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ABSTRACT

SINGLE-TRIAL P300 CLASSIFICATION USING PCA WITH LDA AND NEURAL

NETWORKS

A brain-computer interface (BCI) is a device that uses brain signals to provide a non-

muscular communication channel for motor-impaired patients. It is especially targeted at

patients with ’locked-in’ syndrome, a condition where the patient is awake and fully aware

but cannot communicate with the outside world due to complete paralysis. The P300 event-

related potential (ERP), evoked in scalp-recorded electroencephalography (EEG) by external

stimuli, has proven to be a reliable response for controlling a BCI. The P300 component of

an event related potential is thus widely used in brain-computer interfaces to translate the

subjects’ intent by mere thoughts into commands to control artificial devices. The main

challenge in the classification of P300 trials in electroencephalographic (EEG) data is the

low signal-to-noise ratio (SNR) of the P300 response. To overcome the low SNR of individual

trials, it is common practice to average together many consecutive trials, which effectively

diminishes the random noise. Unfortunately, when more repeated trials are required for

applications such as the P300 speller, the communication rate is greatly reduced. This has

resulted in a need for better methods to improve single-trial classification accuracy of P300

response. In this work, we use Principal Component Analysis (PCA) as a preprocessing

method and use Linear Discriminant Analysis (LDA)and neural networks for classification.

The results show that a combination of PCA with these methods provided as high as 13%

accuracy gain while using only 3 to 4 principal components. So, PCA feature selection

not only increased the classification accuracy but also reduced the execution time of the

algorithms by the resulting dimensionality reduction. It was also observed that when treating
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each data sample from each EEG channel as a separate data sample, PCA successfully

separates out the variance across channels.

iii



ACKNOWLEDGEMENTS

I would like to thank Dr. Charles Anderson for his guidance, suggestions, and reviews

and for introducing me to the exciting field of BCI. Thanks also to Dr. Michael Kirby for

introducing me to many joys of exploring mathematical depths of the methods used in this

work. I am also grateful to Dr. Chris Peterson for serving on my committee. Special thanks

to the BCI group at CSU that collected the data used in this work. Last, but not the least,

I’m thankful to all my friends, family and my wife Neelam who supported me during this

work.

iv



TABLE OF CONTENTS

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

ACKNOWLEDGEMENTS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

Chapter 1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1. BCI and P300 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2. P300 and P300 Speller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3. Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.4. Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.5. Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

Chapter 2. Classification and Preprocessing Methods. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.1. LDA and QDA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2. Neural Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.3. Scaled Conjugate Gradient method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.4. PCA. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

Chapter 3. Data Acquisition and Representation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.1. Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.2. Data Processing and Representation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

Chapter 4. Experiments and Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.1. Experiment Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.2. Without PCA. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.3. With PCA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

v



Chapter 5. Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

5.1. Summary of Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

5.2. Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

BIBLIOGRAPHY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

vi



CHAPTER 1

Introduction

Various neurological diseases can disrupt the neuromuscular channels through which the

brain communicates with the external world. Many such diseases can restrict both verbal and

nonverbal communication. For patients suffering from such ailments, assistive technologies

can restore some communication if they still have some residual motor ability.

But in certain cases like hemorrhage in the anterior brain stem or degenerative neuro-

muscular diseases like amyotrophic lateral scleriosis (ALS), the patients suffer from a total

motor paralysis [5]. This results in a condition known as locked-in syndrome, wherein the

patient is awake and fully aware but cannot communicate with the outside world due to

complete paralysis. For such ”locked-in” patients, there is a need for an assistive technology

that needs no muscular activity whatsoever. It is for such patients that a brain-computer

interface (BCI) is a need.

A brain-computer interface (BCI) is a device that uses brain signals to provide a direct,

non-muscular communication channel between brain and the outside world [35, 34, 32].

The idea underlying BCIs (Figure 1.1) is to measure electric, magnetic, or other physical

manifestations of the brain activity and to translate these into commands for a computer or

other devices [24, 18].

For patients with locked-in syndrome,the P300 event-related potential (ERP), evoked in

scalp-recorded electroencephalography (EEG) by external stimuli, has proven to be a reliable

response for controlling a BCI [11]. Recent studies have demonstrated that a P300-based BCI

trained on a limited amount of data can serve as an effective communication device [12, 16].

The P300 component of an event related potential is thus widely used in brain-computer
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Figure 1.1. A typical BCI. The image is taken from [18].

interfaces (BCIs) to translate a subject’s intent by mere thoughts into commands to control

artificial devices. In this study we present comparison of some classification methods to

classify an EEG signal based on the presence of P300 component.

1.1. BCI and P300

Types of BCIs can be broadly classified into two categories—those that use an external

stimulus, and those that don’t [24]. In the first method, the external stimuli cause changes

in neurophysiologic signals called event-related potentials (ERPs) [18, 25] which are used to

identify a user’s response to the stimuli presented. In the second method, users generate

certain detectable patterns of neurophysiologic signals by concentrating on a specific mental

task. For example, imagination of hand movement can be used to modify activity in the

motor cortex [18].

For recording the activity of the brain, the electroencephalogram (EEG) is the method

of choice for a BCI due to their fast responsivity and covariation with cognitive processes [5].

Although invasive methods that use electrocorticography (ECoG) signals using implanted
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electrodes are more accurate, the non-invasive methods are more attractive because of their

ease of use by patients; the non-invasive methods have also been shown to be comparable to

implanted electrodes [33] when used with appropriate machine learning algorithms.

The EEG non-invasive recordings are done from a set of electrodes placed directly on

the scalp using the International 10-20 system (Jasper, 1958) [28] as shown in Figure 1.2.

Each electrode detects the electric potential of synchronized neuronal activity occurring in

that area of the brain. This system is based on the relationship between the location of

an electrode and the underlying area of cerebral cortex. The ”10” and ”20” refer to the

fact that the actual distances between adjacent electrodes are either 10% or 20% of the

total front-back or right-left distance of the skull. Each site has a letter to identify the

lobe and a number to identify the hemisphere location. In this system, F, T, C, P and O

stand for frontal, temporal, central, parietal, and occipital lobes; note that there exists no

central lobe, the ”C” letter is used for identification purposes only. A ”z” (zero) refers to an

electrode placed on the midline. Even numbers (2,4,6,8) refer to electrode positions on the

right hemisphere, whereas odd numbers (1,3,5,7) refer to those on the left hemisphere.

In this work, the data is obtained through non-invasive electroencephalographic (EEG)

recordings. Moreover, the experiments are run on EEG data using only a subset of 8 elec-

trodes that have already been found to be meaningful for P300 classification [33]. A smaller

number of electrodes is also better for practical reasons of lower cost and higher usability for

target patients. These 8 electrodes used for this work are ’F3’,’F4’,’C3’,’C4’,’P3’,’P4’,’O1’,’O2’.

1.2. P300 and P300 Speller

ERPs are characterized by their voltage amplitude and their latency in relation to stimu-

lus onset [5]. One of the most studied and used ERP components of the EEG is the so-called
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Figure 1.2. International 10-20 System. The image is taken from [7].

”P300”. A P300 ERP is characterized by a positive peak about 300ms after the stimulus

onset [5, 25] (Figure 1.3). It is elicited when subjects encounter a rarely occurring, but ex-

pected, stimulus among the presented stimuli. If subjects are assigned the task of assigning

a category to each of the stimuli in a series of stimuli of two types, and if one of the two types

occurs rarely, a P300 ERP is seen in the EEG [23] for the rare stimuli. This experimental

paradigm based on extensive research has been called ’oddball’ paradigm [23], the rarely

occurring stimuli being the ’oddballs’.

Farwell and Donchin utilized this characteristic of the P300 to design a BCI in 1988

[23] that is called a ’P300 Speller’. This first BCI of its kind lets a user type one letter at

a time using the EEG signals captured through an electrode cap, and needs no muscular

movement. There has been a lot of research following their work on improving their setup

and many variations of the setup have emerged. Their setup used a 6 X 6 grid containing
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Figure 1.3. P300 ERP. The image is taken from [9].

letters of alphabet and some one-word commands, as shown in Figure 1.4, that is displayed

to the users. The rows and columns of this grid flash at a constant rate, about eight times

per second. The users need to focus their attention on the letter that they want to type.

So intensification of each row/column containing the target letter becomes a relevant event

while other rows/columns are not relevant. There are 12 possible events (6 rows and 6

columns), only 2 of which are relevant. A P300 response is elicited each time the row

or column containing the target letter is intensified. This falls into the oddball paradigm

because the random intensification is unpredictable but expected, and the probability of the

target stimulus is only 1 in 6, i.e., about 16%. It is then possible to identify the target letter

from the intersection of target row and target column each of which elicit a P300. Therefore,

identifying an intended character is broken up into two distinct tasks: the classification of

the target row, and the classification of the target column. To classify a row (column), a

window of EEG (e.g., a one-second window) is taken starting at the flashing of each of the

six rows (columns). As definitions for P300 speller paradigm vary in literature, it is made

clear that for this work, each of these windows of EEG will be referred to as a ’subtrial’ and
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a set of row (column) flashings (six in number which contain one target row(column)) will

be called a trial [23].

Figure 1.4. P300 speller grid. The image is taken from [21].

One of the main challenges in P300 classification is the low signal-to-noise ratio (SNR).

As the EEG recorded from scalp contains a lot of noise from ongoing electrical activity in the

brain, a P300 is hard to separate from the resulting noisy signal. The problem of low SNR

is usually overcome by averaging together many subsequent trials which cancels out most

of the noise, and makes P300 detection possible. But this approach of averaging comes at

the cost of reduced communication rate. Farwell and Donchin reported in their pioneering

work that it needed averaging of between 20 and 40 trials to achieve an accuracy of over

80% [23], with a communication rate of about 12 bits per min or about 2.3 characters per

minute. Although their pioneering work did establish the feasibility of a P300 based speller,

the communication rate was painfully slow for a practical use. This lead to much work in

the last few decades which focused on improving the accuracy and communication speed of

a P300-based BCI like P300 speller. So, one of the focus areas of this research has been the
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development of algorithms that can reduce the number of trials required to achieve a reliable

P300-based BCI. But as it is amply demonstrated that averaging of trials stabilizes the P300

amplitude by removing noise, the challenge is also seen as improving single trial accuracy.

1.3. Related Work

The last few decades have seen a lot of research on P300 classification, with the eventual

aim of achieving single-trial based reliable P300 BCI [24]. But a literature survey of this

research does not show any single P300 classification method to be the state of the art.

Krusienski, et al., [21] report the results of a comparison of different classifier algorithms,

which shows that stepwise linear discriminant analysis (SWLDA) and support vector ma-

chines (SVMs) perform well compared to the other classifiers. In [22] by using SWLDA as

the classification method, Krusienski, et al., achieved at least 60% accuracy for all partici-

pants. Three of the five participants performed above 90% accuracy with averaging about

15 trials. Sellers and Donchin [12] achieved comparable average results for healthy and ALS

patients using SWLDA. Serby, et al., [16] used matched-filtering with independent compo-

nent analysis (ICA) to achieve a communication rate of 5.45 symbols/min with an accuracy

of 92.1% which averaged roughly 15 trials. When the detection was made in real-time by

online testing with the same six subjects, the average communication rate achieved was 4.5

symbols/min with an accuracy of 79.5% which averaged roughly 18 trials. On the same lines,

a survey of submissions to BCI Competition II and BCI Competition III shows that several

very different approaches like SVM, ICA, LDA, peak-picking methods were able to achieve

100% accuracy using between 4 and 15 averaged trials [8, 19, 36] on the BCI Competition

II data.
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This short list shows that there are many different approaches that all work well, and

also that one particular method is not clearly better than others. Then there are other

challenges to P300 classification, namely subject-dependence of EEG and even a session-to-

session variation in EEG responses of the same subject. A recent review of the BCI field by

Mak, et al., [26] concludes that a lot more work is still needed to create a truly reliable P300

speller.

1.4. Contributions

In this work, we use Principal Component Analysis (PCA) as a preprocessing method

and use Linear Discriminant Analysis (LDA), Quadratic Discriminant Analysis (QDA) and

neural networks for classification. PCA has been shown to work well for P300 classification

[9, 15]. In [9], the author compared various blind source separation methods as preprocessing

methods for P300 classification, and it was seen that PCA generally worked better than the

other methods like Independent Component Analysis (ICA) and Maximum Noise Fraction

(MNF) for P300 classification. This work builds upon the work done by Cashero [9] and

tests if classification methods other that Support Vector Machines (SVM) will work well in

conjunction with PCA for P300 classification.

Among the classification methods, the choice of LDA is also driven by success of this

method and its variants like Stepwise LDA (SWLDA) for P300 classification. Although

SWLDA has been shown to work very well for higher accuracy, it is an expensive method

with high processing time and is therefore not considered suitable for an online P300 speller

system [24]. Considering that, we have preferred to consider LDA which is lightweight and

provides good performance generally for P300 classification. QDA is chosen to compare LDA

with, and to see whether a linear or a nonlinear method works better for P300 classification.
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Our choice of Neural Networks (NN) as a method of study for P300 classification is primarily

driven by our hypothesis that they should be a good choice for P300 classification. There

have been studies employing Neural Networks for P300 classification [15, 29], and many have

shown promise. There is very little work done using PCA and NN as a combination for P300

classification. As NN provide a lot of flexibility in terms of how the ’derived’ data is created

based on flexibility in the number of hidden units, it could be a useful method for noisy

data like EEG, especially if PCA provides a good set of source components. SVM is another

method which has been shown to work well for P300 classification. We don’t include that in

this study due to the fact that a study using PCA with SVM has already been covered in

[9]. To keep our focus on the effect of PCA on these classification methods, we have tested

only single trial accuracies.

1.5. Overview

The thesis is laid out as follows. Chapter 2 develops the mathematical background for all

the algorithms that are used in the experiments for this work. The classification methods,

LDA, QDA, Neural Networks, and the optimization algorithm used for NN and PCA are

developed in this chapter. Chapter 3 describes the datasets used and details the steps used in

the experiments. Chapter 4 explains the experiments as they were performed and what was

learned along the way, and the results of the experiments. Chapter 5 concludes by providing

a summary of the findings and identifies avenues for future work.
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CHAPTER 2

Classification and Preprocessing Methods

2.1. LDA and QDA

LDA and QDA [17, 6] belong to a class of classification methods that model discriminant

functions for each class and then classify a given data sample to the class with the largest

value for its discriminant function. LDA and QDA model the posterior probabilities for the

purpose of defining these discriminant functions. Representing a data sample by variable

X and the class label by variable C, X ∈ Rd where d is the dimension of data sample

X or equivalently represents the number of features or predictors in each sample X, and

C ∈ {1, 2, ..., K} where there are K classes. We thus need the class posteriors p(C | X) for

a given X and C. Suppose fk(x) is the class-conditional density of X in class C = k, and

let πk be the prior probability of class k, with
∑K

k=1 πk = 1. Applying the Bayes theorem

gives us

(2.1) p(C = k|X = x) =
fk(x)πk∑K
l=1 fl(x)πl

While many different models can be used to model the class-conditional density, LDA

and QDA use multivariate Gaussians to model each class density so that

(2.2) fk(x) =
1

(2π)d/2|Σk|1/2
e−1/2(x−µk)T Σ−1

k (x−µk)
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where Σk and µk are Covariance matrix and the mean of the Gaussian distribution. If we

assume that the classes have a common covariance matrix given by Σ =
∑K

k=1
Nk

N
Σk, where

Nk is the class k samples and N is the total number of samples of all classes, then we get

LDA. In comparing two classes k and l, it is sufficient to look at the log-ratio

(2.3) ln
p(C = k | X = x)

p(C = l | X = x)
= ln

fk(x)

fl(x)
+ ln

πk
πl

Plugging in the fk(x) and fl(x) as defined in (2.2), we get

(2.4) ln
p(C = k | X = x)

p(C = l | X = x)
= ln

πk
πl
− 1

2
(µk − µl)TΣ−1(µk − µl) + xTΣ−1(µk − µl)

which is an equation linear in x. So, equation (2.4) gives us a decision rule for LDA—if

the log ratio is positive, the sample x is classified as belonging to class k and to class l if

it is negative. The value being zero implies the decision boundary which is linear in x. It’s

obvious that the linear discriminant functions

(2.5) δk(x) = xTΣ−1µk −
1

2
µTkΣ−1µk + ln πk

are an equivalent description of the decision rule for LDA. So, the class of a new sample x

is simply

C(x) = arg maxk δk(x)

11



Now if we drop the assumption of a common covariance matrix for all classes, then the

convenient cancellation of terms leading to (2.4) doesn’t happen and we get the quadratic

discriminant functions (QDA),

(2.6) δk(x) = −1

2
ln |Σk| −

1

2
(x− µk)TΣ−1

k (x− µk) + ln πk

The decision boundary in this case between each pair of classes k and l is described by a

quadratic equation given by δk(x) = δl(x). Again, the class of a new sample x is obtained as

C(x) = arg maxk δk(x)

The LDA and QDA are also called Generative models, as they make the assumption of

Gaussian distribution of the data, and base the classification of samples on that assumption.

The parameters of the Gaussian distributions are estimated using the training data. Class

priors are calculated based on the number of samples of each class present in the training

data, as

πk =
Nk

N
,

where Nk is the class k samples and N is the total number of samples of all classes. The

class means are estimated as the means of the data of a particular class in the training data,

so

µk =
∑
ci=k

xi/Nk
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where ci is the class of sample xi. Similarly Σk is the covariance matrix for each class

based on the data of that particular class in the training data.

2.2. Neural Networks

Neural Networks (NN) [17, 6] are primarily employed in machine learning as nonlinear

regression and classification method. While there are many variations and flavors of NN like

Recurrent NN, multi-layer perceptron, etc., [17, 6, 37], we use a single hidden layer NN for

this work. This basic neural net, sometimes called the single hidden layer back-propagation

network, or two layer perceptron is a two-stage regression or classification model. It consists

of an input layer, a hidden layer and an output layer as shown in Figure 2.1.

Figure 2.1. Basic configuration of a feedforward single-layer perceptron.

In the case of K-class classification, there are K output units, and each of the K output

units models the probability of class k so that

Yk ∈ [0, 1] ∀ Yk, k = 1, ..., K

13



Derived features Zm are created from linear combinations of the inputs, followed by a

nonlinear activation function. The output Yk is modeled as a function of linear combinations

of the Zm,

Zm = σ(α0m + αTmX), m = 1, ...,M,(2.7)

Yk = β0k + βTk Z, k = 1, ..., K,(2.8)

fk(X) = gk(Y ), k = 1, ..., K(2.9)

where Z = (Z1, Z2, ..., ZM), and Y = (Y1, Y2, ..., YK). σ(v) is the activation function and is

chosen to be a sigmoid defined as

σ(v) =
1

1 + e−v

The output function gk(Y ) allows a final transformation of the vector of outputs Y. We

choose the softmax function for this :

(2.10) gk(Y ) =
eYk∑K
l=1 e

Yl

which results in a multilogit model, and produces positive estimates that add to one. Treating

these outcomes as probabilities for the corresponding class, we use negative log-likelihood as

the objective function to minimize. This negative log-likelihood objective function is defined

as

14



(2.11) LL(θ) = −
N∑
i=1

K∑
k=1

Tiklogfk(xi)

where θ denotes the complete set of weights of the network, which consist of {α0m, αm, m =

1, ...,M} and {β0k, βk, k = 1, ..., K}, and Tik is the kth component of the target indicator

variable Ti for ith training sample xi. Finally, the corresponding classifier is defined as

C(x) = arg maxk fk(x)

With the sigmoid activation function and log-likelihood error function, the neural network

model works as a linear logistic regression model in the hidden units, and all the parameters

are estimated by maximum likelihood. But by using the nonlinear transformation σ, it

becomes a non-linear model of inputs X. Another interesting aspect of this model is that

the number of hidden units can be varied to adjust the non-linearity of the model. If there

are no hidden units, the model becomes a simple linear logistic regression model over input

data. In this work we use both linear and non-linear versions of the neural network model

and call them LR and NLR respectively.

The error function LL(θ) can be minimized by variety of approaches. One of the standard

approaches is the gradient descent, called back-propagation in the neural network setting.

But a conjugate gradient method called Scaled Conjugate Gradient has been more successful

and faster for this optimization problem and we use that in this work.

15



2.3. Scaled Conjugate Gradient method

The Scaled Conjugate Gradient (SCG) algorithm [27] is based upon a class of opti-

mization techniques, well known in numerical analysis as the Conjugate Gradient Methods

(CGM). Conjugate direction Methods, upon which CGM are based, have the following prop-

erties [10]

(1) Solve quadratics of N variables in N steps;

(2) The usual implementation, the CGM, requires no Hessian matrix evaluations;

(3) No matrix inversion and no storage of N ×N matrix required.

The CGMs typically perform better than the method of steepest descent, but not as well

as Newton’s method. But with Neural networks, CGMs are generally considered to be better

suited as they are the class of methods most suited for large-scale problems.

As with steepest descent and Newton’s method, the crucial factor in the efficiency of an

iterative gradient-based method is the direction of search at each iteration. The direction

chosen for search in the case of CGMs is the so-called Q-conjugate direction, where Q is the

Hessian of the error function. Once the direction is selected, the step size is decided by the

line-search in that direction.

The SCG builds upon the general CGMs to create a variant of CGMs that avoids the

line-search per learning iteration by introducing a scaling factor to scale the step size. This

leads to the resulting SCG algorithm that requires only O(N) memory usage, where N

is the number of weights in the network. SCG thus yields a speed-up when compared

with standard CGMs and steepest descent. SCG also is fully automated including no user

dependent parameters.

16



Let E(w) be the error function to be minimized, where w ∈ RN is the vector of Neural

Network weights. E(w) at a given point (w+y), y being in the vicinity of w, can be expressed

by the well known Taylor expansion:

(2.12) E(w + y) ≈ E(w) + E ′(w)Ty +
1

2
yTE ′′(w)y

Denote the quadratic approximation to E in a neighborhood of a point w by

(2.13) Eqw(y) = E(w) + E ′(w)Ty +
1

2
yTE ′′(w)y

The standard CG algorithm with Hestenes-Stiefel formula [10], proceeds by iteratively

finding the N conjugate directions {pk : k = 1, .., N} and updating the weight vector. The

first conjugate direction is taken to be the negative gradient at w1, the initial weight vector,

so that

p1 = r1 = −E ′(w1)(2.14)

And given pk, and rk, the kth iteration negative gradient, the step size αk is calculated as

αk =
µk
δk

(2.15)
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where µk = pTk rk, δk = pTk sk, where sk = E ′′(wk)pk. The next Conjugate direction is calcu-

lated as

pk+1 = rk+1 + βkpk(2.16)

where βk = |rk+1|2−rk+1rk
µk

is given by the Hestenes-Stiefel formula. Furthermore, the same

formula removes the need to calculate E ′′(wk) at each iteration by by estimating sk as follows:

sk = E ′′(wk)pk ≈
E ′(wk + skpk)− E ′(wk)

σk
, 0 < σk << 1(2.17)

The method so far described is the standard CG algorithm with Hestenes-Stiefel formula,

and works only for positive definite Hessian at each iteration. In the case where this is not

the case, i.e., E ′′(wk) is not always positive definite, the CG algorithm takes the approach

of line search to find the αk. The SCG on the other hand avoids the line search by using

Levenberg-Marquardt approach [13] and introduces a scalar λk to regulate the indefiniteness

of E ′′(wk) :

sk =
E ′(wk + skpk)− E ′(wk)

σk
+ λkpk(2.18)

And for each iteration adjusting λk looking at the sign of δk, which reveals if E ′′(wk) is

not positive definite. If δk ≤ 0 then λk is raised and sk is estimated again. Furthermore, to

ensure that this artificial way of making the Hessian matrix doesn’t deteriorate the quadratic

approximation too much, a comparison comparison parameter is introduced:
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(2.19) ∆k =
E(wk)− E(wk + αkpk)

E(wk)− Eqw(αkpk)

Then based on the value of ∆k, the value of λk is lowered or raised at each iteration.

The resulting algorithm is the final SCG algorithm that we use in this work for training the

neural network. The interested reader is referred to [27] for a detailed study of SCG.

2.4. PCA

Principal Component Analysis, or PCA, [6, 31, 20] (also known as Karhunen-Loeve trans-

form) is a technique that is widely used in pattern recognition and machine learning for

dimensionality reduction and feature extraction. There are two commonly used derivations

of PCA—one that maximizes variance of data, and the one that minimizes the projection

error. We develop the maximum variance formulation.

Given a set of data samples {xn, n = 1, ..., N}, xn ∈ RD, the goal of PCA is to project

the data onto a space with dimensionality M ≤ D, while maximizing the variance of the

projected data. If v1 is the first direction of projection, the variance of the data projected

on v1 is given by

(2.20)
1

N

N∑
n=1

{vT1 xn − vT1 x̄}2 = vT1 Sv1

where x̄ = 1
N

∑N
n=1(xn) is the sample set mean, and S is the data covariance matrix defined

by
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(2.21) S =
1

N

N∑
n=1

(xn − x̄)(xn − x̄)T = vT1 Sv1

So, the optimization problem becomes that of maximizing 2.20, or equivalently

(2.22) max
v1

vT1 X
TXv1, v

T
1 v1 = 1

which is a constrained optimization problem. Using a Lagrange multiplier λ, we get

(2.23) max
v1,λ

vT1 X
TXv1 + λ(1− vT1 v1)

By setting the derivative of 2.23 with respect to v1 equal to zero, we get

(2.24) 2Xv1 − 2λv1 = 0

(2.25) XTXv1 = λv1

which means that v1 must be an eigenvector of XTX with eigenvalue λ, which also turns out

to be a measure of the variance. So, v1 turns out to be a direction of projection that results

in maximum variance in the projected data, and is called the first ’Principal Component’.

The subsequent directions can be found inductively as follows. Given that we have up to
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vk Principal Components, the next Principal Component v can be found by solving the

following constrained optimization problem :

(2.26) max
v,v⊥v1,..,vk

vTXTXv, vTv = 1

And this problem can be solved by creating the Lagrangian. Solving Equation 2.26 for

all eigenvectors is equivalent to computing the singular value decomposition (SVD) of X

[31, 20, 14]:

(2.27) X = UΣV T

where U ∈ RN×N , V ∈ RD×D and Σ ∈ RN×D. In this decomposition, the columns of V, the

right singular vectors, are the eigenvectors of XTX [31, 20, 14] which provide us the required

’Principal Components’. Additionally, these column vectors are ordered by the variance they

produce when data is projected onto them so that the first column of V is the first Principal

Component, the second one the second and so on. In this work, we thus use SVD to derive

the Principal Components for our experiments.
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CHAPTER 3

Data Acquisition and Representation

This chapter describes the datasets used in this study, as also the methods and EEG

recording equipment used. As data representation is an important part of any signal pro-

cessing method, we also describe the data representation used in this study. A novel way of

using channel-subtrials is also defined and explained.

3.1. Datasets

There are four subjects in the study. The EEG data for subjects 1 and 2 was recorded

by BCI laboratory at Computer Science department at Colorado State University [2]. The

data were recorded using the g.Tec g.GAMMAsys system [4] with a 8-electrode cap with

electrodes located at Fz, Cz, Pz, Oz, P3, P4, O1, O2. This subset of electrodes has been

found to be meaningful for P300 classification [33, 30]. Such small subsets of electrodes

are also easier to use for a practical and easy-to-use BCI. Subject 2 was an able-bodied

participant in the study, and subject 1 was a subject with C4 complete Spinal cord injury.

C4 is a level of Cervical (neck) injury that results in significant loss of function at the biceps

and shoulders. While the data for subject 2 was collected in the laboratory, the data for

subject 1 was recorded at home.

Three sessions of data collection were performed with both subjects 1 and 2. The subjects

count one of three target letters (’b’, ’d’, ’p’) during a session as various other non-target

letters are randomly flashed on a screen. This data collection is done as per ’odd-ball’

paradigm and the probability of occurrence for the target letter in each session was 0.25.

The data were sampled at 256 Hz, with an inter-stimulus-interval (ISI) of 1 second. One
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session consisted in recording 20 target and 60 non-target subtrials of 1000ms each of EEG

data at 8 electrodes.

Data for subjects 3 and 4 is taken from BCI competition III (dataset II) [1]. These

experiments being based on the P300 speller as proposed by Farwell and Donchin [23], the

subjects were presented with a 6 by 6 matrix of characters. The subject’s task was to

focus attention on characters in a word that was prescribed by the investigator (i.e., one

character at a time). All rows and columns are successively and randomly intensified at a

rate of 5.7Hz. The objective in this contest was to predict the correct character in each

of the provided character selection ’epochs’ that consisted of 15 sequences—each sequence

consisting of 12 flashings—6 rows and 6 columns. The data was collected and bandpass

filtered from 0.1-60Hz and digitized at 240Hz. After intensification of a row/column, the

matrix was blank for 75ms. Row/column intensifications were block randomized in blocks of

12. The sets of 12 intensifications were repeated 15 times for each character epoch (i.e., any

specific row/column was intensified 15 times and thus there were 180 total intensifications

for each character epoch). Each character epoch was followed by a 2.5 s period, and during

this time the matrix was blank. While data for subjects 3 and 4 is recorded at 64 electrode

locations, this work uses data only from 8 locations which is the same set of electrodes used

for subjects 1 and 2—Fz, Cz, Pz, Oz, P3, P4, O1, O2.

3.2. Data Processing and Representation

The original data for all the four subjects comes as a continuous EEG for an entire

recording. This data for subject 1 is shown in Figure 3.1. The data from each channel is

separated on the vertical axis and the topmost dummy channel in the shape of ’box function’

23



captures the start of stimulus, the positive ’box’ signifying the target letter, and the negative

’box’ signifying the non-target letter.

Figure 3.1. Original Data sub1. The top channel ’Stimulus’ captures the
stimulus being a target or a non-target letter.

All the data was then bandpass-filtered from 0.23 Hz to 30 Hz. The data were then

normalized for zero mean and unit variance. Figures 3.2 and 3.3 show a 4 second window

of data before and after the bandpass filtering. The bandpass filtering was done using

Butterworth bandpass filter [3]. This data is then sliced using the ’box function’ dummy

channel to separate the target and non-target subtrials for each channel. Each Dataset was

thus reshaped into a matrix with each row representing a channel-subtrial- 256 datapoints

as a time series for subjects 1 (sub1) and 2 (sub2), and 240 for subjects 3(sub3) and 4(sub4).
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The channel-subtrials used for classification therefore consist of one-second long windows

after each stimulus onset that are extracted from the continuous signal in each data segment.

Figure 3.2. 4s Original
Data sub1.

Figure 3.3. 4s Data sub1
after bandpassing.

Data representation is an important part of any signal processing method. There are dif-

ferent ways to represent data, which can broadly be classified into spatio-temporal domain

and frequency domain representations. For this work, we stick with the more standard ap-

proach [23, 21] of representing the data in the spatio-temporal domain. A common approach

used in data representation is to concatenate all the channel specific EEG for a particular

subtrial [21]. Here we have taken a different approach which does not seem to have been

explored in literature. This approach involves considering a time series from each of the eight

channels as a separate subtrial for the purpose of initial classification. What this means is

that a subtrial that in the usual sense consists of eight different time series, one for each

channel, is split into eight different subtrials in our data matrix. This is done with the view

that P300 response is present in each of the eight channels considered although it varies in

degree and has some phase difference, and that our preprocessing method should be able to

get common sources to these responses at different channels. We call these channel subtrials.

Once the training of the algorithm is done, and results for the test set are collected for each
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channel sub trial, these results are aggregated to arrive at a classification for the ’overall’

subtrial. This aggregation is done using a voting method.

The P300 data is generally unbalanced in positive and negative examples, as every trial

contains many more negative examples than the positive ones in accordance with the ’odd-

ball’ paradigm. This usually tends to bias a classifier in favor of the negative examples. So,

an equal number of subtrials of target and non-target EEG were used for these experiments

(20 for sub1 and sub2, and 30 for sub3 and sub4).

As a next step, we visualize the subtrials and can clearly see that as more subtrials are

averaged, a P300 amplitude starts appearing in the averaged data for subjects 1 and 2. This

can be seen in Figures 3.4, 3.5, 3.6, and 3.7 for subject 1 and Figures 3.8, 3.9 for subject

2. The noise in the signal is canceled when more trials are averaged. The same pattern of

averaging resulting in noise cancellation is observed for subjects 3 and 4 also as shown in

Figures 3.10 through 3.13. But a clear P300 is not clearly observable for these subjects. The

reason for this seems to be the different data acquisition method used for these two subjects.

While sub1 and sub2 data was collected with an ISI (Inter Stimulus Interval, which is the

time interval between consecutive stimuli) of 1000ms, data for sub3 and sub4 was collected

with an ISI of just 175ms. The short ISI results in the overlapping of signals following a

stimulus which in turn suppresses the P300 amplitude.
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Figure 3.4. Two random
sub1 single subtrials

Figure 3.5. sub1 5 aver-
aged subtrials

Figure 3.6. sub1 10 aver-
aged subtrials

Figure 3.7. sub1 20 aver-
aged subtrials

Figure 3.8. Two random
sub2 single subtrials

Figure 3.9. sub2 20 aver-
aged subtrials
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Figure 3.10. Two ran-
dom sub3 single subtrials

Figure 3.11. sub3 20 av-
eraged subtrials

Figure 3.12. Two ran-
dom sub4 single subtrials

Figure 3.13. sub4 20 av-
eraged subtrials
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CHAPTER 4

Experiments and Results

In this chapter, we provide details of all the experiments that were performed to compare

the performance of different methods used. The detailed workflows of these experiments are

explained. The results from the experiments are provided and discussed.

4.1. Experiment Design

Experiments were designed to test and compare the various approaches selected for this

work with and without PCA. So, the following workflow was followed.

(1) Classification performance of the four classifiers—LDA, QDA, LR and NLR—was

recorded on the raw data, i.e., the data that has not been transformed with PCA.

In this, no feature selection is done, so that all the original features are used.

(2) Then classification performance is tested after performing PCA on the data. There

are two procedures in this set of experiments—one with forward selection of principal

components across all the components, and one where forward selection is done on

selected number of top components as per the magnitude of the singular values.

4.2. Without PCA

We start experiments by testing our four methods on the raw data, i.e., the data with-

out PCA transformation for the four subjects. This would serve as a benchmark for the

experiments to follow using the PCA. For these experiments and that follow, the following

common approach was followed.

(1) The datasets were randomly partitioned into training and test sets in the ratio of

80:20. As we consider channel-subtrials as separate subtrials during training and
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classification before voting, the data was partitioned to ensure we place complete

set of 8 channel-subtrials belonging to a subtrial together either in the training or

test sets.

(2) The algorithms are trained on the data comprising the channel-subtrials, and tested

on the test channel-subtrials.

(3) The accuracies on the channel-subtrials from the 8 channels are aggregated together

using the voting method to decide on the final class of the actual subtrial.

(4) The above process is repeated 20 times and the accuracies over the 20 runs are

averaged to obtain the final accuracies.

For NLR, the training set was partitioned to create a validation set. The accuracies on

the validation set were used to choose the number of hidden units. In the pilot studies on all

four subjects, a range of number of hidden units from 2 to the number of features was tested

on the validation set. It was observed that the validation accuracies generally were the best

at number of hidden units equal to the number of features in the dataset. So, throughout

the experiments, number of hidden units for a dataset have been taken as number of features

used for classification.

The accuracies obtained on the raw data for the four subjects is shown in Table 4.1. First

thing to note is that QDA did not work for any of the subjects, the problem being that the

covariance matrices became singular, that gave a runtime error. So, the accuracies for QDA

have been left blank for raw data. The problem of sample covariance matrices being singular

occurs when sample size is less than the number of features, which happens to be the case

when using QDA on raw data. The same problem was not usually encountered in the case

of LDA as the averaging of the sample covariance matrices of the two classes resulted in
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the average covariance matrix being non-singular. In the subsequent experiments, a small

subset of features was always used, which ensured that this problem is not encountered.

Analyzing the results, we observe as generally expected in P300 classification that no

single method is the best across all 4 subjects. LR works the best for subjects sub1 and

sub4, but NLR also works the best for two subjects sub3 and sub4. It’s only for sub2 that

neither of the NN versions, linear and nonlinear, work well. And it is LDA that works the

best for sub2. So, across subjects, we can not generalize if linear or nonlinear methods are

a clear winner. But for sub1, the performance of the linear version of NN, the LR, is far

superior than the other methods. The best accuracies obtained for all the subjects are near

50% which is the expected accuracy for a random classifier for single trials [16, 9] except

sub1 which gets a very high accuracy for single trials.

Table 4.1. Accuracies with all four methods (without PCA)

Subjects −→ sub1 sub2 sub3 sub4

Algorithms ↓
LDA 47.33 51.25 49.58 44.58
QDA - - - -
LR 65.62 48.25 47.08 51.25

NLR 58.75 42.12 50.83 51.25

4.3. With PCA

The next step in our experiments was to use PCA for feature extraction. We start our

experiments with PCA by getting the Principal Components (PCs) of the training data using

SVD. Then we plot the projection of training data onto first 10 components for each of the

four datasets. The projections of sub1 dataset are shown in the Figures 4.1 through 4.4.
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This is done to visually see how each of the individual PC does for discriminating the target

and non-target class data.

Figure 4.1. sub1 data projected on 1st Principal Component. Each digit
represents data from one of the 8 channels. Blue digits represent the target
and the green no-target data.

Figure 4.2. sub1 data projected on 2nd Principal Component. Each digit
represents data from one of the 8 channels. Blue digits represent the target
and the green no-target data.
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Figure 4.3. sub1 data projected on Principal Components 3,4,5,6

As we can see, the first PC captures the variance among the 8 channels as all the same-

channel data are clumped together in the direction of this PC. This does not help in dis-

criminating the two classes. On the other hand, the second PC seems to do a good job of

separating the two classes. Similar analysis of the remaining top 8 PCs shows some PCs

that do better than others in separating the two classes. Projections 3 and 4 also seem to

work well. After this analysis which was done for the top 20 PCs, we choose the top 3 PCs

through visual inspection—for sub1 these turned out to PCs 2,3, and 4. Projection of sub1

data onto a 3-dimensional subspace of these 3 PCs is shown in Figures 4.5 and 4.6.
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Figure 4.4. sub1 data projected on Principal Components 7,8,9,10

After a similar analysis for subjects sub2, sub3 and sub4, we similarly choose the top

3 components for each of them. Then using the chosen three components, we run our

classification experiments. The results of these experiments are shown in Table 4.2.

Table 4.2. Accuracies for PCA-transformed data using only 3 visually chosen PCs

Subjects −→ sub1 sub2 sub3 sub4

Algorithms ↓
PCA+LDA 55.0 55.0 49.16 55.00
PCA+QDA 52.5 46.0 49.16 51.6
PCA+LR 41.6 40.8 45.0 50.83

PCA+NLR 41.6 56.6 49.16 53.33
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Figure 4.5. sub1 data projected on 3-D subspace - view 1

While this method improved the best accuracy for sub2 and sub4, for sub1 and sub3

the accuracies decreased with almost all the methods. Although the accuracy gains for sub2

and sub4 are impressive, this method is neither scientific nor desirable for a BCI because of

its reliance on human intervention and visual judgment. Moreover, there is a limit to the

number of PCs that we can inspect visually. But, it does show that if we are able to pick

the right components, we could get accuracy gains for some subjects.

To make the process of choosing the PCs thorough and to automate the process, we use

the method of ’forward selection’ (FS) of the PCs in each of the four algorithms. The forward
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Figure 4.6. sub1 data projected on 3-D subspace - view 2

selection is done using 3-fold cross-validation to choose the PCs that give the best accuracy

for the validation set. A new PC is thus added to the set of PCs at each iteration. Finally,

the minimal set that gives the best accuracy on the validation set is chosen. As this method

is very expensive, we pick and test validation accuracies till only the top 50 components are

chosen. This also ensures that data sample size being less than the dimensionality doesn’t

give singular covariance matrices in the case of QDA. This method thus iterates through all

the PCs at each iteration and picks the best PC at each iteration. The results of this method

are shown in table 4.3.
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Table 4.3. Accuracies for PCA-transformed data with number of PCs chosen
using forward selection(Number of Principal Components in braces)

Subjects −→ sub1 sub2 sub3 sub4

Algorithms ↓
PCA+LDA 54.37(11) 53.12(14) 49.58(16) 48.75(14)
PCA+QDA 49.37(18) 55.12(18) 50.83(15) 47.91(12)
PCA+LR 42.50(6) 50.46(5) 47.08(3) 50.00(5)

PCA+NLR 55.00(4) 48.03(5) 51.25(20) 50.83(5)

The results using forward selection of Principal components are not found to be as en-

couraging as expected. The challenge lies in selecting the number of top components based

on the validation accuracies. The method chooses the number of components that give the

best validation accuracy, but this doesn’t necessarily work for the test data. The Figures

4.7, 4.8 below show validation and test accuracies for a single run of this method with LDA

and NLR respectively as classifiers.

As can be seen in these figures, the validation accuracies do not generalize well to the test

data. The validation process chooses the optimal number of components as the number that

gives the best accuracy across all components, but that same number of components do not

provide the best accuracy for the test set—in fact as can been seen in the figures, the two

are way off in both experiments. In the case of LDA, we get the best validation accuracy for

10 components, whereas for the test set the accuracy at 10 components is way less than say

for 12 components or for 20 components. Similarly, for NLR, the best validation accuracy

occurs for 12 components, whereas the test accuracy at 12 components is way lower than

for, say, 3 and 9 components. The reason for that is the extreme noise in the data due to

which the validation set accuracies don’t generalize well to test data. The FS would pick

such components that might be modeling the noise of the validation set which obviously will
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Figure 4.7. LDA accuracies for sub1

throw the classifier off on the test data. Then there is also over-fitting of training data in the

case of non-linear methods as can be seen for NLR. In addition to these problems, there is

the matter of complexity and runtime. The FS is a very expensive method as each iteration

of choosing a new component has to iterate through all the remaining set of components.

Considering the above pitfalls of the FS method, we need to try a different method for

selecting a good subset of PCs. Looking back at the results of using top 3 PCs chosen

visually from top 20 components, we try modifying the forward selection algorithm to select

the components only from a set of an empirically chosen number, say n, of top PCs based

on the magnitude of their singular values. This amounts to just considering the top n PCs

as they are ordered already by magnitude of their singular values. As visually chosen 3
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Figure 4.8. NLR accuracies for sub1

components had shown good results for 2 out of 4 subjects, we try n = {5, 10, 15, 20}. After

looking at the results thus obtained, it was observed that using n = 5 works the best. The

results of using FS on a restricted set of top 5 PCs is shown in table 4.4.

Table 4.4. Accuracies for PCA-transformed data choosing the best among
only top 5 PCs (Number of Principal Components in braces)

Subjects −→ sub1 sub2 sub3 sub4

Algorithms ↓
PCA+LDA 55.0(2) 48.0(3) 45.0(2) 47.5(3)
PCA+QDA 55.0(2) 52.7(3) 40.83(2) 53.3(1)
PCA+LR 41.66(3) 57.5(2) 56.9(4) 46.66(2)

PCA+NLR 60.0(3) 40.0(3) 63.05(4) 50.83(4)
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The results obtained using FS on the restricted set of top 5 PCs show an improvement in

accuracy for all the four subjects when compared with regular FS. The method gives overall

best accuracies for sub2 and sub3. For sub4 also, the accuracy is better than all methods

except visual selection of PCs which can be discounted as that’s not a practical method

for an online BCI. So, discounting the visual selection method, we get best accuracies for

three subjects out of four using this method of restricted FS. In addition, this method comes

with greatly reduced data dimensionality. While FS selected as high as 18 PCs, this method

needed no more than 4 components to achieve much better results.
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CHAPTER 5

Conclusions

5.1. Summary of Results

As the experiments have shown and as is supported by the literature, the success of a

method for P300 classification depends a lot on the subjects. While LR gave exceedingly

good results for sub1 without PCA, sub3 had the best accuracy of all the methods with NLR

+ PCA (with restricted FS). NLR + PCA (with restricted FS) also gave the second best

accuracy for sub1 at 60%.

For sub2, on the other hand, it was the linear version of NN—the LR (with restricted

FS)—that gave the best accuracy. For sub4 alone, the visually chosen 3 PCs gave the best

accuracy. But overall it’s clear that PCA did help in improving the accuracy of classification

of single trials in all subjects but sub1. The best results except in the case of sub1 all came

with a much reduced dimensionality of data—the dimensionality was a maximum of 4 for all

these subjects. So, PCA feature selection not only increased the classification accuracy but

also reduced the execution time of the algorithms by the resulting dimensionality reduction.

Among the wider distinction between linear and nonlinear methods, the results were

split. While sub1 and sub2 got the best accuracies using linear LR, sub3 and sub4 got the

best results with QDA and NLR—both nonlinear methods. The reason for this seems to

be different data acquisition methods used for the two datasets. While sub1 and sub2 data

was collected with an ISI of 1000ms, data for sub3 and sub4 was collected with an ISI of

just 175ms. The short ISI resulted in the overlapping of P300 amplitude of the EEG which

happens about 300ms with the new stimulus induced signal, which also explains why the

grand average signal for sub3 and sub4 was not as similar to a P300 as it was for sub1 and
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sub2. The overlapping of signals from many stimuli seems like the reason that makes these

two datasets more difficult to be linearly separable. Another observation is that the method

of treating each channel-subtrial as a separate subtrial for the purpose of classification works

well for P300. The hypothesis of PCA being able to extract the relevant source components

from this channel-subtrial dataset is also validated by the results. Also for sub1 and sub2,

the PCA captures the variance across channels into a component (it was the first PC for

sub1). Then the classifier would ignore that component as it won’t give it any significant

discriminatory value for the purpose of classification. Such variance was not that pronounced

in the case of sub3 and sub4.

5.2. Future Work

This work has many avenues for future work. As discussed earlier, as the P300 classifi-

cation depends a lot on the subjects, it would be useful to run these same experiments on

data from more subjects to see how well the results generalize across subjects. Then for

the same subjects other classification methods especially variants of LDA, such as Fisher’s

linear discriminant (FLD), stepwise linear discriminant analysis (SWLDA), and regularized

Discriminant Analysis, can be tried to see if the results could be further improved. Another

interesting thing to try would be to compare our method of channel-subtrial based data with

other methods of data representation in spatio-temporal and frequency domains. Also, the

methods used in this work can be studied in more depth. For example, it’s well known that

LDA and QDA require a certain minimum number of data samples for optimal performance.

It would be interesting to see if and by how much could the performance further improve if

more number of samples are used for training the classifiers used in this work. For NLR, we

could also try multiple hidden layers to see how that would work for P300 classification.
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