Computer Science COIO&%)

Technical Report

University

Mitigating Poisoned Content with Forwarding

Strategy
Steve DiBenedetto Christos Papadopoulos
Computer Science Dept. Computer Science Dept.
Colorado State University Colorado State University
dibenede @cs.colostate.edu christos @cs.colostate.edu

August 13, 2015

Computer Science Department
Colorado State University
Fort Collins, CO 80523-1873

Phone: (970) 491-5792 Fax: (970) 491-2466
WWW: http://www.cs.colostate.edu

Mitigating Poisoned Content with Forwarding
Strategy

Steve DiBenedetto Christos Papadopoulos
Computer Science Dept. Computer Science Dept.
Colorado State University Colorado State University
dibenede@cs. colostate. edu christos@cs.colostate. edu

August 13, 2015

Abstract

Content poisoning attacks are a significant problem in Information
Centric Networks (ICN) in general, and Named Data Networking in par-
ticular. In content poisoning an attacker inserts bogus content with a
legitimate name. While users will reject the content because of signature
mismatch, a persistent attacker may use poisoned content as a denial of
service attack. While NDN can resist poisoned content by putting restric-
tions on prefix advertisement, the latter interferes with the "content from
anywhere" principle, which we consider to be a great advantage of NDN.

In this paper we discuss the problem of content poisoning at some
depth and propose two methods to defend against it. We leverage the
content verification that users must do anyway and allow them to report
bad content. The problem then becomes one of trust between the net-
work and the reporting users so we propose a reputation mechanism that
prevents misuse of reports. Then, we propose and evaluate two methods
to purge bad content from the network, namely Immediate Failover and
Probe First. These techniques capture the spectrum of possible solutions
to purging bad content.

1 Introduction

Content poisoning attacks are a significant problem for information-centric net-
works (ICNs). In these attacks, malicious routers or end hosts respond to re-
quests with bogus content. Named Data Networking (NDN) is an ICN archi-
tecture that requires publicly verifiable signatures on every Data packet so that
any node can detect malicious and corrupted content and refuse to accept it.

One way to eliminate poisoned content is for all NDN routers to verify each
new piece of content as it passes through. While this maybe possible with
future hardware or with dedicated processors, the current pervasive assumption
is that in-network signature verification is not practical. The problem is not
just computational power: verification also requires key retrieval, which would
be prohibitively expensive for routers. The cost becomes even more serious if
content poisoning turns out to be a rare event.

Content poisoning is primarily a forwarding problem. Malicious content has
been allowed into the network and routers are unknowingly forwarding requests
to bad sources. This is different from cache poisoning; content poisoning would
still exist if there were no in-network caches. Content poisoning has prompted
various secure routing (or authorized publishing) schemes as a commonly sug-
gested solution for controlling what content may be injected into the network

and from where. However, such schemes are incomplete solutions because bad
content may be injected by malicious nodes along the secure path [14].

We believe that traditional secure routing is too restrictive for information-
centric networks because secured data, not blessed hosts and the paths to them
is the foundation of security. This allows legitimate content to be served from
anywhere, thus supporting new opportunities [6] and applications.

In NDN poisoned content presents two problems: (1) cached bad content
blocks retrieval of good content, and (2) the network may unwittingly prefer
a route to a bad publisher. In the first case the network needs to remove bad
Data packets from caches and in the second case it needs to forward Interests to
a different content source. However, for routers to take action they must detect
the bad Data packets, which we dismissed as impractical, at least for now.
Conversely, end hosts must verify every packet, but unlike routers, cannot make
forwarding decisions. The situation presents an opportunity for cooperation
between the network and end hosts. We propose that end hosts warn upstream
network elements of bad Data and provide the authentication keys required
to verify it enabling the upstream elements to independently verify reported
problems. Once the problem is confirmed, upstream nodes can remove the bad
Data from their Content Store, change forwarding to try alternate paths to good
content, and propagate the warning upstream.

In this paper we explore a cooperative approach between the network and
the end hosts to detect poisoned content. We present two composable, forward-
ing strategy modules, termed evasion strategies and evaluate their behavior
on a real world router topology via simulation with ndnSIM[3]. We find that
both evasion strategies automatically find paths to legitimate content and, by
extension, defeat a prefix hijack. Furthermore, our strategies do so in 10 or
fewer iterations in approximately 70-90% of scenarios, despite malicious nodes
representing nearly half of the network.

We propose to make in-network verification feasible by shifting the network’s
understanding of signatures from trust relationships to namespace ownership.
We discuss the tradeoffs involved in this change and show that it has minimal,
if any, impact on the types of trust models that may be used by applications.

2 Background and Related Work

The Interest’s exclusion filter is often proposed (informally and by Ghali et
al [9]) as a content poisoning mitigation mechanism. The exclude filter allows
consumers to enumerate more specific Data packets that cannot satisfy their
Interest (e.g. Interest /A Exclude B prevents Data /A/B/* from matching).
There are several problems with these types of approaches. First, the knowledge
of what to exclude is local to each consumer. Every other consumer must repeat
the request and exclude cycle to identify the desired Data. Second, the exclude
filter is intended to specify content ranges to eliminate (e.g. versions before 100)
rather than enumerating discrete items. An attacker can indefinitely produce
malicious Data that collides with legitimate Data names, thus leading to an

unscalable exclude filter.

Exclusion is also an important part of the NDN discovery process. For
example, applications attempt to identify the exact Data they want (e.g. the
latest version). Approaches that rely on exclusion request patterns, such as
[9], must ensure that they do not mistakenly flag legitimate exclusion request
patterns as indications of bad Data. Latest version discovery in NDN often
requires each consumer to exclude the latest Data version to ensure that there
is no later version.

Another approach is for Interests to specify the Data’s expected signing
key. The current NDN packet specification [I] supports a Key Locator field
in Interests and Data that is either the name of the key or the key’s digest.
Neither of these options is an effective content poisoning mitigation mechanism
because an attacker can simply use the correct key information in malicious
Data packets. Ghali et al propose the “Interest Keybinding Rule” (IKB) in [10]
that requires all Interests to specify the Data’s signing key digest and for Data
packets to include their entire signing key (rather than a locator field). Routers
then verify each Data packet with the attached key and ensure the key matches
what is specified by the requesting Interest. This avoids burdening routers with
multiple verifications per Data in addition to understanding key revocations and
application specific trust semantics. However, the end result is an essentially
mandatory verification with little meaning; the router has no understanding of
whether the Data is legitimate.

Both exclusion and IKB approaches have an implicit assumption, intentional
or not, that it is normal for for multiple Data packets to have the same name
(excluding their implicit digest). NDN names are intended to be meaningful and
express something about the requested/contained content. More strongly, NDN
content names are unique before considering the implicit digest [17]. Names are
the primary means for differentiating content followed by selector fields such as
exclude and key locators.

In this light, name collisions are attacks that attempt to deceive the Inter-
est/Data matching process. We agree with [I0] that the network should not
become muddled in application specific trust models. Instead, we believe that
the network only cares about name ownership. If names are unique, there should
be some limited set of keys that are authorized to sign for that namespace. These
keys may be distributed through some mechanism such as NDNS [2] or CCN-
KRS [12]. Then, network elements should be able to traverse a well known
hierarchy, for which they have a pre-installed set of anchor keys, to verify any
content that is requested of them. Tamper evident revocation loggers are also
in development to further aid the verification process [16].

[10] also assumes that routers have and are using alternate paths that deliver
legitimate content. However, this depends on the specific forwarding strategy
being used and cannot be guaranteed (e.g. a single best route strategy exclu-
sively uses a malicious content source). The authors do not propose a mechanism
for detecting this situation or how to recover from it. Thus, while IKB can pre-
vent users from unknowingly retrieving poisoned content, it cannot guarantee
the reachability of legitimate content.

NDN forwarding (i.e. FIB entry and next hop selection) exclusively uses
names; selectors such as the Key Locator are only considered during the Interest-
Data matching process, not forwarding. IKB’s implicit model of multiple keys
therefore has serious ramifications for forwarding strategy and potentially the
NDN architecture as a whole. Strategy must actively keep track of what
(Data,signature) pair is being delivered over each nexthop in order to avoid
starving consumers requesting content signed by a different key.

Every NDN Data packet can be represented by a unique hash digest. Con-
sequently, Interests that specify the exact matching Data packet are essentially
immune to content poisoning attacks. However, the construction of such In-
terests faces a bootstrapping problem of determining the exact name. Gasti et
al. [7] propose name discovery solutions for static and dynamic content: S-SCIC
and D-SCIC, respectively. S-SCIC links each Data packet to its predecessor by
placing its digest in the predecessor’s payload. Unfortunately, this shifts the
problem to discovery of the exact name of the initial Data packet and prevents
efficient content retrieval since the consumer will not be able to pipeline mul-
tiple Interests. Inability to pipeline interests leads to a stop and wait retrieval
protocol. In comparison, D-SCIC makes use of the PublisherPublicKeyDigest
(or equivalently, a key locator in the current specification). However, as pointed
out by the authors (and above), this field on its own cannot stop malicious Data
that merely claims to be signed by a legitimate key.

Gasti et al. [7] also sketch a wide range of approaches for distributing the
cost of verifying Data in network and, alternatively, reporting problems from
consumers. However, the proposed approaches are exclusively probabilistic and
do not describe how forwarding should adapt to bad content. We propose a de-
terministic consumer reporting system and forwarding strategies for discovering
legitimate content.

Baugher et al. [5] and Kurihara et al. [11] define content catalogs and man-
ifests to improve content publication and retrieval. Manifests define collections
data by name and digest. Consequently, publishers may be able to limit them-
selves to signing a limited number of manifests rather than each individual Data
packet. Similarly, content retrieval can then exactly specify Data, thus avoiding
content poisoning, and perform fewer signature verifications.

3 Secure Data, Not Routes

Required, publicly verifiable, signatures are the core of NDN’s Data packet
security. Following the theme of Wendlandt et al. [T4], we attempt to use Data
signatures as the foundation for a secure forwarding system. Interests and their
matching Data, or the lack thereof, form a feedback cycle that can be leveraged
by NDN nodes to inform future forwarding decisions by the strategy layer.
Assuming an arbitrary NDN node can verify returning Data, the success or
failure of verification could therefore be used to adapt the installed forwarding
strategy to avoid bad sources.

In-network verification is a contentious topic due to trust issues [10]. The

NDN architecture does not impose a trust model and applications are free to
define new models as they see fit. This, in part, leads past work to avoid
making in-network trust decisions in favor of approaches such as the Interest
Key Binding (IKB) rule that leave trust decisions in the hands of the requesting
application.

We agree with past work that the network should not attempt to make
application-specific trust decisions. However, in-network verification is still a
useful mechanism for defending against poisoning attacks if we can separate its
semantics from application-level trust. We argue that the network has no interest
or role in deciding whether Alice’s trusts Data published by Bob. Instead, the
network should only concern itself with whether or not Bob is authorized to
publish said Data under the used namespace. We argue ownership semantics
are sufficient for both the needs of applications and the network. Alice may
not know whether or not she trusts Bob until she retrieves his key and applies
the appropriate trust model. However, Alice must know that she intends to
send an Interest to Bob’s namespace (though, similarly, she may not know if
Bob is its owner). The network’s role is strictly limited to delivering Interests
to appropriate destinations. Thus, the network is only concerned with whether
Bob is authorized to publish in a particular namespace.

As previously discussed, NDN names are unique before considering the im-
plicit digest component. This implies there will be some form of coordinated
namespace assignment. Assignment authority signing keys would therefore be
well known and pre-installed on every NDN node. Systems like NDNS [2] pro-
vide the necessary lookup mechanism for determining ownership. Any node
can leverage such a directory to determine the authorized key(s) for a given
namespace. Past work has similarly used DNSSEC for securing the IP routing
system [8].

The directory service model does not mean that applications must directly
sign their Data with one of these keys. Doing so would effectively limit all
applications to a hierarchical trust model. While hierarchical trust is common,
NDN applications also leverage other trust models, such as social network or
web of trust, as appropriate to their requirements.

Instead, ownership keys registered with a directory service act as key signing
keys and can be used to endorse other, application-specific trust model keys.
This effectively glues the application’s arbitrary trust model to a hierarchy.
More concretely, Bob may register some keys for any namespaces he owns in a
directory service. These keys are signed by whomever delegated the namespaces
to Bob. Bob can generate, use, and discard application-specific keys as he sees
fit, so long as he endorses them with the appropriate directory-registered key.
Note, however, that Alice and Bob’s applications can be completely unaware
of the directory service hierarchy’s endorsement or involvement; they need only
deal in the trust model semantics they have been configured with. Likewise,
the directory service model minimally, if at all, detracts from anonymity. For
example, an anonymous message board operator can freely delegate ownership
of subnamespaces to users without tracking.

3.1 Improving Key Retrieval

NDN nodes typically verify Data packets through key locator-based retrieval.
Each Data packet carries a key locator field that specifies the signing key. How-
ever, using this field to guide key retrieval and verification is dangerous because
the Data packet cannot be trusted before verifying; an attacker can trivially
construct arbitrary length key chains to waste the verifier’s resources. Further-
more, the attacker can place said key chains under namespaces it controls and
serve the keys itself. Consequently, the attacker can further exploit any key re-
trieval protocol to maximally inflate fetch time. For example, if the key retrieval
protocol allows R retries and each request times out after S seconds, then the
attacker can ignore the first R — 1 Interests and delay the response so long as it
arrives in under S seconds. The described attack can occur on each malicious
Data packet because there are no namespace binding rules between key locators
across packets. Additionally, locator-based verification cannot determine that
a Data packet and its key chain are bad until failing to reach a respected trust
anchor, which may not exist.

A hierarchical namespace ownership directory greatly simplifies the verifica-
tion process. In comparison, the retrieval process is top-down so the verifying
node is always starting from a known anchor. If any subsequently retrieved key
fails to authorize, the process can immediately conclude. Furthermore, pop-
ular namespaces will likely have theirs, an their parent’s, keys cached. Key
caching benefits top-down verification more than than bottom-up locator-based
retrieval because the verifier can start the process lower in the delegation tree.
Bottom-up retrieval must first construct the delegation tree from a, most likely
unknown, leaf key until it meets a known key. Again, it is possible that the join
point does not exist, thus resulting in wasted key retrieval effort.

4 System Design

NDN requires every Data packet to be signed, but retrieving and verifying keys
for each is prohibitively expensive. However, a verification-based approach is de-
sirable because it is content-centric. Just as signatures support retrieving Data
from any source, bad signatures allow any verifying node to securely inform oth-
ers of the problem. Signatures make each bad packet their own evidence, thus
allowing each node to independently reach a decision based solely on the prop-
erties of the packet. This avoids problems such as trusting other nodes based on
some potentially fragile authority structure, or the lack thereof. Consequently,
any node with the ability to verify can detect bad Data and warn others with
minimal, if any, pre-arrangement between nodes. However, Interests will con-
tinue to be forwarded towards and satisfied by malicious Data packets so long
as the network prefers a path to a bad content source. Network elements must
be able to explore alternative forwarding options to restore legitimate Data
retrieval.

Consumer applications detect poisoned content by verifying retrieved Data

packets. Applications are expected to be configured with trust anchors and
any other information needed to verify Data. For ease of exposition we assume
that applications have any keys required to verify a particular Data packet
and discuss key retrieval in Section [3] The actual verification is assumed to
be done via system libraries/NDN protocol stack on behalf of the application
(i.e. appropriately configured). In our proposed system the stack automatically
generates a special Interest called a report to inform the upstream network about
verification-related problems. This includes problems such as unreachable, non-
existent, or misconfigured keys in addition to outright signature verification
failure[]

Report Interest names have the following form:
/localhop/<Upstream-ID>/report/<Self-ID>/
<Bad-Data>/<Keys>
The report is scoped to be valid only between the report issuer and receiver
via the localhop reserved namespace and Upstream-ID identifies the specific
upstream next hop. Upstream-ID can be any sufficiently unique identifier, such
as an identity key’s digest. Reports are only sent to next hop upstream that
returned the poisoned content. We anticipate NDN nodes retaining packet ar-
rival face information and a mapping to the associated Upstream-ID. Reports
also identity the sender for accountability (Self-ID) via a shared secret gen-
erated by the upstream node. The remaining name components carry the bad
Data packet and its signing keys as (Data packets). This uniquely identifies the
offending packet and provides the upstream node with everything necessary to
independently verify the report.

The report Interest is heavyweight; it carries the full bad Data packet and
its keys. We assume NDN uses hop-by-hop fragmentation [4], thus mitigating
problems due to large packet size. While it is more idiomatic to pull Data, doing
so can cause problems in a content poisoning scenario; any pull can potentially
retrieve bad Data. Thus, we believe it is better for nodes to push the evidence
of bad Data.

Network elements run a management process to handle reports. The process
registers one prefix per adjacent node:
/localhop/<Upstream-ID>/report/<Self-ID>
Upon receiving a report, the process first checks that the reported Data has
recently been seen. At a minimum, this is done by checking the Content Store.
However, we envision network elements maintaining a list of recently seen Data
exact names (i.e. including SHA-256 digest) and arrival faces to defend against
malicious Data packets with no freshness periodEI This information, or ex-
tensions of it, may also be useful to CS replacement policies and forwarding
strategies.

Next, if the reported Data has recently been seen, the management process
tries to confirm the reporter’s claim by checking the provided keychain against
its own configured keys. If the report verifies, the node management process

IWe assume packet checksums are handled by layer 2.5 instead of relying on the signature.
Similar topics are under active discussion.
2NDN does not currently have a “do not cache” option.

generates a new report for its own next hop upstream. The bad Data’s name
and arrival face is then given to the active evasion strategies (see Section
for each prefix matching the packet.

However, if the Data packet has not recently been seen, its signature suc-
cessfully verifies, or the provided keychain is incorrect, then the report is viewed
as an attack. The upstream responds to attacks by temporarily removing the
reporter’s unique prefix, thereby dropping successive reports. The exact length
of time a downstream should be de-listed is at the discretion of the network
operator. Restoring a misbehaving reporter’s entry too early costs the verify-
ing node one set of verifications per de-whitelisting and a new secret (Self-ID)
must be shared.

4.1 Discovering Alternative Content Sources

Reporting bad Data to the network allows upstream nodes to remove cached
copies. However, consumers will still be unable to retrieve legitimate content
because the network is forwarding Interests to some bad source. Regardless of
the specific problem notification mechanism, the network must explore alterna-
tive content sources. NDN uses forwarding strategies to quickly adapt to events
such as reachability and performance changes. We believe strategies can also
be used to react to content poisoning attacks once a node becomes aware of the
problem.

We developed a set of composable modules called evasion strategies. Nor-
mally, NDN forwarding strategies choose a subset of next hops for Interest
forwarding based on some algorithm (e.g. lowest cost, random, etc.). Evasion
strategies are pre-processors for the initial next hop set that attempt to remove
or reduce the forwarding preference of next hop choices that lead to bad con-
tent sources. The resulting next hop set can then be fed to arbitrary forwarding
strategies for the actual Interest forwarding decision. The current NDN for-
warder implementation, NFD, distills everything that could affect forwarding
decisions to a single integer cost where lowest cost wins. Therefore, evasion
strategies would only need to understand “higher cost is worse” instead of the
details of a specific forwarding strategy. To the best of our knowledge, we are
the first to explore the use of forwarding strategies to mitigate content poisoning
attacks.

Forwarding strategy is a local decision. There is no strategy-to-strategy
communication between adjacent nodes. At present, each node acts on its own
according to whatever metrics are available/collectible. However, there may be
some level of cooperation within an administrative domain (e.g. via SDN) in
the future.

We developed two evasion strategies representing different extremes:

¢ Immediate Failover: Make the next hop that returned bad Data the
least preferred option for future Interests.

e Probe First: Stop forwarding Interests for the namespace(s) under at-
tack and probe all next hops. Verify the returned Data packets and resume

forwarding to next hops upon successful verification.

Immediate Failover is an optimistic strategy that assumes the poisoning
attack has a limited impact on the network. In other words, the majority of
next hops for most nodes should return legitimate content. Immediate Failover
represents the minimum amount of effort a node can expend to avoid bad Data.

In contrast, Probe First is conservative and essentially the maximum level
of effort. Probe First requires the node to retain a copy of the Interest that
retrieved the bad Data in anticipation of future reports. This Interest will be
replayed later as a probe. We believe that producer applications must be able
to tolerate replayed Interests as a fact of life in an NDN world because of the
multipath nature of the architecture. Additionally, halting forwarding to all
possible next hops for a set of namespaces prevents the node and downstream
network from being repoisoned until the probe experiment completes.

An attacker can attempt to game Probe First by returning legitimate Data
in response to a probe. However, this means that the consumer will (overtime)
collect a complete copy of the legitimate content, albeit slowly. Furthermore,
this such attack patterns may be detectable and additional mechanisms could
be used to experiment with other paths.

It is possible for a node to fail through all of its next hop options in both
strategies. Then, the node continues to forward normally (e.g. lowest cost next
hop(s)) in the hope that an upstream with more/better options finds legitimate
content.

Having every node attempt to avoid poisoned content is an aggressive coun-
termeasure against colluding/compromised network elements. No single node
can know for sure whether one of its upstreams is (or is enabling) the bad Data
source. Our goal is for legitimate content to be retrievable for an arbitrary con-
sumer so long as there is no graph cut (malicious node, network failure, etc.)
between the consumer and and any legitimate content source (endpoint, frag-
mented cached copies, etc.). We do not consider cached bad Data to constitute
a graph cut. Therefore, a consumer should be able to retrieve a legitimate copy
when every node is malicious, except for a single path to legitimate content.
Furthermore, every node on the legitimate content path may be caching a bad
copy and have the worst forwarding preference for the next hop on the legitimate
path.

5 Evasion Strategy Evaluation

We evaluate our proposed evasion strategies using ndnSIM [3] on the Sprint PoP
Rocketfuel topology [13]. We randomly place 1 consumer, 1 legitimate producer,
and vary the number of malicious producers among the topology’s 52 nodes. We
only consider placement scenarios in which the consumer node has at least one
path that does not require traversing a malicious node. Altogether, this family
of configurations explores one of the worst case scenarios. Adding additional
legitimate producers would provide more opportunities for quickly finding good

content. Similarly, reports from additional consumers would be aggregated at
path intersections and remove bad Data from the preceding sub-path.

Our simulation focuses on rounds rather than raw time measurements. Each
round begins with the consumer node issuing a normal Data retrieval Interest.
We hereafter refer to these Interests as fetches to distinguish them from reports.
If the fetch retrieves malicious Data, then the consumer sends a report to notify
the network. Each node that receives a report then acts according to the evasion
strategy under test. The simulation continues the fetch/report cycle until the
fetch returns legitimate Data. Consequently, we omit simulating malicious con-
sumers because they do not impact our metrics. Specifically, the first malicious
report would trigger the upstream node to verify, and detect, the attempted de-
ception and result in the consumer being ignored for some policy-based period
of time.

We uniformly initialize non-malicious nodes with the Immediate Failover and
Probe First evasion strategies. Furthermore, every node uses a slightly modified
version of ndnSIM’s provided Best Route forwarding strategy. ndnSIM’s Best
Route strategy essentially selects the lowest cost next hop for forwarding. How-
ever, it also groups next hops into color coded status: green is OK, yellow may
or may not return content, and red is disabled. Green next hops are strictly
preferred over yellow ones, regardless of cost. Upon confirming bad Data, our
evasion strategies demote a next hop’s status to yellow and ensure it has the
highest cost (i.e. local max cost + 1). This cost increase has the added benefit
of cycling through the next hop options if many failovers are necessary.

ndnSIM’s Best Route forwarding strategy promotes a next hop from yellow
to green upon the return of any Data packet as described in [I5]. However, our
experience is that this promotion is harmful when attempting to handle content
poisoning attacks; malicious Data packets are indistinguishable from legitimate
ones prior to receiving and verifying a report. Consequently, we disable this
promotion in Best Route and our Immediate Failover evasion strategy never
marks next hops as greenﬂ Probe First, on the other hand, can promote next
hops because it verifies returning probe Interests.

In total, we performed 100,000 simulation runs. 29,408 (29.4%) of these runs
successfully retrieved legitimate content on the first attempt, thus avoiding the
need to send reports or evade bad sources. 12,314 (approximately 42%) of these
trivial runs occurred in 1 bad producer scenarios compared to 3,422 (12%) for
the 20 bad producer configurations. Thus, trivial simulations within a particular
scenario configuration represent a relatively small (and decreasing) proportion
of runs.

Figures [1] and [2] measure the number of rounds before the consumer node
successfully retrieves legitimate Data. Probe First consistently requires fewer
rounds than Immediate Failover and has less variance. Furthermore, many
Probe First simulations are resolved almost immediately. Intuitively, more ma-
licious nodes require more effort for success. Even with a large percentage of

3A real implementation could promote next hops after not receiving a report for some
period of time.

10

1Bad
5 Bad
10 Bad
15 Bad
20 Bad

CDF

100 1000 10000
Rounds

Figure 1: Number of simulation rounds before retrieving legitimate Data using Im-
mediate Failover.

1Bad ——
0.9 r 5 Bad 1
0.8 | 10 Bad
15 Bad
0.7 |
n 20 Bad
a 06
(@]
05|
04|
0.3}
02 | | |
1 10 100 1000 10000

Rounds

Figure 2: Number of simulation rounds before retrieving legitimate Data using Probe
First.

malicious producers (38.4%), both strategies often find legitimate content in
10 or fewer rounds. In the case of Probe First, this occurs 90% of the time.
In other words, evasion strategies can automatically adapt and defeat prefix
hijacks despite concerted efforts by an attacker.

We also analyze the number of poisoned nodes that remain after the con-
sumer has successfully retrieved legitimate Data. As previously stated, Imme-
diate Failover is our baseline strategy because, coupled with Best Route, every
returned bad Data packet is cleared by a subsequent report.

Probe First’s generated fetches lead to additional nodes becoming poisoned.
More bad producers increase the likelihood of a high impact malicious node
placement that is highly preferred by others. In most cases, relatively few
additional nodes remain poisoned and would be cleared by reports from their
respective downstreams.

11

1 Bad

09 1 5 Bad

0.8 | 10 Bad

0.7 - 15 Bad
w 06 [20 Bad
[a)
O 05¢}

0.4 -

0.3

02 F

0.1 :

1 10 100

Remaining Poisoned Nodes

Figure 3: Number of poisoned nodes remaining after the consumer finds legitimate
content using Probe First.

6 Discussion & Conclusions

Content poisoning is a serious problem for information-centric networks, such
as NDN. We propose that the network use namespace ownership rather than
attempting to understand application-specific trust models. This puts network
elements on equal footing to detect bad Data.

We evaluated two evasion strategies, Immediate Failover and Probe First,
that span the spectrum of effort expended by the network elements to avoid
malicious sources. Our simulation results show that both strategies are capable
of finding legitimate content; even when nearly half of the topology consists of
malicious nodes. More importantly, these results are achieved automatically;
no operator or other outside intervention is needed to fix what is essentially
a prefix hijack. This is a significant change from the current Internet where
operators try to use traffic engineering to reclaim hijacked traffic. The key
difference is the required, publicly verifiable, signatures on every NDN Data
packet. NDN nodes are able to react to problems when signature verification
is coupled with the Interest/Data strategy feedback cycle. Thus, we have an
idiomatic ICN secure forwarding system that does not need to exchange the
concept of “content from anywhere” for traditional secure routing approaches.
Our approach highlights the inherent power of secured, named, content.

References

[1] Ndn packet format specification 0.2-alpha-2 documentation.

[2] Alexander Afanasyev. Addressing Operational Challenges in Named Data
Networking Through NDNS Distributed Database. PhD thesis, University
of California Los Angeles, 2013.

[3] Alexander Afanasyev, Ilya Moiseenko, and Lixia Zhang. ndnsim: Ndn
simulator for ns-3. Technical Report NDN-0005, NDN, October 2012.

12

4]

[5]

16]

7]

18]

19]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

Alexander Afanasyev, Junxiao Shi, Lan Wang, Beichuan Zhang, and Lixia
Zhang. Packet fragmentation in ndn: Why ndn uses hop-by-hop fragmen-
tation. Technical report, NDN, 2015.

Mark Baugher, Bruce Davie, Ashok Narayanan, and Dave Oran. Self-
verifying names for read-only named data. Workshop on Emerging Design
Choices in Name Oriented Networking — NOMEN, 2012.

Steve DiBenedetto, Christos Papadopoulos, and Dan Massey. Routing poli-
cies in named data networking. Proceedings of the ACM SIGCOMM Work-
shop on Information-centric Networking, ICN ’11, 2011.

Paolo Gasti, Gene Tsudik, Ersin Uzun, and Lixia Zhang. Dos and ddos
in named data networking. In Computer Communications and Networks
(ICCCN), 20183 22nd International Conference on, 2013.

J. Gersch and D. Massey. Rover: Route origin verification using dns. In
Computer Communications and Networks (ICCCN), 2013 22nd Interna-
tional Conference on, 2013.

Cesar Ghali, Gene Tsudik, and Ersin Uzun. Needle in a haystack: Mitigat-
ing content poisoning in named-data networking. In NDSS Workshop on
Security of Emerging Networking Technologies (SENT), 2014.

Cesar Ghali, Gene Tsudik, and Ersin Uzun. Network-Layer Trust in Named-
Data Networking. SIGCOMM Computer Communication Review, 44(5),
October 2014.

Jun Kurihara, Ersin Uzun, and Christopher A. Wood. An encryption-based
access control framework for content-centric networking. IFIP Networking
2015 Conference, 2015.

Priya Mahadevan, Ersin Uzun, Spencer Sevilla, and J. J. Garcia-Luna-
Aceves. Ccen-krs: A key resolution service for ccn. ICN, 2014.

Neil Spring, Ratul Mahajan, David Wetherall, and Thomas Anderson. Mea-
suring isp topologies with rocketfuel. IEEE/ACM Trans. Netw., 2004.

Dan Wendlandt, Ioannis Avramopoulos, David G. Andersen, and Jennifer
Rexford. Don’t secure routing protocols, secure data delivery. In In Proc.
5th ACM Workshop on Hot Topics in Networks (Hotnets-V), 2006.

Cheng Yi, Alexander Afanasyev, Ilya Moiseenko, Lan Wang, and
Lixia Zhang Beichuan Zhang and. A case for stateful forwarding plane.
Comput. Commun., 2013.

Yingdi Yu. Public key management in named data networking. Technical
report, NDN, 2015.

13

[17] Lixia Zhang, ke claffy, Patrick Crowley, Christos Papadopoulos, Lan Wang,
and Beichuan Zhang. Named data networking. ACM SIGCOMM Computer
Communication Review, 2014.

14

	Introduction
	Background and Related Work
	Secure Data, Not Routes
	Improving Key Retrieval

	System Design
	Discovering Alternative Content Sources

	Evasion Strategy Evaluation
	Discussion & Conclusions

