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Abstract. Many IP Geolocation services and applications assume that
all IP addresses with the same /24 IPv4 prefix (a /24 block) are in the
same location. For blocks that contain addresses in very di↵erent loca-
tions (such blocks identifying network backbones), this assumption can
result in large geolocation error. This paper evaluates this assumption
using a large dataset of 1.41M /24 blocks extracted from a delay measure-
ments dataset for the entire responsive IPv4 address space. We use hier-
archal clustering to find clusters of IP addresses with similar observed de-
lay measurements within /24 blocks. Blocks with multiple clusters often
span di↵erent geographic locations. We evaluate this claim against two
ground-truth datasets, confirming that 93% of identified multi-cluster
blocks are true positives with multiple locations, while only 13% of blocks
identified as single-cluster appear to be multi-location in ground truth.
Applying the clustering process to the whole dataset suggests that about
17% (247K) of blocks are likely multi-location.

Keywords: Geolocation, Co-location

1 Introduction

Internet location-aware applications and research benefits from IP-to-geolocation
provided by services such as MaxMind [5], IP2Location [3], and DB-IP [1]. These
services provide various degrees of geolocation accuracy. While the accuracy has
improved over the last decade [22], [21], [15], IP-geolocation is still seen as an
open problem, with focus on improving precision to the level of cities and street.
Good accuracy can be di�cult when some blocks of adjacent IP addresses span
large geographic areas [19], [11]. Today, most services assume that the addresses
in a block with the same /24 prefix (a /24 block) are usually geographically
proximate—the block co-locality assumption. When this assumption is violated,
some addresses in the block will have poor accuracy.

Free databases such as MaxMind GeoLiteCity [5] and IP2Location LITE-
DB11 [3] assume block co-locality. These databases identify blocks of various
sides, each with a specific location. MaxMind’s database contains about 1.7M
block entries covering 3.6 billion addresses (97% of the allocated address space).
The IP2Location database has 2.2M entries covering the entire IPv4 address
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space (although they do not assign locations to special blocks such as multi-
cast). In these databases, nearly all IP addresses show block co-locality—99% of
MaxMind and all of IP2Location.

Some location-aware applications also seem to follow the /24 co-locality as-
sumption. An architecture proposed by Chen et al. [8] maps client’s request to
proximal content server at the level of prefixes. All clients within the same prefix
are mapped to the same content server. They suggest the mapping at /20 pre-
fixe granularity to minimize the number of required mappings. The underlying
assumption is that clients within such prefixes would experience similar network
delays. On the other hand, they study the geographic properties of di↵erent
prefix lengths using geolocation data from from Akamai’s EdgeScape database.
They compute the cluster radius of clients in a prefix as the mean of the client’s
distance to the cluster centroid. Almost all the /24s prefixes have a cluster radius
distance of 10 miles or less. These small radius distances in /24 blocks suggest
that Akamai’s EdgeScape database agree with the block co-location assumption.

In this paper we assess the assumption of co-locality in /24 blocks that ex-
ists in many common geolocation databases. We leverage a subset of the dataset
collected by Hu at al. [14] and publicly available [7]. The dataset contains round-
trip estimates for every responsive address in the IPv4 address space measured
from several vantage points (VPs). We assess co-locality in this dataset based on
the observation that geographically co-located hosts will show similar network
delays when probed by the same set of VPs [17]. Based on this observation, we
cluster responsive addresses in each /24 block into groups by similarity of the
delay measurements from multiple VPs. We then identify /24 blocks with multi-
ple clusters and show that these clusters violate the block co-locality assumption
and likely contain addresses in distinct geographic locations.

Our first contribution is to introduce and evaluate this methodology to assess
co-locality of endpoints in a block. In this paper we limit our study to /24 blocks,
but the methodology is independent of block size. We evaluate a delay-based
clustering algorithm that automatically identifies blocks that appear to have
endpoints at di↵erent locations. We validate the accuracy of this method via a
carefully selected set of /24 blocks that we believe are co-located. We confirm
that 93% of multi-cluster blocks identified in the ground truth datasets described
in Section 4 are true positives. Our second contribution is the application of the
methodology to analyze a dataset of 1.41M /24 blocks (118M addresses). We
find that a large fraction of these blocks (17%, or 247K blocks) appear to have
endpoints at multiple locations.

2 Dataset

Our analysis uses the ISI geolocation dataset [7] extended from prior work by
Hu et al. work [14]. The original dataset contains round-trip time measurements
for all the allocated and responsive IP addresses in the IPv4 address space at
the time it was taken. The dataset has about 472M IPs in just less than 3.5M
/24 blocks and was collected from Feb. 2012 to Mar. 2013. RTTs were measured
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from about 670 vantage points (VPs), all PlanetLab nodes. The work used an
algorithm to pick the 10 closest VPs to any /24 block. Use of VPs close to the
target minimizes interference from congestion and maximizes the precision of
geolocation (something 400ms away can be anywhere on earth, but something
within a few ms is likely in the same city). To avoid estimating latency due
to congestion latency was reported as the minimum of 10 measurements We
refer readers to [7] for more details on the original dataset. For our work, we
extracted the raw probing data for all /24 blocks with at least 10 IP addresses
that responded to all VPs probes. The delay measurements of each IP address
are treated as its coordinates in a multidimensional space. Our extracted dataset
comprises 118.5M IP addresses in 1.41M /24 blocks.

3 Methodology

3.1 Identifying Multi-Location Blocks

Our methodology is based on the insight that geographically co-located IP ad-
dresses in a block exhibit relatively similar network delays when probed from
the same reference points. We cluster IP addresses in a block based on the sim-
ilarity of their observed delay measurement from a number of VPs. Each IP
address is represented as a vector of its delay measurements. We formulate the
problem as finding similar IP addresses in a multidimensional space of delay
coordinates. Co-located IP addresses are expected to have small distances in the
multidimensional space.

We use an agglomerative hierarchal clustering algorithm fromR cluster pack-
age called agnes to generate hierarchal structures (dendrograms) for one block
IP addresses. We set the clustering method to use standardized Euclidean dis-
tance metric to measure IP addresses dissimilarities. A dynamic tree cut method
from dynamicTreeCut package [16] is used to identify the clusters in the dendro-
gram. The combination of the these methods suits our need to identify clusters
automatically without a prior knowledge of their number or size.

As in other agglomerative hierarchal methods, the agnes method generates
a hierarchal structure for the input observations bottom-up. Each observation
starts as a cluster by itself. In each subsequent step, the closest two clusters
not already in the same cluster are merged into one larger cluster. The process
continues until there is only one cluster of all observations. The dissimilarity
between two clusters can be computed in di↵erent ways. In this work we use
average linkage method. This is the average of pairwise dissimilarities between
the objects in the two clusters. For two clusters A with na objects, and cluster B
with nb objects, this is computed using Equation 1, where D is the distance met-
ric used to compute the distance between two objects. We use the Standardized
Euclidean distance metric to balance the depth of the measurements observed
from VPs at di↵erent distances from targets.

daverage(A,B) =
1

nanb

naX

i=1

nbX

j=1

D(IPAi, IPBj) (1)
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Prior work has shown the need for selecting clustering thresholds dynamically
when examining Internet RTT data [10]. To identify clusters automatically for
each of our 1.41M /24 blocks, we use the “Dynamic Hybrid” tree cut method [16]
to dynamically identify clusters in a dendrogram. This method uses dendrogram
merging information to build the clusters in a bottom-top fashion. We tuned the
method parameters to make conservative restrictions on what to be considered a
cluster. For example many of the parameters are set as a fraction of the joining
heights of the branches in the dendrogram. The one parameter we found most
e↵ective was the minimum gap parameter, which specifies the minimum joining
height to allow two clusters to be merged. Higher settings of this parameter
allow more clusters to be merged. This means fewer clusters with significant
di↵erences between them. We favor the higher settings in order to minimize the
false positives, and to identify groups that are very di↵erent from one another
indicating higher chances of being at di↵erent locations. We also set the minimum
cluster size to 10 to reduces chances of getting small clusters of outliers. We
evaluate the clustering method using two ground truth datasets in Section 4.

3.2 Methodology Limitations

Our methodology for clustering a block endpoints has some limitations. First, as
all delay-based methods, our approach can be a↵ected by inaccurate measure-
ments. This problem is alleviated by taking multiple measurements over time,
also of the use of multiple VPs per block provides more reliability. Another lim-
itation is that our method does not tell how far the identified clusters are from
each other. However, this is not the goal of this work. Our main contribution is
to provide an automatic method to assess blocks co-locality.

4 Validating Identification of Multi-Location Blocks

We next validate our methodology to show that it accurately finds multi-location
blocks in ground truth. We build ground truth, beginning by identifying single-
location blocks (Section 4.1), then using this data to construct a multi-location
dataset (Section 4.2). We use this ground truth to validate our approach (Sec-
tion 4.3). Finally, we estimate a false positive upper bound for the clustering
method (Section 4.4).

4.1 Building Single-Location Ground Truth Dataset

We first build a dataset of /24 blocks that we believe are single-location blocks.
This dataset is used for two purposes: (a) to evaluate the clustering method
accuracy on single-location blocks, (b) to build the multi-location ground truth
dataset.

Academic institutions typically have a specific, well-defined physical locations
necessarily operate many end-user computers in those locations, and often self-
host web services [21]. We therefore identify the locations and IP addresses of



Assessing Co-Locality of IP Blocks 5

blocks containing the main websites of 4650 universities from di↵erent locations
around the world from [6].

We verify this dataset to confirm our assumptions, checking for self-hosting
we apply two filters to make sure the corresponding websites are locally hosted
at their universities. First, we detect outsourcing using whois information and
discard outsourced blocks. We identify outsourcing by matching the OrgName
field with the institution name. For example, Duke University’s website is at
an IP address (54.191.241.8) which the whois OrgName identifies as Amazon
Technologies Inc, showing outsourcing. Second, the use Google Maps Geocod-
ing API [2] to identify a university’s physical location (latitude/longitude), and
compare this to the MaxMind’s physical location assigned to the IP address. We
then discard IP addresses where the great circle geographic distance between
these geographic locations is more than 10 miles. While we recognize these data
sources as incomplete, this step discards blocks that are known to di↵ering or
uncertain locations. The final step is to look up the remaining IP addresses’ /24
blocks in our extracted dataset of 1.41M blocks. We extract the raw probing
data for the blocks we find to form our single-location dataset.

After these filters and look ups, we reduce our initial set of 4650 academic
institutions to we ended up with only 85 /24 blocks from as many unique insti-
tutions with strong confidence in their location.

4.2 Building Multi-Location Ground Truth Dataset

We next build a dataset that contains blocks that are in multiple locations to
evaluate our clustering methods. Since there is no public ground truth of block
locations (much less multi-location blocks), we create this dataset by combining
two blocks at two di↵erent locations and treat them as one block.

To generate artificial multi-location blocks we find all blocks from the single-
location dataset that are probed by the same set of VPs (VP-compatible blocks).
We then compute all two-block combinations in each set of VP-compatible
blocks, combining all measurement data from the two blocks to create a new
artificial block. (Merged blocks may have up to 512 addresses, although since
we have data only ping-responsive addresses they almost always have far fewer.)
We then treat this combined block as if it was a block of adjacent addresses to
evaluate our clustering method.

Some of our single-locations are actually quite close to each other. We there-
fore identify two subsets of our multi-location dataset: those composed of almost
co-located locations within 10 miles of each other, and those that are further, all
22 miles distant or more. We identify 21 almost-co-located artificial blocks and
99 proper multi-location blocks.

4.3 Validating Delay-based Identification of Multi-Location Blocks

These ground truth datasets let us validate the corrects of our delay-based clus-
tering method to identify blocks that span multiple geographic locations. We
test our method on both single-location and multi-location datasets.
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We first consider our single-location dataset. Our clustering algorithm classi-
fies 91% of blocks in our single-location dataset correctly (77 of the 85 /24 blocks
are correctly identified as single-location.) Seven blocks are identified to have 2
clusters, and one block was not clustered—none IP addresses met our threshold
to identify common locations.

We next turn to our artificial multi-location dataset. Before evaluation, we
discard artificial blocks built from the 7 misclassified single-location blocks (since
we know those will be identified as multi-location). We then apply clustering to
the remaining 99 artificial blocks. Fig. 1 shows the number of identified clusters
and the corresponding distance between combined blocks for each combination.
We correctly identify 88% of these as multi-location blocks, with 12% false neg-
atives.

To examine the most challenging blocks we also looked at the 21 almost co-
located artificial blocks (where the real-world distance of the two parts of each
block is within 10 miles). In spite of this close physical, distance we correctly
identify 38% of these blocks as multi-location (8 of 21).

Overall, 93% of the cases identified as multi-cluster blocks are true positives
in our ground truth datasets (of same and clearly multi-location blocks), giving
us confidence that a block is identified to have endpoints at multiple locations.
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Fig. 1. Results of applying the delay-based clustering method to 99 2-blocks combina-
tions. 88% of the combinations are correctly identified as multi-location blocks.

4.4 Clustering Method False Positives Upper Bound

It is important for our clustering method to maintain a low false-positive rate
to insure that we don’t overestimate the number of multi-location blocks (false
positives). To estimate an upper bound for the false positives rate, we build
another extended set of /24 blocks that are likely co-located. The assumption is
again, /24 blocks in academic institutions are very likely co-located. Similar to
the procedure of collecting the single-location dataset, we collect 100 universities
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/16 blocks and verify they do not include web hosting services. Of these 100 /16
blocks there are 3,062 /24 blocks that have latency measurements in our dataset.
We run our clustering method on all these blocks. The results show that 239
blocks (7.8%) are not clustered, 2657 blocks (86.77%) have one cluster, and 166
blocks (5.4%) have 2 clusters. Since any of the blocks identified as multi-location
could be indeed multi-location blocks, we consider the 5.4% as an upper-bound
false positives rate for our clustering method.

5 Co-Locality of /24 Blocks

5.1 Identifying Multi-Location /24 Blocks

In this section we discuss the results of applying our clustering method to the
whole dataset of /24 blocks. Fig. 2 shows the distribution for the number of
clusters identified for 1.41M /24 blocks. About 17% of them (246647 blocks)
appear to have endpoints at multiple locations. 84% of the multi-cluster blocks
are grouped into 2 clusters of IP addresses. On the other hand, a very small
fraction, 0.7%, of the multi-location blocks are grouped into 5 or more clusters.
Our method declined to cluster 73792 (or 5.3%) /24 blocks. 98% of them have
20 IP addresses or less. Basically this means the clustering method could not
merge smaller clusters to form a cluster that satisfies clustering criteria. While
this is more typical in blocks with small number of IP addresses, it can also be
true for any block with endpoints that are highly scattered geographically.
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Fig. 2. Distribution of the number of clusters for all 1.41M /24 blocks. More than 17%
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5.2 Comparison with MaxMind GeoLiteCity Database

We compare our results with MaxMindGeoLiteCity free geolocation database [4].
It is important to note that we are comparing the results on our 3 years old
dataset with a recent geolocation database. While some blocks could have been
moved or reallocated, we believe the overall picture has not change enough to
invalidate the comparison. Table 1 compares our clustering results to the number
of locations found MaxMind’s GeoLiteCity for each /24 block in our dataset. One
to one case is where we agree that the blocks are single-location, while many to
many case shows we agree on about 13K blocks as multi-location blocks, which
is only about 5% of the 247K blocks we identify as multi-location blocks. The
results also show, interestingly, that MaxMind GeoLiteCity assigns 2 or more
locations to 65K blocks that we identify as single location blocks.

Table 1. Number of clusters to number of locations in MaxMind GeoLiteCity database
for all blocks in our dataset. 95% of the blocks we identify as multi-location (16.6% of
our dataset blocks) are assigned a single location in GeoLiteCity database.

Clusters to locations % of our dataset blocks

One to one 72.7
One to many 4.6
Many to one 16.6
Many to many 0.93
Un-clustered 5.2

Out of the 65K blocks MaxMind assigns multiple locations, 8056 are cases
where one of the assigned locations is a coarse country level granularity location.
For the remaining cases, we compute the max distance of the block as the max
Great-circle distance between any two assigned locations’ coordinates. Fig. 3
shows the distribution of the computed blocks’ max distance for the cases where
MixMind assigns multiple locations to a block. The graph show two lines, one
is for (one to many) cases, the other is for (many to many cases). Based on
GeoLiteCity location information the results show that about 86% and 60% of
the (one to many) cases involve locations separated by less than 30 miles and 10
miles respectively. While most of the multi-location cases in GeoLiteCity involves
blocks with small max distance, the clustering method is able to catch 13K cases
of them. The red line shows the max distance distribution for these (many to
many) cases.

5.3 Characterizing Multi-Location Blocks

Our method identifies about 247K blocks as multi-location blocks. We found
multi-location blocks in 182 di↵erent countries in our dataset. We list the top 10
countries sorted on the number of multi-location /24 blocks in Table 2. The list is
dominated by countries with rich Internet infrastructure like the United States,
Japan and western Europe countries. The list comprises about 79% of the total
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Fig. 3. CDF of max distance for multi-location blocks in MaxMind GeoLiteCity com-
puted as the maximum distance between any 2 assigned locations. Interestingly, 86%
of the (one to many) cases are for blocks with max distance of less than 30 miles.

number of blocks we identify as multi-location. The list also show the number of
unique ISPs within a country with at least one identified multi-location block.
Table 3 shows more details for the top 10 ISPs also sorted on the number of
identified multi-location blocks. We believe the high numbers of identified multi-
location blocks in these ISPs reflect liberal policies of IP addresses assignment
to customers with respect to their geographic locations.

Table 2. Top 10 countries sorted on the number of multi-location blocks. The list
comprises 79% of blocks identified as multi-location blocks in our dataset.

Country Num. of blocks Num. of distinct ISPs

US 83980 2054
DE 34489 285
JP 20834 165
GB 12305 342
KR 10216 103
MX 7761 36
PL 6952 241
FR 6827 164
BR 4748 239
NL 3780 142

6 Related Work

Many of the works in the area of IP geolocation focus on improving geolocation
accuracy [13], [15], [22], [21], [9]. The proposed approaches use di↵erent tech-
niques but are typically delay-based. These approaches are typically evaluated
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Table 3. Top 10 ISPs sorted on the number of multi-location blocks, and their cor-
responding ASNs and countries. The list is dominated by large ISPs in countries with
rich Internet infrastructure.

ISP name Num. of blocks ASN Country

DTAG Deutsche Telekom AG 21204 3320 DE
COMCAST-7922 - Comcast Cable Commu. 11804 7922 US
OCN NTT Communications Corporation 9204 4713 JP
ATT-INTERNET4 - AT&T Services 8994 7018 US
Uninet S.A. de C.V. 7033 8151 MX
UUNET - MCI Communications Services 6881 701 US
CENTURYLINK-US-LEGACY-QWEST 6766 209 US
BSKYB-BROADBAND-AS Sky UK Limited 5810 5607 GB
VODANET Vodafone GmbH 5665 3209 DE
TPNET Orange Polska Spolka Akcyjna 5561 5617 PL

on a small number of targets in the order of few hundreds. Our work does not
propose a new algorithm to improve geolocation, and is not limited to a small
set of targets. We characterize co-locality of over than 1.4M /24 blocks showing
that many appear to have endpoints at di↵erent locations.

Other IP geolocation works studied public and commercial databases accu-
racy and granularity. Poese et al. [18] found that some databases split ISP blocks
into smaller ones for more accuracy, however, that made their geolocation accu-
racy worse. Siwpersad et al. [19] studied the geographic resolution of geolocation
databases. They compared location information provided by the databases with
locations computed using Constraint-Based Geolocation (CBG) [13]. They con-
cluded that the resolution of the databases is way coarser in comparison. Gueye
et al. [12] also used CBG to estimate the max distance between block endpoints
to estimate its geographic span, which the concluded could be large. Overall,
these works are concerned with geolocation databases accuracy and granularity.
The block sizes studied are relative to what is found in the databases. Our work
focuses on studying the co-locality of /24 blocks. We use a di↵erent method-
ology that enables automatic identification of groups of similar IP addresses.
Compared to these works, our dataset is much larger and representative, and is
more recent.

Freedman et al. [11] studied IP prefixes geographic characteristics and its
influence on BGP routing table. There results show about 1.4% of /24 blocks
or smaller span distances of more than 100 miles. They extract locations of IP
addresses based an DNS naming heuristics using undns tool [20]. DNS IP to
location mapping has many shortages and can be unreliable due to the lack of
naming standards, also when the target is unreachable. Our method to study
geographic properties of a block is not dependent on IP addresses locations,
instead we study their proximity to each other using their latency measurements.

Fan et al. [10] studied the dynamics of mapping users to Front End (FE)
clusters, which are groups of geographically close content servers used by Content
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Distribution Networks (CDNs). They enumerate CDNs FE servers and then use
a clustering technique similar to ours in order to group the servers into FE
clusters. While both works use similar delay-based clustering techniques, our
studies have di↵erent purposes. We use clustering to study blocks co-locality as
opposed to their goal of identifying FE cluster of one CDN.

We finally compare our work to Hu et al. [14] work, from which we leveraged
our dataset. Hu et al. implemented a method to scale existing delay-based ge-
olocation approaches such as Shortest Ping and CBG to geolocate all responsive
IPv4 address space. They show that careful selection of a small number of VPs
can maintain a comparable level of accuracy to that when using tens of them.
While we use a large subset of their raw probing dataset, the problem we are
addressing is di↵erent. Their work uses delay measurements to geolocate IP ad-
dresses, while we use them as signatures to identify groups of similar endpoints
in a block.

7 Conclusions

Our work introduces a simple clustering methodology to assess IP blocks co-
locality. We identify groups of IP addresses that appear to be at di↵erent location
based on their delay measurements observed from a number of VPs. We use a
large dataset of 1.41M /24 blocks and show that more than 17% of them appear
to be multi-location blocks. This outcome disagrees with the common assump-
tion of IP addresses co-locality in /24 blocks. We also find that the majority of
the blocks identified as multi-location belong to large ISPs in rich Internet in-
frastructure countries like the United State and Western Europe countries. Such
large ISPs are apparently not strict about assigning their IP address space to
customers within close geographic areas.
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