
mol1-3.graph 131072 5636096 43 52

popc-br-6.graph 24916 850043 34 8

the full sparse tiling transformation specifies what subspace of the iteration space is being sparse tiled, what
seed space should be used for the seed partitioning, the transformation specification as shown in Table 3,
and which dependences are carried within the subspace being sparse tiled and have the seed partitioning
subspace as a source or target.

6 Experimental Results

In these experiments we compare the performance of automatically-generated inspectors and executors with
hand-written ones. The hand-written inspectors and executors are specific to the particular benchmark. We
show that the performance of executors for the moldyn benchmark is less than 25% slower than the hand-
written inspectors, and the performance of inspectors is not more than 180% slower than the hand-written
versions. For a sparse matrix-vector product benchmark, the performance of the executors ranges from as
much as 340% slower to 60% faster than hand-written versions; the performance of the inspectors is not
more than 340% slower than hand-written versions.

We also evaluate the effectiveness of the pointer update and guard encapsulation code-improving trans-
formations and some additional code-improving transformations that were not incorporated into the IEGen
Python prototype.

6.1 The moldyn benchmark

The moldyn benchmark [44] is sparse in that there are a set of atoms and the data arrays for the atoms
are accessed indirectly through index arrays that track interactions between pairs of atoms. The example in
Figure 1 is a simplified version of the moldyn benchmark.

Table 5 presents the eight data sets we selected for use with the moldyn benchmark. It contains the input
file name, number of atoms, number of interactions, average number of interactions per atom, and footprint
of the data including atoms and interactions. Most of the datasets are from the Protein Data Bank [53].

We ran our experiments on a 64-bit 2.13 GHz Intel Core2 Duo 6400 (dual core), known as ’vega’, with
32KB L1 I/D caches, a shared 2MB L2 cache, and 2GB RAM. The code was compiled with gcc/g++ version
4.4.4 and the flags “-O3 -DNDEBUG”.

6.1.1 Executor and Inspector Execution Times

Figure 17 shows the execution times for the different versions of the moldyn executor for a number of input
data sets. The yellow bars all correspond to executors that have been generated by the IEGen Python
prototype. The blue bars correspond to the handwritten executors. For each input file, we show four code
versions that have been generated by the IEGen Python prototype and written by hand: untransformed,
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Figure 17: Executor execution times of the generated code on vega, grouped by input data file.

after applying the consecutive packing (cpack) data reordering, after applying consecutive packing and the
locality grouping (locgroup) iteration reordering, and after applying consecutive packing, locality grouping,
and full sparse tiling (FST) across the three loops within the outer time stepping loop. We also apply pointer
update after consecutive packing and locality grouping, and apply the guard encapsulation optimization after
FST. Note that the artificially-generated datasets mol1-2 and mol1-3 result in the best improvements from
the various run-time reordering transformations. The real dataset fib-2 also results in some performance
improvements, but the other real datasets appear to have good data locality already.

This paper focuses on the performance difference between the hand-written inspectors and executors
and the ones generated by the IEGen Python prototype. Figure 18 highlights the performance difference
between these two by showing the execution time for the IEGen executors normalized to the time of the
hand-written executors. Our results show that our generated code performs no worse than 25% slower than
the hand-optimized executor version. For the three transformed versions, Figure 18 also shows the number
of times the executor would need to be run to amortize the cost of running the inspector (the so-called
break-even number). A result of no (no improvement) means that this executor version ran slower than the
untransformed generated version. Performance on a second machine was similar. Figure 19 shows our results
for the generated inspectors for the moldyn benchmark. Our results show that our generated inspectors are
no worse than 1.8 times slower than the corresponding hand-written version.

6.1.2 Discussion of the moldyn Inspector and Executor Results

The normalized results for the executors in Figure 18 and the inspectors in Figure 19 indicate that there
is still some overhead in the generated code. We deal with some of the overhead resulting from the more
general reordering algorithms by having specialized explicit relation implementations based on the relation
arity as was discussed in Section 4.2. However, the generated inspector code still does not match the hand-
written inspector code. One issue is that in the hand-written code, the pointer update is incorporated into
the reordering algorithms because the inspector is specialized to the specific index array data structures in
the benchmark. This reduces the number of traversals over the index arrays in the inspector by one.
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Figure 18: Executor execution times of the generated code on vega, each bar is normalized to the corre-
sponding hand-optimized version, grouped by input data file. The numbers on top of the bars indicate the
break even point, which is the number times each executor must be executed to amortize the inspector time.
“no” indicates that amortization is not possible.
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Another issue is that all of the data dependences in the molecular dynamics benchmark are inspected in
the more general IEGen full sparse tiling algorithm. In the inspector implementation that was written by
hand, the inspector assumes that the dependences between loops i and e mirror the dependences between
loops e and i. As such the hand-written inspector avoids a separate traversal over the dependences coming
into the seed partition space and those going out of the seed partition space. Since the SPF representation
of the dependences uses abstract relations, it would be possible to detect this symmetry at compile time and
specialize a reordering algorithm such as full sparse tiling. This would require however that the reordering
algorithms be implemented in a higher-level scripting language instead of as C run-time libraries, which is
what the current prototype implementation does.

Yet another issue is that the data dependences are explicitly constructed outside of the full sparse tiling
reordering algorithm and passed in as input. This requires an additional pass over index arrays that the
hand-written inspectors do not need to do. This could also be solved by doing some kind of specialized code
generation of the reordering algorithms.

6.1.3 Evaluation of Code-Improving Transformations

The executor and inspector results in Figures 18 and 19 already incorporate the use of the code improving
transformations pointer update and guard encapsulation. Figure 20 shows the executor performance with and
without the code-improving transformations. The yellow bars show the normalized execution time of various
versions without code-improving transformations, and the solid blue bars are the normalized execution time
with code-improving transformations. Note that the guard encapsulation is critical for executor performance.
When the guard encapsulation is not used, the slowdown can be over 8×. Performing pointer update after the
consecutive packing data reordering and locality grouping iteration reordering improves the performance of
the executor slightly. For these code-improving transformations, the inspector performance actually degrades
because of the extra overhead needed to actually perform the pointer update and guard encapsulation.
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Table 6: Table of input data files used with SpMV benchmark.

Name Average Num rows Num cols Num Footprint
non-zeros/column non-zeros in MB

cage13 17 445,315 445,315 7,479,343 120
torso1 73 116,158 116,158 8,516,500 132
kim2r 24 456,976 456,976 11,330,020 179
nd24k 399 72,000 72,000 28,715,634 439

spal 004 143 10,203 321,696 46,168,124 707
ldoor 49 952,203 952,203 46,522,475 721
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Figure 21: Executor execution times of the generated code, grouped by input data file. SPO stands for
sparse loop optimization, which is guard encapsulation.

6.2 Sparse Matrix Vector Multiply

The sparse matrix vector multiply (SpMV) benchmark measures the time it takes to multiply a sparse matrix
by a dense vector. SpMV is an important kernel in many applications [69]. There are many optimizations
that are applicable to SpMV. Most of them involve some form of reordering of the non-zeros in the sparse
matrix. To evaluate the IEGen Python prototype, we wrote the cache blocking transformation by hand and
then specified it using SPF and generated code with IEGen. Table 6 shows the datasets we use with the
SpMV benchmark. All of the sparse matrices are from the Florida Sparse Matrix collection [17].

As with the moldyn benchmark, we ran our experiments on a 64-bit 2.13 GHz Intel Core2 Duo 6400
(dual core), known as ’vega’, with 32KB L1 I/D caches, a shared 2MB L2 cache, and 2GB RAM. The code
was compiled with gcc/g++ version 4.4.4 and the flags “-O3 -DNDEBUG”.

6.2.1 Executor Execution Times

Figure 21 shows the execution times for the various SpMV executors. SpMV is typically executed using
a compressed sparse row (CSR) representation, so the first bar represents a handwritten version that uses
CSR. The next bar is a handwritten version using coordinate storage (COO). In the SPF, we represent
computations using flat sparse data structures like COO before applying transformations. The third bar
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Figure 22: Executor execution times of the generated code normalized to the handwritten cache blocked
version, grouped by input data file. SPO stands for sparse loop optimization, which is guard encapsulation.

labeled IEGen COO shows the non-transformed version of the executor as generated by the IEGen Python
prototype. The fourth bar shows a handwritten version of cacheblocking. This handwritten version is
specialized and fused in that the cache blocking, pointer updates, data remappings, and guard encapsulation
all occur within the same set of loops. The IEGen cacheblock SPO and cacheblock SPO packed versions
break up the specification of each of these components and enable their specification in a more general way.
The last bar shows the performance of the IEGen executor after we perform some hand optimizations, which
we discuss below.

We selected the sparse matrix spal 004 because [42] indicated that cache blocking should work well with
this matrix. Figure 21 shows that cache blocking does perform well on this matrix, but interestingly enough
coordinate storage performs just as well. The other matrices were selected at random from the Florida sparse
matrix collection. Cache blocking does not improve the performance in any of the other matrices.

We can evaluate the code generated by the IEGen Python prototype by comparing its performance to the
handwritten code even if the transformation being applied does not result in a performance improvement.
Figure 22 shows the various versions of IEGen cache blocking normalized to the handwritten executor. The
IEGen cacheblock SPO version performs the cache blocking and the guard encapsulation optimization, but
does not reorder the non-zeros based on cache block and row. The IEGen cacheblock SPO packed version
does reorder the non-zeros. The results are mixed. In some cases the IEGen code is much faster than the
handwritten cache blocked version. In other cases the IEGen cacheblocked versions are slower. In all cases
the hand-optimized version of the IEGen code performs better or as well as the hand-written cache blocked
code.

6.2.2 Code-Improving Transformations Applied by Hand

The IEGen cacheblock SPO packed hand-optimized version incorporates some hand optimizations to the
inspector and the executor. For the executor, we know that since the non-zeros have been packed based
on their cache block and row that the innermost loop only needs the guard encapsulation data structure to
count the number of non-zeros per cache block and row. We modify the innermost loop so that the index
into the non-zero values and column arrays is sequential. The handwritten cache blocked version already
takes advantage of this.
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Figure 23: Inspector execution times of the generated code, grouped by input data file. SPO stands for
sparse loop optimization, which is guard encapsulation.

The other optimization that could be easily incorporated into IEGen is the realization that the cb and
row arrays are used in the executor code after the guard encapsulation. Therefore, it was not necessary to
perform pointer update on them in the inspector.

6.2.3 Inspector Execution Times

Figure 23 shows the execution time of the inspectors, and Figure 24 shows those execution times normalized
to the handwritten cache blocking inspector. Even the hand-optimized inspector is sometimes more than
twice the execution time of the handwritten inspector. This suggests that more optimizations within the
IEGen generated code are needed. This time difference is probably due to some of the excess memory and
work needed to explicitly pass the mapping of nonzeros to cache blocks to the data packing algorithm and
the guard encapsulation pieces. It should be possible to leverage the abstract set and relation descriptions to
fuse some of this work at compile time when the reordering algorithms themselves are specified in a higher
level language instead of C run-time library routines.

7 Related Work

This section reviews existing Runtime Reordering Transformations (RTRTs) and indicates which of the
existing RTRTs can be expressed within the sparse polyhedral framework (SPF). To organize the discussion,
we place RTRTs into categories based on whether they permute data or loop iterations, or increase the
dimensionality of a data array or loop (embeddings, or groupings).

7.1 Data and Iteration Permutation Reorderings

A number of data and iteration permutation reorderings have been developed in the context of loops with no
inter-iteration dependences or only reduction dependences. The goal of these data and iteration permutations
is to improve the data locality within an irregular loop. Such run-time reordering transformations inspect
access functions (the mapping of iterations to data) to determine a better data or iteration permutation.
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Figure 24: Inspector execution times of the generated code normalized to the handwritten cacheblock version,
grouped by input data file. SPO stands for sparse loop optimization, which is guard encapsulation.

The most common approach for using these RTRTs is to perform a data permutation and then an iteration
permutation [26]. For example, Section 2 applies the consecutive packing [19] data permutation followed by
the locality grouping iteration permutation to the e loop in Figure 1.

SPF can express any one-dimensional loop permutation or data permutation as an abstract relation where
the output tuple variable is specified as equivalent to the output value of an uninterpreted function that
represents the reordering,

{[x]→ [y] | y = f(x)}.
Permutation RTRTs that SPF can represent include Cuthill-McKee [14], Reverse Cuthill-McKee [36], breadth-
first [2], Sloan [24], recursive coordinate bisection [70], consecutive packing [19], reordering based on graph
partitioning [56, 26], hybrid techniques based on graph partitioning and another heuristic within the par-
tition [2, 64], reordering based on space-filling curves [39], lexicographical grouping or sorting [15, 19, 24],
and hyper-breadth-first [63]. The reordering algorithms that depend on a mapping of data indices to simula-
tion space coordinate data (e.g., recursive coordinate bisection [70] and space-filling curves [39]) will require
additional input be provided to the inspector, but this input can be expressed as an abstract relation.

The SPF can also express loop and data permutation transformations such as array alignment and
iteration alignment that are performed to localize memory accesses occurring in loops other than the loop
where an initial data or iteration permutation occurred3.

7.2 Data and Iteration Embedding Reorderings

A data embedding reordering is a transformation that introduces an additional dimension to an array. Smash-
ing [43] is an example of a data embedding reordering that folds regular data spaces to remove non-uniform
dependences in regular computations. Smashing can be expressed in the SPF as affine transformations on
the data space.

An iteration embedding reordering is a transformation that introduces another loop into a computation to
iterate over groups of iteration points in some way. Iteration embeddings are used to improve data locality
and/or parallelize irregular computations.

3as described in Section 2.1, [19] fuse the separate transformations array alignment and iteration alignment into a single
transformation called data alignment.
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In the context of improving data locality, an example transformation is bucket-tiling [40], where iterations
are placed into buckets based on the range of data accessed within the iteration. The cache blocking provided
by OSKI [28, 69] used within the context of sparse matrix vector multiplication is another grouping data
locality improving transformation. Both bucket tiling and cache blocking can be expressed within the SPF.

The sparse tiling transformations, unstructured cache blocking [20], full sparse tiling [58, 61], and com-
munication avoiding rescheduling[41] improve temporal data locality in computations and also can be used
to create coarse-grain parallelism by grouping iterations across iterations in an outer loop or between loops.
The sparse tiling transformations are expressible within the SPF and the IEGen Python prototype can
generate inspectors and executors for the serial version of these transformations.

In the context of parallelizing irregular applications, gather/scatter parallelism is commonly used in
irregular applications where the programmer has specified the data decomposition for a distributed ar-
ray [52, 33, 27, 68, 11]. Typically there is language and compilation support for data distribution specifica-
tions, parallel loops, and reductions, which involves generating code with calls to the appropriate inspector,
scheduling, and gather/scatter functions in a run-time library such as CHAOS [45]. The sparse polyhedral
framework (SPF) and IEGen runtime build on these ideas with the key extensions being that many more
transformation types can be specified with the SPF, and the transformations being applied can be specified
as well as the original computation. Although the SPF enables the specification of parallel schedules, the
IEGen Python prototype does not generate parallel code.

When parallelizing irregular loops with loop-carried dependences, an inspector must determine the de-
pendences at run-time before rescheduling the loop. One approach is to dynamically schedule iterations into
wavefronts such that all of the iterations within one wavefront may be executed in parallel. In [49], Rauch-
werger surveys various techniques for dynamically scheduling iterations into wavefronts such that all of the
iterations within one wavefront may be executed in parallel. An inspector for detecting partial parallelism
inspects all the dependences for a loop, and places iterations into wavefronts. The SPF can express partial
parallelism transformations, but again the IEGen code generator does not yet generate parallel code.

8 Conclusions

The performance optimization process for irregular/sparse scientific applications has generally been hand-
coded and/or supported with libraries, and typically involves using inspector/executor strategies to im-
plement various Run-Time Reordering Transformations (RTRTs). In this paper, we present the Sparse
Polyhedral Framework (SPF) for specifying irregular/sparse computations and RTRTs on those computa-
tions. We show how to represent inspectors and executors at compile time with the Inspector Dependence
Graph (IDG) and Mapping Intermediate Representation (MapIR), manipulate those representations to show
the effect of the RTRTs being applied, and then generate the inspector and executor code. Additionally
we present code-improving transformations that do not reorder data or computation, but perform other
transformations such as collapsing nested index arrays to improve the inspector and executor performance.
Finally, we show experimental results that indicate the generated inspectors and executor compete with the
performance of handwritten code.
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