Computer Science COlOg‘é%g

Technical Report University

Activity Theory Language as a Visual
Studio 2013 Tool Extension

Geri Georg

Computer Science Department, Colorado State University, Fort Collins,
Colorado
georg@cs.colostate.edu,

November, 2014

Technical Report CS-14-102

Computer Science Department
Colorado State University
Fort Collins, CO 80523-1873

Phone: (970) 491-5792 Fax: (970) 491-2466
WWW: http://www.cs.colostate.edu

Activity Theory Language as a Visual
Studio 2013 Tool Extensionl

Geri Georg?
November, 2014

1. Introduction

This technical report details an Activity Theory (AT) language domain specific language (DSL) tool
implemented in Visual Studio (VS) using the DSL Modeling Software Development Kit (SDK). Changes and
extensions to the initial AT language that were needed for this project are presented. We also discuss
extensions that were made to the language as a result of using the tool to explore three example systems.
We plan to use this tool to study additional characteristics of AT including contradiction analysis and
mapping to Goal models, both of which were the subject of experiments in this tool, and are included in
it to a limited degree.

In previous work we defined a Unified Modeling Language (UML) metamodel for an Activity Theory (AT)
language, and also realized it as a model in the UML-based Specification Environment (USE) tool [2-4]. We
additionally proposed tracelink mappings [8] from AT model elements to Goal-oriented Requirement
Language (GRL) model elements [5], proposing that AT and GRL exhibit synergistic characteristics that can
be exploited as part of the requirements engineering process to make more explicit the social constraints
and requirements of complex systems that involve both human and computing components. The systems
of interest to us are those with a wide variety of human stakeholders with disparate backgrounds and
goals, especially systems where data is gathered directly or indirectly from some stakeholders and is used
to manipulate or influence their environment. In these cases the groups of stakeholders are often not
aligned towards the same goals, and the resulting systems therefore may not address critical
requirements of some group. The success of these types of systems is often dependent on how well they
address the different social requirements of their stakeholders. Our hypothesis is that using a
psychological framework such as AT may help reveal the social requirements of these types of systems
and ultimately positively influence their success, both during initial development and later during system
evolution. A critical component of testing this hypothesis is the ability to automate the use of AT to
produce repeatable results for a variety of systems, especially for persons not familiar with the AT
framework. Thus, the need for automated tools is crucial to testing our hypothesis.

The USE realization of the AT language was useful in initially developing the language and its metamodel.
However, there were several limitations of this realization. First, a user must be comfortable with the
Object Constraint Language (OCL) and interpreting issues with an object model and any OCL constraints
that it might violate. Second, creating an object model is quite detailed. Third, the visualization of an
object model can be complex and difficult to interpret. Fourth, AT depends on natural language a great
deal in order to help an analyst find issues in an AT model, most specifically in conflicts that are evident in
the modeled activity, and natural language is not analyzed easily using any formal constraint language
such as OCL.

1 This report uses color in diagrams on the following pages: 25, 28, 29, 31, and 36.
2 Computer Science Department, Colorado State University, Fort Collins, Colorado

This technical report details a second realization of the AT language using Visual Studio 2013, and its
associated Domain Specific Language Modeling SDK. The result of this work is a VS extension for AT. The
motivation for this realization using VS to see if a VS implementation can: 1) improve the object model
creation complexity as experienced with the USE tool, 2) make use of the DSL development framework
available in VS which generates a graphical editor for the language along with providing validations based
on the language metamodel and other user-provided rules, 3) gain experience developing a graphic editor
for a DSL, 4) explore analysis of various relationships in an AT model above and beyond structural
constraints using custom C# code extensions to the generated code, and 5) explore the mapping of AT
model elements to GRL Goal models and identify the extent to which Goal model elements and their
relations can be deduced, based on the elements and relations present in the AT model.

To use any AT tool, a requirements engineer or system analyst will create Activity Theory System Diagrams
(ASDs) from stakeholder input. The basic form of an ASD is taken from Engestrém’s work [1]. (Please see
Appendix A for some background on Activity Theory.) In the VS AT tool, the ASD elements and their
relations, as defined in the language metamodel, can be used to determine whether an ASD is well-
formed, through structural validation and additional coherence and validation rules. Missing relations can
be used to decide where e.g. further input is needed from stakeholders to resolve ambiguity or
contradictory information. Once ASDs are defined, trace-link mappings can be used to transform them
into a URN Goal model (using the GRL notation) in the jJUCMNav tool [6]. Similar to the USE AT realization,
the VS AT realization cannot create the GRL elements directly, but we have added report generation
capabilities to the VS AT tool that specifies GRL elements and relationships based on the AT model. (Please
see Appendix B for more information on trace-link mappings.) Goal and trade-off analyses are available in
jUCMNav and these can be used to further refine the Goal model. jJUCMNav supports powerful tracing
capabilities from Goal model elements to high-level designs specified using URN use case maps, or UCMs.

Multiple examples are used in this document: (1) a case study system we explored while creating initial
versions of the AT language, (2) a simple vacation activity that illustrates several of the AT language
concepts, and (3) an electronic task booklet proposed to replace paper task booklets in a professional
degree program at our university. The last example prompted additional relations to be added to the AT
language metamodel as a result of exploring GRL mapping. Each of these examples is discussed in the
report.

This report is structured as follows. Section 2 contains a description of some of the features of the DSL
SDK. Section 3 briefly discusses major the tool design guideline. The general architecture of the tool is
presented in Section 4, including the definition of the AT language as a metamodel, along with its
specification in VS. The structure of the tool realization using the DSL framework, along with user
commands that were developed during the project are also presented in this section. Some particulars of
the implementation are discussed in section 5, then the examples used during development of this tool
are presented along with tool functionality they illustrate or influenced in Section 6. Section 7 discusses
some issues and limitations of this work and how some of them might be addressed in the future, and our
conclusions are presented in Section 8.

2. Developing a Visual Studio Domain Specific Language

The DSL modeling SDK provides a graphical editor to specify the metamodel of a DSL, along with the
graphical editor shapes that will be used by end users to specify instance objects of the DSL. The
metamodel and shape specifications are separately defined, and a mapping relation is used to associate
them. Both language domain classes and relations may have associated shapes that will be accessible
through the language graphical editor. Different types of shapes are available to represent language

domain classes; geometry and compartment shapes are used for the AT language. Compartment shapes
allow sets to be displayed, for example the names of all the Tools related to a specific ASD. Both geometric
and compartment shapes can contain icon and text decorators, which may be displayed based on the
value of some attribute of the language domain class. For example, if a mediation is defined between a
Tool, Subject, and Aim, the mediation type can be set to an enumeration literal associated with
Subject/Aim and a particular icon displayed in the mediation shape.

The language metamodel must be specified along with associated diagram shapes and the mapping
between the language concepts and these shapes. Beyond these items, enumerated types may be defined
for the language. Graphical tools must also be added to the DSL language graphical editor toolbox to
create different domain class objects or relation instances.

There is extensive support for customization using C# to augment the default behavior of generated code.
C# allows partial classes to be defined so that the custom code can be separated from the generated code.
Custom code is used in the VS AT tool to add constraints that are not structurally possible in the
metamodel, for example the constraint that at least one of each type of ASD element is required for a
well-formed ASD. Another constraint is that each mediation needs to be related to two mediated ASD
elements. (The multiplicities allowed in the metamodel are 0..*, 0..1, 1..1, and 1..*, so a multiplicity of 2
must be specified as either 0..* or 1..* in the metamodel, then custom code must be added to the relation
builders to enforce the multiplicity restriction.)

The DSL SDK supports validation, and this is used in the AT tool on model open, save, or when selected
from the user command menu. The default validation is based on the metamodel structure, but again
custom code can be added to augment this behavior. Custom code has been added to check that at least
one of each type of ASD element is related to an ASD.

Custom code can also be added to enforce Rules, which are defined to fire when various model elements
or relations are created or deleted. An example of a rule is one used to change the enumerated type of a
mediation. The fact that a mediation is related to a Subject and Aim can only be known when the second
relation from the mediation to a mediated element is set, and at this point the mediation enumerated
type attribute is set to ‘SA’” which allows a related icon to be displayed in the mediation shape.

Custom code can be used to manipulate model elements in the persistent store in addition to the display
elements that are associated with them. This ability is used extensively to realize the user commands for
the AT language tool, and custom code is also used to add classes such as dialog box classes that are used
by commands to read from or write to a file.

All of these features are discussed with more detailed examples in the following sections.

3. Major Design Guideline

This realization of the AT language was developed as a research aid, and as such has weaker requirements
than would be present in a tool meant for general use. In particular the full set of well-formed constraints
needed to support some automatic analyses were relaxed so that models could be developed and
manipulated incrementally. Therefore, for all but the most fundamental structural constraints (e.g. an
ASD must have at least one of each type of ASD element associated with it), multiplicity constraints and
custom code to validate them have been weakened so that they do not introduce validation errors.
Instead, user commands that analyze the stronger constraints have been added and implemented through
CH# methods and various reports to alert the modeler of potential issues which can be addressed or ignored
as the modeler chooses. The rationale is:

(a) while complete models are needed for deep analyses, a researcher or modeler may not want to spend
much time initially adding detail that may be subject to frequent change.

(b) partial model entry, where only a few constraints are enforced on model open and save, may be more
user-friendly.

Specifically, the relation multiplicities that are weakened in the VS AT language metamodel are shown in
Table 1. The first column gives the name of the relation as identified in the Visio diagram of the AT
language metamodel (shown in Figure 1). The related multiplicities for the classes in the relation are
shown in the next two columns. The last two columns show the multiplicities for the relation between
these classes in the Visual Studio DSL metamodel (shown in Figure 2).

Table 1. Relaxed multiplicity relations in Visual Studio AT language metamodel

Relation name in Fig 1 source Fig 1 target VS metamamodel VS metamodel
Figure 1 multiplicity multiplicity source multiplicity target multiplicity
metamodel

elelnASD 1..%* ASD 0..* ASDElement | 0..* ASD 0..* ASDElement
tools2dols 0..* Tool 1..* Dol 0..* Tool 0..* DoL
rules2dols 0..* Tool 1..* Dol 0..* Tool 0..* DoL
whoDoesDol 0..* DoL 1..* Community | 0..* Dol 0..* Community
subjComm 0..* Subject 1 Community 0..* Subject 0..1 Community
mediationRel 0..* Mediation | 1 MediaTINGEle | 0..* Mediation 0..1 MediaTINGEle
mediatedRel 0..* Mediation | 2 MediaTEDEle | 0..* Mediation 0..* MediaTEDEle
medRelASD 1 ASD 1..* Mediation 0..1 ASD 0..* Mediation

4. AT Tool Development -AT Language Metamodel

A UML diagram of the AT language metamodel is shown as a Visio drawing in Figure 1. This figure has
three distinct parts. First, the DSL Modeling SDK requires a model root, so a class was added that serves
as the root of a model (ATModelRoot). Every element in the model must be related to only one model
root.

Second, there are three classes, DiagColorKey, AnalysisError, and Contradiction which are not a part of
the AT language, but serve to hold additional information about a model. The purposes of these classes
are as follows.

Currently two DiagColorKey objects may be defined for a model. One holds text explaining the colors used
for various relations in an AT model, (for example, relations from an ASD to a related ASDElement are
colored in Gainsboro). The second object holds text explaining the color used for different model analysis
problems, (for example, any mediating element that is not involved in a mediation is outlined in Red).

An AnalysisError object is created whenever an analysis is run via a user command, and a problem is found,
for example, that a mediating element is not involved in any mediation. Such a situation may indicate
either that the mediating element should not be related to the ASD or that a mediating relationship should
exist that has not yet been specified, or that some mediated element that would be part of such a
relationship has not been added to the ASD. In general, it is a decision on the part of the modeler as to
which of these possibilities is true, and how it should be addressed or whether it should be ignored. There

are several types of problems that can be present, and so each AnalysisError object has an enumerated
type attribute that indicates the error type.

A Contradiction object is user-defined at this time, and can be useful to identify potential problems in a
model. AT contradictions can arise between ASD elements of the same type, across different types,
between ASD outcomes in one ASD and some other ASD element type in another, and between evolutions
of a single ASD. We experimented with the Apache Natural Language Processing (NLP) tools to help
identify contradictions in the natural language description of ASDElements, but did not arrive at a
satisfactory solution. Therefore the decision was made to proceed with an entirely user-defined
contradiction object at this time (the NLP experiment is describe in the Issues section of this report). A
contradiction is always relative to some item, either an ASD or some ASDElement. This is the considered
item related to a contradiction. There can be any number of other ASDs or ASDElements that contradict
this considered item.

The third part of the Figure 1 consists of the AT language classes. These are: ASD, ASDElement, and
Mediation. ASDElement is an abstract class with three specializations: MediaTINGEle, MediaTEDEle, and
Outcome. MediaTINGEle and MediaTEDEle are also abstract classes. Tool, Rule, and DivisionOfLabor
elements are specializations of MediatinTINGEle, while Subject, Aim, and Community elements are
specializations of MediaTEDEle. A Mediation object must be related to one mediating object, and two
different mediated objects, all of which must be related to the same ASD as the Mediation object. The
Outcome class is only a specialization of ASDElement, and an Outcome object is considered neither a
mediating or mediated element of an ASD.

Additional constraints in Figure 1 are written in English text with arrows pointing to the relation or class
which is constrained. (In the USE realization of the AT language, these constraints are implemented as
OCL constraints on the AT USE model. In the VS tool they must be implemented as C# custom code added
either to validation or relation builder methods, as described later in this paper.)

Contradictions: There can only be 1

idered item for a iction — either
an ASD oran ASDElement The relevant
contradiction ASD is the considered ASD or
the ASD in which the ASDElement is related

for this contradiction consideration. 1 CKmod
0 medRoot
\ T | | 1 modAEleRoot
aenfoot 1 =
ATModelRoot modsCHK
conRool DiagColorKey
T modASDRoot
* modsConts
ClaEleCo™ consideredAE
Contradicti cAEco *
lclasdont « contradictedAE
deredASD
0 + cASDsCont .
tradictedASD
" IModsABs 4 gesaEs reSDsCo contradie i
AnalysisError
¥ 1 o1 * .
ASDsAEs aeAsDs| - modASDs modaEles
El
relevan ASD + asdDiags S " enabledElements
1 ol . -—
refinedDiagams . | IR
sk g ams ; —1.1 ASDElement qOut: can
T gl . only be of the Dol Rule, Tool
d leinASD y type . 3 '
reiaghartiolL IOGIMASD: el e i Subject, or Community AND they must be
slelnASD: at least 1-each Tool, Rule. AN related to a different ASD ('diagrams’ role)
DivisienOfLabor, Subject, C: ity, — - than the requiredOutcomes element
Aim, and Outcome are bers of the : every
set elements. composite must have a Tool that mediates it
AND every MediaTINGEle must be associated with
: at least 1 mediation (soft int, nat I
g:ﬂiﬁ;’?gﬂ:‘:ﬂ;;z Jmedfared\'?a!: the scoELE must consist of 2
composits (mediations) medRelASD MediaTEDEle that are different types
and the element that

i
L
mediates them 1 mediationRel |
(mediatedBy) must all be MediaTiNGTle i mediations
part of the same ASD . 1.° MediaTEDEle
{relevantMASD) AN Sem - R 2

d M
2 mediation scoEle [|3
[I 1
Rule DivisionOfLabor
Tool rules2dols rDols _ . v
T]| C ty Aim Outcome
.lmls iles 1.+ parentDpL _ . -
200 1Dols spibject member el requiredCutconies
ool
commDdges SECamm
whoDoesDol

Figure 1. AT Metamodel

Visual Studio AT DSL Metamodel

The first step in developing a VS DSL is to diagrammatically develop the metamodel, which consists of
some root class, additional domain classes, and relationships. The root of the DSL must have embedding
relationships with all other classes in the DSL. The ATModelRoot domain class is the root of the DSL
metamodel. This metamodel specifies abstract domain classes for ASDElement, MediaTINGEle, and
MediaTEDEle, similar to the metamodel of Figure 1.

The second step in developing a VS DSL is to diagrammatically specify the graphical editor shapes that will
be used to visualize a model created using the DSL. Any model element that needs to be included in a
visualization must have a shape defined and then mapped to it. Multiple domain classes can be mapped
to a single shape, e.g. an ASDElementShape is defined and each of the concrete ASDElement
specializations are mapped to it. Each element has an attribute that holds its concrete type as an
enumeration, e.g. TOOL for a Tool element, and a related identifying icon is visible in the shape depending
on this enumeration literal.

The AT DSL metamodel is shown on the left side of Figure 2, and diagram elements defined for the
language are shown on the right side of this figure. Lines from elements on the left to elements on the
right indicate mapping from domain language items to display shapes.

Classas s Relationships.

= ermosnat

bamain Frpertes
* elbcaun : In..

[Ire— Y

s .

Damin Frape i
5 Hama :Sting
5 tadid: Sting

=i ¥

P —

2rmennn | oy [

Dlagita i Elermerns

T —

Damainf raperti

Damainf raperti
Fileakar: Calor
OutineCalar : Cal..
TaetCakar: Gakr
CutlinabashStgk..
CutingThicknes -
Filliad inth ade.,
Decamtan

= Hame

FERRF

¥

Miasiton | porttsimts 5

= EepandcallpssD.

Compatment:
. & Toak

L ——

= asneunnt A

Damain hapenis
* Ehaer: Seing
EHame: Sting
EBecavar s Stri
= Eype : ERTypek
P EhdadType : MdE..

Damain Frpertes

= roat

Domain Frapartiss

™
Dotz
& Subjere
2 . % him:
&

Cammunitiz
Cuames

f = asomsmenstaps
[y

Damsin Prapertie:

OutlineDizshsiys .
OutineThiknes
Filead ianthd ade.

EFEER RN

Decamtan
Taakan
Ruiskan
Dalkan
Subjkan
Aimkan

Cammlzzn
Outian
Dascriptian
Hame

s

bamain Frapartias

= asnomonrtcanns

Damsin Prapertie:

Daraetan

© nemmastps A
e

Damain Frapartiss

Fileakar: Calor

CutlinebazhSs .
CutingThicknes -
& FillGrad enh ade..

S metorms A

Damsin Prpsrsis

LA R AR ARN]
g
&

= oS DIMCaneorter
. Damain P rapertia:

Daraetan

= nednnGEasts

5 Cammanty

Damain Praparties”

Daraetan

reILBGn e A

DamsinPraperti

Deragtarn
. . 2 bocataiss

Damsin Prapertie:

Quncenns

Damsin Prpsrsis

Deragtarn

nmoneson A

| H Damsin Prapartiss

[

Moskibon A

Damain rape i
B Wlype : Meype..
F TEDIMame: String
F TEMHame: Stiing

= DolCarmCarnerts

Damsin P apertis:

becamman

. Damain P raperti

L

| P becomme

B A

=] semnumsmne " | ¥ vamainprapartic
b S besemn :
L R - o

egary A

Damain prapenic
 InfaTaDEpy ;5.

Damsin Prapertie:

Deragtarn

o A

InfaType: InfaTyp..

omietr. | ke et | Amiziamne . =

Damain Fapenias
AType: ACnark.

RPN . T

2 Cormuskeon
bamain Frpertes
F Clryps : Cansithe.

e aaeians

Damsin Prapertie:

Derastan

= Loyt

" Canshetiurstops
ey
Damain P apertia:
Daraetan
= CepandcallpssD..
B Camradiean

Campament:
2 CamradictadsSbs
2 Camraditadibics

= Conkackon ddreitan Connscte

Damsin Prapertie:

LRI 2 R —

oo ey ¢ A

Deragtan

T T —

Damain P rapertia:

Decastarn

= CartredRchoartiS D craater 2

Damain P raperti:

Decastarn

Figure 2. VS AT Metamodel

The next step in developing a VS DSL is to define graphical editor tools that an end user of the DSL will be
able to use to create models in the DSL. Two types of tools are available, a connection tool and an element
tool. Figure 3 shows this information specifically for a Rule ASDElement.

AM TOOLS TEST ARCHITECTURE ANALYZE WINDOW HELP Sgn n =
Debug - B . ezl & & o - H . |

[| S [P v
ar |

Tpog
=L e §

Y- B crd Rute
T A |3 resources\Exampleshapet

ool used for reference.

Figure 3. Screenshot of Rule portion of VS DSL metamodel and Toolbox definition for Rule tool

A portion of the VS DSL metamodel showing the Rule concrete language domain class is in the left part of
the main window of Figure 3. Its mapped shape, ASDElementShape is shown on the right side of this
window. The DSL Explorer tab is shown to the right of the main window, with the Editor->Toolbox Tabs-
>ActivityTheoryV5->Tools->Rule selected. The properties for this tool are shown in the lower right
Properties tab. This shows that a Rule class instance is to be created, and the toolbox icon is the
ExampleShapeToolBitmap.

Figure 4 shows the end user view of this toolbox. The toolbox is shown on the left, and the Rule tool is
highlighted. A single Rule has been added to this diagram, which initially contains only an instance of the
ColorKeyDiag class that describes the possible relations in an AT model and how they are displayed.
Relations between model elements are created by selecting a connector tool, e.g. ASDToElement, then
clicking on the element that will be at one end of the relation and then the other. The relation builders
use the concept of source and target, so the connection tools are named accordingly. That is, an
ASDToElement relation is created from a source ASD to a target ASDElement (such as a Rule).

B EleTskBook - Microsoft Visual Studio

FRE EDIT VIEW PROJECT
-2 ae

oo~z

~00000

“~ 0

BUILD DEBUG TEAM TOOLS TEST

P Sun - Debug - F

5 8 X ETaskBookierans iy

ARCHITECTURE ~ ANALYZE WINDOW HELP

fedOverallatvs

=1 4 P - B =
sgnin -
tion Exploree B x
@ e-srRAB K-
b+ B
7 Solution EleTskBaok’ (1 project)
4 [BeTekBook
¥ A |
o
LA [
¥
L
» |
|
View
x|
TING |
- |
RULE
[[] 242, 238, 229
Horizontal
W 13111110

EDescr
Description for CSUAdvty Theory VS ASDEement EDescr

Figure 4. End user view of AT DSL Toolbox

AT Language Enumerated Types
Several enumerated types are defined for the language. These are shown in Table 2, along with the
domain class and attribute to which they relate.

Table 2. AT Language Enumerated Types

Domain Class

Class Attribute

Enumeration Name

Enumeration Literals

ASDElement

EType

EleTypeENUM

AIM
COMM
DOL
OUTCOME
RULE
SUBJECT
TOOL

ASDElement

EMedType

MedEleTypeENUM

NONE
TED
TING

Mediation

MType

MedTypeENUM

CA
SA
SC
UNSET

DiagColorKey

InfoType

InfoTypeENUM

AERR
DISP

AnalysisError

AEType

AErrorENUM

ASDnoTSAMED
MEDnoRels
R2DOLS
RTDnoMED

S2COMM
T2DOLS
TnoSAMED
WHODOESDOL
Contradiction | CIType ConsidltemENUM ASD

ASDELE
NOTSET

Diagram Shape Custom Code

Custom code was added for the ASD compartment shape. This shape displays the names of specific types
of model elements in the compartments. For example, the ASD shape compartments are Tool, Rule, Dol,
Subject, Aim, Community, and Outcome, and the names of all of the ASDElements of each type that are
related to the particular ASD are displayed in the associated compartment. Since the metamodel only
specifies a relation from ASD to ASDElement, just obtaining the set of related ASDElements is not sufficient
to display particular types of these elements in the proper compartment. Therefore a custom code filter
was added to take the set of ASDElements related to the ASD, determine if the EType attribute is the
desired value (e.g. ‘TOOL’) and, if so, add the element to a list which is returned after all the related
ASDElements have been considered. The names of this filtered list of elements are then displayed in the
compartment.

The compartment shape for Contradiction object also displays the names of the items that contradict the
considered item, but in this case there are two relations, one for all ASDElements that are contradictory
and one for all ASDs that are contradictory, so no filtering needs to occur to get the elements whose
names need to be displayed.

Tool Implementation - Visual Studio Solution Projects, Generated and
Custom Code

When the DSL definition (metamodel including display elements, any custom domain types, and graphical
editor tools) is built by transforming all templates to generate code, two projects are created in the
solution: DSL and DSLPackage. Custom code can be added to each of these solutions. The custom code
that was added to each solution is discussed below: relation builders, validation methods, and rule code
was added to the DSL solution and user command code was added to the DSLPackage solution.

DSL Solution - Relation Builder Custom Code

Relation builders are generated for each relation in the metamodel. These builders check structural
constraints as specified by the metamodel, such as whether the object chosen in the graphical editor as
the source of the relation is the proper type, and whether any multiplicity constraints on it would be
violated if the relation was made. The target of the relation is similarly validated, then the relation is
created. There are two methods that can be added to extend the behavior of relation builders using
custom code. The first checks the source and the second checks both the source and target. There are
currently three sets of relation builders that have associated custom code to enforce constraints beyond
the structural ones specified in the metamodel.

The first set of builders has to do with mediations. Structurally a mediation relation from mediation object
to mediaTED element must go to a mediaTED element, but the relation builder is enhanced to ensure that
only two mediaTED elements are related to the mediation (a source check) and that the two mediaTED
elements are of different types (a source and target check) and that the mediation and mediaTED

10

elements are related to the same ASD (also a source and target check). Similarly, a mediation can be
related to only one mediaTING element (structural check) and both must be related to the same ASD (a
source and target check).

The second set of relation builder methods are used when an Outcome of an ASD is related to an ASD
element of a different ASD (a networked relation). In this case the constraint is that the Outcome and the
other element must be related to different ASDs, and the target element must not be an Aim or Outcome.
Here the check occurs for the source and target.

Finally, the contradiction relation builders also use custom code. The metamodel shows relations from a
contradiction to both an ASD considered item and an ASDElement considered item, when, in fact, there
can only be one considered item. So the source check is that if the relation for the considered item is being
created, the other kind of considered item is not already related to the contradiction. The source and
target check is that the target is not part of the set of contradictory items. Similarly, if an ASD or
ASDElement is going to be added as a contradictory item, it must not be the considered item (this is a
source and target check).

DSL Solution - Validation Custom Code

Validations occur when an AT model is opened, saved, or from the user command menu. There is currently
custom code associated with validating two classes — the ATModelRoot and an ASD. Problems found in
these methods cause an error to be written to the error window.

The first ATModelRoot validation method simply creates and adds a color key information object for the
model if it doesn’t exist (InfoTypeENUM.DISP in Table 2). The second goes through all contradiction
objects in the model and checks that the considered item (an ASD or ASDElement) and the relation to the
relevant ASD are consistent. Since the relevant ASD relation can be created or deleted independent of the
considered item this check is needed. If the considered item is an ASD then the relevant ASD should be
the same ASD. If the considered item is an ASDElement that is only related to one ASD, then the relevant
ASD should be one to which it is related.

The ASD validation methods include a method to decide whether at least one of each type of ASDElement
is related to the ASD (and list any types that are missing in an error message). Another ASD validation is
to make sure that any networked element relations do not have the Outcome and related element both
being related to this ASD. Another check is that any hierarchical relations between a Dol and another ASD
must not include this ASD as part of the hierarchical relationship set. There are four checks that make sure
the source of particular relations share this ASD with their targets. The idea is that any Tool to Dol related
elements (tools2dols relation) do share this ASD in their sets of related ASDs. The same thing should be
true for elements of Rule to Dol relations (rules2dols), Subject to Community relations (subjComm), and
Dol to Community relations (whoDoesDol). There is a problem if the source element is related to multiple
ASDs and the target is related to only some of them. In this case, the ASD they share will check out fine,
but in another ASD, the relation will still exist from the source element, but the target may not be related
to that ASD. This will generate a validation error. The real problem is that each of these relations is valid
in a particular context, a particular ASD, and there doesn’t seem to be a way to indicate that the relation
is valid for only a particular ASD when the elements can be related to many ASDs. Therefore, the
convention adopted in these examples is to only relate Community members to multiple ASDs, and to
acknowledge that most elements like Tools will perhaps be refined or have detail added and thus be
slightly different when they are used in different activities. This problem is discussed in the Issues section
of this paper.

11

DSL Solution - Rules Custom Code

Rules are used to add functionality when elements or relations are created or deleted in the AT tool. There
are several rules in the AT tool, outlined in this section and detailed further in the Implementation Details
section of this paper.

When a new Tool, Rule, Dol, Subject, Aim, Community, or Outcome element is created, rules are used to
set the EType and EMedType attributes. Table 2 shows the respective literals for the EleTypeENUM and
MedEleTypeENUM enumerations. The EMedType for an Outcome is set to NONE. When a new Mediation
element is created, its MType is set to UNSET (MedTypeENUM in Table 2).

We have found it useful to refer to ASD elements using a short tag name, e.g. ‘D4’, rather than a descriptor
such as ‘Planner finds out options’. However, when a model element is first created, its description has
not yet been entered. Thus, we can create the short name tag at model element creation time, but we
cannot manipulate any part of the description to create a full name for the element. Therefore we created
rules that fire on ASDElement or ASD creation to build this short tag name from an overall model counter
and then to increment the counter. The counter is an ATModelRoot domain property, and there is also a
rule that fires on model creation that sets the counter to 0. (Otherwise the counter just keeps growing
every time the model is opened.) The short tag name is stored in one of the ASDElement attributes, and
a similar attribute in an ASD. We then added a rule that fires when an ASDElement property is changed,
and if the object description property has been changed then a full name for the element is created by
taking the short tag name and appending the full element description onto it. This concatenated name is
the one that will be displayed as part of the proper ASD shape compartment (e.g. in the ‘Dols’
compartment, ‘D4: Planner finds out options’).

When a Mediation object to mediated object relation is added we invoke a rule that checks to see if this
is the second such relation, and if so it sets the proper MType enumeration value (MedTypeENUM in Table
2). If this is the first such relation we cannot set the type, but in both cases we can set an object attribute
for the mediated element name.

When a Mediation to mediated object relation is deleted, the MType must be set to UNSET
(MedTypeENUM in Table 2), and the associated attribute name needs to be set to blank.

Finally, when a considered item is related to a contradiction, if the relevant ASD relation is not already set
then we may be able to set it automatically. If the considered item is an ASD, then the relevant ASD should
be the same ASD. If the considered item is an ASDElement that is only related to one ASD, then we can
also set the relevant ASD to that same ASD. A design decision was made to not attempt to fix the relevant
ASD link if it is already set. Adding this functionality would be complex since this is a relation that can be
manipulated independently of the considered item relations.

DSLPackage Solution - User Commands

When a user right-clicks on a blank area of an AT model diagram the user command menu appears. There
are many commands that can be added here; we have added them in several groups. An example of this
menu is shown in Figure 5. Since no model elements were selected prior to displaying this menu the first
three items are not available and are greyed out. They and the two validation-related commands are
automatically generated and added to this menu by the DSL SDK.

12

Q0 P - B %

® e-fOQdB Fl-

) Sclution ‘EleTskBook (1 project)
4 &= EleTikBook
b s

Figure 5. User Command Menu

The first group of AT language-specific commands allows the user to zoom in and out when viewing the
model diagram. This capability should really be added to the tool bar, but it is not clear how to do this, so
it was added as user commands.

The next group causes a textual discription of the model to be created and written to a file. Only ASCII
text is written to the file, but it is up to the user to provide an appropriate name and file extension. This
is accomplished using a VS SaveFileDialog object. The file is written on a per-ASD basis, grouping the type
of ASDElements that are related to the ASD. Additional relations (tools2dols, rules2dols, whoDoesDol,
hierarchical, subjComm, and network relations) are also written to the file. Mediations related to the ASD
are included. Finally, any ASDElements that are not related to any ASD are written to the file.
Contradictions are not included in this report.

The next group of commands has to do with showing/hiding the many possible relations in the model,
and is aimed at improving readability of the diagram. The commands are to hide all relations, show
relations in the ASD that are not ASD to ASDElement or ASD to Mediation relations (i.e. show tools2dols,
rules2dols, whoDoesDol, and, subjComm relations), show hierarchical and network relations, and show
all relations.

The next group is related to model analyses. One command performs the analyses, modifies the diagram
using color to indicate problems, and writes analysis results to a file. The other command removes all
analysis information from the diagram and the model store. When an analysis is performed and a problem
is found, an AnalysisError object is created with the corresponding error type (AErrorENUM in Table 2),
and related to the problem model element (an ASD, ASDElement, or Mediation object). In addition a
DiagColorKey object with the type AERR (InfoTypeENUM in Table 2) is created and added to the model if
it does not already exist. Currently the following items are checked as part of the analysis:

e EveryRule, Tool, and Dol is involved in a mediation.
e Every ASD has at least one mediation: a Tool mediates between a Subject and an Aim. (This is,
after all, the point of an ASD — for a Subject to achieve an Aim using a mediating Tool.)

13

e Every Tool mediates between a Subject and an Aim.

e Every Mediation is related to two mediated elements and one mediating element.
Every Rule is related to at least one Dol (rules2Dol).

Every Tool is related to at least one Dol (tools2Dol)

Every Dol is related to at least one Community member (whoDoesDol)

e Every Subject is related to exactly one Community member (subjComm)

The next group of user commands writes proposed mappings to GRL elements to a file, based on the GRL
trace-links defined in our previous work. It currently consists of writing details specifying the following
suggested steps:

1. Create GRL Actors associated with AT Community member objects if they do not already exist in
the GRL model.

2. Create GRL Tasks associated with AT DolLs.

3. Place Tasks in the corresponding Actors based on the whoDoesDol relation, except in the case
where multiple Community member objects are in the whoDoesDol relation. In that case, the Task
should be placed outside the Actors, and decomposed into Tasks that can be placed in each Actor.

4, Create GRL Goals associated with AT Aims and GRL Goals associated with AT Outcomes.

5. Create positive contributions from the Goals associated with Aims to those associated with
Outcomes.

6. Create GRL Resources associated with AT Tools.

7. Create dependencies in the GRL model based on mediations between AT Tools and AT Subjects
and Aims. This is accomplished by first determining the AT Community member associated with the
AT Subject, then the AT Dols associated with that AT Community member, then the AT Tools
associated with each AT Dol, looking for the AT Tool that is involved in the mediation. If one is
found, there needs to be a dependency in the GRL Actor associated with the AT Community member
that the GRL Task associated with the AT Dol depends on the GRL Resource associated with the AT
Tool and that the GRL Goal associated with the AT Aim also depends on this GRL Resource. Since
multiple such dependencies may be indicated from the AT model, a note is added that only one
such dependency should be added. Also modeler intervention is needed in the case where multiple
GRL Tasks or Resources are involved, since not all may be part of a dependency.

8. Create GRL Goals or GRL Softgoals associated with AT Rules. GRL Goals have clear indications of
being met whereas GRL Softgoals are used when it may not be clear when they are met.

9. Create a GRL dependency that a GRL Task associated with an AT Dol depends on the GRL Goal or
Softgoal associated with the AT Rule involved in the rules2dols relation. Further, if the AT Dol is
related to any AT Tools (tools2dol relation), then the associated GRL Resource may depend on the
GRL Goal or Softgoal associated with the AT Rule. In this case either or both of the GRL Task and
GRL Resource may be depend on the GRL Goal/Softgoal. Modeler intervention is usually needed to
make this decision.

10. Create GRL dependencies base on the tools2dols relations in the AT model as follows. Create a
GRL dependency that a GRL Task maped from an AT Dol depends on the GRL Resource mapped
from an AT Tool if such a relation was not previously created from a Tool-Subject-Aim mediation as
described in step 7 above.

Hierarchical and network relations have not yet been added to these steps.

14

The next group of user commands is a researcher convenience group that creates multiple ASDElement
objects of the same type and sets their descriptions to a string specified in a text file. The file must have a
single character on the first line indicating what type of ASDElements should be created, and one
description on each subsequent line. Elements of the type are created and added to the ATModelRoot.
The modeler must make all subsequent relation additions to the elements to relate them to other model
elements. This command can often save time when initially developing a model. For example, a file called
aim.txt was used to create three Aim objects for use in the second example described in Section 6 below:

A

Make arrangements to go on vacation
Provide information

Investigate and choose destinations

Finally, the last group of user commands involves contradictions. One commands shows and writes
contradiction information to a file, and the other command hides these relations and contradiction
objects from the display.

5. Implementation Details

AT Model Validations

The AT DSL includes model validation that occurs when the model is opened or saved or specifically
requested via the user command menu. Violations cause errors to be written to the Error window.
Validation methods are defined for two classes: ATModelRoot and ASD.

A. The following validations are defined for the overall model, ATModelRoot (Dsl->CustomCode-
>Validation->ATModelRoot.cs):

[ValidationState(ValidationState.Enabled)]
public partial class ATModelRoot

// When the model is opened a DiagColorKeys object describing the color coding used

// for model relations is created if it doesn’t already exist since the user might have
// explicitly deleted it at some point.

[ValidationMethod(ValidationCategories.Open)]

ModelHasDisplayInfo(ValidationContext context)

// When the model is opened or saved, or from the user command menu, all Contradiction
// objects are checked to see if: 1) if the considered item is an ASD, the relevantASD
// relation is set to the same ASD, or 2) if the considered item is an ASDElement and it
// is related to only a single ASD, then the relevantASD relation is set to that same

// ASD. If these relations are not set as in (1) or (2), then the relevantASD relation
// may not be consistent. The modeler must decide if this is a real error or not. This
// check was added since the relevantASD relation can be manipulated independently of

// considered item relation.

[ValidationMethod(ValidationCategories.Open | ValidationCategories.Save | ValidationCategories.Menu)]
ModelContradictionRelevantASDRelationsConsistent(ValidationContext context)

B. The following validations are defined for an ASD (Dsl->CustomCode->Validation->ASD.cs):

[ValidationState(ValidationState.Enabled)]
public partial class ASD

15

// On model open, save, or via user command menu, an ASD is checked to see if it has
// at least one of each type of ASDElement. If it doesn’t then it is not a well-formed
// ASD.

[ValidationMethod(ValidationCategories.Open | ValidationCategories.Save | ValidationCategories.Menu)]

ValidateASDhas7Elements(ValidationContext context)

// On model open, save, or via user command menu, an ASD is checked to make sure that

// any of its Outcomes that have Network relations are to ASDElements in other ASDs.
[ValidationMethod(ValidationCategories.Open | ValidationCategories.Save | ValidationCategories.Menu)]
ValidateNetwrkEleOutInDiffASDs(ValidationContext context)

// On model open, save, or via user command menu, an ASD is checked to make sure that

// any of its Tools that have tools2dols relations are to DolLs in the same ASD.
[ValidationMethod(ValidationCategories.Open | ValidationCategories.Save | ValidationCategories.Menu)]

ValidateToolDoLInSameASD(ValidationContext context)

// On model open, save, or via user command menu, an ASD is checked to make sure that

// any of its Rules that have rules2dols relations are to DolLs in the same ASD.
[ValidationMethod(ValidationCategories.Open | ValidationCategories.Save | ValidationCategories.Menu)]
ValidateRuleDoLInSameASD(ValidationContext context)

// On model open, save, or via user command menu, an ASD is checked to make sure that
// any of its Subjects that have subjComm relations are to Community objects in the

// same ASD.
[ValidationMethod(ValidationCategories.Open | ValidationCategories.Save | ValidationCategories.Menu)]

ValidateSubjectCommunityInSameASD(ValidationContext context)

// On model open, save, or via user command menu, an ASD is checked to make sure that
// any of its DoLs that have whoDoesDolL relations are to Community objects in the

// same ASD.
[ValidationMethod(ValidationCategories.Open | ValidationCategories.Save | ValidationCategories.Menu)]

ValidateDoLCommInSameASD(ValidationContext context)

// On model open, save, or via user command menu, an ASD is checked to make sure that

// any of its DolLs that have Hierarchical relations are to other ASDs.
[ValidationMethod(ValidationCategories.Open | ValidationCategories.Save | ValidationCategories.Menu)]

ValidateDoLHierASDDiffASDs(ValidationContext context)

AT Model Rules

Hard constraints, or Rules, are enforced when the model is changed, such as when a new domain class
instance is added to an AT model. The following Rules are defined (Dsl->CustomCode->Validation-
>Rules.cs):

NewATModelRoot
NewASD

NewTool

NewRule
NewDivisionOfLabor
NewSubject

NewAim
NewCommunity

16

NewOutcome
NewMediation
NewMedToTED
MRefTEDDel
NewContradToCIASD
NewContradToCIAele
ChangeDescr

The ‘NewATModelRoot’ rule resets the overall model counter used to create ASD and ASDElement short
tag names to 0. The ‘NewASD’ rule generates a short tag name for the ASD and saves is it in an attribute
(not currently used).

The ‘New’ rules for ASDElements are used to set the proper attribute type for the element, e.g. ‘DOL’, and
the proper attribute for its mediation element type, e.g. ‘TING’ in the case of a RULE, TOOL, or DOL
element type. In addition the short tag name (e.g. ‘D4’) is created and saved in an element attribute. The
‘ChangeDescr’ rule fires when an ASDElement description is changed, and it is used to create the full name
of the ASD element that will be displayed in the ASD shape compartment, for example ‘D4: Planner finds
out options’.

The ‘NewMediation’ rule sets the proper attribute for the mediation type, ‘UNSET’ when a mediation is
first created, and via the ‘NewMedToTED’ rule on the second addition of a mediated element relation: a
Subject-Aim, Community-Aim, or Subject-Community mediation. This latter rule also sets the mediated
element name attributes in the Mediation object. This adding rule and its inverse, the deletion rule
‘MRefTEDDel’, are used to change a decorator icon in the graphical mediation shape that indicates the
mediation type.

The Contradiction rules ‘NewContrad..” are used to set the type of considered element as an attribute in
the Contradiction object, and if possible, also set the relevantASD relation. This relation is set only if it is
currently null. In the case that the new considered item is an ASD then the relevantASD relation is set to
this same ASD. If the new considered item is an ASDElement, and it is only related to one ASD, then the
relevantASD relation is also set to this ASD.

Sample code (Dsl->CustomCode->Coherence->InitEle.cs) is:

[RuleOn(typeof(ATModelRoot), FireTime = TimeToFire.TopLevelCommit)]
public sealed class NewATModelRoot : AddRule

{
public override void ElementAdded(ElementAddedEventArgs e)
{
ATModelRoot newRoot = e.ModelElement as ATModelRoot;
newRoot.EleIDCounter = 0;
}

AT Model Relation Builders

In order to ensure that relations are properly created between model elements during rather than just
during validation, the builders for the relationships can be enhanced to check that the target and source
elements are appropriate. Thus, for example, the builder can enforce that a mediation must be related to
two different types of mediated ASDElement. For each relation builder, there are two methods that have
to be supplied, both of which return Booleans. The first determines whether a particular object can be
the source of the relation, and the second determines whether a particular combination of objects can be

17

the source and target for the relation. The types of the objects and multiplicities given in the metamodel
are automatically enforced.

These additional constraints on the Relation Builders are found in:

e Dsl->CustomCode->Validation->MediationBuilders.cs
e Dsl->CustomCode->Validation->NetworkOutcomeBuilders.cs
e Dsl->CustomCode->Validation->ContradictionBuilders.cs

To enable the additional methods, first a builder in the DSLExplorer must be selected, and in the
DSLmapping tab when this mapping line is selected, the checkbox on the source tab must be marked to
specify that the relation has a custom accept directive for the source. Figure 6 shows a screen shot of this
action. The highlighted line near the bottom of the window shows the check box for a custom accept of a
source for this relation. When the templates are transformed as part of building the DSL, method calls are
added to the generated Dsl->GeneratedCode->ConnectionBuilders.cs file.

soft Visual Studio (=4 + P = B x
W PROJECT BUND DEBUG TEAM TOOLS TEST ARCHITECTURE AMALYZE WINDOW HELP senin E
e - B-a@g B Sun - T3 A a 7 - B,

= B x MedatonBulders.cs DeiDefinitondsl ® X

p- = Decoratons

L ——

Doman Properties

Lm——

Named Domain Class
. ¥ Dattmsutst
Compartment Shape e
Doran Frcperian
[R—, tionfieserencesCo
ContradictionReterencesReleva
L ———— "aberReterencesCem

Swirlane

Embedding Relationship e Fropetes

Reference Relatiorship ——— * Decoastors

T ——

Doman Froperties Mieckaticn
Desonton

2 BateitebotsCsnnanres
= o ot

= Grccntors

F s TaOnl Commeter

Uses Custem Connect Falte
E Definition

Dormain Relaticnship MediationRefererceshediaT
El Becumentation

| Retationship: | MediationReferencesMedaTEDEls o

Source role directives | Target roke directives
Mates

Dernain Class
Mediaticn
<A v

Custom scoeot Cust

Uises custom connect Domain Relationship

Sy

Figure 6. Screen shot showing that custom builders will be added for Mediation->Mediated Element
relations

Example source for the builders of a relation between a Mediation object and a mediated ASDElement
object (i.e. Subject, Community, or Aim) is shown below. Note that in all of these methods, deciding
whether two elements are in the same or different ASDs is reduced to the problem of deciding whether
their sets of related ASDs have a non-empty intersection or not. This is simple in the case of a Mediation
since it can only have one related ASD, but more complex in the case of e.g., a networked outcome
relation. This problem is a consequence of the general problem of allowing ASDElement objects to be
related to multiple ASDs.

static partial class MediationReferencesMediaTEDElesBuilder

{
// This method checks that the Mediation is first related to an ASD, and then

// that it doesn’t already have 2 relations to mediated element objects.

18

private static bool CanAcceptMediationAsSource(Mediation candidate)
{
if (candidate.ASD == null)
return true;
else
{
if (candidate.MediaTEDEles.Count >1)
return false;
else
return true;

}

// This method is called after the Mediation was checked as a potential source
// and the target is a valid mediated element object. What has to be done here
// 1s check that the source and target are in the same ASD and if this is the
// 2™ mediated element object that it and the 1st one are of different types.
private static bool CanAcceptMediationAndMediaTEDEleAsSourceAndTarget
(Mediation sourceMediation, MediaTEDEle targetMediaTEDEle)

{
if (sourceMediation.MediaTEDEles.Count == @)
{
if (targetMediaTEDEle.Asds.Contains(sourceMediation.ASD))
return true;
else
return false;
}
else
{
if (!targetMediaTEDELe.Asds.Contains(sourceMediation.ASD))
return false;
else
{
EleTypeENUM firstTED = sourceMediation.MediaTEDeles.FirstOrDefault().EType;
if (targetMediaTEDEle.EType != firstTED)
return true;
else
return false;
}
}
}

}

Custom accept methods are also supplied for the MediationReferencesMediaTINGElesBuilder to make
sure the Mediation object and the mediating element object are both in the same ASD, for the
OutcomeReferencesNetASDElementsBuilder to make sure the target is not an Aim or Outcome, and that
the target and the source are not in the same ASD, and four relations having to do with Contradictions.

The first is ContradictionReferencesConsideredASDBuilder where the checks are that there is not already
a considered item that is an ASDElement, and that the considered ASD is not a member of the set of
contradicted ASDs. The second is ContradictionReferencesConsideredAEleBuilder where we have to
make sure there is not already a considered item of an ASD, and that the considered ASDElement is not
part of the contradicted ASDElements set. The third is ContradictionReferencesContradictedASDsBuilder
where we must be sure that the new contradicted ASD isn’t the considered item, and the fourth is
ContradictionReferencesContradictedEleBuilder where we have to make sure the new contradicted
ASDElement isn’t the considered item.

19

AT Model User Commands

Files associated with the user menu commands are part of the DSLPackage solution. Two generated files
must be modified, and additional code added to the solution. The first generated file that must be changed
is SolutionExplorer->DslPackage/Commands.vsct. This is an XML file that has user command menu
information in it. We defined different groups for the commands, then buttons within those groups that
will access the command code. New GUID values must be created for each group (accomplished with a
built-in VS tool, and of the form “{...}" in the example below), and group identifier and command identifier
values given to these items. An excerpt of this file is shown for the zoom in command:

<CommandTable ..>
<Commands package="guidPkg">
<Groups>
<Group guid="guidZoom" id="grpidZoom" priority="0x0100">
<Parent guid="guidCmdSet" id="menuidContext" />
</Group>

</Groups>
<Buttons>

<Button guid="guidZoom" id="cmdidZoomIn" priority="0x0100" type="Button">
<Parent guid="guidZoom" id="grpidZoom"/>
<CommandFlag>DynamicVisibility</CommandFlag>
<Strings>

<ButtonText>Zoom In</ButtonText>

</Strings>

</Button>

</Buttons>
</Commands>
<VisibilityConstraints>
<VisibilityItem guid="guidZoom" id="cmdidZoomIn" context="guidEditor"/>

</VisibilityConstraints>
<Symbols>
<!-- Substitute a unique GUID for the placeholder: -->
<GuidSymbol name="guidZoom" value="{COFO@7C5B-CB2A-42A6-B483-56189F817A75}" >
<IDSymbol name="grpidZoom" value="0x01001"/>
<IDSymbol name="cmdidZoomIn" value="0©x00001"/>
</GuidSymbol>

</Symbols>
</CommandTable>

The next file that must be changed is part of the Generated Code that causes the Commands.vsct file to
be read and processed. This file is in the SolutionExplorer->DSLPackage/GeneratedCode/Package.tt. The
line is described as changing the version of the language (this change was from ‘1’ to ‘2’):

[VSShell: :ProvideMenuResource("1000.ctmenu", 2)]

Code must be added to set the GUID and identifiers and to augment the list of generated commands. An
excerpt of the file SolutionExplorer->DSLPackage/CustomCode/Commandinfo.cs dealing with the zoom
in command is shown below.

namespace CSU.ActivityTheoryVs
{

internal partial class ActivityTheoryV5CommandSet

20

private Guid guidZoom = new Guid("COF@7C5B-CB2A-42A6-B483-56189F817A75");
private const int grpidZoom = 0x01001;
private const int cmdidZoomIn = 1;

protected override IList<MenuCommand> GetMenuCommands()
{
IList<MenuCommand> commands = base.GetMenuCommands();
DynamicStatusMenuCommand zoomInCmd =
new DynamicStatusMenuCommand(
new EventHandler(OnStatusZoomInCmd),
new EventHandler(OnMenuZoomInCmd),
new CommandID(guidZoom, cmdidZoomIn));
commands .Add(zoomInCmd);

return commands;

}

Code next needs to be added for the event handlers. The following is an excerpt from the file
SolutionExplorer->DSLPackage/CustomCode/ComdOninfoZoom.cs for the zoom in command.

namespace CSU.ActivityTheoryVs
{
internal partial class ActivityTheoryV5CommandSet
{
private void OnStatusZoomInCmd(object sender, EventArgs e)
{
MenuCommand command = sender as MenuCommand;
command.Visible = command.Enabled = false;
if (this.IsDiagramSelected())

{

command.Visible
command.Enabled

true;
true;

}

private void OnMenuZoomInCmd(object sender, EventArgs e)
{
MenuCommand command = sender as MenuCommand;
Store store = this.CurrentDocData.Store;
ATModelRoot modelRoot = null;
ReadOnlyCollection<ModelElement> modelElements =
store.ElementDirectory.FindElements(ATModelRoot.DomainClassId);
modelRoot = (ATModelRoot)modelElements[0O];
Char action = 'i‘';

ZoomDiag(modelRoot, action);

}

Finally, the code to actually perform the command needs to be added. An excerpt from the file
SolutionExplorer->DSLPackage/CustomCode/Zoom.cs that zooms the diagram is shown below.

namespace CSU.ActivityTheoryV5

21

internal partial class ActivityTheoryV5CommandSet

{
private void ZoomDiag(ATModelRoot thRoot, Char inOut)
{
ActivityTheoryV5Diagram diag =
PresentationViewsSubject.GetPresentation(thRoot).FirstOrDefault()
as ActivityTheoryV5Diagram;
DiagramView dv = diag.ActiveDiagramView;
if (inOut == 'i'
dv.ZoomIn();
else
dv.ZoomOut();
}
¥

6. Examples

We explored three example systems while developing the AT language, its USE realization, and the Visual
Studio AT DSL tool. These are introduced below, then the results of using the VS AT tool to model each of
them is discussed in more detail in the following subsections. Where appropriate, particular VS AT tool
functions that the examples highlight are also discussed.

We made extensive use of a case study system developed in Mexico by Dr. Lozano-Fuentes of the CSU
department of Microbiology, Immunology, and Pathology and others while we explored AT and developed
the original AT language metamodel that we realized in the USE tool. This system is a Dengue virus data
capture and interpretation system that was developed jointly with CSU and a University and Public Health
Ministry in Mexico. The ASDs presented in Section 6.1 describe the context of the vector surveillance
portion of this system. Vector surveillance entails looking for potential breeding sites of the mosquito that
carries Dengue, Aedes aegypti, in residential areas. This activity was the target of a cell phone application
that field agents can take to residences and use to directly enter data regarding how many and of what
type of breeding sites are found. Data is uploaded by this application to a centralized database where it is
available for interpretation and policy decision-making. Policy decisions specifically affect vector control,
which may include spraying for adult mosquitos or applying larvicide to breeding sites. The cell phone
application was field tested in the city of Mérida, Yucatan [1][8]. The related vector surveillance ASD has
a rather low level of abstraction, so its scope is quite limited. It makes a good AT example since it relies
on other activities to provide tools essential to achieving it, and also because it was derived from activities
that take place at a higher level of abstraction. The overall context of this ASD therefore requires both
networked and hierarchical decomposition relations.

The vector surveillance activity is complex, so a second, simpler example was also developed. This
example is one of taking a vacation. Planning, coordinating, and traveling on vacation with several people
can be time-consuming and a challenge. The example consists of the following scenario. A group of ten or
so people is going to take a two-week vacation to some places they have heard about but never been.
There are different age groups and generations in the travel group. One adult has been chosen by the
other adults to be the overall coordinator and travel planner. Some constraints have been set by the
adults; for example an upper bound on price and the fact that the destinations must be new to them.
Other guidelines have been voiced, for example, no tour busses, no mega-resorts, some vacation actions
everyone can enjoy, others targeted towards specific members of the group, and at least some vacation

22

actions that the group can enjoy in relative isolation without huge crowds of other people. Several persons
pass on ideas they have heard about from acquaintances and friends, regarding both places to visit and
places that should be avoided. This scenario was constructed to demonstrate network and hierarchical
relationships among activities, and also to specifically demonstrate potential contradictions that AT can
help discover.

The third example discussed in this paper is one from another case study at CSU. This example applies AT
concepts to a series of semi-structured interviews regarding a proposed transition from a paper-based
system that keeps track of student skill mastery in a professional degree to an electronic method. The
current task booklet requires signature sign-off that a junior or a senior in the program has demonstrated
a particular skill deemed necessary for the degree. Completed booklets are required for graduation, and
are also used in the accreditation process with the associated professional organization. Due to the sheer
volume of information in the interviews, this example brought to light scaling issues with the VS AT tool
and especially its mapping to GRL model elements, and resulted in proposed changes to the metamodel,
a new user command to quickly create multiple ASDElements, and changes to the GRL mapping user
command.

Each of these examples is discussed in more detail in the following sections.

6.1 Vector Surveillance System

The Survey Premises ASD is based on the cell phone application portion of the Dengue system case study.
It relies on another activity to provide tools, a coordinator activity that provides lists of premises that need
to be surveyed by field agents searching for potential mosquito breeding sites. The network of these two
activities is shown in Figure 7 below. The name of the ASD dealing with actual surveillance is Survey
Premises, or SP, and the name of the other ASD is Assign Surveillance Tasks to Personnel, or ASTP. We
briefly explain the AT concepts shown in the figure; additional information can be found in Appendix A.

Qutcome:

: Tool: Legend:
(OT1) Task list for (T1) Cell Phone, surveillance application R1: Bold font identifier — AT element type (e.g.
personnel of (T2) Field Agent Surveillance Task List rule) and numerical identifier (e.g. 1% rule)
premises that HOT: Home owner or Tenant

must be surveyed

Subject:
Coordinator ~_|
Qutcome:
(OT1) Premises Surveillance
Aim: ___—" data available to be used to

(A1) Collect premises direct vector control activities

Assign Surveillance Tasks to G | 3
urveillance information

Personnel ASD (ASTF)

Rules;

(R1) Data collected is vahd

(R2) Cell phone, surveillance
application are used to collect data

(R3) HOT must give permission to

Division of Labor:
D1: Field Agent:
Survey premises on task list
D2: Home Owner or Tenant (HOT):

access any part of premises before

Allow/deny access to premises
surveillance can occur

Community: Field Agent, HOT

Survey Premises ASD (SP)

Figure 7. SP and ASTP networked ASDs (Visio tool)

In AT, every activity has one or more Aims that lead to Outcomes as a result of one or more Subjects
completing the activity. The activity Aims are shared by members of the Community who are defined as
anyone having a vested interest in the Aims. Subjects use Tools to achieve the Aims, and Tools are
considered the mediating elements between a Subject and an Aim. Subjects interact with the Community
according to explicit and implicit conventions or norms, which are called Rules. Rules are considered the
mediating elements between a Subject and the Community members. Finally, the Community breaks up
the activity in order to achieve the Aim through Division of Labor (DoL). DoLs are considered the mediating

23

element between Community members and the Aim. These seven elements constitute a well-formed
activity system, and we show them in activity system diagrams (ASDs), developed by Engestrom[2].

In the Survey Premises (SP) activity, diagrammed in Figure 7, a Field Agent uses a task list (which is created
by a Coordinator as part of the ASTP activity) to decide which premises need to be surveyed. The Field
Agent uses the cell phone surveillance application on their cell phone to collect information about existing
or potential mosquito breeding sites at a particular premises on the list. This is only allowed if the home
owner or tenant gives permission for the surveillance. Thus we can identify the Subject (Field Agent), some
Tools (task list, cell phone application, and cell phone), another Community member (home
owner/tenant), a Rule (home owner/tenant must give permission to access any part of premises before
surveillance can occur), and two Dols (home owner/tenant allows or denies access to premises, and Field
Agent surveys premises on task list). Figure 7 shows additional Rules for the SP ASD, and the Outcome of
this activity, namely that premises surveillance data is available to be used to determine appropriate
vector control actions.

All elements (ASDElement class in the AT language metamodel) of the SP activity are shown in Figure 7,
but only the Subject and Outcome elements of the ASTP activity are shown. This Outcome becomes a Tool
for the SP activity as is shown by the curved arrow from the Outcome to the Tool. Figure 7 was developed
using the Microsoft Visio tool. Changes to the diagram must be made by hand, and none of the
ASDElement relations defined in the AT language metamodel such as whoDoesDol, tools2dols, rules2dols,
or subjComm are shown. Mediation relations are not shown, and no contradiction relations are included.
The only additional relation shown in this figure is the network relation (enabledEleRefOut in the
metamodel), which is shown using a curved arrow from the ASTP Outcome OT1 to the SP Tool T2. It is
possible to show hierarchical relations from a Dol in one ASD to another ASD in a similar way, using lines
from the appropriate Dol to the name of the hierarchically decomposed ASD.

Figure 8 shows the same network specified using the Visual Studio AT language tool. While the Engestrom
triangle is not used in the tool, an ASD is shown as a compartment shape with this triangle as an icon in
its top left corner. The ASD compartments correspond to the various ASDElements that are related to the
ASD. Icons in the same location on the ASDElement shapes show the relative location of the element type
on the ASD triangle, although these are very faint in Figure 8. For example, Rules have the following icon:

R

ASD shapes have an expand/collapse icon in the upper right corner that can be used to show or hide the
contents of the compartments (the icon and functionality are part of the DSL SDK). The ASTP ASD is
collapsed, while the SP ASD is expanded. ASDElements are named according to the description that was
input when the element was created, and decorated in their upper right corner with a short tag name
annotation that indicates the type of element (i.e. ‘S’ for a Subject), and an increasing integer number.
Thus, the SP ASD has three Rule objects, annotated as ‘R1’, ‘R2’, and ‘R3’. Their size has been left as the
default size, but since the ASD is expanded and has been widened, the full name descriptions can be found
in the Rule compartment.

A color key for the different relations shown in a model is displayed in the upper right of Figure 8. The
network relation from O1, in the ASTP ASD, to T2, in the SP ASD, in Figure 7 above is shown as a Violet
colored line in Figure 8, and all of the ASD-to-ASDElement relations are shown in Gainsboro. No additional
relations have been added to this model, but the color key shows how they would be shown if they
existed.

24

| =

Task list for personnel of premises that must be surveyed

. Assign Surveillance Tasks to Personnel ¥

o1 fi

e T1
Cell Ph...

5 2]
Field A... |

ASD-Element relations are colored in Gainsboro

ASD-Mediation relations are colored in MintCream

Mediation-MediaTING el t relations are colored in CormnflowerBlue
fediation-MediaTED el relations are colored in Lavendar

Dol-Community element relations are colored in PaleGreen

Rule-Dol relations are colored in PeachPuff

Tool-Dol relations are colored in ForestGreen

Subject-Community relations are colored in LightSeaGreen

Contradiction relations are colored in DeepPink

Hierarchical decomposition of Dol-to-another-ASD relations are colored in Gold

Networked Qutcome-to-Element-in-another-ASD relations are colored in Violet

L) §1

. Field Agent Survey Premises
= Tools:
.—] T1: Cell Phone, surveillance application
R R1 T2: Field Agent Surveillance Task List
Data coll... & Rules:

i

R1: Data collected is valid
Cell phon..,

| HOT mus... ERols
e : D1: Field Agent:

D2: Home Owner or Tenant (HOT):
= Subjects:

S1: Field Agent

i

Aims;

'= Community Members:

C1: Field Agent
C2: HOT

= Qutcomes:
O1: Premises S illance data

: R2: Cell phone, surveillance application are used to collect data
R3: HOT must give permission to access any part of premises before surveillance can occur

Al: Collect premises surveillance information

le to be used to direct vector control activities

ol | & o
Al Premises...

Collect pr..

J | [E

L] D1
Field Age...
o D2

Home O...

,

© a |
Field Agent ;
@ c2
HOT

Figure 8. SP and ASTP networked ASDs (Visual Studio AT Language tool)

The next example, the vacation example, has been more fully modeled in order to demonstrate other

metamodel relations.

6.2 Take a Vacation Example

Following the scenario described at the beginning of this section, several Visio diagrams were created to
show different ASDs involved in this example. Figure 9 shows the top level ASD, Take a Vacation.

25

Tools:

(T1) Knowledge/experience of F

(T2) Knowledge/experience of A

(T3) Brochures Outcome:

(T4) Internet) (O1) All tickets, bookings in hands of and
(T5) Reservation/booking systems being used by 6

Subject: Aim-
Travel Planner (P) (A1) Make arrangements to go on vacation
Division of Labor:
(DoL1) P investigate options
Rules: (DoL2) P decide where to go/what to do
(R1) P tells & dates/vacation actions (DoL3) P purchase tickets/bookings
(R2) A provides feedback re possible (DoL4) P makele pelrsonal arrangernents
problems/issues with plan (DolL5) A provide information

(DoL6) A make bookings

(DoL7) & make personal arrangement
(DoL8) & check-in

(DoL9) € provide information
(DoL10) € advertise

Take a Vacation ASD (DoL11) € provide opportunities

Figure 9. Top level Take a Vacation ASD (Visio tool)

(R3) P can delegate arrangements/

decisions to others in & Community: Travel Planner (P), Traveling

Group (&), Travel Agent (A), Vacation
Action Company (C), Friends (F)

This ASD can be decomposed hierarchically, as follows: DoL5 and Dol9 are both part of a Provide
Information activity, and DolL1 and DolL2 are both part of an Investigate and Decide activity. In addition,
this example shows network relations because the Provide Information activity creates tools used in the
Investigate and Decide activity. Figure 10 shows the Provide Information ASD. The hierarchical
decomposition is not shown in this figure.

Tools:
(T1) E-mail
(T2) Internet Qutcomes:
(T3) Snail Mail (01) E-mail data
(T4) Telephone (02) ldeas
(O3) Experience data
(O4) Brochures
Subjects:
Travel Agent (A)
Vacation Action Company (C) Aim:
Friends (F) (A1) Provide information
Tourism Board (T)
Division of Labor:
Rules: (DoL1) A get brochures
(R1) A ideas include experience (DoL2) A provide ideas
with providers (DoL3) C provide brochures
R2) A does not receive mone . i
(fro)m C without full disclosure ro P Community: Egztgi g zumt;:f;fc;n web
(R3) € doesn'tspam A or P Travel Planner (P) (DoL8) T mail brochures on request
;rfraac\;et:::\g:ncttic(::)Company ©) (DoL7) F provide ideas based on experience
. . Friends (F)
Provide Information ASD Tourism Board (T)

Figure 10. Provide Information ASD, resulting from hierarchical decomposition of DoL5 and Dol9 in Figure
9 (Visio tool)

Figure 11 shows the Investigate and Decide ASD, with the network relations from Outcomes of the Provide
Information ASD to Tools in the Investigate and Decide ASD. Again, hierarchical decomposition is not
shown in the figure.

26

Qutcomes: Network Relations

(O1) E-mail data
(02) Ideas
(O3) Experience data
(O4) Brochures Tools:
(T1) General Information
. (T2) Internet
- (T3) Brochures Outcome:
Provide Information ASD (Ct1) High-level plans
Subject: i
Travel Planner (P) (A1) Investigate and choose destinations
Rules: _ o Division of Labor:
(R1) A provide objective feedback (DoL1) P generate requests for info
(DoL2) P decides destinations
Community: Travel Planner (P), (DolL3) A provides feedback
Travel Agent (A), Travel Group (G) (DolL4) & provides feedback

(DoLS) & agrees to destinations
Investigate & Decide ASD

Figure 11. Investigate and Decide ASD with network relations from Provide Information ASD (Visio tool)

Similar to Figure 7 all elements of the Investigate and Decide ASD are shown, but only the Outcomes of
the Provide Information ASD are shown. The specific Tools that are created as a result of the Provide
Information Outcomes are indicated using the arrows labeled “Network Relations”.

These three ASDs were specified using the Visual Studio AT Language tool, and the resulting model is
shown in Figure 12. This figure shows the hierarchical decomposition relations (Gold colored lines) in
addition to specific Outcome network relationships (Violet colored lines).

27

Porss|t omse |t owsr T omefTomss |
inserrer | Reserv. | Brochu_ | Keowie. owle. |
A

*. Take Vacation
— o [s
LI] TSE: irternet = Toos
i T50: Aeservation/bocking systems w02 = D18 163: Gareral Infarmation
157 dmchums | winves., | G mak.. II::; :m:n o
T56: Knowledge/experience of A R — el ¥ o dhuishid P gare
T35 Krawledge/expecence of F | P decid_| & chec.. Yot = Pl pr |
= Rules: | | P47 A provide objective feedback ol 1
Pdecid .|
41 21 G ey vacation actions Pt - oey = Dot
A2 A provides feedback e postible proslemafissues with plan e, | Py D3 P geremte requests for info w D32
RA3: P car delegate amargements/decsions fo cthes in G ! e 015] & D21 . R4T D31 P decides destinations Aprovi|
= Dots: | # make..| € adve.. A prow. [——— . D33
O12; P Imvestigate optans i DR G sl fhadieck G provi..|
® D) e D22 D34 G agrees to destinations
= R4 013: P decide where 1o go/fatat 1o do PP P
: Lozt bk = Subjects w0
P D4; P plrthase Fekets/boakings I |
7y D15: P ke parsanal armngements ® D17 5§53 Travel Plammer {7 G ape.
: D1E: A provide Infarmation A mak. B
provi | oo
i DAT: A maice boakings A5 Investigate snd choose destinations.
. a3 DAE: G make personal Amangements !
| = Commuity Members
Pead DA% G chec-in
U] 2w c provide informatian CE: Travwl Mancer (7)
: CE: Travel Agent (A)
D2V Cadvertise
022: C provide apporunities 7: Traveling Group {G)
S sutjects: = Cutcomes:
S48 Travel Mannes (7 il (- ke 48 High-level plans
" | Travel. | Activity.. | T || m“ " “,l
o | I = el
eomail | ioternet | Snail m | Taleph,,
A3 Make Brangements ta g on vatatan | j& e C10 ! R
= Community Memben:
CE: Travel Pariner (7] -
CF: Traweing Geoup (G) [—
B Travel Agent (A} -
5 Activity Camparsy () Teols: > w| ®o3| ®om|®on
CIC Friends {7 i TEX: E-mall E-mail.. | ideas Expare_ | Srochu
= Qutcomes: Ték: intwman]
O35 A mekets, boakings in hands of and Being used by G T1: Snail mall
TEZ Teleshone
= Rulee:
ASD-Elamnant relations ane coioned In Galnsban R A et Inciude edence wiTh providers w Dad
ASD-Madiation wiatiens ame coiored In MirtCraam 45 A does not eoeve money e C without ful disciosune 1o P Ageth.
Mediation- MediaTING element relations ace colsred In ComtiowerSlue R4E C dossn® spam A ar P
Mediaton- MedaTiD eiemeny relanions are coloned i Lavendar = v D24
oL-Communty slemant reiations are colomed in PaleGreen Dols: A provi. |
Fule- ol reiatians ars colored in Peachiutt * san £323: A get brochures
:: mlr.'\lmam";ri I:I:In'm! n ForstGresn Truek: D2 A provide sdess :- B25
Susject-Community rlations ane colored = LightSeatreen D35C prowida brcih: provi ||
Cortradiction relations are colored in Deepink o g5n D38 € put infs 00 web i
Hararchica! decompasitian af Do sather-ASD) relations are celored In Gold Vit 0 » 0% |
Netwaried Duteeme- 1o Elament.|n-ancther ASD relatiars are calomd in Vieist 0. C amall infa Cputl
- -) © s D28 T mil Brochures on equest
Frimnds. D29: F provide deas based on experence w D27
= Subject Cemail }|
& 552
Yours. S4T Travel Agert (4] » 0%
S50 Vaction Activity Company (C) T mail...
S51: Friends (F) P
52 Tourism Soard (T) "
o R i prowi..
i Ak Providle nfarmation
W A4 H Community Memben:
A doss. €& Travel Planner {7
- RE CE: Travel Agent (4]
€ does.. C3: Activity Company (Q)
€0 Friends {F)
C11: Toursm Soesd (T)
= Dutcomes:
€36 E-mall data
Q3T Idnas
O3 Exparience dats
3% Brochures

Figure 12. Vacation AT Model (Visual Studio AT Language tool)

Examples of mediations and contradictions for the Take a Vacation ASD and the other ASDElement
relations for the Investigate and Decide ASD are shown in Figure 13.

28

Figure 13. Mediations and Contradictions for Take a Vacation ASD and additional.relations for Investigate
and Decide ASD.

Figure 13 shows a set of mediations for the top-level Take Vacation ASD. Each Mediation object is
annotated as follows. In the upper left corner, an icon indicating the types of the mediated elements is
shown, e.g. SA for a mediation between a Subject and Aim. In the upper right corner of the mediation
object the short tag name for the mediating element is shown, e.g. T57 for the upper left-most mediation
object in Figure 13. In the lower left corner of the mediation object the short tag name of one of the
mediated elements is displayed, and the short name for the other is shown in the lower right corner, e.g.
A3 and S48 respectively for the upper left-most mediation object shown in Figure 13. All of the relations
have been hidden except for those of one mediation related to this ASD, located to the right of the ASD
shape, just below the block of CA-type Mediation objects. This is a Community-Aim mediation where D13
mediates between A3 and C7: Division of Labor (D13) ‘P decide where to go/what to do’ mediates
between the Aim (A3) ‘Make arrangements to go on vacation’ and the Community member (C7) ‘Traveling
Group (G)'.

A contradiction between two Rules has also been specified for this ASD, just below the CA-type Mediation
object discussed above. Contradiction objects are colored in Deep Pink and are decorated with an icon in

the upper left corner (¢).Contradictions are defined as being between a considered item (ASD or
ASDElement) and the items that contradict it (other ASDs or ASDElements). A contradiction shape is a
compartment shape, so lists of the ASDs that contradict the considered item and/or lists of ASDElements
that contradict it can easily be shown. For the example shown in Figure 13, the contradiction is relatively
simple — if we consider R41, ‘P tells G dates/vacation actions’, then R43, ‘P can delegate
arrangements/decisions to others in G’ may be a contradiction of this Rule. The Deep Pink dotted line to
the Take a Vacation ASD in Figure 13 denotes that it is the relevant ASD for this contradiction. If the item
being considered is an ASD, or it is an ASDElement that is related to only one ASD, this link can be set

29

automatically when the contradiction is related to the considered item. Otherwise it must be set manually
by the modeler. The relevant ASD relation is used when contradictions are reported using the
corresponding user command menu button. An example of a portion of the contradiction report is shown
below:

Contradictions for which ASD Take Vacation is the relevant ASD:
Considered ltem is ASD Element: R41: P tells G dates/vacation
actions
with contradictory elements: R43: P can delegate
arrangements/decisions to others in G

Other metamodel relations are shown for the Investigate and Decide ASD on the right side of Figure 13.
R47 is related to D32 by the rules2dols relation (PeachPuff colored line). S53 is related to C6 by the
subjComm relation (LightSeaGreen line). D30 and D31 are related to C6 by the whoDoesDol relation
(PaleGreen colored lines), D32 is related to C8 by this same relation, and D33 and D34 are related to C7
by this relation. T62 and T64 are related to D31 by the tools2dols relation (ForestGreen lines), and T63 is
related to D30 by this same relation.

Finally we show some of the analyses results for this AT model. The result of requesting an analysis using
the user command produces the diagram changes shown in Figure 14. (Note that prior to running the
analysis two other user commands were run to simplify the diagram by hiding all relations and
contradiction information.)

Mediations are very important in Activity Theory, and the only ASD where we added any mediation
information is the top-level Take Vacation ASD, so we will discuss mediation analysis errors with respect
to this ASD. According to the color key related to analysis errors, any Rule, Tool, or Dol outlined in Red is
not involved in any mediation. This can indicate that the model is underspecified in that there are missing
mediated elements, or that it is incomplete in that the appropriate relations simply have not be added, or
that it is overspecified in that the Rule, Tool, or DoL does not belong in the particular ASD. Further, any
Tool with a thick outline does not mediate between a Subject and Aim. We see from Figure 14 that T58, a
reservation/booking system is not involved in any mediation (outlined in Red), and therefore it does not
mediate between a Subject and Aim (thick outline). In fact, this tool may not belong in this particular ASD
since it is a tool often used by a Travel Agent.

The other Tools in the top-level Take Vacation ASD are all part of Subject-Aim mediations, however, none
of them are related to any Dol via the tools2dols relation so they are filled with Orange-Red. The Subject,
Rules and all DolLs related to this ASD are also filled with Orange-Red. They are missing the subjComm,
rules2dols, and whoDoesDol relations respectively. Finally, D21 (‘C advertise’) is also outlined in Red,
indicating that it does not participate in any mediation. We could argue that it is way to fulfill D20 (‘C
provide information’) and therefore that it is an overspecification and can be removed.

Recall that we added rules2dols, tools2dols, whoDoesDol, and subjComm relations to the Investigate and
Decide ASD, so the associated sources of these relations do not show any errors (i.e. no Orange-Red fill
color). However, we did not add any mediations to this ASD, so every mediating element is outlined in
Red. The Tools all have thick lines since they are not involved in a Subject-Aim mediation, and the ASD has
a thick Dark Maroon outline since it has no Tool-SA mediation.

Finally, none of the rules2dols, tools2dols, whoDoesDol, subjComm, or mediation relations were added
to the Provide Information ASD, so all of the mediating elements are outlined in Red, and they and the
Subjects are all filled with Orange-Red, and the Tools have thick outlines. The ASD also has a thick Dark
Maroon outline.

30

A report is also created by the analyze user command. It lists analysis errors pertaining to the model and
is written to a file specified through a dialog box (the class and associated functionality are available from
system packages that can be included in the C# custom code for the user command). A sample of the

information in this file is shown below:

Relationship Analysis for ASD Take Vacation:
MediaTING elements not involved in any Mediation:

D21: C advertise

T58: Reservation/booking systems
Tools that do not mediate a Subject and Aim:
T58: Reservation/booking systems

Rules not associated with a DolL:

R41: P tells G dates/vacation actions

A 757
A3 g
.
aas
=, TL Al tick.
A3 S48
s 755 | | = Tooks:
Ax sap TST: et
— T8 Resenvation/booking systoms S iz |Ch g3 ee mT
3 :"a T6: Bexchumns (a2 colaz es]ar ce
. T35 i A o iz [ea piafes mis
TS4: nawbedge/experionce af F s e | e
* Rules:
o o i "
1 P tells G clateyivacation actioer | iz | O Dia |8 DIy
3 2) ; (|a2 c7|m2 ca|m2 co
B2 A provides foedback re possible problemssues with plan
R4 ean celegate anangementyideducn ta athes in G e iz e s [en pan
= Dols: Al Colay CT Ay Ce
DIZ: P emeisigate options © D12 | oA Do | o8 Doz
B1E P decide whetw ta go/what to da P] P
D4; P prrchase tidets/boakings

D78: P make perscnal aimangamens

D1 A prewics inforrmasian : 3['_';
017 A makn baakings J
D1 & make pevscrul arangemants
[T ey ——
- s
A2: Make anangerrents to.9o an vacatian
% 1 | | = Communtty Mombers:
€7 s € Travel Plannar {F) ¢ 6|y o
€ e || O Tt Gowim Travel. | Activiy.
ol g::m-u\::rm. " « C|% w0
o (et I
& 59 | |5 outcomes: « o

O AN tickets, bookings i hands. of and being used by G Travel..

ASD-Elomant relations aro colored in Gainsboro
ASD-Mockation relations are colored in MintCream

elorrant 1ol dcend in O

W MecaTED element relat Lavenciar
Dok -Community slomant relations are colored in PaleGreen
Ruda-Do. relations s colosed in Peachiul!

Took Dol reatons e colored in ForestGeson

Subgect-C : ¥

Comtradiction relations. e colored 1 Deep Pk

Hiorarchical i [1 coloaned in Goks
Magworked Ou loeod in Vicke:

e/ T ook/Dols outhined in RED are not ivobeed in ANY mediating rdatiomibip

Tocks with a thick cuithe o ot mediate between & sibject snd wm

RSO with & chick Dk M b o 1ot e 3 Terok-susbaectd e Irackation

Meckasions. Allod with Drangefied ane mising eftherboth a mediaTING of 2 moedlaTED slements
Took Slled with Ovange?ted ars ot related to any Division of Labor task

R il with OvangeRied are ol relazed ta any Daision of Labor task

Do s ot vith OrangeRED an nat ietated 10 any Communsy mermbe

Subyects filled with OrangeaFD ane not relatest 1o any Cormmmunity membe

ol oTeal v oTes
Gersers)] oot | Bochu

Rad: A iceas include exerionce with providers
RAS: A dos o from C withent wh

RéG € doesrs spam A or P
= bals
D22 A get brachures
D24 A provide idess
D25 € provide brochures.
D76 C put info on ety
D37, C omad infes
D078 T il Brachuses o 1egwest
D2 # prowicln ks et o apiioncs
= Subyects:
548 Toavel Agent (4]
S0 Vaction Activity Company (£
S51; Friends i7)
S5 Tourisn Bowd (T)
= Airs
Ad: Prosicie infarmation
= Community Merber:
Cic Travel Planner (%)
B Travel Agent ()
€3 Activity Compay i)
€0 Friemds (7}
€17: Toursm Board (T}
= Outcomes:
O3 [-mal dats
03T; ideas.
0 Cxperience data
035 Srachuos

umvestigate & Decide

~ Toak
T2 Genesal information
T internet
Ted: Brocknmes
~ Bubes:
RAT: A prowide objective feedback
~ Dale
D0 P gemerat requests for info
DA1: P decides destinations.
D2 A providin fasdack
DA% G prewices fechinck
DM G agrees to distinations
= Subyects:
553 Travel Planner ()
= Alrs:
AS: IIWESRIGETE A COOMe CeRinations
= Community Memrberc
£6: Travel Plarse (7]
ravel Agent {A)
7 Traveling GeougH{G)
~ Outcomes:
M High-level plans

Figure 14. Analysis diagram of the Vacation ASD network.

" o%|* ow

e ermail | e
Frent

31

6.3 Electronic Task BooKklet Investigation Example

This example began with a series of semi-structured interviews aimed at identifying requirements for a
proposed electronic version of current paper-based skills evaluation tracking for a professional degree at
CSU. The paper task booklets consist of a series of skills and space for a professor to initial agreement that
the student has properly demonstrated the skill. There are two booklets, one each for juniors and seniors
in the program. The skills are grouped according to lab classes where applicable, and by rotation topics
where applicable. Rotations are targeted for seniors, but juniors can also take them. An ASD derived from
the interviews is shown in Figure 15.

The interviews were conducted by the author of this Technical Report and Dr. Jaime Ruiz, a professor of
Human Computing Interaction in the Computer Science department at CSU. The author developed the
initial ASD model.

32

Rules

R1: Network bandwidth is limited

R2: Faculty need to be reminded of the importance of the task booklets and direct observations

R3: Separate organizations sets number of rotations and students based on the number of different
kinds of needs they are predicted to have

R4: Separate organization gets tertiary referrals most of the time so a capability was added to handle
more common needs

R5: Students have to be reminded to get signed off on tasks in booklets

R6: The rotation evaluation program can't be used for task booklet (one rotation attempted to use it)
R7: Senior year is for working in real situations, previous 3 years are for lectures/labs

R8: Booklets are pretty self-explanatory

R9: If you are going to evaluate competence in a task, a sliding scale (0-5) would be better than meets/
exceeds expectations

R10: If you are going to gather evaluation data, then use it for something

Subjects

$2: Student

$1: Rotation Faculty

Outcome

Tools Outl: Students walking out the door

T1: Junior & Senior Task Booklets
T2: Rotation evaluation program
T3: Rotations

T4: Teaching labs

perform modern, routine complex
tasks property without supervision

. accreditations
Aims
Al: Demonstrate task opportunities
A2: Record tasks performed
A3: Record level of task competence
A4: Provide evidence of task competence to professional organization
AS5: Provide data to align task opportunities in classes and rotations
A6: Provide data to motivate students to increase competencies

Division of Labor

R11: There should be no extra work required for ‘booklets’, which implies a single recording media;
gathering data from multiple sources is extra work

R12: Senior rotations have a maximum of 8 students so direct observation is possible

R13: Junior labs have more students, so direct observation is not always possible

R14: The honor system is critical

R15: Seniors have to have senior task booklet complete to graduate

R17: There is only one rotation that requires the related skills in the task booklet to be complete in
order to pass the rotation

R18: Professional organization requires Junior and Senior data as part of the accreditation process
R19: Professional organization wants direct observation and signing off on task within a short time
(<1day?)

R20: Students don’t always have booklets on their persons when they do/are observed doing a task
R21: Staff: students have the responsibility to know what tasks need evaluation/signing off

R22: Students: it would be nice if the faculty knew what tasks will be available during a rotation
R23: Physical issues — some areas require environments that do not allow electronic or even paper
booklets

R24: Often it isn't feasible/possible for rotation faculty to directly observe and sign off on a task
R25: Rotation faculty can decline to do an evaluation if they didn't have a student for one of the
rotation weeks

R26: The rotation evaluation program form has questions based on competence areas defined by the
professional organization

R27: A junior in a rotation may demonstrate a skill, but a senior may document it

R28: Some tasks may be hard to complete because there are few opportunities

R29: Rotation faculty may not all supervise all weeks of the rotation

R30: Booklets don't record the number of times a student did a task, so they can’t yield data that
would help modulate the provided opportunities across labs and rotations

R31: Sometimes rotation faculty may have to take over from students because of time constraints

Figure 15. Initial ASD concerning proposed electronic task booklet (Visio tool)

Professional Skills Competence ASD

Dol1: Rotation faculty decide tasks

Dol2: Student Coordinator determines if booklets complete
for graduation

Dol3: Rotation Faculty can change rotation evaluation
forms once/year

Dol4: Rotation Faculty must evaluate students for their
rotation grade

DoL5: Dean's office uses rotation evaluation data to grade
student rotations and determine class standings

DolL6: Junior/Senior Practicum Coordinator invites rotation
faculty to change task lists once a year

Dol7: Student coordinator gathers task lists and prints
booklets

DolL8: Rotation faculty, faculty, post-professional degree
graduates, and technicians sign off on booklet tasks

Community

Rotation Faculty, General
Faculty, College Staff, Post-
Professional Degree
Graduates, Technicians,
Juniors, Seniors, Student
Coordinator, Practicum
Coordinator

Out2: Competence data available for

with a professional degree are able to

33

As can be seen from Figure 15, there are many, many Rules that were found in the interview data. Since
this is an initial model, it is also clear that substantial changes would be made to the model as it was
discussed with the project stakeholders, so it was specified using the Visual Studio tool to take advantage
of automation where possible, to take advantage of the ability to add relations between elements, and to
use the analyses available in the tool. In addition, since we were interested in requirements for an
electronic task booklet, we wanted to utilize the AT-GRL trace-link mappings to create Goal models to
discuss with stakeholders.

The AT model elements were created in the Visual Studio AT tool using the user command that creates
multiple elements of the same type from a list of descriptions. This command was added to the VS AT tool
as a result of this example. The resulting initial model is shown in Figure 16. This model does not contain
any mediation or other element-to-element relations (e.g. tools2dosl).

Srrvesssonst Shilk Competence

L L T e pe—

Figure 16. Initial AT model for proposed electronic task booklet (Visual Studio AT Language tool)

We used the GRL mapping user command to generate a text file indicating GRL elements that should be
created to create a corresponding Goal model. A portion of this file is shown below.

1. Create the following Actors if they don"t already exist:

Rotation Faculty

34

General Faculty

College Staff

Post-Professional Degree Graduates
Technicians

Juniors

Seniors

Student Coordinator

Practicum Coordinator

2. Create the following Tasks:

Rotation faculty decide tasks

Student Coordinator determines if booklets complete for
graduation

Rotation Faculty can change rotation evaluation forms once/year

Rotation Faculty must evaluate students for their rotation grade

Dean’s office uses rotation evaluation data to grade student
rotations and determine class standings

Junior/Senior Practicum Coordinator invites rotation faculty to
change task lists once a year

Student coordinator gathers task lists and prints booklets

Rotation faculty, faculty, post-professional degree graduates,
and technicians sign off on booklet tasks

4. Create the following Goals:

(derived from Aim) Demonstrate task opportunities

(derived from Aim) Record tasks performed

(derived from Aim) Record level of task competence

(derived from Aim) Provide evidence of task competence to
professional organization

(derived from Aim) Provide data to align task opportunities in
classes and rotations

(derived from Aim) Provide data to motivate students to increase
competencies

(derived from Outcome)Students walking out the door with a
professional degree are able to perform modern, routine complex tasks
property without supervision

(derived from Outcome)Competence data available for
accreditations

5. Create positive contributions from Goals associated with Aims to
Goals associated with Outcomes

It was evident from this file that there is probably too much information for the Goal model to be
understandable. The ASD elements were therefore combined when they were similar (based on the
interview data) and then categorized, with the resulting ASD shown in Figure 17. All of the extra
information was retained in text files and is not shown in the figure. The specific abstraction notes for this
example are included in Appendix C of this report.

35

122 ‘123‘

A AG ASD-Elerment relations are colored in Gainsboro

Evalu...| Pract,. N N
ezl B Mati. ASD-hediation relations are colored in MintCream
1 [l § t Mediation-MediaTING element relatians are colored in ComflowerBlue
e - & AT oy i Mediation-MediaTED element relations are colored in Lavendar
" 55 ! v Main.., Dol-Community element relations are colored in PaleGreen
i ol = Mainta.. Rule-Dol relations are colored in PeachPuff
i A8 Tool-Dol relations are colored in ForestGreen

s 510 loat: Feed. Subject-Community relations are colored in LightSeaGreen

Iy Ty gy | T22: Evaluation tools Contradiction relations are colored in DeepPink

Al T23: Practice tools Hierarchical decompasition of Dol-to-another-ASD relations are colored in Gold
= fules: Networked Outcome-to-Element-in-another-ASD relations are colored in Violet
R14: Observation Rules -)
SCr14 [SCR14 R15: Observation issues e DT
59 €5 | s1ec3 R16: Booklet Rules Set up.. €A i1 |ea pi
i1 R17: Booklet lssues 15 . on a6 cz|ar 2
BCR1S | B 3
s:rf 5122 bl Empﬂrm SMneuE L Evaluat e iz A gz €A o1z €A D12
- R1G; 1 i
sl s v D13 a6 c2las calar caflas
8CR16 | 8CR1G | SCR1E R20: Opportunity Issues L - _L 1
59.¢3 | s10c3 | sice R27: Technical Constraints Evaluat... €A i3
z u R16 e I R
Ocm? o7 - D11: Set up Rotation & C2
33 €3 JStCs = RI7 D12 Evaluate Rotation students Fac F
SCR18 D13: Evaluate graduation requirements ¢ c3l
59.C5 SR8 = Subjects: Instr... |
[p— | 59 Faculty
sa s [stocs | e 510: Students
= e = Aims;
ﬂz? AB: Motivate students .
= = R20 AT: Maintain accreditation
SCaa AB: Feedback into program
5904 o R21 = Community Members:
C2: Faculty
€3: Instructors
C4: Staff
€5; Students
Tech = Qutcomes:

O Maintan/Increase program reputation

Figure 17. Simplified AT model for proposed electronic task booklet

Only the intra-ASD relations are shown in Figure 17 (mediation and ASD-to-ASDElement relations have
been hidden). When the analyze user command is run, there are no analysis issues with this ASD. The user
menu command to create suggested GRL mappings uses the ASDElements and information related to the
intra-ASD relations to propose a set of steps to create an initial Goal model from this ASD. Examples of
this output are shown and discussed below.

(ASD: Simplified Professional Skills Competence)
1. Create the following Actors if they don"t already exist:
Faculty
Instructors
Staff
Students

2. Create the following Tasks:
Set up Rotation
Evaluate Rotation students
Evaluate graduation requirements

3. Place the following Tasks inside the corresponding Actors:
Task "Set up Rotation®™ inside Actor “Faculty”
Task "Evaluate Rotation students®™ inside Actor "Faculty”
Task "Evaluate Rotation students” inside Actor *"Instructors®
Task "Evaluate graduation requirements” inside Actor "Staff"
Task "Set up Rotation® inside Actor "Staff-
Task "Evaluate Rotation students® inside Actor "“Staff-

36

IT there are multiple Actors associated with the same task create the task
outside the Actors and create decomposition tasks for it in the associated
Actors

The note associated with Step 3 was added as a result of working with this example, because it is not
possible to place the same GRL Task in multiple GRL Actor spheres. We therefore added the directive to
decompose the GRL Task into separate tasks for each GRL Actor. The original Dols (Figure 16) that we
abstracted into the DolLs shown in Figure 17 contain this decomposition information. Both D11 and D12
(from Figure 17) have multiple Community members as targets of the whoDoesDol relation. We therefore
created multiple tasks as follows:

D11: Set up Rotation — Two GRL Tasks are created, one in the Faculty Actor, ‘Decide tasks’ and one in the
Staff Actor, ‘Invite task changes’'.

D12: Evaluate Rotation students — Three GRL Tasks are created, one in the Faculty Actor, ‘Faculty evaluate
students’ one in the Instructor Actor, ‘Observe students’, and one in the Staff Actor, ‘Determine grades’.

An intermediate form of the goal model created in the jUCMNav tool for these three steps is shown in
Figure 18.

Faculty Instructors

Faculty evaluate —
: Sudens students
And
Decide tasks
'."'- Evaluate rotation
students

And

.........
................... A

Set up rotation

Staff

Students

Determing
arad ‘
And
Evaluate graduation
requirements

Figure 18. Initiz;'I"}.UCMNav goal model created from first 3 steps of GRL mapping report

Invite task

changes ~7
And

Figure 18 shows the decomposition of the tasks with multiple Actors involved in them. In this case a
decomposition relation has been created, FROM the Task associated with the Dol (e.g. ‘Set up rotation’)
TO the sub-task located in the Actor (e.g. ‘Decide tasks’ in the Faculty Actor). The decomposition is an
AND decomposition: both sub-tasks must be completed in order for the original task to be completed.

The GRL mapping output continues below:

4. Create the following Goals:
(derived from Aim) Motivate students
(derived from Aim) Maintain accreditation
(derived from Aim) Feedback into program
(derived from Outcome)Maintain/Increase program reputation

5. Create positive contributions from Goals associated with Aims to Goals
associated with Outcomes

The intermediate goal model that includes steps 4 and 5 is shown in Figure 19.

37

Faculty Instructors
s,

Faculty evaluate —"=, ~ p—
students oot

And And

- Decide tasks

And,

+ 33
Motivate .
students Maintain/increase
program reputation

Feedback into
program

Set up rotation

Maintain
accreditation
Evaluate rotation

students

Students

And

"'-._ Evaluate graduation
requirements

Figure 19. Inttla";ﬁ;"e;ali'ate Goal model with the addition of Goals from AT Aimslg;mud Outcomes.

The Goals derived from Aims are shown to contribute positively (i.e. help) the Goal derived from the
Outcome. For now, the relative importance of meeting the contributing Goals is set as equal among them
and the assumption denoted by the numerical contributions is that only these three Goals need to be met
for the other Goal to be met. Clearly these assumptions may change as modeling progresses.

The GRL mapping continues:

6. Create the following Resources:
Evaluation tools
Practice tools

We next use Tool mediations to suggest dependencies in the Goal model. However, there is an issue
relating to creating dependencies based on Tools mediating between Subjects and Aims. The mediating
Tool is mapped to a GRL Resource, and Aims are mapped to GRL Goals. Subjects (through the subjComm
relation to a Community member) are mapped to GRL Actors. However, an Actor cannot depend on a
Resource directly, rather a GRL Task belonging to the Actor must be dependent on the Resource to
complete the Task. The problem then is determining what DolLs might be associated with the Subject that
use the Tool and then presenting the modeler with this information: one or more of the GRL Tasks
associated with the DolLs may be dependent on the GRL Resource associated with the Tool, in order to
achieve the GRL Goal associated with the Aim element of the mediation.

The tools2dols relation may be used to propose candidate DolLs and therefore the related GRL Tasks. The
Subject of the mediation is related to a Community member via the subjComm relation, and the member
may be related to any number of DoLs via the whoDoesDol relation. The DoLs may in turn then be related
to any number of Tools (which hopefully includes the Tool mediating element of the mediation) via the
tools2dols relation. All of these relations are used to create the following step.

7. Create the following dependencies related to mediation by tools between
subjects and aims:

Only ONE dependency relation should be made between any Goals and Resources
listed in this section

38

Create a dependency that Task "Evaluate Rotation students® which
resides iIn Actor "Faculty" depends on Resource "Evaluation tools®, and
therefore Goal "Motivate students® also depends on this Resource

Create a dependency that Task "Set up Rotation® which resides in Actor
"Faculty” depends on Resource "Practice tools", and therefore Goal "Motivate
students” also depends on this Resource

IT there are multiple Tasks or Resources, then not all of them may be
part of a dependency.

While Step 6 is relatively straightforward, Step 7 is not since we decomposed ‘Set up Rotation’ and
‘Evaluate Rotation students’ into multiple sub-tasks. The directions in the step must be applied to the sub-
tasks that reside in the described Actor. The result of these steps is shown in Figure 20.

Instructors

H Observe
students

And

Faculty
&

Faculty evaluate
students

Motivate
students

Maintain/increase
program reputation
H

Practice Tools

Set up rotation Feedback into
program

Evaluate rotation
students

Evaluation Tools

Maintain
accreditation

Students

And

Evaluate graduation
requirements

Figure 20. Intermediate Goal model with Resources and some dependencies.

The GRL mapping continues:

8. Create the Goals (has clear indications of being met) or Softgoals for the
following (from Rules):

Observation Rules

Observation Issues

Booklet Rules

Booklet Issues

Competence Enhancers

Competence Issues

Opportunity Issues

Technical Constraints
After studying the detailed Rules used to create the eight Rules in Figure 17, we decided that Goals could
be created for ‘Observation Issues’, ‘Booklet Rules’ and ‘Booklet Issues’, ‘Competence Enhancers’, and

‘Opportunity Issues’. Softgoals were created for the other Rules.

Next dependencies of the GRL Goal/Softgoals mapped from AT Rules are considered. Our initial
interpretation of Goals and Softgoals created from AT Rules included only the rules2dols relation.

39

However, while an AT Rule should be related to an AT Dol, it may be the case that the Rule is only
applicable to a certain Tool that is used to accomplish the DoL. We discovered this issue with this example,
because some Rules pertain to Tools that are used as part of a Dol related to the Rule. A primary example
of this situation is the Rule ‘R16:Booklet Rules’” which has a rules2dols relation to Dol ‘D12: Evaluate
Rotation students’, and yet, these rules pertain to the use of a Tool ‘T22: Evaluation Tools’. We therefore
modified the AT language metamodel to include a new relation, dols2tools. The code to suggest GRL
mappings can then use the rules2dols relation to find pertinent DoLs, then search the Dols’ tools2dols
relations to find Tools that might be the true target of the Rule. We considered adding a direct relation
between Rules and DoLs, but it seems that some Rules may be related only to the use of a particular Tool
under particular circumstances (i.e. DoLs) and not in others. The result of this change to the VS AT
language metamodel allows additional steps to be suggested. Examples are shown in step 9.

9. Create the following dependencies related to Rules associated with DolLs:

Create a dependency that Task "Evaluate Rotation students® depends on
the Goal/Softgoal related to "Observation Rules”

Note that Resource "Evaluation tools® is related to this Task and
therefore the Resource may depend on the Goal/Softgoal(s) listed above

Note that Resource "Practice tools” is related to this Task and
therefore the Resource may depend on the Goal/Softgoal(s) listed above

After studying the complete set of Rules used to create this Goal/Softgoal, and the complete set of Tools
used to create these Resources, we decided that the dependency is from the Task associated with the Dol
to the Softgoal associated with the Rule.

Create a dependency that Task "Evaluate Rotation students® depends on
the Goal/Softgoal related to "Booklet Rules®

Note that Resource "Evaluation tools® is related to this Task and
therefore the Resource may depend on the Goal/Softgoal(s) listed above

Note that Resource "Practice tools” is related to this Task and
therefore the Resource may depend on the Goal/Softgoal(s) listed above

After studying the complete set of Rules used to create this Goal/Softgoal, and the complete set of Tools
used to create these Resources, we decided that the dependency is from the Resource ‘Evaluation Tools’
to the Goal associated with the Rule.

Next dependencies on Resources (mapped from Tools) from Tasks (mapped from Dols) that are based on
the dols2tools relation can be added. An example from the GRL mapping output is shown below:

10. Create the following dependencies related to Tools associated with DolLs:

IT this Tool has an SA mediation that was described in #7 above (the
mapped DoL below already has a dependency on the mapped Tool) then do not
create the dependency.

IT the DoL was decomposed when it was mapped to a Task, then the either
the Task or just some of the sub-Tasks may depend on the Resource mapped from
the Tool.

Create a dependency that the Task mapped from DoL "Evaluate Rotation
students” depends on the Resource mapped from Tool "Evaluation tools”

Figure 21 shows the addition of all the Rule-related Softgoals/Goals and their dependency relations.

40

Instructors

_ Observe
o students
And
Faculty evaluate % Observation EY
students 3 issues
!

Faculty

And

Motivate + 3
______‘_— students Maintain/increase
program reputation

+

Practice Tools

‘ <Decidetask5\> H

And,

Feedback into
Set up rotation program

Observation
rules ,
A Evaluation Tools

Maintain
"o, Booklet
""-,.‘
e <4 Competence Students
S issues P
And) Opportunity Booklet
aradge issues issues
- g Technical
Evaluate graduation s
requirements ’— constraints
"""‘-.,, .u""l‘..

Evaluate rotation
StUdents

enhancers

0

Figure 21. Goal model with dependency information added.

This example is still in progress. In particular, no DoLs associated with Students have been added to the
AT model, and thus no Student Actor Tasks are present in the Goal model.

7. Issues and Limitations

The problems encountered while developing this tool fall into four categories: development by
experimentation, platform constraints, little testing, and no user studies. Each of these issues is discussed
in more detail in the following sections. A short discussion regarding building this tool, installing it, and
using it is presented at the end of this section.

7.1 Experimentation

Most of the development of the VS AT tool took the form of experimentation to figure how to accomplish
something. There is a good set of tutorials that cover many of the things a DSL developer might want to
achieve, but several things we needed to add to the language and tool were not covered. An example is
the ability to identify elements whose names should be displayed in the compartments of an ASD
compartment shape. Also, given the great flexibility of the DSL SDK there are no doubt more efficient ways
to achieve the functionality we desired in the VS AT tool.

Beyond these DSL tool questions, a much larger experiment discussed in Section 7.1.2 (Natural Language
Processing Experiments) involved using Apache NLP to attempt to automatically find contradictions in AT
models.

7.1.1 Visualization

When the Vector Surveillance example was specified using the VS AT tool, it became abundantly evident
that visualization of any but the simplest AT models is an issue. To help ameliorate this problem several
user commands were added. Most have to do with hiding or showing specific relations in the model. For

41

example, hiding all relations from an ASD to its related ASDElements and Mediations is almost always a
good idea. User commands were also added to hide or show the other relations within an ASD that relate
ASDElements to each other (e.g. whoDoesDol), and to hide or show relations between ASDs (network
and hierarchical). Mediation objects are annotated with the mediating element and the two mediated
elements, so no relations need be shown for these objects. Also, the zoom commands were added so that
the modeler can have an overall view of the model.

7.1.2 Natural Language Processing Experiments

Contradiction analysis is a rich area for exploring how activity systems might evolve over time and the
subsequent influence of various evolutions on the system. Engestrom identified four types of
contradictions, all of which deal with the semantics of an ASD and its constituent ASDElements. Since each
element has a description which typically consists of natural language, automated discovery of
contradictions is a challenge. This section describes some experiments that were performed to see
whether the Apache OpenNLP library could be integrated into the VS AT tool to identify potential
contradictions based on syntactic analysis of ASDElement descriptions.

A command was added to the user command menu, along with C# code to use the Apache OpenNLP
library. These java libraries had to be converted to be used by C# methods, and this was accomplished
using ikvm, and is discussed in the next sub-section.

Regular expressions were used to identify sentence nouns and verbs in the element descriptions but this
was not successful since descriptions are rarely in the form of simple sentences. However, we
demonstrated that it is possible to identify duplicate words within Rules, Dols, and Outcomes, and
between Rules and DoLs and DolLs and OQutcomes provided the descriptions are re-written as sentences.
The rationale for this approach is that within an element type such as Rules, if the subject (in the English
grammar sense) is the same in multiple Rules, then there might be a contradiction between the rules.
Similarly, if the object (in the English grammar sense) is the same in multiple rules, a contradiction might
exist. For our initial experiments we simplified the problem to one of searching for common nouns and
verbs in both parts of the descriptions.

We were able to successfully find duplicate words, however this ability is too limited to be of general use
in identifying contradictions. WE therefore decided to add completely user-defined contradictions at this
time. We created a new AT language domain class, Contradiction, which the modeler can use to relate
any elements that are contradictory. We initially defined this class as having relations to any number of
ASDs or ASDElements, however this assumes that all items related in this way contradict each other, which
is not generally true. Consider the following Rules:

e R1: P decides where to go and what to do
e R2:P can delegate decisions to others
e R3: G decides what to do

Here R2 and R3 probably contradict R1 — if P must make the decision, then it cannot be delegated, and G
cannot decide what to do. However, R2 and R3 do not contradict each other. Thus, we conclude that
contradiction does not support a transitive property — elements may only be contradictory in a particular
context. We therefore added a specific relation to the item that identifies the one element (or ASD) that
provides the context where the other elements (or ASDs) are contradictory. We call this the considered
item. The other elements (or ASDs) that contradict it are referenced using a different relation.

Details - Creating the DLL for Open NLP
Several tools and libraries had to be downloaded for this task:

42

e ikvm

e OpenNLP
e UIMA SDK
e Javamail

The jar files were converted to .Net libraries (.dll files) using the ikvm tool. The .dll libraries have to be
‘strongly named’ for use in Visual Studio. This means that the namespaces are unique and this is
accomplished by first creating a key file from a Visual Studio tool called sn, and then using an ikvm option
when creating the .Net libraries. The resulting libraries must be added as references to the Visual Studio
project, in the DsIPackage solution. To do this, from the References item right hand click and select Add
Reference, then select the Browse button, browse to where the libraries are, and choose each library and
finally click Add. Once this is done the libraries can be added to custom code as references. For example,
the following code shows the initialization of some of the features we used in our experiments:

using opennlp;

using opennlp.tools;

using opennlp.tools.parser;

using opennlp.tools.tokenize;
using java.io;

// Set up the tokenizer and parser by opening the models and loading them. The

//parser especially takes a long

// time, so this should be done only once. It seems to be the parser factory that

//takes all the time.

java.io.FileInputStream parIstr = new
java.io.FileInputStream("c:\\opennlpModels\\en-parser-chunking.bin");

java.io.FileInputStream tokIstr = new
java.io.FileInputStream("c:\\opennlpModels\\en-token.bin");

opennlp.tools.tokenize.TokenizerModel tokModel = new
opennlp.tools.tokenize.TokenizerModel (tokIstr);

opennlp.tools.tokenize.TokenizerME tokenizerToUse = new
opennlp.tools.tokenize.TokenizerME(tokModel);

ParserModel model = new ParserModel(parIstr);

Parser parserToUse = ParserFactory.create(model);

Details - Using OpenNLP to Analyze ASDElement Descriptions

A user command was written to find duplicate words within Rules, duplicate words within Dols, and
duplicate words within Outcomes, and then duplicate words between Rules and Dols, and between Dols
and Outcomes. The rationale for these choices is that the descriptions of Rules, DolLs, and Outcomes tend
to be quite a bit longer than those of Tools, Subjects, Aims, or Community members, although Aims can
also have long descriptions. It seems that duplicate nouns or verbs in these descriptions could indicate
contradictions. For example, if there are multiple rules associated with the same item (a noun) or action
(a verb) there might be contradictions. The first step is to create tokens of the description string and then
to parse it. Next regular expressions are used to find the noun part of the subject portion of the
description, the verb part of the description, and any nouns in the verb part. The results of matches that
occur are put into HashSets. Finally the hash sets are compared to find duplicates.

We immediately ran into issues because the descriptions were usually not simple sentences, so several
had to be re-written in order for the parsing and regular expression matching to work. Next we found that
since words may have similar meanings but not be the same, some duplications were missed. Finally, the

43

OpenNLP tools sometimes confuse nouns and verbs. For example the word ‘check’ can be either a noun
or a verb, but the library seems to assume it is noun. This problem also led to changing the descriptions
so that they would work with the parser.

An excerpt of the command output for the Take a Vacation ASD example is given below:

ASD TakeVacation: Rules:

1. Agent provides feedback about possible issues
2. Planner delegates arrangements or decisions to others in the group
3. Planner makes decisions on where to go

ASD TakeVacation: Rule duplicate words:

Planner: 2 3
decisions: 2 3

ASD TakeVacation: Dols:

Planner finds out options

Planner decides where to go

Planner buys tickets

Planner makes personal arrangements
TravelGroup makes personal arrangements
TravelGroup goes to check in

Agent makes bookings

Agent provides information
ActivityCompany provides opportunities
10 ActivityCompany creates advertising
11. ActivityCompany provides information

‘DCD\IO‘A(J‘I#OOI\JH

ASD TakeVacation: DoL duplicate words:

Planner: 1 2 3 4

makes: 4 5 7
arrangements: 4 5
TravelGroup: 5 6

Agent: 7 8

provides: 8 9 11
information: 8 11
ActivityCompany: 9 10 11

ASD TakeVacation: Duplicate words in Rules (L1) and DolLs (L2):

Agent: L1-1 L2-7 L2-8

provides: L1-1 L2-8 L2-9 L2-11
Planner: L1-2 L2-1 L2-2 L2-3 L2-4 L1-3
arrangements: L1-2 L2-4 L2-5

makes: L1-3 L2-4 L2-5 L2-7

The last section is interpreted as follows:

the noun ‘Agent’ appears in Rule 1 and Dols 7 and 8

the verb ‘provides’ appears in Rule 1 and Dols 8, 9, and 11
the noun ‘Planner’ appears in Rules 1 and 3and DolLs 1-4
the noun ‘arrangements’ appears in Rule 2 and Dols 4-5
the verb ‘makes’ appears in Rule 3 and Dols 4, 5, and 7

To demonstrate the steps, consider the first Rule. The result of tokenizing and parsing this description is:

(TOP (S (NP (NNP Agent)) (VP (VBZ provides) (NP (NP (NN feedback)) (PP (IN
about) (NP (JJ possible) (NNS issues)))))))

We separate the sentence into a subject part:
(NP (NNP Agent))

44

and a verb part:

(VP (VBZ provides) (NP (NP (NN feedback)) (PP (IN about) (NP (JJ possible) (NNS
issues)))))

Next we look for noun words in the subject part and get: Agent, which we add to a hash set. We then
look for verbs in the verb part and get (VBZ provides) from which we extract provides, and we
add that to the hash set. Finally we look for nouns in the verb part and extract the nouns which give
Tfeedback and then i1ssues, each of which we add to the hash set. We create a list of hash sets, one
for each rule. The hash set for the first rule is as follows:

[0] “Agent”

[1] “provides”

[2] ‘““feedback”

[3] “issues”

The hash set for the second rule is as follows:

[0] “Planner”

[1] “delegates”
[2] “arrangements”
[3] “decisions”
[4] “others”

[5]1 “group”

The hash set for the third rule is as follows:

[0] “Planner”
[1] “makes”
[2] ““decisions”

Once all the Rules have been processed we have a list of hash sets. We look for non-null intersections in
the contents of these sets, taken two at a time. Each time there is a non-null intersection we can
determine which word of which Rules is duplicated and write these to a report. For example, the word
“Planner” appears in both Rules 2 and 3, and the word “decisions” also appears in both Rules 2 and
3.

The main shortcomings of this approach include the fact that the descriptions have to be in a specific
format (i.e. simple, complete sentences), and that contradiction analysis really needs to have a flexible
implementation of a group of similar words or ideas so that duplicates can be discovered. Of course,
duplicates are only one possible type of contradiction indicator. Phrases or ideas that are opposites might
also indicate contradictions. Finally, relations should be used to find potential contradictions — for
example, any Dol with multiple relations to Community members (whoDoesDol) may include
contradictions depending on how the task is partitioned, what rules are related to it (rules2dols) and what
tools are used for it (tools2dols).

7.1.3 GRL Mappings

The tracelinks we have identified between ASD elements and GRL goal model elements are used to
generate a text file indicating GRL elements that should be created to transform the ASD model into a
goal model. Some of the ASD relations can be used to further augment the goal model, and these have
been included in the C# code that analyzes the ASD. Many issues were discovered when creating these
mappings, as were discussed in the proposed electronic task booklet example above. Some AT relations
supported by the VS tool are not yet incorporated into these mappings, specifically Outcome network
relations and hierarchical decomposition relations.

45

Perhaps more significant, ASDElement refinement has not been added to the VS metamodel and therefore
it is not available in the AT language tool at this time, even though it was defined in the first AT language
metamodel we created. This relation can be defined between elements of the same type, and if it was
available in the VS tool then information obtained from it could be used to preserve original information
in situations where the model is too complex and abstraction needs to be applied. Substantial work needs
to be done however, to develop a method to visualize refined elements. Since this relation is not available,
all detailed information related to abstractions such as those discussed in the electronic task booklet
example must be documented outside of the tool.

An additional issue is that there is no metamodel relation between particular Aims and Outcomes, which
would be useful when there are both multiple Aims and Outcomes, and the positive contributions of the
Aim-mapped Goals are being created to the Outcome-mapped Goals.

A final issue is that of improving the decision of whether a Task or Resource depends on a specific Rule-
mapped Goal/Softgoal. One idea is to extend the AT metamodel to include a concept that encompasses
this trinary relation. That is, a Rule is related to a Dol and potentially also to a Tool used to accomplish
the Dol. If there is no assocated Tool, then the Task mapped from the Dol is the item dependent on the
Rule-mapped Goal/Softgoal. Otherwise, the Tool-mapped Resource may be dependent on the Rule-
mapped Goal/Softgoal.

7.1.4 ASDElements Related to Multiple ASDs

The AT metamodel allows ASDElements to be related to more than one ASD. This reduces redundancy in
the set of model elements. However, it presents a problem when faced with reasoning about relations
between elements that are ASD context-specific. This issue was mentioned in the section on Validation
Custom Code, where the intra-ASD relations were checked to make sure that the source and target were
related to the same ASD. The workaround adopted in the examples is that only ASD Community elements
are related to multiple ASDs. Further experimentation and research is needed to resolve this issue.

7.2 Platform Constraints

The AT language tool is implemented for Visual Studio only. We expect that many of the techniques will
apply to subsequent tool versions, but since there is so much custom code involved it is not clear how
much will need to be actively maintained for newer versions of Visual Studio.

7.3 Testing

Only the most basic testing has been performed on the tool, although the code has been studied for
common errors. Clearly the different example systems that were input to the tool also provided testing,
but testing has not been systematic.

7.4 User Studies
No user studies have been performed, and only the developer has used the tool. Input from an HCl expert
was solicited and used for some display issues.

7.5 Tool Access - Building, and Installing the Tool, and Creating AT Models

To build the AT Language tool, the Build Solution button on the BUILD menu can be used. Then it is
necessary to install it from VSIX file. This file can be found in the Projects folder in the specific project
folder. For example:

Project/ActivityTHeoryV5/DslPackage/bin/Debug/CSU.ActivityTheoryV5.DslPackage.vsix

This file can be executed by clicking on it, and choosing the installation button on the dialog box that is
presented. When Visual Studio is started, from the TOOLS command, there is a button called ‘Extensions

46

and Updates...’. Selecting this button brings up a window showing all of the extensions installed, one of
which should be ActivtyTheoryV5.

To create a project that uses AT models, use the FILE command, the New button, and then Project. Select
a Visual C# template, and a WPF Application. Choose a name for the project, then press the OK button.
From the Solution Explorer tab, right click on the name of the project, select Add, then New Item. Scroll
down the choices until ActivityTheoryV5 appears and select it. Choose a name for the model making sure
that the file extension remains ‘.atv5’, then select Add. A new model diagram will be displayed, with the
AT editor on the left side. The only thing that is initially added to the diagram is the color key, which usually
needs to be resized and moved.

8. Conclusions

This report has described a Visual Studio tool that realizes an Activity Theory domain specific language.
Our conclusions regarding this work fall into four areas. The first relates to using the DSL Modeling SDK to
create the tool. The SDK is quite complex in its structure of generated projects and where custom code
must be added to implement desired functionality. While the tutorials regarding the SDK are
comprehensive, they have not been updated to work with newer versions of VS so some details do not
work and must be determined from other sources. Other details are not included (e.g. how to filter a list
for display in a graphical editor shape compartment) and must be found from user groups and the web in
general. However, we found that all of the functionality we wanted to include was possible one way or
another using custom code. User commands were especially useful to try different additions —this method
is very flexible with the caveat that it is easy to have too many commands. Finally, the ability to add custom
code to relation builders is a good way to help modelers; relations that are not allowed cannot be created.

A second area of conclusions relates to this tool and the previous USE realization of the AT language. This
tool was much more difficult to implement than the USE model. However, it was possible to experiment
with functionality such as GRL mapping and NLP analysis, which would be very difficult if possible at all in
USE. We were also able to add functionality to this tool to make object creation much easier than is
possible in the USE tool, especially with the user command to create a set of objects given a type and a
list of descriptions. However, the modeler must still add the relations between the newly created objects
and the related ASD, and between the objects manually. Note that in the USE tool, the user can specify
these relations in a text file that is read in to create/modify an object model.

Our third set of conclusions relates to using the VS tool in our on-going research. On the one hand, once
the structure of the DSL Modeling SDK solutions is understood, changes are not very difficult to try
experiments or to add new functionality. On the other hand, fundamental changes to the language
metamodel can cause some or all of the custom code to break, and render models created with prior
versions unusable. We encountered this problem when we replaced concrete classes for each of the seven
types of ASD elements with the two-level abstract class hierarchy of ASDElement and
MediaTINGEle/MediaTEDEle between the concrete classes and the ATModelRoot class. In the end we
simply created an entirely new tool based on this new metamodel rather than attempt to migrate all the
custom code from previous versions.

Our fourth area of conclusions deals with using the VS AT tool for something other than research. Clearly
systematic functional testing and user testing would be required, and changes made to the tool would be
required. Currently the only way to create new AT models is by creating a new project that is a C# WFP
application and adding new AT model items to the application. It is expected that the ability to create a
new AT model project directly would be needed. Finally, this tool can only be used from Visual Studio, and

47

it is not clear how well it will migrate to newer versions of VS. It is possible that solutions exist for these
issues, but they need to be fully investigated and solved.

With respect to our original motivations for developing this tool we note the following. First, we were
very successful in using the DSL SDK to develop the AT tool and associated graphical editor. We also were
successful in creating custom code to implement both structural and other constraints. We were able to
explore and extend our mapping to GRL Goal model elements based on AT models. However, while object
model visualization experiments are easier than with the USE tool (e.g. hiding both objects and relations
with user commands), it is not clear that object model creation is much easier with the VS AT tool. Using
a graphical editor, clicking a mouse to select a relation type, and clicking on the objects at the ends of the
relation is easy in the VS AT tool, but creating many relations is still cumbersome. We expect that
experiments to address these issues using the VS DSL SDK will be very feasible.

References

[1] L. Eisen, J.M. Bieman, S. Ghosh, and S. Lozano-Fuentes, “Using cell phones for entry to a Dengue
Decision Support System”, Research Project supported by Award Number R21AI080567 of the National
Institute of Allergy and Infectious Diseases, 2009-2012; http://www.cs.colostate.edu/ddss/ (acc. Jan.
2013)

[2] Y. Engestrom, Learning by expanding, Helsinki: Orienta-Konsultit, 1987.

[3] Geri Georg & Lucy Troup, “Experiences Developing a Requirements Language Based on the
Psychological Framework Activity Theory”, Proceedings of the MODELS 2013 OCL Workshop, CEUR
Workshop Proceedings, Vol 1092, http://ceur-ws.org/Vol-1092, ISSN 1613-0073, pp 63-72, 2013.

[4] Geri Georg & Gunter Mussbacher, “USE Tool Analysis of Activity Theory Models”, Colorado State
University Technical Report, CS-13-102, March, 2013

[5] Geri Georg & Robert France, “An Activity Theory Language: USE Implementation”, Colorado State
University, Computer Science Technical Report, CS-13-101, January, 2013.

[6] ITU-T, User Requirements Notation (URN) — Language definition, ITU-T Recommendation Z.151
(10/12), Geneva, Switzerland, October 2012; http://www.itu.int/rec/T-REC-Z.151/en (acc. March 2013).
[7] jJUCMNav website, http://softwareengineering.ca/jucmnav (accessed March 2013).

[8] S. Lozano-Fuentes, S. Ghosh, J.M. Bieman, D. Sadhu, L. Eisen, F. Wedyan, E. Hernandez-Garcia, J.
Garcia-Rejon, and D. Tep-Chel, “Using Cell Phones for Mosquito Vector Surveillance and Control”, 24th
International Conference on Software Engineering & Knowledge Engineering (SEKE’12), Knowledge
Systems Institute Graduate School, pp. 763-767 (2012).

[9] R.F. Paige, N. Drivalos, D.S. Kolovos, K.J. Fernandes, C. Power, G. K. Olsen, and S. Zschaler, “Rigorous
identification and encoding of trace-links in model-driven engineering”, Software & Systems Modeling,
vol. 10, no. 4, pp. 469-487 (2011).

Appendix A - Activity Theory Background

Activity Theory is a psychological framework that can be used to analyze human activity. It was developed
in the 1920’s and 1930’s by Vygotsky and introduced the notion that an individual’s actions are mediated
by various elements. Later Leont’ev expanded these ideas to include the idea that human activity is never
isolated, but instead takes place in some context that is influenced by societal concerns. Leont’ev moved
the focus of activity analysis from the individual to the community. Most of the work extending these
ideas and adapting them for use in the context of learning and later, cooperative work, was done by

48

Engestrom. He developed the theory to include learning that takes place over time and that drives
evolution of human activity in response to contradictions in the activity system. A major tenant of Leont’ev
and Engestrom’s work is that human activity must be analyzed holistically as a system; individual elements
of an activity system cannot be analyzed in isolation. Further, human activity systems do not usually occur
in isolation, but rather as a set of networked activities, where the outcome of some activity may serve as
one of the other elements (e.g. tool) in another. Engestrom introduced a diagram of an activity system.
This is shown in Figure Al.

Tools

Qutcome
A’:\nsform ation)

Subject Aim

g& Division of Labar

Rules Community (Dol)

Figure Al. Engestrom Activity System Diagram (ASD)

The diagram consists of two triangles with joining lines between their vertices. The vertices of the
outermost triangle are mediaTING elements of the activity system, while the vertices of the inner triangle
are mediaTED elements of the system. The diagram is interpreted as follows. First, every activity system
has some aim(s); the reason why the activity is being undertaken. As a result of performing the activity,
some transformation occurs to produce the outcome(s) of the activity. The subject(s) use mediating
tool(s) to achieve the aim(s) of the activity. Subjects are part of a community, and the interactions
between subjects and members of the community are mediated by rules. Rules are the norms and
conventions associated with these interactions. Finally, the community consists of everyone with an
interest in the aim(s), and the division of labor is how the community divides the work that has to be done
to achieve the aim(s).

From this interpretation, we see that the prime mediations are that Tools mediate between Subjects and
Aims, Rules mediate between Subjects and Community members, and Division of Labor items (DolLs)
mediate between Community members and Aims. The additional lines in the diagram indicate other,
secondary, possible mediations. For example, the line between Community and Tools indicates that it is
possible for a Tool to mediate between a Community member and an Aim or between a Community
member and a Subject. Similarly, a Rule could mediate between a Community member and an Aim, or
between a Subject and Aim. A Dol could mediate between a Community member and Subject, or between
a Subject and Aim. Although any of these mediation relations is possible, we have found that it is fairly
straightforward to initially analyze only the primary mediations in our work, and these are the mediations
that we have chosen to support in our Visual Studio AT Language tool analysis user command.

Engestrom discusses the idea of contradiction as a driver of evolution of activity systems. He defines four
types of contradictions. The first type of contradiction can occur within a set of elements of the same type
in an ASD. For example, two Rules in one ASD may be contradictory. The second type occurs across
elements in an ASD. An example of this is if a particular DoL contradicts a Rule. The third type of
contradiction occurs between different evolutions of the activity, where the activity is still in the process
of transitioning to the more advanced version. An example is when an activity has a tool that is used in an
ad-hoc manner and additional constraints are put on its use in order to bring more control and
predictability to its use. The activity may be evolving into a more predictable activity by using the tool in
a constrained way, but other elements in the activity system (e.g. the subjects using the tool) may find
the controls onerous or prohibitive towards achieving the activity aims. The fourth type of contradiction
occurs across multiple ASDs in a network. A common situation is that an Outcome from one activity may
serve as a Tool in another. An example of such a contradiction occurs when the outcome of one activity
is research software, which in turn is used as a production tool in another activity.

49

In all of these cases the activity system evolves to alleviate the contradictions, in fact the contradictions
are necessary precursors to activity evolution.

Leont’ev, Alexei N., Activity, Consciousness, and Personality, Englewood Cliffs, NJ: Prentice-Hall, 1978.

Vygotsky, Lev, Mind in Society: the development of higher psychological processes, Cambridge: Harvard
University Press, 1934.

Appendix B - Trace-Links between AT and GRL

We use trace-links to define mappings between AT language elements and GRL elements. Trace-links
enable bi-directional mappings, which are important in our on-going work, to map between augmented
and modified Goal models and ASD networks. (Note that the tool described in this report does not contain
features to automate creating GRL elements, only textual suggestions for how a related Goal model can
be manually created.) In addition to the graphical specification shown in Figure B1, trace links allow us to
specify additional constraints on the mappings. These constraints can be specified in the Epsilon Validation
Language. For simplicity we show them in English.

The trace-links shown in Figure B1 are informally defined as follows:

e AT Community objects are mapped to GRL Actors. Since the AT metamodel requires that each
Subject be related to one community member (subjComm relation), it is not necessary to map AT
Subject objects to any GRL elements.

e AT Dol objects are mapped to GRL Tasks.

e AT Tool objects are mapped to GRL Resources.

e AT Outcome and Aim objects are mapped to GRL Goals. (Goals have clear conditions for being
met, whereas Softgoals do not. In an ASD, it is necessary to know when Aims and Outcomes have
been achieved, or else the activity may never end, so it is reasonable to map these AT elements
to Goals.)

e AT Rules are mapped to either Goals or Softgoals — in many cases the Rule may be more of a
guideline and it may not be clear if it is met or not, in which case it maps better to a Softgoal than
a Goal.

50

GRLMetamodel |

ATMetamodel ATGRLMetamodel |
TraceModel —
Decomposition
Y T Dependency
ASD by race-n - Contribution
gy uravaig:
1] relevantASD Outcome | I [] &g ¥ p
- I | |
elements - e - | [] ElementLink ID..*
= D B “Tirout OutcomeGoalTracelink| | | 44 d linksSre
L | | | {
| B B | 0.7 1]src
) X MediatedEle I' I [| linksDest - GRLLinkableElement
f 3 | [| L les
| 2 &S C o |AIm CommunityActorTracelink | | | | '_.' 1 yay
MediatingEle scoEle trAim i .'I]
) 1.+ mediations \ 5o 1 LI | |
LT Mediation > | [Subect DolLTaskTraceLink]. . . 1
Iy % | 4. pa— \]] trAct | Actor
[0\ mediates \ 0..1|subject I [| |
\ \ \ I | | 0..1| actor
| . 1 | memmoer AimGoalTraceLink | ‘
\ Community 1 | 2! elems |+
o trComm I [GRLContainableElement
|
I'I doneBy | 1 f .II trOulGoall £|>
' TooRessurcaTracemiK] | trveit —1
\ oolresource lraceLin | i
| ~ commDoes J trAimGoal1| 'MtentionalElement
| \ DivisionOfLabor 1
|\ 1 | f % type: IntentionalElementType
| < trDol | rRule
| dols 1. RuleGSGTraceLink 1 tRestc
| Tool <<enumeration>>
\ 1 < W IntentionalElementType
| Softgoal
{ trTool RuleSGTraceLink Goal
' Task
Rule 1 trRule RuleGTraceLink Resource
TS | Belief

Figure B1. Trace-links between AT metamodel elements and GRL metamodel elements

51

Other additions can be made to the Goal model depending on relations that exist in the ASD:

whoDoesDol relation: If there is a single Community object related to a Dol object by this
relation, then the respective GRL Task can be placed inside the respective GRL Actor sphere (using
the GRL actor/elems relation shown in the GRL metamodel portion of Figure B1). If there are
multiple Community objects related to a Dol by this relation, then the respective GRL Task needs
to be decomposed (using an AND decomposition) into sub-Tasks that are accomplished by each
of the respective Actors, and be placed in these Actors’ spheres. The super-Task should not have
any actor/elems relation, that is, it should be placed outside of all Actors’ spheres.

rules2dols relation: If there is a single Dol object related to a Rule object, then a dependency
relation can be made between the respective GRL Task and the respective Goal or Softgoal (the
Task depends on the Goal/Softgoal). If there are multiple DoLs related to this Rule, then each
respective task is dependent on the respective Goal/Softgoal. Additional considerations occur if
the Dol is also related to some Tool(s) via the tools2dols relation since the Rule may actually apply
to the Tool being using in the context of the Dol.

tools2dols relation: If there is a single Dol object related to a Tool object, then a dependency
relation can be made between the respective GRL Task and the respective Resource. If there are
multiple Dols related to this Tool, then each respective task is dependent on the respective
Resource.

Tool-Subject/Aim mediations: Dependencies can be created as follows. First, recall that the Tool
object will be mapped to a GRL Resource, the Subject object (using the subjComm relation to a
Community object) is essentially mapped to a GRL Actor, and the Aim object is mapped to a GRL
Goal. The mediation means that the respective Goal is dependent on the respective Resource and
the respective Actor is also dependent on that same Resource. However, an Actor cannot be
dependent on a Resource — some Goal/Subgoal or Task must be dependent on the Resource.
Therefore, the tools2dols relation can be used to find potential Tasks which might be dependent
on the Resource. However, any Dol objects identified through this relation must have the
Community object related to the Subject object in their set of whoDoesDoL Community objects.
If such a DoL is found, then the related Task can be specified as being dependent on the resource.
GRL Goals mapped from AT Aims: All such Goals can be defined as having positive contribution
links to the GRL Goals mapped from AT Outcomes of the ASD. Note that in the case of multiple
Aims and Outcomes, there is currently no way to determine which Goal mapped from an Aim
contributes positively to which Goal mapped from an Outcome.

Appendix C - Abstraction Information for the Proposed Electronic Task
Booklet

Each of the original ASD elements for this example were categorized into abstracted elements described
in the following tables. The abstracted element is listed in the first column, with the original elements that
were grouped and abstracted to create it in the second column. The third column lists any mediations
related to the element in the case of a mediating element (i.e. Rule, Tool, or DoL). The last column lists
any additional relations that the element has to other elements in the ASD. Note that the Mediation
column is not included in the tables for elements that are not mediating elements. In the case of DolLs,
those with mapped GRL Tasks that need to be decomposed have a fifth column with this information.

52

Table C1. Abstracted Rules

Abstracted
Rule

Specific Rules

Mediations

rules2dols

Observation
Rules

The honor system is critical

Professional organization wants direct
observation and signing off on task within a short
time (<1day?)

Senior year is for working in real situations,
previous 3 years are for lectures/labs

Senior rotations have a maximum of 8 students
so direct observation is possible

SC: This rule mediates
between Subject Faculty,
and Community member
Students

SC: This rule mediates
between Subject Students,
and Community member
Instructors

This rule is related to
Dol ‘Evaluate rotation
students’

Observation
Issues

Junior labs have more students, so direct
observation is not always possible

Physical issues —some areas require
environments that do not allow electronic or
even paper booklets

Often it isn’t feasible/possible for rotation faculty
to directly observe and sign off on a task

A junior in a rotation may demonstrate a skill but
a senior may document it

Rotation faculty may not all supervise all weeks
of the rotation

Sometimes rotation faculty may have to take
over from students because of time constraints

SC: This rule mediates
between Subject Faculty,
and Community member
Students

SC: This rule mediates
between Subject Students,
and Community member
Instructors

This rule is related to
Dol ‘Evaluate rotation
students’

Booklet Rules

Booklets are pretty self-explanatory

Seniors have to have senior task booklet
complete to graduate

There is only one rotation that requires the
related skills in the task booklet to be complete
in order to pass the rotation

Professional organization requires Junior and
Senior data as part of the accreditation process

SC: This rule mediates
between Subject Faculty,
and Community member
Students

SC: This rule mediates
between Subject Students,
and Community member
Instructors

SC: This rule mediates
between Subject Students,
and Community member
Staff

This rule is related to
Dol ‘Evaluate rotation
students’

Booklet Issues

Faculty need to be reminded of the importance
of the task booklets and direct observations

Students have to be reminded to get signed off
on tasks in booklets

Students don’t always have booklets on their
persons when they do/are observed doing a task

Staff: students have the responsibility to know
what tasks need evaluation/signing off
Students: it would be nice if the faculty knew
what tasks will be available during a rotation

Some tasks may be hard to complete because
there are few opportunities

SC: This rule mediates
between Subject Faculty,
and Community member
Students

SC: This rule mediates
between Subject Students,
and Community member
Instructors

This rule is related to
Dol ‘Evaluate rotation
students’

Competence
Enhancers

The rotation evaluation program form has
guestions based on competence areas defined by
professional organization

SC: This rule mediates
between Subject Faculty,
and Community member
Students

This rule is related to
Dol ‘Evaluate rotation
students’

53

Competence If you are going to evaluate competence in a SC: This rule mediates This rule is related to
Issues task, a sliding scale (0-5) would be better than between Subject Faculty, Dol ‘Evaluate rotation
meets/exceeds expectations and Community member students’
If you are going to gather evaluation data, then Students
use it for something SC: This rule mediates
Rotation faculty can decline to do an evaluation if | between Subj_ect Students,
they didn’t have a student for one of the rotation | ahd Community member
weeks Instructors
Opportunity Separate organization sets number of rotations SC: This rule mediates This rule is related to
Issues and students based on the number of different between Subject Faculty, Dol ‘Evaluate rotation
kinds of needs they are predicted to have and Community member students’
Separate organization gets tertiary referrals for Students This rule is related to
most cases Dol ‘Evaluate
Booklets don’t record the number of times a gradL.Jation)
student did a task, so they can’t yield data that requirements
would help modulate the provided opportunities
across labs and rotations
Technical Network bandwidth is limited SC: This rule mediates This rule is related to

constraints

Rotation evaluation program can’t be used for
task booklet

There should be no extra work required for
‘booklets’, which implies a single recording
media; gathering data from multiple sources is
extra work

between Subject Faculty,
and Community member
Staff

Dol ‘Evaluate rotation
students’

This rule is related to
Dol ‘Evaluate
graduation
requirements’

54

Table C2. Abstracted DolLs

Abstracted Dol

Specific DoLs

Mediations

whoDoesDoL

Decomposed
GRL Tasks

Rotation setup

Practicum Coordinator
invites rotation faculty to
change task lists once a
year

Rotation faculty decide
tasks

Student coordinator
gathers task lists and
prints booklets

Rotation Faculty can
change rotation
evaluation program
forms once/year

CA: This DoL mediates between
Community member Faculty, and
Aim Motivation

CA: This DoL mediates between
Community member Faculty, and
Aim Accreditation

This Dol is related to
Community member
‘Faculty’

This Dol is related to
Community member
‘Staff’

Faculty decide
tasks

Staff invite task
changes

Rotation Rotation Faculty must CA: This DoL mediates between This Dol is related to Faculty evaluate
evaluation evaluate students for Community member Faculty, and Community member students
their grade Aim Motivation ‘Faculty’ Instructors
Dean’s office uses CA: This DoL mediates between This Dol is related to observe
rotation evaluation data | Community member Faculty, and Community member students
to grade student Aim Accreditation ‘Instructors’ Staff determine
rotations a_nd determine | ca: This DoL mediates between This Dol is related to | grades
class standings Community member Instructors, Community member
Rotation faculty, faculty, | and Aim Motivation ‘Staff’
post-professional degree | ca: This Dol mediates between
gradug'fes, ar.1d Community member Faculty, and
technicians sign off on Aim Feedback into Program
booklet tasks
Graduation Student Coordinator CA: This DoL mediates between This Dol is related to N/A
requirements determines if booklets Community member Staff, and Aim | Community member
evaluation complete for graduation | Accreditation ‘Staff’

Table C3. Abstracted Community Members

Abstracted Community member | Specific Community members
Faculty Rotation Faculty
General Faculty
Staff Staff
Admin
Student Coordinator
Practicum Coordinator
Instructors Post-Professional Degree Graduates
Technicians
Students Juniors
Seniors

55

Table C4. Abstracted Subjects

Abstracted Subject

Specific Subjects | subComm

Faculty

Rotation Faculty | This Subject is related to Community member ‘Faculty’

Student

Student

This Subject is related to Community member ‘Students’

Table C5. Abstracted Tools

Teaching Labs

Other computer
programs

Abstracted | Specific Tools Mediations tools2dols
Tool
Evaluation Junior & Senior SA: This DoL mediates between This Tool is related to Dol ‘Evaluate rotation
Tools Task Booklets Subject Faculty, and Aim Motivation students’

Rotation SA: This DoL mediates between This Tool is related to Dol ‘Evaluate

evaluation Subject Faculty, and Aim Accreditation | graduation requirements’

program SA: This Dol mediates between

Subject Faculty, and Aim Feedback

Practice Rotations SA: This DoL mediates between This Tool is related to Dol ‘Set up rotations’
Tools Subject Faculty, and Aim Motivation

This Tool is related to Dol ‘Evaluate rotation
students’

This Tool is related to Dol ‘Evaluate
graduation requirements’

Table C6. Abstracted Aims

Abstracted Aim

Specific Aims

Motivate students

Demonstrate task opportunities

Provide data to motivate students to increase competencies

Maintain accreditation

Record tasks performed

Provide evidence of task competence to professional organization

Feedback into program

Record level of task competence

Provide data to align task opportunities in classes and rotations

Table C7. Abstracted Outcomes

Abstracted Outcome

Specific Outcomes

reputation

Maintain/Increase program

Students walking out the door with a professional degree are able to perform modern,
routine complex tasks property without supervision

Competence data available for professional organization accreditations

56

Classes and Relationships

= ATModelRoot
Domsinciass

 Domain Properties
ElelDCounter : I

DomsinRetaiorsip & § ATModelReot
o

Diagram Elements

2 ActivityTheoryVsDiagr... 2
Dagiam

 Domain Properties

% Aspshape
Compartmenthape

= Domain Properties
FillColor : Color

Name: Sting
Asdid: stiing

ASDReferencesASDElements

Asostements [pomsintaionsnp % [[ATModettont (&5
o ¥

stemes. | ostmont ¢ e[=y
=] | e |
Madlntions Domainkelationship & £ASD [#g liation v
= e, v el
ey - R =D — w |
SR e
'
ot |
i |
g |
£ tDoscr sung |
2 tNamessiing |
ENDecorator St |
 Erype dypet.. |
 Enedrype - Medt.|
s -
e g L (TS I— v
o o ey
r;: !
IC—
] |
| = Domain Properties }
=
oo
-
“ Domin Propertes
([|

Damandos:

= Domain Properties

“2 DivisionOfLabor
Domaincis:

a

= Domain Properties

05 [pomannasson 6 [OMsonotiah., (2 ogp v
o o Gomsincss

Tt e — |
o 0. Domances

—

e p—
TESEes

= Domain Properties

b G

Subject
Domsinciass

= Domain Properties

| SubjectReferencesCommunity

L community | oominselstonship 8 §Subiects _
o1 o

2 Community
Domsncias

‘)

OutlineColor : Col.
TextColor : Color
OutlineDashstyle.
= OutlineThickness
FillGradientMode.

“ Decorators
= Name
= ASDicon
™ ExpandCollapseD.

= Compartments
& Tools

s Outcomes

S5 AsDElementshape
Geometnshape
= Domain Properties
FillColor : Color
OutlineColor : Cal.
TextColor: Color
¥ OutlineDashstyle.
F OutlineThickness
FillGradientMode.
= Decorators
= Toollcon
® Rulelcon
= Dolicon
= Subjicon
= fimicon
= Commicon
= Outicon
= Description
= Name

= ASD2ElementConnector
Comector
= Domain Properties

= Decorators

= Medistionshape 7t

Geometryshape
= Domain Properties
% FillColor : Color
OutlineColor : Col.
TextColor : Color
% OutlineDashstyle.
% OutlineThickness
FillGradientMode.
“ Decorators
= UNSETIcon
= SAlcon
= CAlcon
® SCicon
= TINGele
= TED1
= TED2
B relatedASD
& Asp2MedConnector
Connector
= Domain Properties
= Decorators
= medTINGConnector %
Comector
“ Domain Properties

= Decorators

S aim
Domainciss:

= Domain Properties

Community.
Gomsinclas’

“ Domain Properties

% outcome
Domaincias:

= Domain Properties

| Nenstlements | porinnciasonsip % Outcomes
o. o

(=
i

=)
=

DomsiRelaiorship % { ATModelRoot

= Mediatio
Domanciss
 Domain Properties
MType : MedType.
TEDIName :String
TED2Name :String

MadiaTINGEs | pomacnelaionip 5 || Mediations
o1 0.

MedaTEDts | sty ' | Medations v}
|

Anlysiser. L] L e — o
o 0.1 Domancias |

Diagcoontrs | ¢ [/ Aodetoot
o v.v

% Disgcaloriey
Do

= Domain Properties
* InfoTabisplay : St
£ InfoType :nfotyp

Ansst. | | Aot

“ Analysiserror
Domanciss

= Domain Properties
F AEType : AErrorE

DomainRelsiorsip % { ATModelRoot
D

=

Contradiction
Gomainclsss

" medTEDConnector ¢
Comecor

 Domain Properties

= Decorators

Comecor
= Domain Properties
= Decorators

2 OutNetworksASDEle 7
Comector

= Domain Properties

= Decorators

= DolCommConnector £
Comecor

= Domain Properties

= Decorators

RulesToDolsConnector
Comector

= Domain Properties
= Decorators

ToolsToDolsConnector
Cometor

s

 Domain Properties

= Decorators

@ SubjCommConnector %
Comecor

= Domain Properties

= Decorators

= DiagColorkeyshape
eometnsiape

= Domain Properties
= Decorators
= Keyinfo

% Contradictionshape
Comparmenthoe

= Domain Properties

= Decorators
= ExpandCollapseD.
= Contradicon
= ConsideredASD

 Domain Properties
* CiType : Considite.

ConsderedaSD | porysetionsip f [AsContrads
o1 o

5 a

D
Domainciss: |

comsidrtte [pomantsontio 3 [AEEonnts
o o

Contradicted.. | pomangetstonsp ¢ [fAsConts__
o 0.

et [oomaetaiosio 34 i

or

Elesconts
o.

RolewaaSD | pomaigeiaionsip % [IRethscansrats (8 pgp x
o1 o Domainciss

= Compartments
&2 ContradictedASDs
s ContradictedAtles

& ContradConsidereditemConnector ||
Comecor

= Domain Properties

= Decorators

= ContradictingConnector |

= Domain Properties

“ Decorators

© ContradRelevantASDConnector £
Comecor

 Domain Properties

= Decorators

