
Computer Science
Technical Report

Cache efficient parallelizations for Uniform
Dependence Computations

Yun Zou Sanjay Rajopadhye

May 1, 2014

Colorado State University Technical Report CS-14-101

Computer Science Department
Colorado State University

Fort Collins, CO 80523-1873

Phone: (970) 491-5792 Fax: (970) 491-2466
WWW: http://www.cs.colostate.edu

Abstract

Decreasing the traffic from processors to main memory is beneficial
in many aspects, such as reducing energy consumption and bandwidth
demand, increasing device lifetime, etc. We address a class of programs
that are stencil like computations, for which, tiling is a key transformation.
The target platform is a shared memory multi- and many-core processor.
We propose a cache-efficient parallelization strategy that uses two-level
tiling with multiple passes and seeks to minimize the total number of off-
chip memory accesses. We mathematically analyze the execution time
and main memory accesses, and use it to guide the choices for all the
tiling parameters. We also develop a tiled code generator to support this
parallelization strategy, which we validate experimentally on a number of
stencil benchmarks including those from the well known Polybench suite.
On a 8-core Intel Xeon E7-4830 based machine and a 6-core Xeon E5-2620
v2 based machine, our results on some benchmarks show more than 40-
fold reduction in off-chip memory accesses with less than 10% slow-down.
With around 30% slow-down, we can achieve up to 60-fold reduction in
off-chip memory on Intel Xeon E7-4830, and more than 70-fold reduction
on Xeon E5-2620 v2. We also describe additional optimizations that we
are currently implementing, to recover the execution time slow-down that
is introduced by our parallelization strategy.

1 Introduction

Off-chip memory access performs a critical role in a computer system’s perfor-
mance and energy efficiency [39, 23, 36]. A modern multi-core processor provides
a shared on-chip memory that is shared by a number of cores. The cores can
execute distinct applications or cooperate for the same application by using the
shared memory for communication. The shared on-chip memory is usually the
last level cache, and a cache miss of the last level cache leads to off-chip memory
transfer. In this paper, we focus on reducing the cache misses of the last level
shared on-chip memory.

Exploring the memory hierarchy efficiently is the key to reduce the memory
traffic. Much research has been done to explore the efficiency of the memory
hierarchy [36, 22]. Tiling [36, 38] is a critical program transformation and is
used extensively to address many different aspects of performance, including
off-chip memory accesses. One important class of programs to which tiling can
be applied is called stencil computations. One of the thirteen Berkeley dwarf-
s/motifs (see http://view.eecs.berkeley.edu), is “structured mesh compu-
tations,” which are essentially stencils. The importance of stencils has been
noted by a number of researchers, indicated by the recent surge of research
projects and publications on this topic, ranging from optimization methods for
implementing such computations on a range of target architectures, to Domain
Specific Languages (DSLs) and compilation systems for stencils. A number of
workshops and conferences focus specifically on stencil acceleration.

Stencil computations occur frequently in a wide variety of scientific and en-
gineering applications, such as environment modeling applications that involve

1

Partial Differential Equations (PDE) solvers [30], computation electromagnetic
applications using Finite Difference Time Domain (FDTD) methods [33], and
computations based on neighboring pixels and multimedia/image-processing
application [11]. Naive implementations of these applications turn out to be
memory-bound. Therefore, much work has been done to explore the data local-
ity for stencil computations [16, 26, 36, 37]. One successful technique is called
time skewing [36, 8, 37]. With time skewing, the whole computation space of
a stencil can be tiled and executed in a wavefront fashion. Although this tech-
nique can greatly improve the data locality for stencil programs, there is still
a significant amount of off-chip data transfer for stencil programs with large
problem size, which can be further reduced.

In this paper, we propose a cache-efficient parallelization strategy for stencil
programs. We assume, like most of the work in the literature, that dense stencil
programs are inherently compute bound—in particular, any global reductions,
such as those in convergence/termination tests can be safely removed. Our par-
allelization strategy is based on multi-level tiling technique associated with a
multi-pass execution. The multi-pass execution strategy [24] was introduced
to address the problem of restricted resources in the context of systolic array,
and later it was adapted to address the resource constraints on different plat-
forms [29]. Here, we adapt the multi-pass execution strategy to address the last
level cache misses on general multi-core processors. Although we claim that
our strategy is designed for stencil computations, it works for a much larger
set of programs. In general, our strategy works on computations described as
Systems of Uniform Recurrence Equations [17]. These are a subset of programs
that can be analyzed with polyhedral techniques, and on which tiling transfor-
mations can be applied. The platform we currently target is a single multi-core
processor.

We declare our contributions as follows:

• We introduce a cache-efficient parallelization strategy for stencil like com-
putations. Our parallelization strategy focuses on reducing the total num-
ber of off-chip memory accesses.

• We mathematically analyze the execution time and off-chip memory access
for our parallelization strategy. We use the analysis to show the trade-offs
between the off-chip memory transfer and execution time and guide the
choice of optimal tile size selection.

• We develop an automatic code generator based on polyhedral techniques
to support our parallelization strategy.

• We evaluate our parallelization strategy on a set of well known bench-
marks, in comparison with the standard tiled parallelization. On two of
them we get a 30× reduction in the number of last level cache misses
for around 30% slowdown in execution time on Xeon E7-4830. On three
others, the savings is over 40× and the slowdown is only about 10%. We
get even better trade-offs on Xeon E5-2620 v2. For the Smith-Waterman

2

dynamic programming algorithm on very large sequences, the slowdown is
again only 10% but the savings is over 7000× on Xeon E7-4830 and 3000
on Xeon E5-2620 v2, three orders of magnitude!

This paper is organized as follows: Section 2 briefly describes some back-
ground about off-chip memory access and polyhedral model. Section 3 intro-
duces our cache-efficient parallelization strategy and our tiled code generator.
Section 4 mathematically describes the trade-offs between execution time and
off-chip memory transfer. Section 5 shows the results of our experiments on a
set of benchmarks. Section 6 discusses some related existing work. Finally, in
Section 7, we present our conclusion and future work.

2 Background

We now describe some background and terminology needed for the rest of paper.

2.1 Cache misses

An off-chip memory access is caused by a failed request of read or write to the
cache, which is called a cache miss. The cache misses are classified into three
categories [14]: compulsory miss, capacity miss, and conflict miss.

Compulsory miss. A compulsory miss occurs on the first access to a memory
location, since at the very beginning of execution, no data is in the cache. Such
misses are also called cold misses.

Capacity miss. A capacity miss occur when the total amount of memory
used by a program is larger than the cache capacity. In this situation, the cache
is not large enough to hold all the data that is needed, Therefore, some data
has to be evicted from the cache, and a request to this data will cause a miss.

Conflict miss. A conflict miss occurs for an associative cache or directly
mapped cache (a directly mapped cache is a special case: 1-way associative
cache). For an N -way associative cache, the whole cache is divided into sets,
each set can hold N distinct cache lines, and each cache line is mapped to one
set. Conflict miss occurs when the program frequently accesses more than N
distinct cache lines that are mapped into the same set. In this paper, we do not
count conflict misses.

2.2 Stencil computation

A stencil computation [16, 26] is a computation that repeatedly updates each
point in a d-dimensional grid over T time steps. Therefore, a stencil computation
of d-dimensional data grid has (d + 1)-dimensional iteration space. At a time
step t, the computation for each point is defined as a function of its neighboring
points at previous time steps or possibly the current time step.

A stencil computation is called an n-point stencil computation if each point is
defined as a function of n neighboring points. The order of a stencil computation
is defined as the distance of the furthest grid point in the neighboring points.

3

For example, Jacobi 1D is a 3-point first-order stencil computation. The
computation is ut,i = a(ut−1,i−1 + ut−1,i + ut−1,i+1), to compute each point at
a time step requires three neighboring points from the previous time step.

Although the examples and benchmarks described in this paper are all stencil
computations, our strategy is applicable to a more general class of programs –
programs with uniform dependences and to which tiling transformations can be
applied.

2.3 Polyhedral model

The polyhedral model is a mathematical formalism for analyzing, parallelizing
and transforming an important class of compute- and data-intensive programs.
Although it is often used as the foundation for automatic parallelization of an
important class of loop programs, its scope is wider that that and includes equa-
tional programming (with recurrences) and analysis of mathematical properties
of programs. The polyhedral model is also very useful in automatic paralleliza-
tion [6, 4, 27].

Domain: Each computation statement in a program is surrounded by loops
with affine bounds. The domain of a statement describes the iteration space in
which the statement is defined and is represented by a set of linear inequalities.
For example, the domain of the Jacobi 1D computation is {i, t | 0 ≤ i ≤ N, 0 ≤
t ≤ T}, where i, t are the loop index names, N is the upper bound of the i
dimension and T is the upper bound of the t dimension.

Dependence. Two iterations Si and Sj are said to be dependent if they access
the same memory location and one of the accesses is a write. For example,
in Jacobi 1D, iteration (t, i) depends on iteration (t − 1, i), (t − 1, i + 1) and
(t− 1, i− 1).

3 Cache-Efficient parallelization strategy

In this section, we describe our cache-efficient parallelization strategy that is
called multi-pass strategy. We use Smith-Waterman as an example to illustrate
our parallelization strategy and its memory behavior. In general, our strategy
works for general polyhedral programs with continuous dimensions only involves
uniform dependences and fully permutable.

3.1 Smith-Waterman

Smith-Waterman [1] is a well-known algorithm for biological sequence compar-
ison that is used to find the optimal local sequence. The algorithm does the

4

i

j

Figure 1: Dependence graph for Simith-Waterman. (The source of an arrow is a

consumer and the destination of the arrow is a producer)

following computation:

Hi,0 = 0, 0 ≤ i ≤ m
Hj,0 = 0, 0 ≤ j ≤ n

Hi,j = max

0

Hi−1,j−1 + w(ai, bj)

Hi−1,j + w(ai,−)

Hi,j−1 + w(−, bj)

1 ≤ i ≤ m, 1 ≤ j ≤ n

Where a and b are two strings, m is the length of a and n is the length of b.
The function w computes a score. Figure 1 shows the dependence relationship
between computations. The computation of each point (i, j) depends on the
values from three neighboring points: (i, j − 1), (i− 1, j), and (i− 1, j − 1).

3.2 Standard tiling and parallelization

For Smith-Waterman, standard tiling and wavefront parallelization strategy can
be applied to optimize the performance, and many work have been published for
optimizing Smith-Waterman on different parallel platforms [21, 1, 7]. Figure 2 il-
lustrates the standard tiling and wavefront parallelization for Smith-Waterman.
Given a Smith-Waterman problem with problem size M ×N and tile size x×y.
The number of tiles in the graph is m × n, where m = dMx e and n = dNy e.
When M � x and N � y, dMx e ≈

M
x and dNy e ≈

N
y . In this paper, we con-

sider stencil computations with large problem sizes, therefore, we can ignore the
ceiling in our following analysis. Tiles are executed in a wavefront fashion, one
wavefront is started after the previous wavefront is done and all the tiles inside
one wavefront can be started in parallel.

Now, let’s quantify the off-chip memory accesses for the Smith-Waterman
with standard tiling and wavefront parallelization. To perform the computation
in each tile, it requires x values from the tile above it and y values from the tile

5

i

j

t

t + 1 t + 2 t + 3

Figure 2: Tiling and wavefront parallelization for Smith-Waterman. Each
square represents a tile with width x and height y, and each red diagonal strip
represents one wavefront pass. Each wavefront is started after the previous
wavefront is done, and all the tiles in one wavefront can be computed simulta-
neously.

6

at left. And it produces x+ y values for the tiles that are executed in the next
wavefront. Assume that the problem size is large enough that the size of the
values produced at one wavefront is much larger than the capacity of last level
cache. Then every read of the values produced from the previous wavefront is
a compulsory miss, and it will cause an off-chip memory access. Therefore, the

total volume of off-chip memory transfer is V1 = M
x ×

N
y × (x+ y) = MN (x+y)

xy .
Another strategy that is designed to use the memory hierarchy efficiently

is called multi-level tiling [12, 29]. The multi-level tiling strategy hierarchically
divided the computation space with the idea that the base tile can fit into
a deeper cache level. The wavefront parallelization strategy is used on the
outermost tile level or all the tile levels. However, under the worst case, every
read of the value produced from the previous wavefront is still going to be a
miss for the outermost level tiles. Next, we will introduce our cache-efficient
multi-pass parallelization strategy.

3.3 Cache-efficient parallelization

As we mentioned above, the values produced at one wavefront is going to be fed
into the next wavefront directly. And when the number of the values produced
at one wavefront is large enough to exceed the last level cache, each read of
those values at next wavefront is going to be a miss. Therefore, reusing the
values produced from the previous wavefront is the key to reduce the volume of
off-chip data transfer.

To address the reuse between adjacent wavefronts, we propose an multi-pass
parallelization strategy based on multi-level tiling. As illustrated in Figure 3,
our multi-pass parallelization strategy first tiles the computation space into
passes, and then further tiles the computation in each pass into smaller tiles.
The passes are executed sequentially, and inside each pass, standard wavefront
parallelization is applied.

If we choose the pass height carefully that the number of values produced
by one wavefront in one pass can fit into the last level cache, then the read of
those values for the next wavefront can still remains on chip, but cold misses
still happens at the boundary of each pass. Let’s assume the problem size is
M×N , the tile size for the tiles inside each pass is x×y, and the height for each
pass is H. Assume H is small enough that the value produced at one wavefront
in one pass can fit into the last level cache. Then, the volume of off-chip data
transfer can be estimated as the total volume of the boundary of all the passes,
which is V2 = (M +H)× N

H .
Now, let’s compare the volume of off-chip memory transfer of our multi-pass

parallelization strategy with the standard wavefront parallelization strategy.
V1

V2
= MH

(M+H)×
x+y
xy . When x = y and M = H, this formula yields the maximum

value H
x , and H is usually greater than x. If H is much larger than x, our

strategy can potentially reduce the off-chip memory access significantly.
This multi-pass strategy can be generalized to higher dimension. For prob-

lems with d dimensions (d ≥ 2), we first tile k dimensions (k < d) to get the

7

i

j

pass 1

pass 2

pass 3

t

t + 1 t + 2 t + 3

Figure 3: Multi-pass parallelization for Smith-Waterman.

passes, and then perform an inner level tiling to all the dimensions. Figure 4
shows an example with three dimensional computation space (d = 3). If dimen-
sion i and dimension j are tiled first, the whole computation space is divided
into a set of tubes with the inner most level not tiled (shown in the right of
Figure 4), and each tube is executed one after another sequentially. For each
tube, one more level of tiling that tiles all the three dimensions is applied, all
the tiles inside a tube is executed in a wavefront fashion.

3.4 Code generation

It is known that tiled code is hard to write, therefore, much work have been
done to develop code generator that generates tiled code automatically, such
as HiTLOG [35, 18], Pluto [6], PrimeTile [13] and etc. Most existing code
generators support multi-level tiling [18, 6, 13] that tile all the dimensions, and
some of them support [18, 6] wavefront parallelizations for outer level of tiles and
Pluto also supports wavefront parallelization for all tile levels [6]. However, our
parallelization strategy does not require all the dimensions to be tiled, although
we can set the tile size to be the problem size, possible loop overhead can be
introduced. Moreover, we require the support of wavefront parallelization at
inner level, but with sequential execution at the outer level.

We developed a Parameterized Hierarchical Tiled Code generator (PHTile)
that generates parameterized hierarchical tiled code for shared memory archi-
tecture. Our code generator takes a polyhedral specification of a polyhedral

8

i

j
k

Figure 4: Multi-pass strategy for 3D program, the outer two dimension is tiled
for passes.

// outer non−t i l e d loops
f o r (Li = l b i ; Li < ubi ; Li++){

. . . // loops
// t i l e band : the s e t o f l oops
// that are going to be t i l e d
f o r (Lj = l b j ; Lj < ubj ; Lj++){

. . . // loops
// inner non−t i l e d loops

f o r (Lk = lbk ; Lk < ubk ; Lk++){
. . . // loops

}
}

}

Figure 5: The structure of a tile band. The non-tiled loops are sets of loops that are

not tiled. The tile band specifies the loops are going to be tiled.

program and produces C + OpenMP code. It tiles sets of continuous dimen-
sions called tile band and supports wavefront parallelization at any level of tiling.

Figure 5 gives an example of a tile band. A program can have multiple tile
bands and each tile band can be tiled for k levels (0 is the outermost level),
and we require the inner level tiling tiles a subset of the dimensions of the outer
level tiling. The dimensions to be tiled for different bands have to be disjoint.

The tiling process goes from band to band, and for each band, tiling is
applied from the outermost to the innermost level. At each level of each band,
the tiling algorithm described in Kim’s work [18] is used to generate tiled code or
tiled code with wavefront parallelization. A set of tiled-loops and a set of point-
loops are generated separately for the tiling loops. The tiled-loops enumerates
the tiled origins along the tiled dimensions and the point-loops enumerates all
the points inside the tile along the tiled dimensions. The point-loops generated
at one level are used to generate loops for the next level.

9

To visit the tiles with wavefront parallelization strategy, a loop is generated
to visit all the wavefront time step. In each time step, loops are generated to visit
all the possible tiles at current time step time. For a given d-dimensional tile

with tile origin (t1, t2 . . . td), the time step to execute the tile is time =

d∑
k=1

tk
sk

where sk is the tile size for the kth dimension. The lower bound and upper
bound for the time steps are computed according to the bounds of the tiled
loops, the computation is shown below

timestart =

d∑
k=1

(
lbk
sk

)

timeend =

d∑
k−1

(
ubk
sk

)
where lbk is the lower bound of the kth loop, and ubk is the upper bound of
the kth loop. Those are all described in Kim’s work. For tiling at inner levels,
the point loops generated from the outer level is used as the input to the tiling
algorithm.

We can also deduce that the total number of wavefront time steps nw at a
given level is

nw = timeend − timestart

=

d∑
k=1

(
ubk − lbk

sk

)

=

d∑
k=1

(
Nk

sk

)
where Nk is the loop size of dimension k.

In our code generation frame work, the compilation is based on two main
step.

• First, an internal data structure called target mapping specifies, for each
statement in the program, all the aspects of the desired parallelization.
This includes the schedule (i.e. time skewing), the memory allocation, and
tiling—which dimensions to tile, how many levels of tiling, and whether
wavefront parallelization is applied at a certain level.

• Next, a code generator in the form of a very sophisticated “pretty printer”
based on CLooG [5] actually produces the target code.

The choice of the target mapping is a long standing research problem, since
target architectures are continually evolving. Therefore, we require the users to
input the target mapping currently.

10

4 Performance analysis

In this section, we mathematically analyze the execution time and off-chip mem-
ory accesses for the standard wavefront parallelization strategy and our mulch-
pass strategy.

4.1 Execution time analysis

Some research has been done to model the execution time for tiled programs [19,
25, 2]. Our analysis here is based on the work of Andonov et al [2]. We first
present the execution time analysis for the standard tiling and wavefront strat-
egy, then we will extend it to support our multi-pass strategy.

The execution time for a given stencil program is the sum of time spent in
each wavefront. Let nw represent the total number of wavefronts, and T (wi)
be the execution time for the ith wavefront. Then the execution time T for the

whole program is T =

nw∑
i=1

T (wi).

The time for each wavefront is estimated as the time required for all the
tiles in one wavefront divided by the number of processors P . The execution
time for each tile includes the time for fetching the data required to start the
computation and the actual computation time. Here, we also assume that all
the tiles are homogeneous, so the execution time for each tile is the same. Let
NTile(wi) be the number of tiles in the with wavefront, Lmem be the time spent
for memory fetching, and Ttile be the computation time for each tile. Then

T (wi) = (Lmem + Ttile)

(
NTile(wi)

P

)
As we stated before, stencil computations become computation bound after

tiling. We assume that the computation is large enough that once the com-
putation starts, all the memory transfer can be overlapped by computation.
Therefore, at each wavefront, we only have to pay the memory latency cost for
the first tile to start the computation. Then

T (wi) = Lmem +
TtileNTile(wi)

P

which gives

T =

nw∑
i=1

T (wi)

=

nw∑
i=1

(Lmem +
TtileNTile(wi)

P
)

= nwLmem +

nw∑
i=1

(
TtileNTile(wi)

P

)
≈ nwLmem +

total computation

P

11

Where total computation is the total number of computations in the pro-

gram. For a given problem size and processor number, the part
total computation

P
is invariant. For the rest of the analysis and the tile size selection, we will focus
on the variant part (nwLmem).

As described in the wavefront code generation section, the number of wave-

fronts nw can be computed using nw =

d∑
i=1

(
Ni

si

)
, where Ni is the size for

the ith dimension, si is the tile size for ith dimension, and d is the number
of dimensions that are tiled. However, for stencil computations, time skewing
has to be applied to tile the whole computation space of stencil computations
to enable tiling. Assume that dimension i is skewed with respect to dimension
t, and the original size of dimension i is Mi and original size of dimension t
is Rt. After skewing, the size of the skewed dimension i can be computed as
Mi +αiRt, αi is called skewing factor for the ith dimension [2]. For example, α
is 1 for Jacobi 1D for the data dimension. Therefore, the number of wavefronts
can be computed as

nw =

d∑
i=1

(
Mi + αiRt

si

)
The memory latency is estimated by counting the volume of data needed

to start the computation of a tile. For example, for Smith-Waterman, each tile
requires the memory from the top boundary and left boundary. Therefore, the
memory latency is (si + sj). But for 2D cases like Jacobi 2D, it requires faces
from three directions, the faces above, the faces at left and the faces in front.
For most 2D cases, the memory required for each tile can be represented as
β1sisj +β2sist +β3sjst, where β1, β2 and β3 are appropriate constants that can
be automatically deduced – the number of faces required at each side.

Above, we described our analysis for standard wavefront parallelization.
Now, we will extend it to our multi-pass parallelization strategy. The total
number of computations for a given problem size remains invariant. And the
memory latency for each wavefront is still modeled as the memory latency for
one tile in the wavefront. The different part is the computation for the total
number of wavefronts. The total number of wavefronts in the whole program
is the number of wavefronts in each pass multiplied by the number of passes.
Using the same idea of computing the number of tiles from Andonov [2]. The
number of passes Npass can be computed using the following

Npass =

d
′∏

i=1

(
Mi + αiRt

s
′
i

)

Where d
′

is number of dimensions that are tiled at the outer level, s
′

i is the
tile size for the outer level tiling. Since each pass can be viewed as a one level
tiling problem. the number of wavefronts in each pass can be computed in the
same way as computing the number of wavefronts in the whole program, but

12

with the original size of each dimensions involves the pass sizes. For example,
for a Smith-Waterman problem with problem size M ×N and pass height Hj ,

the number of passes is
N

Hj
, the skewing factor is 0. Each pass can be viewed as

a one level tiling problem, and the number of wavefronts for this tiling problem

is
M

si
+
Hj

sj
.

4.2 Memory analysis

In Section 3, we mathematically quantified the volume of off-chip memory trans-
fer for Smith-Waterman. The main idea is counting the volume of boundary
points for all the passes. This main idea remains the same when we move on to a
higher number of dimensions and programs with more complicated dependences.
Therefore, the volume of memory transfer is represented as

V = VsurfaceNpass

where Vsurface is the volume of the surface area where memory access happens,
and Npass is the total number of passes. The number of passes is computed in
the same way as we described in the execution time analysis.

Let’s take the example shown in Figure 4. The problem size is Ni along the
i dimension, Nj along the j dimension and R along the t dimension. The pass
size is Hi along i dimension, and Ht along the t dimension. The corresponding
inner tile sizes for each pass along each dimension is si, sj and st.

To compute the values in a tube, it requires values from the bottom ij
face, the left jt face and the front it face, since for stencil programs, the same
memory loaded into a tile can be reused, the write back is not going to be a miss.
Therefore, Vsurface = β1HiNj + β2HtNj + β3HiHt. Based on the dependence
of the computation, different number of faces or even different faces may be
needed. The number of passes for the example in Figure 4 is simply computed

as Npass =
Ni

Hi
× R

Ht
. Therefore, the total volume of off-chip memory transfer is

estimated as V =
NiR

HiHt
(HiNj +HtNj +HiHt) =

R

Ht
(NiNj)+

Ni

Hi
(RNj)+NiR.

4.3 Trade-offs between Memory and execution time

The goal of our multi-pass strategy is to minimize the volume of off-chip memory
access. However, this might bring in some extra overhead to the program. Let’s
take Smith-Waterman with problem size M ×N as an example, the execution

time is represented as T = nwLmem +
total computation

P
.

Since the part
total computation

P
remains invariant for a given problem

size and processor number, we only consider the term nwLmem. Next, we will
quantify this part for both standard wavefront parallelization and our multi-pass
strategy on this example.

13

With the standard tiling and wavefront parallelization, nw =
M

si
+
N

sj
, si

and sj are the tile sizes for the i and j dimension. For our multi-pass strategy,
if we divide the computation into passes along the j dimension, the number
of passes is N

Hj
, where Hj is the pass size along j dimension. The number of

wavefronts in each pass is
M

si
+
Hj

sj
. Then the total number of wavefronts for

the multi-pass strategy is
N

Hj
(
M

si
+
Hj

sj
) =

NM

Hjsi
+
N

sj
. Since M > Hj , and if

the same si and sj is used for both strategy, the total number of wavefronts in
our multi-pass strategy is greater than the total number of wavefronts in the
standard wavefront parallelization. This will introduce more overhead for the
memory latency part. Therefore, the tile sizes in the multi-pass strategy has to
be tuned carefully that the overhead can be minimized with a certain gain in
off-chip memory transfer.

Furthermore, it is known that time skewing introduces a pipeline filling up
stage at the first few wavefront time step and a pipeline flushing stage at the
last few time steps, and this fill-flush process introduces some overhead [20,
3]. The pipeline fill-flush overhead can be ignored for the standard wavefront
parallelization strategy, since it only pays this overhead once. However, in our
multi-pass strategy, we are paying this overhead at each pass, and this can
potentially introduce overhead that can not be ignored. However, this can be
mitigated by an improved code generation strategy, where the flush of a pass is
overlapped with the fill of the next pass.

5 Experiments

To evaluate our cache-efficient parallelization strategy, we performed experi-
ments on a set of benchmarks with stencil like dependences. In this section, we
describe our experimental setup including detailed benchmark information, pro-
cessor architecture, execution environment, etc. We also show the comparison
between standard wavefront parallelization and our multi-pass parallelization
strategy on execution time and off-chip memory traffic metrics.

5.1 Experimental setup

Our experiments are performed on two intel multicore processors: Intel Xeon
E7-4830 and Intel Xeon E5-2620 v2. Table 1 describes the detailed hardware
configuration for the two processors. Both processors have three levels of cache
and the main characteristics of the cache hierarchy is outlined in Table 2. The
main characteristics includes the type, size, line size and associativity for each
level of cache. The L1 instruction cache is not included in the table, since we
are interested in the data cache. The last level cache is shared among all the
cores for both architectures.

14

Processor Xeon E7-4830 Xeon E5-2620 v2
Architecture Westmere Ivy-Bridge
Clock speed 2.13 GHz 2.1 GHz
Number of cores 8 6
Level of cache 3 3

Table 1: Hardware specifications for Intel Xeon E7-4830 and Intel Xeon E5-2620
v2.

Processor Cache level Cache type Cache size Line size Associativity

Xeon E7-4830
1 (private) data 32 KB 64 B 8
2 (private) unified 256 KB 64 B 8
3 (shared) unified 24 MB 64 B 24

Xeon E5-2620 v2
1 (private) data 32 KB 64 B 8
2 (private) unified 256 KB 64 B 8
3 (shared) unified 15 MB 64 B 20

Table 2: Cache hierarchy for Intel Xeon E7-4830 and Intel Xeon E5-2620 v2.

Above, we described the hardware specifications for both architectures. Next,
we will describe the software configuration. Both platforms are running Linux,
and all the programs are compiled using icc 12.1.2 with the optimization level
-O3 and -funroll-loops. We use the last level cache misses as an estimation
of the off-chip memory accesses, since each last level cache miss is going to
cause an off-chip memory access. To measure the last level cache misses, we
accesses the hardware counter through PAPI 3.5. Table 3 gives description
about the main characteristics of each benchmark. Our benchmark suit includes
stencil computations with different number of data dimensions, stencil orders,
neighboring points, number of floating point operations per iteration and also
different number of variables involved in the computation.

Benchmark Data D Order NP NV FPI
Smith-Waterman 1 first 3 1 9
Jacobi 2D 2 first 5 1 5
Heat 2D 2 first 5 1 9
Seidel 2D 2 first 9 1 9
FDTD 2D 2 first 5 3 11
Wave 2D 2 third 13 1 13

Table 3: Details about the benchmarks. Data D is the number of dimensions of data

grid, another time dimension is needed for computation. NP stands for neighboring

points, it means the number of neighboring points needed for the computation of each

point. NV represents the number of variables that have to be computed during the

computation. FPI is floating point operations per iteration.

15

5.2 Tile size selection

Tile sizes have a direct impact to the execution time of the tiled code. In our
experiments, we use the analysis described in Section 4 to guide the choice
of tile sizes. As we described in Section 4.1, the amount of time spent on
computation is the same for all different tile sizes with a given problem size,
and the amount of data transferred to start the computation at each wavefront
is different. Therefore, for the standard wavefront parallelization technique, we
pick up the tile size that minimizes the memory transfer among all the tile sizes
that fits into L2 cache. For our multi-level parallelization strategy, we compute
the amount of off-chip memory accesses like we described in Section 4.2 and the
data transferred to start the computation. Then we pick up some points on the
pareto frontier, and measured both last level cache misses and execution time
for each point.

5.3 Result Analysis

To demonstrate that our code generator generates efficient code, we compared
the execution timeof standard wavefront parallelization code generated by our
Parameterized Hierarchy Tiled (PHTile) code generator with the code generated
by Pluto [6] (a tiled code generator with fixed tile size) and Pochoir [34] (cache
oblivious tiled code generator) . The tile sizes picked up for our PHTile is
passed into Pluto to generate tiled code. The result is shown in Figure 6 and
7. The base line used in the execution timecomparison for each program is the
execution time of the best performed generated program on one thread. For all
the benchmarks, the code generated by our PHTile gets comparable execution
time with Pluto and Pochoir on both platforms.

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0 2 4 6 8 10 12 14 16

sp
ee

du
p

number of threads

Performance for Smith Waterman on Xeon E7-4830

PHTile
Pluto

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0 2 4 6 8 10 12 14 16

sp
ee

du
p

number of threads

Performance for Jacobi 2D on Xeon E7-4830

PHTile
Pluto

Pochoir
 0

 2

 4

 6

 8

 10

 12

 14

 0 2 4 6 8 10 12 14 16

sp
ee

du
p

number of threads

Performance for Heat 2D on Xeon E7-4830

PHTile
Pluto

Pochior

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0 2 4 6 8 10 12 14 16

sp
ee

du
p

number of threads

Performance for Seidel 2D on Xeon E7-4830

PHTile
Pluto

 0

 2

 4

 6

 8

 10

 12

 0 2 4 6 8 10 12 14 16

sp
ee

du
p

number of threads

Performance for FDTD 2D on Xeon E7-4830

PHTile
Pluto

 0

 1

 2

 3

 4

 5

 6

 7

 0 2 4 6 8 10 12 14 16

sp
ee

du
p

number of threads

Performance for Wave 2D on Xeon E7-4830

PHTile
Pluto

Pochoir

Figure 6: Execution time comparison for standard wavefront parallelization from

PHtile with Pluto and Pochoir on Intel Xeon E7-4830. There is no execution time for

Pochoir for Smith-Waterman, Seidel and FDTD. This is because Pochoir requires the

neighboring points are all from the previous time step, but Smith-Waterman, Seidel

and FDTD examples need points from the current time step.

16

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

 0 2 4 6 8 10 12

sp
ee

du
p

number of threads

Performance for Jacobi 2D on Xeon E5-2620 v2

PHTile
Pluto

Pochoir
 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

 6

 0 2 4 6 8 10 12

sp
ee

du
p

number of threads

Performance for Heat 2D on Xeon E5-2620 v2

PHTile
Pluto

Pochior
 0

 2

 4

 6

 8

 10

 12

 0 2 4 6 8 10 12

sp
ee

du
p

number of threads

Performance for Seidel 2D on Xeon E5-2620 v2

PHTile
Pluto

 0

 1

 2

 3

 4

 5

 6

 7

 0 2 4 6 8 10 12

sp
ee

du
p

number of threads

Performance for FDTD 2D on Xeon E5-2620 v2

PHTile
Pluto

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 0 2 4 6 8 10 12
sp

ee
du

p
number of threads

Performance for Wave 2D on Xeon E5-2620 v2

PHTile
Pluto

Pochoir

Figure 7: execution time comparison for standard wavefront parallelization from PH-

Tile with Pluto and Pochoir on Intel Xeon E5-2620 v2.

In Figure 8 and Figure 9, we show the comparison result of execution timeand
last level cache miss between the last level cache misses and execution time on
both platforms. On Intel Xeon E7-4830 For FDTD 2D, Heat 2D and Seidel 2D,
more than 40 times reduction on the last level cache misses can be achieved with
only about 10% slow down in performance. More reductions can be achieved
with more degeneration of performance. And for Jacobi 2D and Wave 2D, we
can get about 30-fold reduction in last level cache misses with about 30% slow
down in performance. For Smith-Waterman, we even got up to 7000 times
improvement on last level cache misses. According to our previous analysis on

Smith-Waterman, the improvement of cache misses we can get is
MH

M +H
×

x+ y

xy
, plug in the tile sizes we selected for Smith-Waterman, the cache miss

improvement we got can reach under the most idea situation is about 104.
Similarly, on Xeon E5-2620 v2, with only 10% slow-down in performance, we
get up to 50-fold reduction in last level cache misses for Jacobi 2D, 30-fold for
FDTD 2D and Wave 2D and up to 300-fold reduction for Heat 2D and Seidel
2D. There is also a three orders of magnitude reduction in last level cache misses
for Smith-Waterman on Xeon E5-2620 v2.

As we noticed from the result of two platforms, a better last level cache miss
reduction can be achieved on Xeon E5-2620 v2 compared with Xeon E7-4830.
This is probably because the Xeon E5 has a smaller last level cache with lower
number of associativity, and this can potentially increase the chance of capacity
cache misses and conflict cache misses. And our strategy work even better under
those situation.

17

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 0 0.2 0.4 0.6 0.8 1 1.2

L
L

C
 m

is
s

ra
tio

Performance ratio

Smith Waterman on Intel Xeon E7-4830

Smith-Waterman

 5

 10

 15

 20

 25

 30

 35

 40

 0 0.2 0.4 0.6 0.8 1

L
L

C
 m

is
s

ra
tio

Performance ratio

Intel Xeon E7-4830

Jacobi 2D
Wave 2D

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 0.2 0.4 0.6 0.8 1

L
L

C
 m

is
s

ra
tio

Performance ratio

Intel Xeon E7-4830

Heat 2D
FDTD 2D
Seidel 2D

Figure 8: Last level cache (LLC) miss improvement for different benchmarks on Intel

Xeon E7-4830. The y axis is LLC ratio, which is computed as the ratio of the measured

LLC misses for our multi-pass strategy to the LLC misses of the standard wavefront

parallelization. Similarly, the performance ratio along x axis represents the ratio of

the execution time of our multi-pass strategy to the best standard wavefront perfor-

mance. The red point in each figure represents the position for standard wavefront

parallelization.

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 0 0.2 0.4 0.6 0.8 1

L
L

C
 m

is
s

ra
tio

Performance ratio

Smith Waterman on Intel Xeon E5-2620 v2

Xeon E5-2620 v2

 0

 20

 40

 60

 80

 100

 0 0.2 0.4 0.6 0.8 1

L
L

C
 m

is
s

ra
tio

Performance ratio

Intel Xeon E5-2620 v2

FDTD 2D
Jacobi 2D
Wave 2D

 0

 100

 200

 300

 400

 500

 600

 0 0.2 0.4 0.6 0.8 1
L

L
C

 m
is

s
ra

tio
Performance ratio

Intel Xeon E5-2620 v2

Heat 2D
Seidel 2D

Figure 9: Last level cache (LLC) miss improvement for different benchmarks on Intel

Xeon E5-2620 v2.

6 Related Work

Many authors have worked on optimizing stencil computations for improving lo-
cality for stencil computations, in both, shared memory and distributed memory
or hybrid platforms. Dursun et at. [9] and Peng et al.[26] apply techniques like
cache blocking and register blocking on stencil computation. These techniques
divide the computation grid into small blocks so that each block fits into the
cache or register. Further benefits have been showed by applying those tech-
niques on multiprocessors. However, the amount of cache reuse is very limited
with those techniques, since all the points in the data grid still have to be read
once at every time step when the data grid size is large enough.

Time skewing [37, 8] is one of the most important approaches that exploit
data locality across multiple time steps. It looks at the dependencies in the whole
iteration domain, skews it with respect to the time dimension, then divides
it into rectangular tiles. Wonnacott also generalized this this idea to handle
imperfectly nested loops in the context of the Omega tool. The same effect
of time skewing can also be achieved by hyperplane tiling [15, 6, 3]. Instead
of skewing the computation space to make rectangular tiling legal, they are
trying to find a legal hyperplane to cut the whole computation space. Due
to dependences between tiles, most authors [37, 6] subsequently parallelize the

18

tiled program with wavefront parallelization. As we described in section 3, the
off-chip memory transfer is still significant with large problem size, since the
potential of data reuse between successive wavefronts is not exploited. In this
paper, we achieved this by adding an additional level of tiling at the “outer” or
“pass” level.

Strzodka present a technique called cache accurate time skewing (CATS) [32]
for stencil computations. CATS is based on the reduction of higher dimensional
problem into lower dimensional, non-hierarchical problem. In CATS, a subset of
the dimensions are tied to form large tiles, and a sequential wavefront traversal
is performed inside the tiles and the parallelism is explored among the tiles. To
obtain the maximally concurrent start, the tile shape is chosen such that the
parallel dimension and the tiled dimension forms a diamond shape. They also
present a technique for choosing the tiling parameters optimally: they maximize
the tile size, bounded by the size of the private (L2) cache of one thread, such
that it supports reuse inside a tile. In CATS, the overall tiling strategy is
such that each diamond shaped tile accesses distinct values, and so there is
no reuse between tiles. They do not address energy minimization, so they use
the private, rather than the last level cache as capacity bound. However, we
can easily adapt their method to optimize for last-level cache misses. Using
the model of Section 4 we can show that their strategy for optimal tile size,
adapted to the last level rather than private cache would nevertheless perform√
P more memory accesses than ours, where P is the number of processors.

Of course these are only analytical predictions, and more detailed experimental
comparison would be needed.

Frigo and Strumpen [10] present a cache oblivious algorithm [28] for stencil
computations using tiles with trapezoidal surfaces. They recursively tile the
whole computation space into small tiles that fit into a given cache. However,
their algorithm is not designed to make use of the parallel architecture. In the
later work [31, 34], the parallelism is achieved by an improved space cut such
that independent tiles can be obtained. Frigo and Strumpen showed that for an
ideal cache with size Z, the cache oblivious strategy can save a factor of Θ(Z

1
n)

compared with the naive implementation. However, the reuse among parallel
tiles is still not explored. There are also some other factors that can impact the
efficiency of the cache-oblivious algorithm, e.g., without knowing the cache size,
bad choice of base case can be made and it can significantly increase the overall
cache misses.

7 Conclusion

We presented an cache-efficient parallelization strategy for dense stencil like
programs, on which polyhedral analysis can be used and tiling can be applied.
Our strategy first divides the computations into passes. Since a pass is nothing
but a very large atomic tile, one may view the strategy as hierarchical tiling.
Hierarchical tiling can be applied at multiple levels. Although we did not do
so in this paper, an additional finer grain of parallelism could (and should) be

19

applied to exploit vector-level parallelism.
We mathematically analyzed the memory behavior and performance for both

the standard wavefront parallelization strategy and our strategy. We showed the
possible trade-offs between the execution time and off-chip memory traffic. We
also developed a tiled code generator for our strategy. Our experimental results
showed that, under most situations, a significant reduction in off-chip memory
traffic can be achieved with very modest slowdown.

There are two main reasons for the slowdown. First is the the latency at the
start of each wavefront—our multi-pass strategy executes many more wavefronts
than the standard one. Moreover, we pay the price of pipelining fill-flush for
wavefront parallelization of each pass. Both of these can be easily overcome.
First, a “tile-level” prefetch can be used to anticipate the data required by the
first tile in the next wavefront. Second, inter-pass overlapping can be added to
the code that is generated. As we add these capabilities to the code generator,
we expect that the benefits such as energy gains will essentially come “for free.”

In the long term, there are a number of open questions. The quantitative
model we proposed is approximate, and the experiments further approximated
it by counting just the number of cache misses. Many off-chip transfers, e.g.,
accesses to different values within the same cache line and write-back transfers,
do not provoke a cache miss. Second, the model does not account for conflict
misses. Therefore, an interesting problem that we are currently addressing is to
precisely model the number of transfers. Furthermore, We did not completely
validate the accuracy of the cost model for a wide range of parallelization pa-
rameters. We simply illustrated in our experiments, the fact that huge savings
are possible. We plan to validate the model, and then use it to precisely formu-
late a set of Pareto optimal design points and then move from a “user-guided”
code generator to a fully automatic compilation system. This would involve
automatically determining the parallel schedule, the skewing factors for each
dimension, and automatic detection of the tilable band and setting all the tile
size parameters at all levels.

References

[1] A.M. Aji and Wu chun Feng. Optimizing Performance, Cost, and Sensitiv-
ity in Pairwise Sequence Search on a Cluster of Playstations. In 8th IEEE
International Conference on BioInformatics and BioEngineering (BIBE),
2008., pages 1–6, 2008.

[2] R. Andonov, S. Balev, S. Rajopadhye, and N. Yanev. Optimal Semi-
Oblique Tiling. In Proceedings of the thirteenth annual ACM symposium
on Parallel algorithms and architectures, SPAA ’01, New York, NY, USA,
2001. ACM.

[3] Vinayaka Bandishti, Irshad Pananilath, and Uday Bondhugula. Tiling
Stencil Computations to Maximize Parallelism. In the International con-
ference on high performance computing, networking, storage and analysis,

20

SC ’12, pages 40:1–40:11, Los Alamitos, CA, USA, 2012. IEEE Computer
Society Press.

[4] Cedric Bastoul. Code Generation in the Polyhedral Model Is Easier Than
You Think. In Proceedings of the 13th International Conference on Parallel
Architectures and Compilation Techniques, PACT ’04, pages 7–16, Wash-
ington, DC, USA, 2004. IEEE Computer Society.

[5] Cedric Bastoul. Code Generation in the Polyhedral Model Is Easier Than
You Think. In Proceedings of the 13th International Conference on Parallel
Architectures and Compilation Techniques, PACT ’04, pages 7–16, Wash-
ington, DC, USA, 2004. IEEE Computer Society.

[6] Uday Bondhugula, Albert Hartono, J. Ramanujam, and P. Sadayappan. A
Practical Automatic Polyhedral Program Optimization System. In ACM
SIGPLAN Conference on Programming Language Design and Implemen-
tation (PLDI), June 2008.

[7] Bo Chen, Yun Xu, Jiaoyun Yang, and Haitao Jiang. A New Parallel Method
of Smith-Waterman Algorithm on a Heterogeneous Platform. In Proceed-
ings of the 10th international conference on Algorithms and Architectures
for Parallel Processing - Volume Part I, ICA3PP’10, Berlin, Heidelberg,
2010. Springer-Verlag.

[8] D. Wonnacott. Time Skewing for Parallel Computers. In the 12th Inter-
national Workshop on Languages and Compilers for Parallel Computing,
LCPC ’99, pages 477–480, London, UK, 2000. Springer-Verlag.

[9] Hikmet Dursun, Ken-ichi Nomura, Weiqiang Wang, Manaschai Kunaseth,
Liu Peng, Richard Seymour, Rajiv K. Kalia, Aiichiro Nakano, and Priya
Vashishta. In-Core Optimization of High-Order Stencil Computations. In
Hamid R. Arabnia, editor, PDPTA. CSREA Press, 2009.

[10] M. Frigo and V. Strumpen. Cache Oblivious Stencil Computations. In
International Conference on Supercomputing (ICS), 2005., pages 361–366,
Cambridge, MA, June 2005.

[11] Robert M. Haralick and Linda G. Shapiro. Computer and Robot Vision.
Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1st edi-
tion, 1992.

[12] Albert Hartono, Muthu Manikandan Baskaran, Cédric Bastoul, Albert Co-
hen, Sriram Krishnamoorthy, Boyana Norris, J. Ramanujam, and P. Sa-
dayappan. Parametric Multi-Level Tiling of Imperfectly Nested Loops. In
Proceedings of the 23rd international conference on Supercomputing, ICS
’09, New York, NY, USA, 2009. ACM.

[13] Albert Hartono, Muthu Manikandan Baskaran, Cédric Bastoul, Albert Co-
hen, Sriram Krishnamoorthy, Boyana Norris, J. Ramanujam, and P. Sa-
dayappan. Parametric Multi-Level Tiling of Imperfectly Nested Loops. In

21

Proceedings of the 23rd international conference on Supercomputing, ICS
’09, New York, NY, USA, 2009. ACM.

[14] M.D. Hill and A.J. Smith. Evaluating Associativity in CPU Caches. Com-
puters, IEEE Transactions on, 38(12), 1989.

[15] F. Irigoin and R. Triolet. Supernode Partitioning. In the 15th ACM
SIGPLAN-SIGACT symposium on Principles of programming languages,
POPL ’88, pages 319–329, New York, NY, USA, 1988. ACM.

[16] S. Kamil, Cy Chan, L. Oliker, J. Shalf, and S. Williams. An Auto-
Tuning Framework for Parallel Multicore Stencil Computations. In Parallel
Distributed Processing (IPDPS), 2010 IEEE International Symposium on,
april 2010.

[17] Richard M. Karp, Raymond E. Miller, and Shmuel Winograd. The Or-
ganization of Computations for Uniform Recurrence Equations. J. ACM,
14(3), July 1967.

[18] Daegon Kim. Parameterized and Multi-Level Tiled Loop Generation. PhD
thesis, Colorado State University, Fort Collins, CO, USA, 2010.

[19] C. T. King, W. H. Chou, and L. M. Ni. Pipelined Data Parallel Algorithms-
II: Design. IEEE Trans. Parallel Distrib. Syst., 1(4), October 1990.

[20] Sriram Krishnamoorthy, Muthu Baskaran, Uday Bondhugula, J. Ramanu-
jam, Atanas Rountev, and P Sadayappan. Effective Automatic Paralleliza-
tion of Stencil Computations. In Proceedings of the 2007 ACM SIGPLAN
Conference on Programming Language Design and Implementation, PLDI
’07, pages 235–244, New York, NY, USA, 2007. ACM.

[21] Yang Liu, Wayne Huang, John Johnson, and Sheila Vaidya. GPU Accel-
erated Smith-Waterman. In International Conference on Computational
Science (4), Lecture Notes in Computer Science. Springer, 2006.

[22] Andreas Merkel and Frank Bellosa. Memory-Aware Scheduling for En-
ergy Efficiency on Multicore Processors. In Proceedings of the 2008 Con-
ference on Power Aware Computing and Systems, HotPower’08, Berkeley,
CA, USA, 2008. USENIX Association.

[23] Lauri Minas and Brad Ellison. The Problem of Power Consumption in
Servers. Intel Press, 2009.

[24] D.I. Moldovan and J. A B Fortes. Partitioning and Mapping Algorithms
into Fixed Size Systolic Arrays. IEEE Transactions on Computers, C-
35(1):1–12, Jan 1986.

[25] D.J. Palermo, E. Su, J.A. Chandy, and P. Banerjee. Communication Opti-
mizations Used in the Paradigm Compiler for Distributed-Memory Multi-
computers. In Parallel Processing, 1994. Vol. 1. ICPP 1994. International
Conference on, volume 2, 1994.

22

[26] Liu Peng, R. Seymour, K. Nomura, R.K. Kalia, A. Nakano, P. Vashishta,
A. Loddoch, M. Netzband, W.R. Volz, and C.C. Wong. High-Order Stencil
Computations on Multicore Clusters. In IEEE International Symposium
on Parallel Distributed Processing (IPDPS), 2009., may 2009.

[27] Louis-Noël Pouchet, Uday Bondhugula, Cédric Bastoul, Albert Cohen,
J. Ramanujam, and P. Sadayappan. Combined Iterative and Model-Driven
Optimization in an Automatic Parallelization Framework. IEEE Computer
Society Press, New Orleans, LA, 2010.

[28] Harald Prokop. Cache-Oblivious Algorithms. Master’s thesis, Mas-
sachusetts Institute of Technology, Department of Electrical Engineering
and Computer Science, 1999.

[29] L. Renganarayana, M. Harthikote-Matha, R. Dewri, and S. Rajopadhye.
Towards Optimal Multi-Level Tiling for Stencil Computations. In Interna-
tional Parallel and Distributed Processing Symposium, 2007. IPDPS 2007.,
IPDPS ’07, 2007.

[30] Aaron Sawdey, Matthew O’Keefe, Rainer Bleck, and Robert W. Numrich.
The Design, Implementation, and Performance of a Parallel Ocean Circula-
tion Model. In the sixth ECMWF workshop on the use of parallel processors
in meteorology, pages 523–550, 1994.

[31] R. Strzodka, M. Shaheen, D. Pajak, and H-P. Seidel. Cache Oblivious
Parallelograms in Iterative Stencil Computations. In 24th ACM/SIGARCH
International Conference on Supercomputing (ICS), pages 49–59, Tsukuba,
Japan, June 2010.

[32] Robert Strzodka, Mohammed Shaheen, Dawid Pajak, and Hans-Peter Sei-
del. Cache Accurate Time Skewing in Iterative Stencil Computations. In
Proceedings of the International Conference on Parallel Processing (ICPP).
IEEE Computer Society, September 2011.

[33] A. Taflove and S. C. Hagness. Computational Electrodynamics: The Finite-
Difference Time-Domain Method. Artech Hourse Publishers, third edition,
2005.

[34] Yuan Tang, Rezaul Alam Chowdhury, Bradley C. Kuszmaul, Chi-Keung
Luk, and Charles E. Leiserson. The Pochoir Stencil Compiler. In Pro-
ceedings of the 23rd ACM symposium on Parallelism in algorithms and
architectures, SPAA ’11, New York, NY, USA, 2011. ACM.

[35] Colorado State University. HiTLoG: Hierarchy tiled loop generator.
http://www.cs.colostate.edu/MMAlpha/tiling/.

[36] Michael E. Wolf and Monica S. Lam. A Data Locality Optimizing Algo-
rithm. In the ACM SIGPLAN 1991 conference on Programming language
design and implementation, PLDI ’91, pages 30–44, New York, NY, USA,
1991. ACM.

23

[37] David Wonnacott. Achieving Scalable Locality with Time Skewing. Int. J.
Parallel Program., 30(3):181–221, Jun 2002.

[38] Jingling Xue. Loop Tiling for Parallelism. Kluwer Academic Publishers,
Norwell, MA, USA, 2000.

[39] Jianhui Yue, Yifeng Zhu, and Zhao Cai. An Energy-Oriented Evaluation of
Buffer Cache Algorithms Using Parallel I/O Workloads. IEEE Transactions
on Parallel and Distributed Systems, 19(11):1565–1578, 2008.

24

