THESIS

ANALYSIS OF TEMPORAL STRUCTURE AND NORMALITY IN EEG DATA

Submitted by
Artem Sokolov

Department of Computer Science

In partial fulfillment of the requirements
for the Degree of Master of Science
Colorado State University
Fort Collins, Colorado

Spring 2007

ABSTRACT OF THESIS

ANALYSIS OF TEMPORAL STRUCTURE AND NORMALITY IN EEG DATA

The thesis examines normality and temporal correlation of samples in EEG data. Pre-
sented in the context of Bayesian classification, empirical results quantify the advantages
of modeling the temporal information. A connection to the theoretical background of
the underlying classifiers is also discussed. Using a five-task six-channel dataset, the ex-
periments demonstrate that an increase in performance can be observed by simple con-
sideration of multiple samples. Exploitation of temporal structure leads to additional
improvement, but not always. The measurement of Normality is used to demonstrate
an alternative to cross-validation, where each class is considered independently of the

others.

Artem Sokolov

Department of Computer Science
Colorado State University

Fort Collins, CO 80523

Spring 2007

Chapter 1

| ntroduction

1.1 Brain-Computer Interfaces

One science fiction idea that is proving to become realized is a concept of controlling a
computer with one’s brain, completely bypassing the nervous system. The idea is known
as a brain-computer interface (BCI) and has a variety of potential applications. A BCI
provides an alternative means of communication and control for patient’s with Amy-
otrophic Lateral Sclerosis (ALS), a disease which leads to a shutdown of the patients
nervous system causing the person to lose all voluntary muscle control. Interfacing
one’s brain with a computer can also augment additional functionality to daily operation
of healthy persons.

BCI equipment and technology can be coarsely divided into two categories: intrusive
and non-intrusive. The intrusive kind employs insertion of electrodes below the skull,
often onto the surface of the brain [34, 55], but occasionally deep within the cortex for
purposes of monitoring one particular region [19, 55]. Non-intrusive methods generally
involve measurements of electro-magnetic potentials from outside the head. This thesis
is concerned with electroencephalography (EEG), which is a non-intrusive method of
recording voltage measurements from the scalp surface.

Although the BCI field has recently seen a large increase in the use of intrusive meth-

ods, EEG classification still remains a relevant problem. As the dominant non-intrusive

method of today, electroencephalography offers by far the most practicality than any
other BCI method, making it appealing for use by healthy persons in military and space
agencies. It is the safest, least expensive and easiest to use. The fact that technology
necessary for capturing EEG signals can be equipped and unequipped outside of a lab-
oratory within minutes inspires control augmentation in a wide range of environments.
For example, NASA is interested in the use of EEG as control signals for aircraft and
vehicles [53].

Other advantages of non-intrusive methods include the ability to monitor large por-
tions of the brain, allowing to observe higher-level cognitive processes. Unfortunately,
reception of mixed EEG signals from different parts of the brain is just as good at thwart-
ing the classification effort as it is at providing an overall picture of brain activity. The
signals from interesting (and potentially discriminative) regions of the brain are mixed
in a non-trivial way with each other as well as time-lagged versions of themselves.
The problem is further complicated by the fact that electrical signals travel through the
brain tissue at a different speed than they do through the skull or the scalp, an issue
that doesn’t arise with other non-intrusive methods, such as magnetoencephalography
(MEG) and functional magnetic resonance imaging (fMRI). These factors make EEG
classification comparable to standing outside of a large hall and trying to understand
what a crowd of people inside is talking about. In spite of this difficulty, the potential

offered by EEG classification makes the problem interesting and worthwhile.

1.2 Electroencephalographic signals

An example of EEG, taken from the Keirn dataset [27], is presented in Figure 1.1. The
subject was instructed to perform two mental tasks: to multiply two non-trivial num-
bers and to imagine writing a letter. The EEG was recorded at 250Hz and presented in

the figure are two seconds from each task. The six channels were positioned according

Mental multiplication

et A AN A AN

Eyeblink

é

P4 O1
|

C3 C4 P3
|

T T T T T T
0 100 200 300 400 500
Imaginary letter writing

AN

8 {\MWwkAwvﬂmNMﬁyvﬁwaNmﬂwwﬁvV”““NﬂwwﬁAWW/“WAmA/WVWVMwWAWNMMNwaN
Eyeblink

—

g -

*—WWWWMWWMW

Y

|
ié

5
|

I I I I I I
0 100 200 300 400 500

Figure 1.1: Two seconds of EEG recorded at 250 samples per second. The subject
was mentally multiplying two numbers (above) and imagining writing a letter (below).
Black vertical lines denote places where an eyeblink was detected.

VERTEX

LEFT SIDE : TOP

Figure 1.2: Placement of electrodes on the scalp according to the international 10-20
standard [25, 30].

to the international 10-20 standard, as displayed in Figure 1.2. Figure 1.1 also demon-
strates that EEG is often contaminated by such artifacts as eyeblinks. Artifacts introduce
additional noise and further complicate the problem of mental task classification.

Cognitive tasks such as multiplication and letter writing present one paradigm of
mental tasks. Another paradigm of mental tasks involves imaginary movements of
limbs. The imaginary movement of limbs appears in control applications and is of-
ten reported by subjects as being more intuitive for such tasks as control of a cursor,
wheelchair, or robotic appendages [17]. It is also common to find combinations of
imaginary movement with the other cognitive tasks, such as generation of words that
begin with the same letter [17, 12]. The motivation behind such combinations arises
from the fact that the evoked potential can be picked up from areas of the scalp that
correspond to the lobe responsible for a particular cognitive task.

The choice of a dataset for this thesis has been primarily influenced by its previous
use in BCI research at Colorado State University [5, 2, 4, 29, 3]. Analysis of temporal

structure and normality can be viewed as providing an orthogonal view to this dataset,

which complements the previous work. The analysis performed in this thesis can be

easily carried over to other datasets.

1.3 BCI Evaluation

Performance of a BCI system is measured in several different ways. The most widespread
measurement of success is classification rate (also known as classification accuracy),
which is computed as the number of labels assigned correctly divided by the total num-
ber of label assignments. The best classification rate is, of course, 1 (or 100% if mea-
sured in percent). The worst classification rate is 1 over the number of classes (e.g,
1/2 = 50% for two classes, 1/4 = 25% for four classes, etc.) and is termed as random
classification rate. If a classifier has accuracy lower than random, we can always con-
struct a new classifier that takes the original output and inverts it by randomly picking a
label that is different from it, thus increasing the expected accuracy above random.

The problem with using classification rate in the context of EEG is that the measure
does not account for how often a decision is being made. From the application’s point of
view, a system that has 80% classification rate but assigns a label to each sample has by
far higher utility than a system that has 90% classification rate but assigns a single label
to a 10-second trial. An alternative measure of success that gets around this problem is
bitrate. The bitrate measures the amount of information produced by the classification
decision per second. The intuition behind bitrate arises from information theory and the

actual measure can be computed as [54]:

1-P
v (log2N+ Plog, P+ (1 = P)log, 57— 1) (1.1)

where V' is the classification speed (i.e., the number of samples assigned per second), P

is the classification rate, and NV is the number of classes. The lowest bitrate is 0, which

occurs when the classification accuracy is random, i.e., P = 1/N. On the other hand,

the perfect classification P = 1 leads to the bitrate of V' log, N which is the highest
bitrate achievable for a given value of speed V.

This thesis uses classification rate as a measure of performance. We do, however,
put an upper bound on the number of samples considered in every decision. This bound
guarantees that a new label will be provided at least as often as 1 label/second. A BCI
that makes a decision every second can be utilized to perform many basic tasks, such as
controlling a cursor on the screen, and therefore presents a realistic system. Any real-
time tasks (such as controlling a wheelchair), however, may require faster classification
speeds. Classification speeds are stated for every experiment and together with classi-
fication accuracies allow one to calculate the corresponding bitrates, by simply using

Equation (1.1).

1.4 State-of-the-art

The information presented at the BCl Meeting 2005 [1] suggests that the current state-
of-the-art in the field has already progressed past the simple proof-of-concept experi-
ments with many groups being able to successfully perform very basic control and com-
munication experiments. The BCI technology is, nevertheless, still in its early stages and
current directions of research involve design of better signal acquisition and signal pro-
cessing methods, engineering faster and more robust hardware and software, and form-
ing standards for interfaces between different modules in a BCI system [14, 32, 37, 55].
Chapter 2 goes into more detail on previous approaches to signal processing and data

analysis in the context of EEG classification.

1.5 Objective

The objective of this thesis is to quantify two aspects of EEG data, temporal correlation

and normality, and examine how they relate to classification accuracy and model selec-

tion, respectively. As described in the next chapter, most of the previous approaches
to EEG classification consider multiple samples to make a single classification deci-
sion. This thesis examines how the classification rate changes when multiple samples
are considered with the experiments aimed at determining whether the change in classi-
fication rate is due to temporal correlation of samples or due to there simply being more
information available. Understanding how much temporal structure affects classifica-
tion provides an important contribution to researches that design feature extraction and
classification methods that consider multiple adjacent samples to make a classification
decision.

This thesis also demonstrates how analysis of normality can be used to perform
model selection. Models that assume Normality of the data are not uncommon in the
literature and analysis of normality allows to determine the spatial distribution of the
data in a way that is consistent with the model. Analysis of normality has an additional
advantage in that it only requires data from a single class to perform model selection.

All experiments in this thesis consider raw EEG data. No feature extraction is per-
formed because data transformation methods may take advantage of temporal structure
introducing a bias into our evaluation. Instead, multiple samples are considered through
time-lag embedding [43] and windowing [52]. Time-lag embedding allows us to con-
sider multiple adjacent samples, evaluating local temporal structure. In addition, we
also consider global temporal structure by modeling time-lag samples with a first-order
Markov process. Analysis of normality is done by measuring Gaussian fit based on the
empirical distribution function.

Presented empirical evidence suggests that a high level of accuracy can be achieved
by simply considering multiple samples in time in the classification decision. Temporal
structure of EEG yields additional increase in the classification rate, but not always. The

best results are achieved when the time-lag embedding and windowing are combined.

1.6 Overview of Remaining Chapters

The remainder of this report is structured as follows. Chapter 2 describes previous work
in the area of EEG classification, noting in particular the modeling techniques that rely
on temporal structure of the data. Chapter 3 goes into the theoretical details of methods
to be used. Description of the data is located in Chapter 4. Chapter 5 presents empirical
results on real EEG data, followed by detailed discussion of said results. Concluding

remarks can be found in Chapter 6.

Chapter 2

Background

This chapter extends the previous one by describing what approaches to EEG classi-
fication have been previously explored. Classification of EEG signals has been done
for purposes other than brain-computer interface. A canonical example is learning to
automatically distinguish between healthy subjects and, e.g., patients with Alzheimer
disease [48, 28]. Because the context of this work is a BCI, only classification of EEG
related to mental tasks is addressed in this chapter.

In general, EEG classification of mental tasks has been performed at two levels of
granularity. First, there is single-trial classification where observation sequences (or
trials) are recorded over some fixed period of time (e.g., 10 seconds) with the subject
performing the same mental task during that period. A classifier is then free to analyze
the whole sequence and must assign a single class label to the entire trial. Single-trial
classification is very popular with offline analysis. On the other hand, a more realistic
online BCI should allow the subject to make their own decision about when to switch to
a different mental task. Thus, classification must be performed on a continuous stream
of observations. Ideally, a classifier should be able to provide a decision after every new
sample, but to gain temporal information we may allow the decision to be lagged by a
few samples. This leads to the introduction of sliding time windows [52, 9]. Sliding

time windows can be viewed as a way to limit a classification decision to a specific set

of samples in the time series, and are discussed in more detail in Chapter 3.

Any approach to a classification problem consists of two major parts: extracting a
set of features from the original data and applying a classification algorithm to learn
and apply a mapping from these features to a set of labels. As a consequence, most of
the work in EEG classification addresses one or both of these two major parts by either
presenting a new algorithm, evaluating a well-established algorithm on the problem of
EEG classification, or attempting to understand what works best and why. This thesis is
related the closest to the last category because of its focus on measuring aspects of EEG

data.

2.1 Feature Extraction

Not surprisingly, almost all feature extraction methods used with EEG consider mul-
tiple samples at a time. The two most popular approaches to feature extraction are
auto-regression (AR) [42] and transformation into a frequency space (either by means
of a Fourier transform or wavelet analysis) [36]. Both approaches make use of multiple
raw samples to construct a single feature. Auto-regression models each sample in a time
series as a (possibly non-linear) function of its predecessors in time. Coefficients of this
function constitute the features. Frequency transformation estimates the frequency de-
composition of a signal within some local time window. The corresponding features are
composed of energy measurements in a set of frequency bands. Sometimes, frequency
transforms are utilized only as a temporal filter (i.e., band-passing the original signal)
with the actual feature extraction being performed using some other method.

In addition to band-pass filters, spatial filters are also sometimes employed, the most
common two being principal components analysis (PCA) [26] and common spatial pat-
terns (CSP) [38]. Spatial filters use multiple samples only for the purpose of computing

covariance matrices between the channels. The output of a spatial filter is a projection

10

to a lower-dimensional subspace with the original dimensionality being determined by

the number of channels.

2.2 Classification

Classification algorithms fall into two paradigms: discriminative and generative. Gen-
erative classifiers create a model for each class and classify new samples according to
the highest likelihood via the Bayes’ rule. Discriminative classifiers learn a rule that
maps samples to their labels without modeling the data from each class directly. In the
context of EEG classification, generative approaches are almost exclusively limited to
hidden Markov models (HMMs) with various topologies and extensions. HMMSs typ-
ically model the data in each class with a finite number of Gaussian distributions and
assume a first order Markov process over which Gaussians produce the samples in the
series. The discriminative approaches used for EEG classification include neural net-

works (NN) and support vector machines (SVM).

2.3 Review of Recent Literature

Examining specific papers, we find that authors usually select a number of the methods
described above and create a (filter data — extract features — classify) chain. These
chains range in complexity but most authors reach as high as 85-90% classification ac-
curacy. Examples from the recent literature are summarized in the following paragraph.

Several papers are worth noting in the discriminative classification paradigm. Xu, et
al. [56] apply spatial and band-pass filters to raw EEG data, use radial basis functions
(RBF) as features and perform classification of self-paced finger tapping using support
vector machines, reaching 90% classification accuracy. Their work demonstrates that
combining PCA and CSP to perform spatial filtering yields higher results than using

either method separately. Garcia, et al. [20] combined frequency spectrum features and

11

support vector machines to classify EEG from imaginary hand movement with 72-88%
classification accuracy. The authors showed SVM outperforming Linear Discriminant
Analysis, a simpler classifier that was applied to the same set of features. Haselstiner and
Pfurtscheller performed a comparative study between the traditional multilayer percep-
tron (MLP) and a neural network that uses finite impulse response (FIR) units, achieving
as high as 95% accuracy with one of their subjects [23]. Their work shows FIR-based
network outperforming the more traditional MLP. Other variants of neural networks
considered for EEG classification include Learning Vector Quantization [44, 33].

As already mentioned, hidden Markov models are the prevalent technique for EEG
classification in the generative paradigm, although simpler modeling techniques such as
Linear Discriminant Analysis (LDA) and Quadratic Discriminant Analysis (QDA) have
also been applied [4]. HMMs have been considered for single-trial classification [41, 57]
as well as part of an asynchronous system [13], including communication via a “virtual
keyboard” [40]. The HMM topologies considered include coupled HMMs, multivariate
HMMs, factorial HMMs and input-output HMMs with more complex topologies gen-
erally yielding better performance, occasionally as high as 90% classification accuracy
[57, 13].

Among the more complex Markov models, an HMM with combined Gaussian and
multinomial observation distributions has been applied to classify coefficients of an AR
process extracted from EEG [50]. The authors used Markov Chain Monte Carlo pos-
terior approximation for single-trial classification of left-vs.-right motor and auditory-
vs.-navigation mental tasks, reaching 75-91% classificatio accuracy. Sykacek, et al.
[51] later generalized the above approach by using a single joint density over all param-
eters involved in a model, obtaining 0.31-0.38 bits/second bitrate, up from 0.20-0.21
bits/second bitrate that results from separation of signal processing and classification.

An interesting combination of HMMs with an SVM classifier has been proposed

12

by Lee and Choi [35]. The authors train a separate HMM for each channel/class pair
and use output likelihoods as features for an SVM-based classifier. The classification

accuracy they achieved was around 75% on a two-class problem.

2.4 Limitations of Current Literature and Contribution
of Thesis

Today, there exist BCI systems that achieve classification accuracy close to 100% on
a 2-5 task problem, although such high accuracy holds only for a specific subject or
dataset [5, 10, 11]. The success of such systems is usually attributed to high density sig-
nal acquisition, advanced filtering, and hand-engineered machine learning approaches
(hand-picking feature extraction and classification methods from the ones mentioned
so far). The problem is, of course, that the success doesn’t carry over from subject
to subject and the same approach that gives 98% accuracy on EEG from one subject
yields only 78% success on EEG from a different subject. Success of any BCI system
is heavily dependent on the subject using the system, a fact that makes comparative as-
sessment of performance somewhat difficult. This thesis demonstrates that a high level
(> 90% on a five class problem) of classification accuracy can be obtained with very
simple classifiers when multiple samples are considered to make a single classification
decision. Realizing that this performance is dataset-dependent, we instead focus on un-
derstanding how multiple samples affect the classification rate. The nature of this thesis
is, therefore, more investigative than comparative, although empirical comparisons are
inherently present.

Previous analysis of spatial and temporal structure in EEG has lead to a number of
methods in artifact removal [39, 31], spatial filtering [46], prediction [15], and isolation
of features contributing to correct classification [9, 29]. The analysis and quantification

of temporal structure and normality performed in this thesis complements the knowledge

13

and understanding of EEG data and suggests how much improvement can be expected
from multiple sample consideration. From a practical point of view, this allows to put
an upper bound on the temporal window width exceeding which leads to a tiny increase
in classification accuracy. On the other hand, such an upper bound leads to a better

expectation of how fast the classification decisions can be made.

14

Chapter 3
Methods

3.1 Overview

This chapter describes the theoretical background of methods used in this thesis. The
discussion starts off by describing methods used for analyzing local temporal structure.
These include time-delay embedding and time windowing. This discussion is followed
by an overview of spatial projection methods. All analysis in this thesis is done in the
context of Bayesian classification, which is discussed after the spatial projection method.
Individual Bayesian classifiers are described in order of growing complexity. Analysis
of local temporal structure employs Linear Discriminant Analysis and Quadratic Dis-
criminant Analysis, two very simple Bayesian classifiers. Global temporal structure
analysis requires more complex models, Gaussian Mixture Models and Hidden Markov
Models. The chapter is concluded with the description of how analysis of normality is

performed.

3.2 Local Temporal Structure

3.2.1 Time-delay Embedding

Time-delay (sometimes also called time-lag) embedding [43] is used here as the primary

method for analyzing the temporal structure in EEG data. The method effectively con-

15

verts temporal structure to spatial feature representation. This allows one to consider
multiple neighboring samples as a single observation in a high dimensional space.
Formally, time-delay embedding or lagging is defined as follows. Let X be an by d
matrix of n samples in d dimensions. Applying £ > 0 lags resultsinan — k by kd + d
matrix Y}, where the first d columns consist of samples 1 through n» — k& from X, the
second d columns consist of samples 2 through n — &£ + 1 from X, and so on, with the

last d columns of Y}, consisting of samples & through n from X. Here’s an example:

1.1 24
35 63 1.1 24 35 6.3

X = Yi=1] 35 63 2.7 2.6

2.7 2.6
93 46 2.7 26 93 46

Y, 1.1 24 35 6.3 2.7 2.6}

T 135 63 27 26 93 4.6
Because a large part of this thesis deals with normality of EEG data, we need to

establish whether normality is preserved when the data is lagged.

Proposition 1. If column vectors x; and z, are two independent samples from a mul-

tivariate Gaussian distribution with mean p and covariance matrix X, then { il } has
2

multivariate Gaussian distribution with mean { Z } and covariance matrix { % g }

Proof. The distribution of d-dimensional samples z; and x5 is defined by the density

function

el = oo (- e). @)

Using the fact that the two samples are independent we can compute their joint proba-

bility density as the product of the marginal densities:
flxy, walp, X) = fan|p, X) f (x|, ¥) =

16

We can rewrite the exponent in matrix form as follows:

o= TS =) — (e —)5 (s —) =

Ty —
B — (xQ—u)T][E(;l zo—ngiﬂ

(R
o [[0 s]

we can express the joint distribution of z = [o } as

1/2

B nt2 | X 0
== (57" =| T 3

X2
F@S) = ——t—exp (—2 (3 — @) S (7 — f)
’ (27T>2d/2|2|1/2 2 K K ’
We recognize this as the density function of a multivariate Gaussian distribution with

EO}_

0 X =

mean ji = [Z } and covariance matrix ¥ = {

Although this result is derived for the number of lags £ = 1, it can be easily extended
to any k£ > 0 through simple mathematical induction. If the samples =, and x, are not
independent, the joint density is no longer the product of marginal densities but rather

depends on the conditional distribution f(zs|z1, i, ¥):

f(xth‘:U’? 2) = f(x1|/vb7 E)f<x2|'r17:u7 E)

If the conditional density is Normal, a calculation similar to the one above can be used
to demonstrate preservation of normality. However, the normality of f(zs|zq, u, X) is

hard to verify and generally doesn’t hold.

17

3.2.2 TimeWindowing

Time windows were first proposed by Takens [52] and have previously been applied
in the context of EEG by Blankertz, et al. [9]. Implicitly time windows are used by
time-lag embedding and any other method that attempts to capture local temporal infor-
mation. A time window refers to a set of consecutive samples in a time-series and is
parameterized by two indices, that of the first and that of the last samples in the window
(t; and t; > ty), and spacing of samples ¢. Techniques, such as time-lag embedding,
take a time window as the input and produce a set of features associated with the collec-
tion of samples within that time window. Most algorithms that employ time windowing
consider their first window by setting ¢ ; = 1 (i.e., the first sample in the time series) and
ti = t; + w; using some w; > 0. All other windows considered by the algorithm are
constructed by adding some w, > 0 to ¢ and ¢; of the previous window. This is referred
to as sliding time windowing and is completely specified by w; and w,. The spacing of
samples ¢ is usually kept at 1 (as it is here) implying that every sample in a time window
gets considered.

Analyzing temporal structure is not the only place where time windowing is a tech-
nique of interest. A hidden Markov model, one of the methods that will be employed for
global structure analysis, considers transitions from one sample to the next and, there-
fore, requires a collection of multiple samples to make a classification decision. Rather
than considering an entire trial (one extreme of the spectrum, where window size is
equal to the trial length), the trial will be broken up into time windows and the results

will be reported based on classification of individual windows.

3.3 Spatial Projection Methods

Due to the extraction of local temporal structure, we end up working with high-dimensional

features which can lead to problems when the samples do not span all the dimensions.

18

This calls for projection of high-dimensional data to a lower dimensional subspace.
Principal Component Analysis and Fisher’s Projection are used here as two methods for

performing such projection.

3.3.1 Principal Component Analysis

Principal Component Analysis (PCA) finds directions of most variance in the data by
computing Singular Value Decomposition (SVD) on the mean-centered data matrix [26].
More specifically, if X isan by d matrix of n mean-centered samples in d dimensions,
then SVD of X yields

X =UDVT,

where U and VT are orthonormal bases for columns and rows of X, respectively. Since
our samples are arranged as rows of X, the matrix V7 is of most interest. Entries of
the diagonal matrix D are equal to the amount of variance in samples of X along the
corresponding rows of V7 (or columns of V). Let k be the number of non-zero diagonal
entries in D. Then the number of dimensions that X spans is equal to £ and we can
project the data to the corresponding subspace by taking V(1) to be the first & columns

of VV and computing X 1/ (1),

3.3.2 Fisher’'sProjection

Fisher’s projection, also known as reduced rank linear discriminant analysis (LDA), at-
tempts to minimize within-class variance and maximize inter-class variance [24]. The
solution to this problem results in a linear transformation that projects the original data
into a subspace of maximal separation of class centroids, and minimal intra-class vari-

ance. Hastie, et al. outline the computations necessary for reduced rank LDA [24]:
1. Suppose there are K classes of data samples in d dimensions.

2. Compute M, the K by d matrix of class centroids.

19

3. Compute W, the common covariance matrix.
4. M* = MW 12,

5. Compute B*, the covariance matrix of M*.
6. Compute SVD of B*: B* = V*DgV*T,

7. Thefirst K —1 columns of V* define the linear transformation that yields maximal

separation of class centroids.

This computation can be seen as performing PCA on the whitened centroid matrix.
The resulting columns of V* are orthonormal in the whitened space, but not neces-
sarily in the original data space. Note that the common covariance matrix must be
non-singular, which implies that Fisher’s Projection can only be applied to full rank
data. Therefore, it might be necessary to perform PCA on the data prior to computing
Fisher’s Projection.

There is an alternative statistical perspective on Fisher’s Projection which I discuss

below.

3.4 Bayesian Classification

When each mental task is represented through a stochastic generative model, we can
make use of a Bayesian framework to classify new data. Bayesian classification refers
to constructing a probabilistic model for each class separately and assigning each new
observation to the class with maximum posterior probability [22, 24, 7]. More specifi-
cally, assume we have K classes with labels [y, I, ..., [x. We propose that data in each
class comes from some probabilistic model with parameters 6, for class k. A training
procedure is then used to estimate ¢’s and each new observation = is assigned label /;

with

20

j = argmax P(L = li|z,0) (3.2)
K

~~~~~~

where L is a random variable that takes on value [, when we get an observation from
class k,and 6 = (64, 6s, ..., 0k ).

Posterior probabilities P(L = I|x,0) of observation x belonging to class & can
rarely be computed directly. The most common approach is to use Bayes’ theorem [22],

which arises directly from applying the definition of conditional probability twice:

P(L =l,20) _ P(a|L =1, 0)P(L = 14]0) _ peP(x0s)

=l O = =g~ P(elf) Palf)

where P(z|L = [;,0) = P(z|0) is readily available from the probabilistic model
of class k. Priors p, = P(L = [x|#) = P(L = l;) are independent of model pa-
rameters and can be used to introduce domain knowledge regarding what classes are
more likely to occur (under stochastic constraint >, p, = 1). The denominator P(x|6)
is nothing more than a normalization factor and can be interpreted as the probabil-
ity that the observation occurs as a member of one of the classes, or mathematically
P(z|) = S | prP(x|6)). Note that when the prior distribution across the classes is
uniform, the same class will have the maximum posterior and class-conditional proba-

bilities, i.e., arg max, P(L = |z, ) = arg max, P(x|0y).

3.5 Modeling as a Single Gaussian
3.5.1 Linear Discriminant Analysis

The simplest approach in stochastic modeling is to model each class with a single Gaus-
sian, using one common covariance matrix across all classes. The density of the data
is then computed according to Equation (3.1) with the means for each class and the

common covariance matrix estimated from the training data as
M = ngk)/nk,

21



2= — )@ — )"/ (n - ),

where x,@’“) is used to denote the i** sample from class &, with K being the total number
of classes. The quantities n,, and n are used to denote the number of samples in class &
and the total number of samples, respectively.

This approach is known as Linear Discriminant Analysis (LDA). After application
of Bayes’ theorem, the computation of Equation (3.2) can be reduced to comparing K

linear discriminant functions [24] with the k" function defined as
Ty -1 1 Ty —1
op(z) =" X7 py, — §Mk2 . + log py..

The data sample z is assigned the label corresponding to the largest discriminant func-
tion value. The priors for Bayes’ theorem are usually taken to be py, = ny/n.

The intersection of two linear discriminant functions is a hyperplane, with a sample
being classified based on which side of the hyperplane it falls. This is equivalent to
considering the closest class centroid in the whitened space which allows us to build a
link to Fisher projection. When working with K class centroids, the problem of finding
the closest centroid has up to K — 1 degrees of freedom (because K points can span
at most K — 1 dimensions). This is why classification based on the closest centroid
performed in the K" — 1 dimensional space found by Fisher projection will yield exactly

the same results as in the unprojected but whitened space.

3.5.2 Quadratic Discriminant Analysis

Quadratic Discriminant Analysis (QDA) removes the common covariance matrix con-
straint. The density is still computed using Equation (3.1) but the covariance matrix, >,
for each class k is now estimated using only samples from that class as
k k
=D (@ — ) (@ = )"/ (n - 1).

%

22



As a result of each class having its own covariance matrix, less cancellation can be
performed in the derivation of discriminant functions [24]. The resulting discriminant

functions are now quadratic in = and defined by
1 1 Ty -1
op(z) = —Elog |Xk] — i(x — ) X7 (x — pg) + log py.
3.6 Modeling with Latent Variables

To model transitions between neighboring samples, we turn to hidden Markov models
(HMMs). HMMs fall into the category of modeling with latent variables. In addition to
observations X and model parameters 8, we now assume the presence of an additional
entity, the hidden (or latent) variables Z. The nature of hidden variables is model depen-
dent but allows one to reason in terms of the joint probability distribution P(X, Z|6).
Given a model with latent variables, there are now two problems that need to be ad-

dressed: inference and learning.

3.6.1 Inference

The problem of inference is to compute P(Z|X, ), i.e., the probability of hidden vari-
ables values given an observation sequence. Being able to compute this quantity allows
one to answer the question of what is the most likely sequence of hidden variable values,
i.e., find argmax, P(Z]X,0).
Another related quantity of interest is the total likelihood of an observation sequence
P(X]6). The two quantities are related through:
P(Z,X|0) P(Z,X|0)

P(21X.6) = P(X|0) ~ [,P(Z X|0)dz (3:3)

In general, the joint distribution P(Z, X |0) is available from the model and the bulk

of the work is in computing the integral.

23



3.6.2 Learning via Expectation Maximization

A very powerful technique for solving the problem of maximum likelihood learning is
the Expectation Maximization (EM) algorithm [18, 8, 24]. The algorithm is naturally
suited for cases where there are either missing observations or latent variables in the
model.

In learning, we’re interested in finding arg max, L(#|X), or parameters that yield
the highest likelihood of our model given the data. By definition, a likelihood function

is simply a reparameterization of the corresponding probability function:
L(6|1X) = P(X]0),

where likelihood is considered to be a function of the model given the data, rather than
a function of the data given the model (likelihood and probability have identical form
with the only difference being in whether it is the data or the model that is treated as a
variable).

Rather than working with the likelihood directly, consider the log-likelihood func-
tion .Z(0) = log L(8|X) = logP(X|6). The log function is introduced for several rea-
sons. First, it is a monotonically increasing function. Thus, maximizing log-likelihood
is equivalent to maximizing the likelihood itself. Second, logarithmic transform turns all
exponentials to products and all products to sums, significantly simplifying all calcula-
tions. The third reason for considering log-likelihood is machine precision. Probabilistic
modeling deals with quantities that can be very tiny and at the same time differ by sev-
eral orders of magnitude, a recipe for round-off errors. Logarithmic transform alleviates
this problem by “compressing” a difference in orders of magnitude to the difference by
a factor.

To understand EM algorithm, first recall that the likelihood of the data is a marginal

distribution of the joint likelihood P(Z, X|0). Marginal distributions are obtained by

24



integrating out all variables except those of interest. Therefore, £ (0) = log P(X|0) =
log [, P(Z,X|0)dZ.

The EM algorithm makes use of Jensen’s inequality to compute the lower bound on
Z(0). Jensen’s inequality says that for any concave function g and random variable Z,
inequality E[g(Z)] < ¢g(E[Z]) holds. To apply this concept, we first have to turn the
integral [, P(Z, X|0)dZ into an expectation. We do this by introducing some arbitrary
distribution @ over the hidden variables:

P(Z,X|0)
Q(Z)

Notice now that the right-hand side is logarithm of an expectation (the expectation is

log /Z P(Z,X|0)dZ = log /Z Q(2) dz. (3.4)

with respect to distribution Q(Z)). log is a concave function and we can now apply

Jensen’s inequality:

log/@ ZX|0 dZ>/Q log%dZ F(Q,0). (3.5)

The right-hand side of the inequality can be further separated into two parts: one that

depends on @ and ¢, and one that depends only on Q:

/Q Z X\G ——————dZ = /Q )log P(Z, X|0)dZ — /Q Vog Q(Z)dZ
(3.6)
To maximize the lower bound .% (@, #) in Equation (3.5), EM alternates between maxi-

mizing over Q and 6 [47]. From here we have the two famous steps:
E-Step : Qr41 < argmax .7 (Q, Oy) (3.7)
Q

M-Step : 0y, «— argmax .Z (Qr11,0) (3.8)
0

It turns out that the maximization problem in the E-Step can be solved analytically.

By setting Q(Z) = P(Z|X, ), the lower bound becomes

25



Pz, Xx10) ., _

= logP(X|0)/ZP(Z|X,9)dZ (3.10)

= log P(X|0) x 1 = £(0). (3.11)

In other words, the lower bound turns into an equality when @ is chosen to be the con-
ditional distribution. This also implies that log-likelihood will not decrease as iterations

progress. The E- and M- steps can now be simplified to

E-Step: 9(0,0,) = /P(Z|X, 0x)log P(Z, X|0)dZ (3.12)
Z
= E[log P(Z, X0)] 5 x4, (3.13)
M-Step : 5,1 «— argmax ¥ (6, 0y), (3.14)
0

which is the form EM algorithm is usually presented in. Notice that the term [, Q(Z) log Q(Z)dZ
has been dropped from the computations since it does not depend on parameters 6.
The E-Step involves computing expectation of the joint log-likelihood with respect
to the conditional distribution over the hidden variables. This is exactly the inference
problem described above. Methods that apply this generic formulation to a specific
model generally find ¢ () analytically and then take derivatives with respect to specific
parameters to come up with update rules for the M-step. The following sections dis-
cuss specific formulation of the EM algorithm for Gaussian mixture models and hidden

Markov models.

3.6.3 Gaussian Mixture Models

A Gaussian mixture model attempts to capture all the data with a fixed number of
Gaussian distributions, called components or clusters. Once the number of compo-

nents P has been specified, parameters 6 of a GMM are identified with P 3-tuples:

26



0 = (n;,%;,p5),7 =1,..., P. Here, p; and 3; denote mean and covariance for compo-
nent j and have the same dimensionality as the data. The mixture coefficients p, provide
a measure of relative component importance and are subject to the stochastic constraint
Zj p; = 1. The likelihood of GMM parameters, given a data point z is, by definition,

equal to the density of the data points given those parameters:

P
L{0w) = 1610) = 3= (st oo (<36t m), @19
where d denotes the dimensionality. This likelihood calculation can be recognized as a
linear combination of P multivariate Gaussian probability density functions (pdfs).
There is a single hidden variable in GMMs, namely the index of the component that
generated a sample. The conditional distribution P(Z|X, #) can be computed as a pos-
terior over hidden variables using the Bayes rule with p;’s being the prior multinomial

distribution. More specifically, the E-Step computes component responsibilities for each

pair of sample z; and component j as

pif(wilps, Ej)
v ) 3.16
E kakf<$i|ﬁbk,2k) ( )

with f(x;|p;, ;) defined in Equation (3.15).

The M-Step reestimates parameters of the Gaussian mixture model using the com-
ponent responsibilities from the E-step [8, 24]. The update rules are obtained by com-
puting ¢ (0, 6,,) from Equation (3.12) analytically and setting its derivatives with respect
to each parameter to zero [8]. The constraint > ;p; = 1isenforced by using a Lagrange
multiplier. After all necessary computations are carried out, the resulting update rules

come out to be

Z?:l Yij i o 2?21 Yij (i — py) (i — Mj)T o & (3.17)
~n n

Hi = n | — n -
T v ’ > i1 Vig ’

with n denoting the total number of samples.

27



We can make a GMM behave as QDA by setting the number of components to 1 for
each class. A single-component GMM can be further constrained to behave as LDA, by
using the same covariance matrix across classes.

Unlike QDA and LDA, training a Gaussian mixture model on a particular dataset
will not always result in the same set of parameters 6. While Expectation Maximization
itself is a deterministic algorithm, the final solution will depend on the initial assign-
ment of values to the parameters. The implementation used in this thesis draws initial
p; values from a multivariate Gaussian distribution with mean o = 3" | z;/n and co-
variance matrix ¥ = > | (2;—p)(x; — )’ /(n—1), i.e., using the mean and covariance
of the entire dataset. The covariance matrices are initialized to be equal to the covari-
ance matrix of the entire dataset: ¥, = . The prior distribution p over component

responsibilities is taken to be uniform:
pi=1/P for i=1,..., P

GMMs can be seen as HMMs with the underlying Markov process replaced by the
mixture coefficients. As aresult, GMMs are unable to capture temporal information and,
given an observation sequence, will yield the same likelihood value regardless of the
sample ordering in that sequence. GMMs are considered in this thesis to validate HMM
results. The two modeling methods have the same spatial complexity and identical
performance will indicate that no advantage is gained by introducing the state transition
matrix. This in turn would imply that any temporal information present in an observation

sequence is not related to the class.

3.6.4 Hidden Markov Models

As already suggested, hidden Markov models [45] introduce a first order Markov pro-
cess in place of mixture coefficients. Each Gaussian component now becomes a state

with p;’s representing the prior multinomial distribution over the state assignment to the

28



first sample. Distribution for state assignment to successive samples comes from the
new parameter, a state transition matrix A with element 4, j denoting the probability of
going from state 7 to state ;.

Likelihood computation is performed in two steps. First, the observation probability
matrix B is computed for each pair of sample z, and state j, using again the multivariate

Gaussian pdf:

1 1 _
B = e (3w e w) 19

In theory, distributions other than Gaussian can be associated with the states, but Gaus-
sian pdfs are chosen here to be consistent with the theme of this thesis. In particular,
we are interested in investigating Gaussian fit to EEG data and comparison of hidden
Markov models with other classifiers that model the data using one or more Gaussian
distributions.

Once the observation probability matrix is available, the likelihood of a P-state
model given an observation sequence x of length 7" is computed recursively using the
forward step [45]. We define forward variables « to capture the likelihood of model

parameters based on a partial observation sequence up to time ¢ as follows:

L(0|x) = P(x|0) = ZO‘TZ

Because the true state assignment for data samples is unknown, the computation of
ay41,; considers all possible state assignments for the previous sample z;, weighted
by the corresponding transition probabilities from state ¢ to state 7. Summing up the «

values at the last timestep ¢ = 7" we obtain the probability density of the entire sequence.

29



A similar backward step can be used to compute the likelihood of model parameters

based on a partial observation sequence from time ¢ to time 7" [45]:

ﬁT,iIla 1§Z§P7

P
Bri = ZAi,jBt+1,j6t+1,ja T'—-1>t>1, 1<i<P,
=1

The forward and backward steps together make up the forward-backward procedure.

This procedure allows us to compute -, , = P(being in state ¢ at time ¢ |x, 6) as

Oét,zﬂt,z’
P 9
Zizl at,iﬁt,i

which is the first part of inference necessary for the E-step in the EM algorithm. The ~

Yii =

variables alone do not provide enough information to reestimate the transition probabili-
ties. Therefore, the second part of inference involves computing &; ; ; = P(being in state ¢ at time ¢ and stat

1|x, ), defined as
CYt,iAi,jBtH,jﬁtH,j
Zil Zle Oét,iAi,jBtH,jﬂtH,j '
Having ~ and ¢ variables allows for reestimation of transitional model parameter in the

gt,i,j =

M-step [8] by
S i
Aij = S5
t=1 ’Yt,i
The spatial model parameters are reestimated in exactly the same way as in the case of

Di = M,

Gaussian mixture models (i.e., according to Equation (3.17)):

_ D1 Vet o > Yo — ) (e — ps)”

Hi T i T
Zt:l Vi Zt:l Vi

for state 7.

As is the case with GMMs, hidden Markov models produced by the EM algorithm
are functions of the initial parameter value assignment. Parameters j;, 3;, and p; are
initialized the same way as in the Gaussian mixture model case. Rows of the transi-
tion matrix A are initialized to be random multinomial distributions with values A; ;

representing representing probabilities of going from state ¢ to state ;.

30



The ability to compute ~ values allows one to reason in terms of the most likely
sequence of states. This inference problem is approached using the Viterbi algorithm

[45] that consists of the following steps:
61.=piBi; 11;=0, 1<i<P

5t7j = max [(515_1’1‘141"]'] BtJ‘, 1 S ) S P, 2 S t S T

Yr; = argmax [0-1,;4;;], 1<i<P, 2<t<T

2

qr = arg max [07,4] 4 = Vrs1,q7,,

(2

with ¢* being the most likely sequence of states. The Viterbi algorithm can be rec-
ognized as the forward calculation with the sum replaced by the max operation in the
recursive part of the algorithm. The ¢/ variables are used to keep track of the indices at

every timestep, allowing us to backtrack along the path of the highest likelihood.

3.6.5 Overfi tting, Validation and Model Selection

An iterative training algorithm such as EM will continue to increase likelihood of the
model parameters given one particular data set. The problem is that the model may
not generalize well to other data sets, particularly other sample sequence from the same
class. This problem is known as overfitting and is alleviated by implementing an early
stopping mechanism. Early stopping in EM can be implemented by withholding part of
the training data and using it as validation to assess the model fit. When likelihood of
the model given validation data starts to decrease, the training is terminated even though
additional increase in likelihood on the training data is possible.

Early stopping is related to model selection. Model selection is motivated by a desire
to have a system that automatically decides on the amount of complexity needed for each
mental task. In GMMs and HMMs, the complexity is controlled through the number of

components/states. Validation data can also be used to perform model and parameter

31



selection. This is done by training multiple models and selecting the one that has the
highest likelihood given the validation data.

When data from multiple classes is not intermixed, the only way to assess model fit
on validation data is through log likelihood. On the other hand, when data from more
than one class is used in validation, model fit can be assessed based on the classification

rate.

3.7 Analysis of Normality

Gaussian mixture models and hidden Markov models assume that the spatial distribution
of the data being modeled can be accurately captured with a finite number of Gaussian
components. A way to quantify how well a particular dataset fits a mixture of Gaussians
would provide an alternative to validation when it comes to selecting the number of
Gaussian components. The approach taken here is based on the computations involved
in G-means [21].

More specifically, suppose we have a d-dimensional dataset of n samples {z1, x, ..., z,, }
and a Gaussian mixture model that has been trained on it. To measure the model fit us-
ing an analysis of normality, we first compute the component responsibilities for each
sample using the Equation (3.16). Unlike the original work on G-means [21], where
the authors performed a hard assignment of each sample to a single cluster, analysis of
normality in this thesis uses the component responsibilities as soft weights for each sam-
ple’s influence on each cluster. Using all n samples, the following set of computations

is performed for every cluster ;.

1. Compute the first principal component v of the cluster by performing SVD on the

cluster covariance matrix ;.

2. Obtain the one dimensional projection, f;, of the cluster mean 1;, the projection,

0]2 of the cluster covariance matrix 3;, and the projection y; of all samples z;

32



onto the first principal component by
fij = NJTU AJQ- = UTEJ'U Yi = T;0.

. Compute the Probability Integral Transformation [16] of the resulting 1-D sam-

ples:

Yi
Zi:F(yi;lajva'j):/ f(t;/lja&j)dtv l<ui<mn,

where f is the Gaussian probability density function defined by Equation (3.1).
The function F' can be recognized as the Gaussian cumulative distribution func-

tion (cdf).

. Reorder z;’s and the corresponding responsibilities ~;;, so that 0 < z(;) < z() <

.. < 2y < 1and v, corresponds to z;).

. Compute the empirical distribution function (edf) of z;’s:

Fo(2) =13 ¢k 2 <2< 21y With ¢ = ;1:;(1)] (3.19)
1, Z(n) S z Zi:l 7(1)3

This distribution function parallels the more traditional definition of an edf, a step
function where F,,(z) = i/n for z;) < z < z441). The problem with the tra-
ditional definition is that it does not take into account how well a sample z; is
captured by the cluster j. As a result, the edf can highly deviate from an accu-
rate representation of the cluster distribution. The function definition in Equation
(3.19) automatically accounts for the contribution of each sample through the use
of ~,;. Samples that are poorly captured by cluster j will have little impact on the
empirical distribution function. On the other hand, samples that are well captured

by cluster j will attribute a step value closer to 1/n, as desired.

33



6. Compute the test statistic (), as the deviation between the empirical and the true

distribution functions by

Qj = [Z Vij
i=1

This is a version of the Cramer-von Mises statistic [16, 49], an edf based calcula-

/0 [F.(2) — 2]* d=. (3.20)

tion that measures the sum of squared errors (SSE) between the true cdf and the
edf estimated from the data. Equation (3.20) compares the probability integral
transformations of the two. In case of the true cdf, the transformation yields a
uniform (0, 1) distribution [6] and, thus, F'(z) = z. We use F},(z) defined above
as the probability integral transformation of the edf of the actual samples y;. The
quantity >, vi; = >y Y(»); IS @ continuous quantity, equivalent to the number

of points captured by the cluster ;.

By carrying out the integration in Equation (3.20), one can arrive at

1 n
Qj = § [; %j]

n—1

s+ |Gy — )" = (s — )] + (1= 2w)”
k=1

with ¢;’s defined by Equation (3.19).

Carrying out this computation for each cluster yields a vector of statistic values @1, @2, ...
where K is the number of clusters in the model. Larger values of ) ; imply greater devia-
tion of the empirical distribution from the true cdf, which in turn presents more evidence
that the cluster is not well-fit with a Gaussian distribution. To assess the fit of the entire
model, we take the maximum @), value: Q = max,—1_x ;. The maximum @); value
corresponds to a cluster that has the worst fit.

Recall that a Gaussian mixture model solution is dependent on the initial value as-
signment to the parameters. To perform a statistically sound comparison a sample of
30 GMMs is created for each value of the number of clusters. The comparison is then

performed using the thirty Q values available from each model fit.

34



Although the test statistics are computed only for the first principal component of
each cluster, further normality analysis can be performed by considering the dataset
projection onto other principal components. This is outside the scope of this thesis
because testing along the first principal component already provides some comparative
information regarding the Gaussian fit of GMMs with different number of clusters. The
first principal component captures the maximum direction of variance in each cluster

and is independent of other principal components if the cluster is indeed Gaussian [26].

35



Chapter 4

Data

The dataset used in the following experiments was collected by Zak Keirn for his mas-
ter’s work [27]. The dataset contains EEG data recorded from channels C3, C4, P3, P4,
01 and O2 (positioned according to the international 10-20 standard [25, 30], as pre-
sented in Figure 4.1) from 7 subjects. Keirn recorded the data at a sampling frequency of
250Hz and filtered it to 0.1 - 100Hz frequency band. This dataset has been used exten-
sively in brain-computer interface experiments conducted at Colorado State University
[5, 2, 4, 29, 3].

The entire dataset was visually inspected and narrowed down to subjects 1, 2, 6, and
7. This subset was used in the experiments described in the following chapter.

The data for each subject consists of multiple 10-second trials. For each trial, the

subject was asked to perform one of the following five mental tasks for 10 seconds [27]:

e Basdline: The subject was asked to relax without performing any particular men-

tal task.

e Math: The subject was instructed to multiply two numbers in their head with the

numbers chosen such that the answer was not trivial.

e Letter: The subject was asked to compose a letter in their head. In consecutive

trials, the subject was to continue composing from where he/she left off.

36



VERTEX

LEFT SIDE : TOP

Figure 4.1: Placement of electrodes on the scalp according to the international 10-20
standard [25, 30].

e Counting: The subject was instructed to imagine a whiteboard with numbers

being written on it sequentially.

e Rotation: The subject was asked to imagine rotation of a three-dimensional fig-

ure.

The first trial of each task was recorded (in random ordering of the tasks) before moving
on to record the second trial. Similarly the second trial for each task was recorded prior
to the third trial, and so on. A single recording session consisted of 5 trials for each task.
There were two sessions recorded, each session on a different day, for subjects 1 and
6, yielding a total of 10 trials/task for these subjects. Subjects 2 and 7 participated in a

single recording session yielding 5 trials/task of available data.

37



Chapter 5

Results

5.1 Spatial Structure

Prior to measuring temporal structure at any level, we investigate how time-lag embed-
ding affects the data spatially. In particular, we would like to understand what happens
when there is no temporal correlation between neighboring samples in observation se-
quences. By using the independence of neighboring samples as the base case, we can
then measure additional effects of temporal structure.

The data in this experiment was generated from three highly overlapping observation
sequences with each observation sequence consisting of 1000 samples drawn indepen-
dently from a 2-D Gaussian distribution. The distribution parameters are given by the
means p; = [—0.5,0]7, ue = [0.5,0]7, u3 = [0,0.5]7, and three identity covariance
matrices. The generated data is displayed in the upper left corner of Figure 5.1. The re-
mainder of Figure 5.1 shows the Fisher projection [24] of the same data after application
of time-lag embedding. The three sequences become linearly separable as the number
of lags increases.

Recall that Fisher projection gives a visual representation of the classification accu-
racy one would expect to achieve with Linear Discriminant Analysis. As the number
of lags increases, so does the dimensionality of the corresponding LDA solution. A

rather trivial but important fact is that the likelihood of a high-dimensional LDA solu-

38



nLags = 10 <

nLags = 20

2 4

nLags = 40 <

|
I

|
N
o

2 4 -4 -2

o

I I
2 4

nLags = 60 <

nLags =70 <

Figure 5.1: Fisher projection of time-lag data from three observation sequences.

39




o
T I T
PEie Scrambled, QDA T T =e-. . -
L
o | / Unscrambled, QDA
o ! .- -~
! - T~ R
2 ~
! , . T~
% © ] ! ,/ et ~ o -
5 C P Scrambled, LDA ~ .
L2 l
=
0 L
8% | o
o° .
;
i
N
O -\_\
Unscrambled, LDA
o |
o

0 20 40 60 80 100 120
Number of lags

Figure 5.2: Five-fold cross-validation classification accuracy plotted against the number
of lags for LDA applied to unscrambled data, LDA applied to scrambled data, QDA
applied to unscrambled data, and QDA applied to scrambled data. Training and testing
is performed on the same trial.

tion given a time-lag sample is the product of likelihoods of the low-dimensional LDA
solution given the original samples that make up the time-lag sample. This fact holds
true as long as the original samples are independent and tells us that we can achieve
the same classification accuracy either by lagging the data or by multiplying posterior

probabilities of adjacent samples.

5.2 Local Temporal Structure

The question of interest is what happens when the samples are not independent. To

answer this question, we turn to the Keirn dataset and consider the first trial of each of

40



the five tasks from the first subject. This gives a total of 2500 samples for each class. To
assess the dependence of adjacent samples, a second dataset is created. It consists of the
same five 2500-sample observation sequences but with the samples randomly reordered
in each sequence. The reordering is done by taking a random permutation of the original
samples. The second dataset has exactly the same spatial distribution but any temporal
dependence of adjacent samples is destroyed through this reordering.

Figure 5.2 displays the classification rate obtained by running LDA and QDA on
the two datasets, plotted against the number of lags. The classification rate is computed
as the fraction of test samples classified correctly divided by the total number of test
samples. Perfect performance is given by a value of 1.0, while a classifier that assigns
a random label to each test sample will yield (in expectation) accuracy of 0.2 on this
five-class problem.

Each curve in Figure 5.2 displays five-fold cross-validation results, where the fold
division was performed at every 2 seconds of a 10 second trial. In cross-validation, each
fold in turn is used as the test set with the remaining folds being treated as the training
set. The results for cross-validation are reported as the average classification rate across
the five folds.

In the interest of brevity, we use labels ul da and uqgda to refer to LDA and QDA
classification performed on the original, unscrambled dataset. Similarly, the labels
sl da and sqda will refer to LDA and QDA applied to the scrambled dataset, created
through reordering of samples in the first dataset.

The following observations can be made regarding Figure 5.2.
e ul da performance steadily decreases as the number of lags increases.
e s| da performance steadily increases as the number of lags increases.

e As the number of lags increases, the QDA curves increase then decrease.

41



o Classification is more accurate for the scrambled datasets, even without lagging.

Prior to explaining these observations, we check to see how well they generalize to
other trials and subjects in the Keirn dataset. The same experiment was repeated for all
available trials and performance measured at 0, 42, 83, and 125 lags. These correspond
to lagging the data 0, 1/6, 1/3, and 1/2 of a second, respectively. Applying a large
number of lags results in a very high dimensional space, which in turn leads to problems
with singular covariance matrices. For these reasons, any number of lags higher than
125 was not considered. Table 5.1 and Table 5.2 present the corresponding classification
rates for five-fold cross-validation. The first row in these tables is seen to be consistent
with Figure 5.2.

We can now revisit the observations made about Figure 5.2. First, LDA always
performs better with the scrambled dataset. Moreover, the difference in LDA perfor-
mance on scrambled and unscrambled datasets grows with the number of lags. Recall,
that LDA makes its classification decision based solely on the closest centroid in the
whitened space. By considering more samples, we are able to determine the closest
centroid more accurately. However, local temporal information in EEG consists of high
correlation between neighboring samples. As a result, considering more samples in the
unscrambled dataset yields less information needed for centroid approximation than it
does in the scrambled case. The consistent decrease in ul da performance suggests that
the sample mean drifts throughout the trial and doesn’t generalize well from one 1/5th
of the trial to the next. Figure 5.3 shows that this is indeed the case.

The drift of the sample mean also explains why just scrambling the data without
lagging helps to increase the classification rate. Scrambling the data eliminates this
problem and reduces the classification problem to the case that was already depicted in
Figure 5.1 during our spatial structure discussion in the previous section.

Second observation is that, overall, QDA vyields higher performance than LDA, at

42



Subj./ #lags=0 # lags = 42

Trial | ulda wugda slda sqda | ulda wugda slda sqda
1/1 0.173 0.281 0.285 0.426 | 0.139 0.805 0.628 0.958
12 0.107 0.196 0.261 0.368 | 0.089 0.806 0.585 0.880
1/3 0.117 0.252 0.265 0.414 | 0.083 0.866 0.541 0.941
1/4 0.157 0.295 0.304 0.441 | 0.136 0.843 0.663 0.980
1/5 0.090 0.252 0.251 0.423 | 0.051 0.870 0.603 0.972
1/6 0.175 0.249 0.243 0.336 | 0.140 0.832 0.517 0.786
17 0.143 0.248 0.251 0.348 | 0.107 0.858 0.526 0.810
1/8 0.120 0.286 0.244 0.391 | 0.082 0.861 0.438 0.927
1/9 0.153 0.251 0.240 0.339 | 0.122 0.852 0.485 0.801
1/10 | 0.136 0.290 0.242 0.386 | 0.066 0.942 0.486 0.926
2/1 0.296 0.332 0.343 0.384 | 0.314 0.809 0.723 0.781
212 0.269 0.308 0.341 0.384 | 0.275 0.889 0.644 0.732
213 0.265 0.320 0.313 0.394 | 0.302 0.908 0.637 0.797
2/4 0.284 0.325 0.331 0.375|0.281 0.900 0.629 0.722
2/5 0.219 0.270 0.265 0.335 | 0.183 0.867 0.612 0.772
6/1 0.166 0.308 0.233 0.351 | 0.126 0.786 0.412 0.851
6/2 0.181 0.298 0.245 0.365 | 0.172 0.766 0.518 0.882
6/3 0.173 0.277 0.240 0.340 | 0.164 0.758 0.448 0.800
6/4 0.130 0.269 0.226 0.337 | 0.070 0.882 0.364 0.866
6/5 0.161 0.332 0.236 0.394 | 0.124 0.842 0.400 0.946
6/6 0.172 0.259 0.230 0.327 | 0.147 0.922 0.486 0.693
6/7 0.146 0.247 0.236 0.337 | 0.082 0.839 0.496 0.835
6/8 0.162 0.273 0.254 0.341 | 0.100 0.845 0.466 0.813
6/9 0.173 0.273 0.229 0.330 | 0.152 0.794 0.456 0.810
6/10 | 0.135 0.275 0.230 0.351 | 0.060 0.803 0.412 0.874
711 0.148 0.277 0.262 0.372 | 0.131 0.843 0.560 0.834
712 0.175 0.303 0.268 0.378 | 0.238 0.816 0.623 0.810
713 0.137 0.308 0.254 0.409 | 0.106 0.874 0.576 0.872
714 0.150 0.243 0.256 0.361 | 0.117 0.817 0.559 0.821
715 0.181 0.270 0.284 0.388 | 0.186 0.763 0.791 0.936

Table 5.1: Five-fold cross-validation results (as fraction classified correctly) for the en-
tire Keirn dataset using 0 and 42 lags. Training and testing is performed on the same
trial.

43



Subj./ # lags = 83 #lags =125

Trial | ulda wugda slda sqda | ulda wugda slda sqda
1/1 0.138 0.738 0.680 0.960 | 0.127 0.567 0.796 0.930
12 0.086 0.769 0.755 0.824 | 0.075 0.588 0.793 0.677
1/3 0.071 0.798 0.673 0.877 | 0.072 0.589 0.730 0.772
1/4 0.126 0.790 0.722 0.954 | 0.126 0.658 0.735 0.812
1/5 0.063 0.846 0.703 0.957 | 0.078 0.733 0.806 0.607
1/6 0.151 0.658 0.659 0.640 | 0.134 0.361 0.743 0.413
17 0.096 0.732 0.689 0.670 | 0.098 0.589 0.672 0.503
1/8 0.063 0.788 0.502 0.843 | 0.064 0.580 0.535 0.721
1/9 0.112 0.811 0.573 0.697 | 0.112 0.670 0.673 0.584
1/10 | 0.061 0.889 0.624 0.874 | 0.066 0.736 0.702 0.724
2/1 0.311 0.748 0.851 0.774 | 0.310 0.529 0.841 0.616
212 0.294 0.793 0.726 0.649 | 0.289 0.435 0.794 0.588
2/3 0.277 0.816 0.719 0.743 | 0.275 0.526 0.768 0.586
2/4 0.298 0.875 0.683 0.733 | 0.305 0.698 0.730 0.604
2/5 0.177 0.824 0.740 0.711 | 0.179 0.628 0.783 0.594
6/1 0.098 0.737 0.478 0.771|0.094 0.600 0.561 0.499
6/2 0.158 0.817 0.659 0.716 | 0.168 0.716 0.723 0.519
6/3 0.163 0.748 0.490 0.708 | 0.164 0.689 0.582 0.503
6/4 0.077 0.889 0.407 0.788 | 0.078 0.826 0.426 0.721
6/5 0.113 0.796 0.430 0.893 | 0.112 0.691 0.493 0.708
6/6 0.144 0.883 0.551 0.632 | 0.150 0.736 0.661 0.501
6/7 0.073 0.798 0.572 0.796 | 0.081 0.739 0.626 0.702
6/8 0.078 0.820 0.536 0.802 | 0.081 0.730 0.530 0.661
6/9 0.164 0.751 0.494 0.623 | 0.131 0.671 0.556 0.489
6/10 | 0.061 0.835 0.511 0.826 | 0.052 0.809 0.546 0.649
711 0.122 0.752 0.659 0.732 | 0.105 0.549 0.689 0.517
712 0.230 0.667 0.739 0.761 | 0.216 0.362 0.767 0.546
713 0.093 0.796 0.745 0.763 | 0.081 0.499 0.739 0.500
714 0.125 0.830 0.713 0.755 | 0.127 0.722 0.732 0.676
715 0.188 0.691 0.891 0.866 | 0.180 0.513 0.930 0.650

Table 5.2: Five-fold cross-validation results (as fraction classified correctly) for the en-
tire Keirn dataset using 83 and 125 lags. Training and testing is performed on the same
trial.

44



\ t+
A "
N 'y ! i 0\
l’\ ! " ! ! l
\ TR ] '
) , [ 1y
v oo 1y |
f f [ 1y \
ot ) [
[¢}] P LT ! [¢}] (] L
e VoA " o] o e |
=} [ =} > \ [
= ) | = = " [ ! !
= b = = [
Q. & vy | o o e |h‘ ,: ! |
= " 1 ) ]
[ '
" ; 1 £ £ , :
[ . ] [
. v ! 1 y ! W p
oy L J V! W w iy
TR K 1"\
'
Lo ' L
I
! 1y
] ]
C3 ! P3 '
' \
time time
\ '
" / N h
\ \ N
! ! " [
! ¢! "y
[ ‘
[ ! oy [
\ ¢! ] A e
! [N r A ! ‘ot L o
! ! vl \ ’ v ' \
v ) v . " 1 )
) i v “1 ) l' iy 'y N\ (<)) I o
\
o ' [ ! o | oot o f W \
S Voo S . \ S ) A
= ! \, ! = ] O = ! I B
e e \d N — | |
[eX q A [eX N V! ‘) o , 1, Vo
1
E W W € AL VA € , A
@© @ 1 v I ) R\ A
\ 4 X Vo \ i Vo \
\ -
) [ \ ) N
§ . \ !
! N (W ' K Ve \
\ ! Ve no ‘o ¥
Lot N ‘ \ ot o \ ‘n|
Mt i 3 n o
R J K
P4 v 01 Cal 02

time time time

Figure 5.3: Mean amplitude computed for samples in a sliding one-second window for
all 6 channels of the first trial. Data from the first mental task performed by Subject 1
was used. Plotted are the mean amplitudes vs. time for scrambled (—) and unscrambled
(- -) datasets.

45



o
S R e
/.//
,——— Scrambled, QDA
4
© L
o 7] L PR
/ / Unscrambled, QDA TR e
0
) N} R Scrambled, LDA
+—= O I .
E O — . .
o b
8 /
5|1
8 _ ;
o° N ~—
— Unscrambled, LDA

N

o

o _|

o

0 20 40 60 80 100 120
Number of lags

Figure 5.4: Classification accuracy on the first trial of the first subject. Same data was
used for training and testing.

46



times reaching as high as 90% accuracy. This is expected, since QDA uses the first
two moments of variance and provides more flexibility to the Bayesian decision bound-
ary than LDA, which uses only the first moment of variance. Unlike LDA, however,
QDA performance peaks for some number of lags and then begins to decrease. From
Table 5.2, we see that QDA performance is lower for the half a second delay (last four
columns) than it is for 1/3 of a second delay (columns 2 through 6) for all subjects and
all trials. This is rather surprising because one would expect that once the classifier finds
a good separating boundary in d dimensions, that boundary will still be presentinp > d
dimensions. The consequence of such invariance should be a monotonically increasing
classification accuracy function. This is what is being observed in Figure 5.4, which
displays classification accuracy on the training data. The fact that the classification ac-
curacy on the test data begins to go down suggests that we are dealing with overfitting,
where a very large number of dimensions provides enough flexibility for the training
data to become quadratically separable. Unfortunately, the quadratic boundary begins
to separate the training data so well that it fails to generalize to the test data.

It also turns out that the intuition regarding boundary invariance is not entirely accu-
rate. Suppose that an LDA model for two classes is defined by 1.1, p1, the mean and prior
of the first class, and po, po, the same set of parameters of the second class. Suppose
also that X defines the common covariance matrix. The boundary between two classes
is then defined to be all points x, for which the two Bayesian posterior probabilities are
equal [24]. After application of the Bayes rules, the boundary can be expressed in terms

of the Gaussian probability density functions of the two classes:
Ji(@)pr = fo(x)p2
1 1
p1exp <—§(~”C —m) Sz~ m)) = paexp (—5(1‘ — )" E 7z — ug))

T
log 2+ (2= EL = 22) 371y — ) = 0 (5.1)
P2 2 2

47



where we took the log of both sides and canceled out the quadratic term 7>« after
some simplification. Suppose now that this boundary is defined for d dimensions and
let’s see what happens when we bump the number of dimensions to d + 1. For the
sake of argument, suppose that we are working with the same number of samples n as
in the original d-dimensional space. The only difference is that each sample now has
an additional (d + 1)™ coordinate appended to it. Increasing dimensionality by 1 is
equivalent to increasing the numbers of lags by 1 when working with a 1-D time series.
Understanding what happens in d + 1 dimensions would then allow us to inductively
generalize to an arbitrary p > d number of dimensions.

Because estimating the first two moments of variance involves component-wise
computations, the new samples z; and the new model parameters computed from those

samples can be expressed using the original quantities. More specifically,

oo ZT; oo Hj S X v 1
RN R

where a;’s, m;’s, o are the new scalars and v is a new d by 1 column vector introduced

1,2,...,n,
1,2,

by the increase in dimensionality. The LDA boundary for d 4+ 1 dimensions can now be

defined as .

1og% + (x -E “—) 5711y — fiz) = 0, (5.2)
where & was introduced to emphasize that the solution will be a d + 1-dimensional
(infinite) set of points. We would like to compare the projection of this new boundary
with the original d-dimensional boundary defined by the Equation (5.1). To do so, we

set the (d + 1) coordinate of , /i1, ji, to 0, producing

T -1
b1 T — f11/2 — po/2 X M1 — H2 |
log D + 0 I o 0 =0. (5.3)

Note that the 0 entries will cancel out any covariance matrix content in the (d + 1) row

and the (d + 1)™ column. Thus, we are only interested in the upper-left d by d entries,

48



which are given by

Y o] [Sl 42 (o — 0TS ) IS
vl o B

We label C' = X7 1v(o — 0T3S 1) 1oTE 71, plug it into the Equation (5.3) and simplify
to get

T
log22 + (:1: - &> (S 4+ C) (g — p2) = 0.
b2 2 2

This result can be separated into a term that depends on C' and terms that do not, resulting

in

logz—: + (x — % — %)TEl(,ul — pa) + <x — % — %)TC’(M — 12) = 0.
Comparing this result to Equation (5.1), we note that the two are equivalent when C' is
0. Going back to the definition of C', we see that this happens only when v is 0, which
(due to the Normality assumption) would indicate independence between the (d + 1)
coordinate and the other d coordinates. Moreover, when v is not 0, the new (d + 1)-
dimensional boundary will not go through the original boundary and it will not be paral-
lel to it. In other words, the new (d + 1)-dimensional boundary will contain the original
d-dimensional boundary if and only if the new (d + 1) dimension is independent of
the original d dimensions.

A similar computation can be carried out for the QDA decision boundary. The d

dimensional boundary is defined by

1 > 1
Diog 22l 10 P L 10— )T e — ) — (0 — ) S @ — )] = 0, (5.4)
2 |21| pg 2

where class-specific covariance matrices >; and >, are now used in place of the former

common covariance matrix Y. Suppose that the (d + 1) dimension is independent of

the other d dimensions. This implies

. o EZ 0 v—]__ 22—1 0 o B o
Ei_[o cr] > _{ 0 01} || = 03[ X4 i=1,2.

49



Plugging this into the equation for the d + 1-dimensional boundary and computing the

projection onto the original d dimensions, we get

P1 1
+log — + -
2 O'1|21| gpg 2

[(x — o) S5 (@ — o) — (= )BT (@ Ml)} =0,

which is very similar to the Equation (5.4) but not quite identical. From here, we can
conclude that, unlike in the case with LDA, the d + 1-dimensional quadratic decision
boundary will not contain the original d dimensional quadratic boundary when the new
dimension is independent. Instead, its projection into the d dimensions will be offset
by %log 22 from the original boundary. Note, however, that the quadratic curvature is
preserved if the (d + 1) dimension is independent.

The analysis above demonstrates that the Bayesian decision boundary found in d
dimensions by LDA is invariant to the increase in dimensionality if and only if the
additional dimensions are independent of these d dimensions. In our experiments so far,
sl da is the only place where this occurs. Because the data is scrambled and assumed
to come from a Gaussian distribution, we can apply Proposition 1 to show that the new
dimensions introduced through lagging will be independent of the original dimensions.
In case of the other three curves (i.e., ul da, ugda, sqda ), the dimensions are either
correlated or the decision boundary is quadratic leading to the lack of invariance in the
decision boundary.

Although no connection to monotonically increasing classification rate is provided,
the above analysis gives an intuition regarding what happens to a decision boundary as
dimensionality increases. A non-stationary decision boundary does not necessarily lead
to a potential decrease in classification because, as observed in Figure 5.4, the training
error keeps decreasing as dimensionality increases and the decrease of the classification
rate observed in curves uqda and sqda in Figure 5.2 is mostly due to overfitting.
One thing that the above analysis does suggest is that the decision boundary found for p

dimensions in the sl da experiment will have to contain the decision boundary found for

50



o
S
Unscrambled, QDA
. JPEEEEEES
O- I Cd - T i i
<7 aieimemem T T
.7 _.- Scrambled, QDA
/ PR
e ’ ’
® g ] / /.,
Q r,
© /-
2 I
K7} 1
g g — I/'
O
f
]
Unscrambled, LDA
AN
s ] -
Scrambled, LDA
o
S -
I I I I I I I
0 20 40 60 80 100 120

Number of lags

Figure 5.5: Five-fold cross-validation classification accuracy plotted against the number
of lags for LDA applied to unscrambled data (ulda), LDA applied to scrambled data
(slda), QDA applied to unscrambled data (ugda), and QDA applied to scrambled data
(sqda). Training is performed on four trials in the session. Testing is performed on the
remaining fifth trial.

d < p dimensions. While this may result in less flexibility when it comes to separating
the data, the problem of overfitting ends up being less pronounced. This reasoning is
related to the flexibility versus overfitting trade-off (also known as the bias-variance
trade-off [24]) that is often associated with the choice of the classifier complexity.

The drift of the sample mean throughout the trial motivates the use of multiple trials

for training. This is examined next.

51



Subj./ #lags=0 # lags = 42

Sess. | ulda uqda slda sqda | ulda uqda slda sqda
1/1 0.191 0.310 0.191 0.310 | 0.187 0.828 0.183 0.727
12 0.205 0.297 0.205 0.297 | 0.219 0.808 0.253 0.677
2/1 0.297 0.333 0.297 0.333 | 0.333 0.778 0.457 0.654
6/1 0.215 0.285 0.215 0.285|0.240 0.594 0.279 0.671
6/2 0.199 0.278 0.199 0.278 | 0.214 0.568 0.190 0.601
711 0.222 0.306 0.222 0.306 | 0.225 0.691 0.336 0.549

Table 5.3: Five-fold cross-validation results (as fraction classified correctly) for the en-
tire Keirn dataset using 0 and 42 lags. Training is performed on four trials in the session.
Testing is performed on the remaining fifth trial.

Subj./ # lags = 83 #lags =125

Sess. | ulda uqda slda sqda | ulda ugda slda sqda
1/1 0.201 0.868 0.184 0.762 | 0.201 0.875 0.169 0.776
1/2 0.230 0.846 0.261 0.716 | 0.231 0.855 0.272 0.726
2/1 0.343 0.801 0.487 0.677 | 0.347 0.808 0.501 0.686
6/1 0.249 0.625 0.283 0.718 | 0.267 0.638 0.299 0.732
6/2 0.204 0.593 0.209 0.636 | 0.198 0.603 0.202 0.672
711 0.233 0.705 0.380 0.553 | 0.235 0.704 0.396 0.534

Table 5.4: Five-fold cross-validation results (as fraction classified correctly) for the en-
tire Keirn dataset using 83 and 125 lags. Training is performed on four trials in the
session. Testing is performed on the remaining fifth trial.

52



5.3 Temporal Structure Across Trials

The set of experiments performed here is similar to those in the previous section. The
main difference now is that the training is performed using four trials in a session and
the resulting classifier is tested on the remaining fifth trial. Samples are scrambled only
within each trial but are not inter-mixed across trials.

By considering multiple trials, we are ensuring that we are classifying mental tasks
and not just times of recording. Figure 5.5 displays detailed results for the first session
of the first subject and Tables 5.3 and 5.4 are presented in order to show how well these
results generalize to other subjects and sessions.

Comparing these results to the single-trial experiments, we note the following dif-
ferences. First, sl da no longer vastly outperforms ul da. In fact, the two algorithms
tend to be competitive with each other. The reason for this behavior is related to the
previous discussion on the sample mean drift. More specifically, training on four tri-
als builds a linear boundary that best separates the sample means of those four trials.
The problem is that the sample mean is different in the fifth trial and the constructed
LDA classifier fails to capture this difference. Because the samples are not allowed to
be inter-mixed across trials, scrambling the data does not alleviate this problem. This
is in contrast to the earlier experiments where scrambling annihilated any difference in
the sample means across the different folds in the cross-validation. Failure to eliminate
this difference here also explains why the results are identical between scrambled and
unscrambled versions of the algorithms when the number of lags is zero (i.e., columns
2 through 6 of Table 5.3).

The second difference between single-trial and multi-trial experiments is the appar-
ent lack of overfitting. The curves uqda and sqda in Figure 5.5 maintain monotonic
increase between 0 and 125 lags. From Table 5.4 we also observe that, except for the

first session of subject 7, the performance of QDA classifiers was higher with 125 lags

53



Subj./ # lags = 250

Sess. | ulda ugda slda sqda
1/1 0.234 0.850 0.176 0.766
1/2 0.219 0.816 0.284 0.700
2/1 0.367 0.827 0.576 0.645
6/1 0.287 0.658 0.338 0.724
6/2 0.203 0.633 0.206 0.631
7/1 0.235 0.681 0.430 0.537

Table 5.5: Five-fold cross-validation results (as fraction classified correctly) for the en-
tire Keirn dataset using 250 lags. Training is performed on four trials in the session.
Testing is performed on the remaining fifth trial.

(1/2 of a second) than with 83 lags (1/3 of a second). It turns out that overfitting still
occurs but it occurs for a much higher number of dimensions. Table 5.5 displays the
classification results when 250 lags were used. The classification rates are seen to be
lower than those corresponding to 125 lags. The fact that a higher number of dimensions
is required to observe overfitting is expected because we are dealing with a large number
of samples. Overfitting a larger number of training samples requires higher flexibility
of a classifier, which in this case is controlled through the dimensionality. This, again,
is related to the bias-variance trade-off mentioned earlier.

The final difference between single-trial and multi-trial experiments is the seemingly
inconclusive results regarding whether the scrambling helps to increase the classifica-
tion rate. Based on the results presented in Tables 5.1, 5.2, 5.3, 5.4, and 5.5 we are
unable to say whether sqda or ugda performs universally better than the other. While
scrambling an EEG trial is not a practical thing to do, it is important to understand how
and why it affects the classification rate. From the experiments thus far, we were able
to observe that applying a classifier to a time-lag version of the data increases the clas-
sification rate. By examining the scrambled version of the dataset, we would like to

conclude whether this increase in performance is due to some geometrical structure that

54



is created from the temporal structure through lagging or the increase in performance
is simply attributed to considering multiple samples at once. Scrambling destroys any
correlation between neighboring samples in a time series. More specifically, the mean
and the variance become more uniform across the samples that get scrambled (in our
case, across each of the trials). The sqda curve provides a quantitative measure of
how the classification accuracy is affected based solely on considering more samples
at a time. The deviation of ugda curve from sgda shows how the classification ac-
curacy is affected by the temporal information. When uqda is higher than sgda, we
can conclude that lagging transforms temporal correlation of neighboring samples into
a certain geometrical structure that is then exploited by QDA to enhance the classifica-
tion accuracy. When uqda is lower than sgda, we can conclude one of two things.
First, perhaps the geometrical structure does not generalize well between the training
and the test data and that we are, again, dealing with overfitting. However, Figure 5.4
demonstrates lower performance on the unscrambled dataset even for the training data,
suggesting that overfitting alone does not explain what is happening. The second, more
intuitive conclusion may be that the created geometrical structure presents more of a
challenge for such simple classifiers as LDA and QDA. Further investigation needs to
consider a larger number of sessions for each subject to determine whether the difficulty
of geometric structure separation is subject-dependent.

Later, Gaussian mixture models (GMMs) are considered. Besides being a baseline
for evaluating performance of hidden Markov models, GMMs also arise as a general-

ization of LDA and QDA due to modeling each class with more than a single Gaussian.

5.4 Overfitting and early stopping

Prior to investigating temporal information with GMMs and HMMs, we discuss some

issues related to model complexity and overfitting in these two techniques. Recall

55



™
© 7 S Phe
o .~ «_--"- N - GMM, no ES

0.61
|

Classification Rate
0.59
L1

0.62 064 0.57
|

Classification Rate
0.60
|

0.58
|

Classification Rate
0.58 0.62
| |

0.54
|

0.60
|

Classification Rate
0.56
|

0.52
|

Figure 5.6: Five-fold cross-validation classification accuracy plotted versus the num-
ber of clusters for Bayesian classifiers based on Gaussian mixture models (GMM) and
hidden Markov models (HMM) with and without early stopping (ES). The solid lines
display the mean across 30 runs and the dashed lines are 1 standard deviation away from
them.

56



that learning a model with latent variables involves running Expectation Maximization
(EM), which is an iterative algorithm. The EM algorithm guarantees that the likelihood
of the model given the training data will be non-decreasing as the iterations progress,
potentially leading to overfitting. In addition to the number of EM iterations the final
model fit also depends on the number of states (or clusters). A larger number of states
leads to more flexibility but also to a larger potential for overfitting. In this section, I
investigate the effects of early stopping in an attempt to address the overfitting problem.

Figure 5.6 displays five-fold cross-validation results on EEG data from the first
recording session of the first subject. Training was performed on four of the trials in
the session and the resulting classifier was applied to the fifth trial. Rather than working
with the samples directly, each trial was split up into ten one-second windows. Each
window is then treated as a single observation sequence, yielding a total of 200 obser-
vation sequences (5 tasks x 4 trials x 10 windows) for training and 50 observations
sequences for testing in each of the cross-validation folds. A single label is assigned
to each observation sequence in the test data and the classification rate is computed as
the number of sequences classified correctly. The primary reason for working with ob-
servation sequences, or windows, rather than with individual observations is that hidden
Markov models take into consideration transitions between adjacent samples. If individ-
ual samples are modeled, the hidden Markov model representation is no different from
the Gaussian mixture models because no transitions are being considered. To investigate
the differences between the two modeling techniques one really has to consider multi-
ple samples. Furthermore, the GMM modeling does not consider transitions between
subsequent one-second windows.

The first graph in Figure 5.6 displays results in the form mean =+ st.d (computed
over 30 runs) for Gaussian mixture models with the number of Gaussians in the mixture

varying between 1 and 50. Five-fold cross-validation was performed in each of the 30

57



runs. There is a steady decrease in the average classification accuracy as the number of
clusters increases, which is a clear evidence of overfitting. Modeling with a larger num-
ber of Gaussians allows one to approximate arbitrary data distributions more accurately.
In the limit, when the number of Gaussian clusters is equal to the number of data points,
the training data is captured perfectly. The down side of working with a large number of
clusters is the lack of generalization of the resulting model to other data from the same
class. Since we are interested in a good general description of each class, we become
limited to using a small number of clusters. In the case depicted by the first graph of
Figure 5.6, using more than 13 clusters/class appears to be undesirable.

The second graph in Figure 5.6 demonstrates the effects of early stopping in the
context of Gaussian mixture models. To implement early stopping, 8 of the 40 training
observation sequences are chosen uniformly at random for each task and are withheld
for validation. The EM algorithm terminates when the log-likelihood measure given the
validation data begins to decrease. As seen from the graph, early stopping effectively
reduces the amount of overfitting, particularly in the case with a higher number of clus-
ters. The classification accuracy now tends to remain more uniform as the number of
Gaussian clusters varies between 1 and 50. This suggests that, regardless of what the
number of clusters is chosen to be, the use of the validation data ensures that the model
remains general enough to accurately describe the entire class, not just one particular
instance of a dataset from that class. Recall, from the “Methods” chapter, that the co-
variance matrices for each cluster are initialized to be the covariance matrix of the entire
dataset. As iterations of the EM algorithm progress, entries in the covariance matrices
decrease and each Gaussian cluster “zooms in” on one particular part of the training
data. Early stopping prematurely terminates the training and results in the covariance
matrices remaining large. While this results in lower likelihood of the model given the

training data, early stopping allows the resulting model to capture new data that does

58



not quite overlap with the training data but instead lies in its proximity. This behavior is
invariant to the number of clusters, hence the nearly horizontal line in the second graph
of Figure 5.6.

The bottom two graphs in Figure 5.6 display the effects of early stopping on training
hidden Markov models. Comparing these graphs with the GMM results, we note a few
striking differences. First, the best classification accuracy is achieved by using a single
hidden state. The behavior of a single-state HMM is identical to a single-cluster GMM,
which in turn is identical to using QDA. Moreover, as the number of states is increased
to 2, we observe a dramatic negative jump in performance. The classification accuracy
related to a two-state HMM is significantly lower than its two-cluster GMM counter
part. This suggests that by learning the state transitions in the training data, an HMM
actually overfits that data. Such a result is quite surprising as one would expect that
state transitions somehow encapsulate local temporal information which, based on our
earlier experiments, is potentially useful to accurate classification. Observing a decrease
in the classification accuracy we conclude that a first order Markov process may not be
the right tool for capturing the dependence of adjacent samples (either in the original
or in time-lag space). The second difference between GMM and HMM results lies in
the apparent lack of overfitting when a large number of states is used in an HMM. The
curve in the third graph (HMM, no early stopping) appears, for the most part, horizontal
while the decrease in the classification accuracy can be clearly observed in the first
graph (GMM, no early stopping). Moreover, employment of early stopping appears to
hurt more than it helps, an observation that becomes the third difference between GMM
and HMM results. The average performance drops by about 2% when early stopping
is introduced. Both the apparent lack of overfitting for models with a high number of
states and the decrease in performance attributed to early stopping, are currently very

puzzling and require further investigation.

59



Lower classification rates in the bottom two graphs of Figure 5.6 do not speak in
favor of hidden Markov models. Based on the results of this section, we are more in-
clined to use Gaussian mixture models. Not only do GMMs yield higher classification
rate, the EM algorithm calculations are also simpler because we don’t need to reesti-
mate a transition matrix. In the following section, | investigate how these classification
rates are affected when time-lag embedding is introduced into the picture. Because early
stopping seems to hurt HMM performance, it was not employed in the following exper-
iments. To offset the effects of overfitting, however, | used a small number of Gaussian

clusters/states.

5.5 Global Temporal Structure

Time-lag embedding introduces a grouping to adjacent samples in a time series. This
grouping allows us to analyze the local temporal structure present in the original time
series by computing the correlation of dimensions in the new transformed space. In
this section, | investigate whether it is beneficial to model transitions from one time-lag
sample to the next one. Modeling these transitions is a way to capture global temporal
structure, i.e., temporal dependence among groups that already encapsulate local tem-
poral information.

More specifically, | model the time embedded samples with a mixture of Gaussians
and then introduce a first order Markov process to model the switching from one Gaus-
sian in the mixture to another as samples are being observed. As described in the “Meth-
0ds” chapter, this is done using Gaussian mixture models and hidden Markov models.
Similar to the previous experiments with these techniques, the training and classification
is performed on one-second windows rather than individual samples (again, due to the
fact that an HMM is modeling the transitions between samples and therefore requires

multiple samples to work with). The lagging is applied on a per-window basis. In other

60



p H
© /G“G'—ﬁ\G—,G—d\—\G
_-H A6
igﬂﬁwé/ "H--H o
H
®
@S |
<
o
Q
o
o~ |
=
1]
<
®)
©
© 4
— GMM
--- HMM
I I I
5 10 15

Number of lags

Figure 5.7: Classification accuracy plotted against the number of lags for classifiers
based on five-state hidden Markov models (HMM) and five-cluster Gaussian mixture
models (GMM). The results were computed as five-fold cross-validation using the first
recording session of the first subject.

words, when a delay of & lags is requested each 250 x p window of observations is
transformed into a (250 — k) x (kp + p) observation sequence with no samples inter-
mixed across windows. The classification rate is computed as the percent of windows,
or observation sequences, being classified correctly.

Figure 5.7 demonstrates how the classification rate is affected by the number of lags
for GMMs and HMMs. These results are for the first session of the first subject. As
before, the classifier was trained on windows of four trials in the session and classifica-
tion was performed on windows in the remaining fifth trial. A model with five Gaussian
clusters/states was used for all GMMs and HMMs with no early stopping employed.

Based on the results presented in Figure 5.7, using a hidden Markov model offers
no clear advantage to its counterpart algorithm that only models spatial structure. To

validate this conclusion, we examine performance of GMMs and HMMs on the data

61



Subj./ GMM HMM

Sess. | Olags 51lags | Olags 5 lags
1/1 0.608 0.888 | 0.536 0.856
1/2 0.712 0.936 | 0.636 0.920
2/1 0.592 0.856 | 0.552 0.836

Table 5.6: Five-fold cross-validation results for classifiers based on five-cluster Gaus-
sian mixture models (GMM) and five-state hidden Markov models (HMM). Data from
subjects 1 and 2 was used.

from other recording sessions and other subjects. Table 5.6 presents classification rates
for the data from subjects 1 and 2. Unfortunately, time-lag data from subjects 6 and
7 contains nasty outliers that result in numerical instability of the EM algorithm when
attempting to learn a GMM or an HMM. The likelihood of a model when given such
an outlier comes out to be 0 resulting in a division by 0 in the M step of the algorithm.
Removing outliers from the dataset could potentially result in a bias when learning an
HMM because the model relies on transitions from one sample to the next. For this
reason, results for subjects 6 and 7 are not included.

Nevertheless, Table 5.6 confirms our earlier conclusion that hidden Markov models
offer no clear improvement in performance over Gaussian mixture models. In fact, it ap-
pears that classification rates for HMMs are lower but multiple runs would be required to
conclude whether this difference is statistically significant. A potential explanation for
this lack of performance increase is that a first order Markov process does not capture
information specific to a particular mental task and the transitions learned during train-
ing do not offer any additional discriminative information in the Bayesian framework.
There is a very particular structure to the transitions between neighboring time-delay
samples. More specifically, suppose that % lags were applied to a d-dimensional signal
resulting in samples of dimensionality kd 4+ d. Then, by construction, entries d + 1

through kd + d in a time embedded sample will be identical to entries 1 through &d in

62



the immediately following sample. Thus, the transitions between neighboring samples
can be modeled as a reflection about a 45-degree plane in kd dimensions followed by a
translation in the other d dimensions. For example, consider four 2-D samples [z, y1]7,
(22, y2]T, [23,y3]T, and [z4, y4]T. Apply two lags results in two samples embedded in
2 x 2+2 = 6 dimensional space, [x1, y1, Ta, Y2, T3, y3]T and [z, ¥y, T3, y3, T4, ya] T, With

the following transitional relationship:

- 0010007T[m 0
" 000100]|]|un 0
| 00001 0]|m 0
s |~ looo0o0o01||lw| |0l (5.5)
4 000000/ x 24
_y4_ _OOOOOO__yg_ _y4_

which can be recognized as a reflection about a 45-degree plane in 4-D and an additional
translation in dimensions 5 and 6. Once the number of lags is specified, the matrix in
Equation (5.5) is fixed not only across samples in one particular sequence but also across
sequences, including across different mental tasks. Therefore, learning the matrix will
not aid in classification and translation is the only place where any discriminative infor-
mation may be present. However, the translation vector simply contains a sample of the
original time series (in our example, the fourth sample of the original 2-D series). Learn-
ing the transition information from translation is, therefore, equivalent to learning the
transition information from the original time series, which, as we saw from Figure 5.6
results in overfitting. This explains the apparent lower performance of HMM-based
classifiers in Table 5.6.

The surprising result from Figure 5.7 and Table 5.6 is that 5 lags seems to yield a
much higher increase in performance when compared to our earlier experiments with
LDA and QDA. This may be due to the following two reasons. First, a move from
a single Gaussian to using a mixture of five Gaussians to represent each class yields
more flexibility in the Bayesian decision boundary. Second, by considering one-second

windows rather than individual samples we are able to make a classification decision

63



[ee]
. W
o
w—

~
0o |
[
c
290 1w
= O
S .- 8
'§ 87
g3 e

877
<
o Q — per Window
e --- per Sample
CY') ] @/v'/ QDA
© T T T T T T
0 1 2 3 4 5

Number of lags

Figure 5.8: Classification accuracy plotted against the number of lags for a GMM-based
classifier applied to one-second windows (W) and individual samples (S). Five clusters
were used. QDA performance is included for comparison. The data used to generate
this plot was the first five trials from subject 1.

based on multiple samples at once.

Figure 5.8 shows that using five Gaussians instead of one to model each class yields
virtually no increase in performance, while using one-second windows doubles the clas-
sification accuracy, even when no lagging is performed. Recall, from our discussion in
Section 5.1, that when adjacent samples are independent, the product of probabilities
of those samples is equal to probability of the time-lag vector that they make up. The
Bayesian posterior probability of each sample in a one-second window is calculated
separately but the classification decision is made based on the product of those proba-
bilities, achieving an effect similar to time-lag embedding. This result demonstrates an
alternative to time-lag embedding when multiple samples need to be considered to make
a Bayesian classification decision.

The advantage of windowing is the ability to work in the original lower-dimensional

64



space without worrying about having enough samples to get a full-rank covariance ma-
trix for every Gaussian. The disadvantage is the independence assumption that allows
us to simply multiply posterior probabilities without considering any potential correla-
tion between neighboring samples. Classification accuracy of the windowing method is
further improved when it is combined with lagging. Recall that in the experiments de-
scribed here, lagging was performed on a per-window basis, implying that no additional
samples need to be included in each window and, if working with an online BCI, the
decision can still be made every second. Lagging the samples in a window, however,
drastically improves the classification accuracy (as demonstrated in Figure 5.7 and Ta-
ble 5.6) even with as few as five lags. Combining windowing and lagging allows us to
capture correlation between neighboring samples while maintaining low dimensionality

of our computations.

5.6 Analysis of Normality

The single most important assumption about the spatial distribution of data in all the
modeling techniques discussed in this thesis is the assumption of Normality. The data
is modeled with one or more Gaussian components, which may or may not result in
accurate abstraction. The set of experiments in this section attempts to measure the
Normality of EEG data, specifically in the context of Gaussian mixture models. All cal-
culations necessary to obtain these results have already been described in the “Methods”
chapter.

Prior to experimenting with mixtures of Gaussians, we measure how well a single
Gaussian fits the data. Table 5.7 displays the Q values (computed using Equation (3.21))
for the entire Keirn dataset. All five trials in a session were used to compute the Gaussian
fit for each task. Recall that () is the mean of squared deviations between the empirical

distribution function and the true Gaussian cumulative distribution function. Therefore,

65



Subj./Sess. Task
Sess. 1 2 3 4 5
1/1 0.192 | 8.126 | 0.637 | 0.229 | 0.594
1/2 0.328 | 1.782 | 0.070 | 0.131 | 0.699
2/1 0.633 | 0.866 | 0.193 | 0.138 | 1.406
6/1 3.075 | 2.017 | 1.054 | 0.116 | 0.660
6/2 3.121 | 2.149 | 0.616 | 0.099 | 0.427
7/1 0.178 | 0.578 | 0.970 | 1.072 | 0.061

Table 5.7: Mean squared deviation between empirical and true distribution functions for
the entire Keirn dataset.

lower values of @ signify better fit of a single Gaussian to the data.

There are some trends that can be observed in Table 5.7. There appears to be some
consistency across multiple recording sessions of the same subject. For instance, tasks
1 and 2 are poorly fit with a single Gaussian in both sessions of subject 6 data. On the
other hand, a single Gaussian captures task 1 fairly well for subject 1. We are also able
to conclude that some tasks are inherently easier to model with one Gaussian that others.
In particular, the Q values for task 4 are lower than for any other task and 8.126 is the
highest value in the table, suggesting that it is more difficult to capture task 2 with one
Gaussian than task 4.

Having measured the model fit for a single Gaussian, we move on to investigate how
the fit changes as the number of Gaussian components is increased. Figure 5.9 displays
the () measure for the first session of the subject 1 data as the number of components
ranges between 2 and 20. Recall that to assess Gaussian fit of the entire mixture model,
we compute ( values for each cluster individually and then report the maximum of those
values. The individual ¢ values depend on the Gaussian mixture model learned from the
data and, therefore, will vary depending on the initialization of the EM algorithm. Due
to this non-determinism, the curves presented in Figure 5.9 are the mean + standard

deviation computed across 30 runs, with a separate GMM trained for each trial. The

66



\
o | \ Task 1
. — \
o
o -
<
N ]
o
Q
o
.
i
Om
89
g
@ _]
o
< _]
o
” \
oo 7 AN
- - _ - - S . T s - - - - -
o e e e e e e e e e e e m m e m e e e e e —— o -
_____ T T T T
5 10 15 20
S I ~
<) . Task 4
] \ \~‘\
08 \ S~
éo_ N e .- - -
=) T~ -
= RN
o B et I
T T T T
5 10 15 20
— ,'\\ Task 5
g_ . \\
o= \
@ S
SIS N - -~
o 7] - T~ ‘~__\\ o
T T —— T
5 10 15 20

Figure 5.9: Mean squared deviation between empirical and true distribution functions
computed across 30 runs. A separate GMM was trained in each run.

67



Number of clusters Classification accuracy
0 lags 5 lags

(5,16,2,3,9) 0.622 + 0.011 | 0.839 + 0.006

2 0.615 4+ 0.012 | 0.861 + 0.006

3 0.616 4+ 0.013 | 0.861 + 0.006

5 0.621 + 0.011 | 0.861 + 0.007

9 0.620 4+ 0.010 | 0.868 + 0.007

16 0.613 + 0.012 | 0.864 + 0.009

Table 5.8: Dependence of classification rates on the number of clusters used to model
each mental task. Results were computed across 30 runs and are presented in (mean +
st.d.) form. Five fold cross-validation was performed in each of the 30 runs. Data from
the first five trials of subject 1 was used. Presented are results for 0 and 5 lags.

model fit becomes better as the number of Gaussians is increased, which is expected
since any spatial distribution can be approximated with a mixture of Gaussian with
arbitrary accuracy by simply introducing more Gaussians into the mixture. Figure 5.9
shows that accuracy of approximation grows at different rates for different mental tasks.
For instance, the model fit for task 3 improves much faster than the model fit for task 4
as the number of Gaussian is increased from 2 to 5.

The analysis of normality presented in this section demonstrates an alternative to
using a validation set when it comes to model selection. To make use of this analysis,
one first has to decide on the desired accuracy level (e.g., @ = 0.2) and then determine
the number Gaussians necessary to model each mental task with that accuracy. For
example, using Figure 5.9 we may conclude that we want to use five clusters to model
task 1, sixteen clusters to model task 2, two clusters to model task 3, three clusters to
model task 4, and nine clusters to model task 5, all with accuracy @ = 0.2.

Being able to perform model selection for each class independently is an advantage
specific to the analysis of normality. From this point of view, cross-validation is a worse
alternative due to the combinatorial explosion that arises when each class demands its

own value of a parameter. On a dogmatic note, model selection via analysis of normality

68



falls under the generative approach to classification (such as Bayesian classification),
where training considers data from one class at a time. To examine the advantage of
each class having its own number of clusters, consider Table 5.8. Presented classification
rates compare having a variable number of clusters for each class (row 1 in Table 5.8)
to the case where the number of clusters is fixed across all classes (rows 2 through 6 in
Table 5.8). For the first experiment, the number of clusters for mental tasks 1 through
5 was five, sixteen, two, three, and nine, respectively. These were chosen by observing
which number of clusters yields an average @ value of 0.2 in Figure 5.9. The number
of clusters for all other experiments was fixed across classes with the value displayed in
the first column of Table 5.8. The statistics presented in Table 5.8 were computed over
30 runs and are presented in (mean + st.d.) form. Table 5.8 demonstrates that using
a different number of clusters to model each task yields higher classification accuracy
(although not statistically significant) than keeping the number of clusters fixed across
classes.

The last column in Table 5.8 displays results from a similar set of experiments, but
with 5 lags applied to the data. While the classification rates go up due to consideration
of multiple samples by the classifier, the number of Gaussians for each GMM selected
by the analysis of Normality no longer yields a competitive result. This demonstrates
the need to perform analysis of Normality in the lagged space if the lagged samples are
to be modeled.

An interesting empirical result can be obtained using analysis of normality. Propo-
sition 1 states that when two samples are independent, their time-lag embedding will
preserve normality. Figure 5.10 shows that it is impossible to generate two independent
samples using a computer. The ) measure is plotted for ten thousand samples generated
“independently” from a Gaussian distribution, lagged, and projected onto the main prin-

cipal component. The lagging picks up on temporal structure of these “independent”

69



14

12
AN

MSE between cdfs
1.0
|
\
o

0.8
|

0.4
AN

0 10 20 30 40 50 60 70 80 90 100

Number of Lags

Figure 5.10: Mean squared deviation between empirical and true distribution functions
computed across 100 runs and plotted against the number of lags. For each run, 10000
“independent” samples were generated from a Normal distribution.

samples by creating a geometric representation of the temporal correlation of neighbor-
ing samples. As demonstrated by Figure 5.10, this geometric representation loses the
original normality as more and more samples are used in the embedding, suggesting that
we are picking up on the bias of the pseudo-random number generator.

To further support this result, we measure correlation between dimensions of the
lagged space. Figure 5.11 displays the correlation matrix computed across 9900 sam-
ples in 101 dimensions. The samples were obtained by applying 100 lags to 10000
one-dimensional “independent” samples generated from the standard Normal distribu-
tion. The diagonal of the matrix was set to 0 to better demonstrate relative magnitudes
of the off-diagonal entries. Darker values in Figure 5.11 correspond to higher correla-
tion (either positive or negative). The diagonal patterns represent correlation between
samples i and i + k, where k is the offset of the pattern from the main diagonal. The

largest correlation is observed between samples 7 and 7 + 30 and is measure to be 3.45%.

70



101

81

61

41

21

Figure 5.11: Absolute value of correlation between dimensions in a 101-dimensional
space created through lagging a series of samples. The samples were generated “inde-
pendently” from a standard Normal distribution.

71



This suggests that there is indeed some correlation between samples in the series.

72



Chapter 6

Conclusion

this thesis explored temporal structure and normality of EEG data in the context of
Bayesian classification. By using time-lag embedding of a time series, it was demon-
strated that classification accuracy increases when multiple adjacent samples are used to
make the classification decision. It was also shown that correlation between neighboring
samples creates geometry in a high-dimensional space that either increases or decreases
the classification accuracy when compared to the case where the samples are indepen-
dent. More recording sessions per subject are required to determine if the geometric
difficulty is subject-dependent.

The second part of this thesis demonstrated that adjacent samples in a time-lag space
are related through a reflection about a 45-degree plane, followed by a translation. Em-
pirical results showed that a first order Markov process is not able to capture this rela-
tionship in such a way that it can be used for mental task discrimination. We are unable
to conclude whether there is discriminative information in this correlation and other
models need to be explored. It was also demonstrated that by windowing, i.e., multiply-
ing posterior probabilities of adjacent samples to make the classification decision, we
are able to obtain higher classification accuracy. Combining windowing with lagging
yielded even further improvement.

The final part of this thesis demonstrated how to make use of normality assessment

73



to perform model selection without having validation data. Different mental tasks re-
quire a different number of Gaussians to achieve the same accuracy of the model fit and
an example was given regarding how to perform model selection on EEG data using
analysis of normality. Analysis of normality was argued to fit better with the Bayesian
framework due to its consideration of training data from one class at a time.

The theoretical derivations in this report showed what happens to the Bayesian de-
cision boundary in LDA and QDA classifiers as the number of dimensions increases.
Further derivation may be necessary to show that when the (p + 1)-dimensional linear
decision boundary contains the p-dimensional boundary, the classification rate will not

decrease.

74



REFERENCES

[1]

[2]

[3]

[4]

[5]

[6]

[7]
[8]

[9]

[10]

The Third International Meeting on Brain-Computer Interface Technology: Mak-
ing a Difference, Rensselaerville, NY, June 2005.

C. Anderson and Z. Sijercic. Classification of EEG signals from four subjects
during five mental tasks. In Intl. Conf. on Engineering Applications of Neural
Networks, pages 407-414, 1996.

C. W. Anderson, E. A. Stolz, and S. Shamsunder. Multivariate autoregressive mod-
els for classification of spontaneous electroencephalogram during mental tasks.
IEEE Transactions on Biomedical Engineering, 45(3):277-286, 1998.

Charles Anderson and Michael Kirby. EEG subspace representations and feature
selection for brain-computer interfaces. In CVPR, 2003. CD-ROM.

Charles W. Anderson, James N. Knight, Tim O’Connor, Michael J. Kirby, and
Artem Sokolov. Geometric subspace methods and time-delay embedding for EEG
artifact removal and classification. IEEE Transactions on Neural Systems and Re-
habilitation Engineering, 14(2):142-146, 2006.

John E. Angus. The probability integral transform and related results. SIAM Re-
view, 36(4):652-654, December 1994,

Jose M. Bernardo and Adrian F. Smith. Bayesian Theory. New York: Wiley, 1994.

Jeff A. Bilmes. A gentle tutorial of the EM algorithm and its application to param-
eter estimation for gaussian mixture and hidden markov models. Technical Report
TR-97-021, U.C. Berkeley, 1998.

Benjamin Blankertz, Gabriel Curio, and Klaus-Robert Muller. Classifying single
trial EEG: Towards brain computer interfacing. In T.G. Dietterich, S. Becker, and
Z. Ghahramani, editors, Advances in Neural Information Processing Systems, vol.
14, pages 157-164, Cambridge, MA, 2002. MIT Press.

Benjamin Blankertz, Guido Dornhege, Matthias Krauledat, Klaus-Robert Muller,
\Volker Kunzmann, Florian Losch, and Gabriel Curio. The berlin brain-computer
interface: EEG-based communication without subject training. IEEE Transactions
on Neural Systems and Rehabilitation Engineering, 14(2):147-152, 2006.

75



[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

Benjamin Blankertz, Klaus-Robert Muller, Dean J. Krusienski, Gerwin Schalk,
Jonathan R. Wolpaw, Alois Schlogl, Gert Pfurtscheller, Jose del R. Millan, Michael
Schroder, and Niels Birbaumer. The BCI competition iii: Validating alternative
approaches to actual BCI problems. IEEE Transactions on Neural Systems and
Rehabilitation Engineering, 14(2):147-152, 2006.

Silvia Chiappa and David Barber. Generative independent component analysis for
EEG classification. In European Symposium on Artificial Neural Networks, pages
297-302, 2005.

Silvia Chiappa and Samy Bengio. HMM and IOHMM modeling of EEG rhythms
for asynchronous BCI systems. In European Symposium on Artificial Neural Net-
works, ESANN, pages 193-204, 2004.

Febo Cincotty, Luigi Bianchi, Gary Birch, Christoph Guger, Jurgen Mellinger,
Reinhold Scherer, Robert N. Schmidt, Oscar Yanez Suarez, and Gerwin Schalk.
BCI meeting 2005 — workshop on technology: Hardware and software. |IEEE
Transactions on Neural Systems and Rehabilitation Engineering, 14(2):128-131,
2006.

Stephen D. Cranstoun, Hernando C. Ombao, Rainer von Sachs, Wensheng Guo,
and Brian Litt. Time-frequency spectral estimation of multichannel EEG using the
Auto-SLEX method. IEEE Transactions on Biomedical Engineering, 49(9):988-
996, September 2002.

R.B. D’Agostino and M.A. Stephens. Goodness-of-Fit Techniques. Marcel
Dekker, Inc., 1986.

J. del R. Millan, F. Renkens, J. Mourino, and W. Gerstner. Brain-actuated interac-
tion. Artifical Intelligence, 159(1-2):241-259, 2004.

A.P. Dempster, N.M. Laird, and D.B. Rubin. Maximum likelihood from incom-
plete data via the em algorithm. Journal of the Royal Statistical Society B, 39:1-38,
1977.

A.K. Engel, C.K. Moll, I. Fried, and G.A. Ojemann. Invasive recordings from
the human brain: clinical insights and beyond. Nature Reviews Neuroscience,
6(1):35-47, January 2005.

Gary N. Garcia, T. Ebrahimi, and J-M. Vesin. Support vector EEG classification in
the fourier and time-frequency correlation domains. In Proceedings of the IEEE-
EMBS First International Conference on Neural Engineering, pages 591- 594,
2003.

76



[21] G. Hamerly and C. Elkan. Learning the k in k-means. In L.K Saul, Y. Weiss,
and L. Bottou, editors, Advances in Neural Information Processing Systems, vol-
ume 17, Cambridge, MA, USA, 2003. MIT Press.

[22] Robin Hanson, John Stutz, and Peter Cheeseman. Bayesian classification theory.
Technical Report FIA-90-12-7-01, NASA Ames Research Center, 1991.

[23] Ernst Haselsteiner and Gert Pfurtscheller. Using time-dependent neural net-
works for EEG classification. IEEE Transactions on Rehabilitation Engineering,
8(4):457-463, December 2000.

[24] Trevor Hastie, Robert Tibshirani, and Jerome Friedman. The Elements of Statisti-
cal Learning. Springer, 2001.

[25] Herbert H. Jasper. Report of the committee on methods of clinical examination in
electroencephalography. Electroencephalography and clinical neurophysiology,
10(2):370-375, May 1958.

[26] I. T. Jolliffe. Principal Component Analysis. New York, Springer-Verlag, 1986.

[27] Zachary A. Keirn. Alternative modes of communication between man and ma-
chine. Master’s thesis, Purdue University, 1988.

[28] Hyun Taek Kim, Bo Yeon Kim, Eun Hye Park, Jong Woo Kim, Eui Whan Hwang,
Seung Kee Han, and Sunyoung Cho. Computerized recognition of alzheimer
disease-EEG using genetic algorithms and neural network. Future Generation
Computer Systems, 21(7):1124-1130, 2005.

[29] Michael Kirby and Charles W. Anderson. Geometric analysis for the characteriza-
tion of nonstationary time-series. Springer Applied Mathematical Sciences Series
Celebratory Volume for the Occasion of the 70th Birthday of Larry Sirovich, pages
263-292, 2003.

[30] G.H. Klem, H.O. Luders, H.H. Jasper, and C. Elger. The ten-twenty electrode sys-
tem of the international federation. Electroencephalogr Clin Neurophysiol Suppl.,
52:3-6, 1999.

[31] James N. Knight. Signal fraction analysis and artifact removal in EEG. Master’s
thesis, Colorado State University, Department of Computer Science, 2003.

[32] A. Kubler, V. K. Mushahwar, L. R. Hochberg, and J. P. Donoghue. BCI meet-
ing 2005 — workshop on clinical issues and applications. IEEE Transactions on
Neural Systems and Rehabilitation Engineering, 14(2):131-134, 2006.

77



[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]
[43]

[44]

Mauricio Kugler and Heitor Silverio Lopes. Using a chain of LVQ neural networks
for pattern recognition of EEG signals related to intermittent photic-stimulation.
In Proceedings of VII Brazilian Symposium on Neural Networks, pages 173-177,
2002.

T.N. Lal, T. Hinterberger, G. Widman, M. Schroder, N.J. Hill, W. Rosenstiel, C.E.
Elger, B. Scholkopf, and N. Birbaumer. Methods towards invasive human brain
computer interfaces. In L.K Saul, Y. Weiss, and L. Bottou, editors, Advances
in Neural Information Processing Systems 17, pages 737-744, Cambridge, MA,
2005. MIT Press.

Hyekyung Lee and Seungjin Choi. PCA+HMM+SVM for EEG pattern classifica-
tion. In Proceedings IEEE International Symposium on Signal Processing and its
Applications, pages 541-544, Paris, France, 2003.

Stephane Mallat. A Wavelet Tour of Signal Processing, by Stphane Mallat. Aca-
demic Press, 1999.

Dennis J. McFarland, Charles W. Anderson, Klaus-Robert Muller, Alois Schlogl,
and Dean J. Krusienski. BCI meeting 2005 — workshop on bci signal process-
ing: Feature extraction and translation. IEEE Transactions on Neural Systems and
Rehabilitation Engineering, 14(2):135-138, 2006.

J. Muller-Gerking, G. Pfurtscheller, and H. Flyvbjerg. Designing optimal spatial
filters for single-trial EEG classification in a movement task. Clin. Neurophysiol.,
110(5):787-798, 1999.

N. Nicolaou and S.J. Nasuto. Temporal independent component analysis for au-
tomatic artefact removal from EEG. In 2nd International Conference on Medical
Signal and Information Processing, 2004.

B. Obermaier, G.R. Muller, and G. Pfurtsheller. "virtual keyboard” controlled by
spontaneous EEG activity. IEEE Transactions on Neural Systems and Rehabilita-
tion Engineering, 11(4):422-426, 2003.

Bernhard Obermaier, C. Guger, Ch. Neuper, and Gert Pfurtscheller. Hidden
markov models for online classification of single trial EEG data. Pattern Recogni-
tion Letters, 22(12):1299-1309, 2001.

Marius Ooms. Empirical Vector Autoregressive Modeling. Springer-Verlag, 1994.

H. Peitgen, H. Jurgens, and D. Saupe. Chaos and Fractals: New Frontiers of
Science. Springer-Verlag, 1992.

G. Pfurtscheller, C. Neuper, D. Flotzinger, and M. Pregenzer. EEG-based discrim-
ination between imagination of right and left hand movement. Electroencephalog-
raphy and clinical Neurophysiology, 103:642-651, 1997.

78



[45] Lawrence R. Rabiner. A tutorial on hidden markov models and selected applica-
tions in speech recognition. Proceedings of the IEEE, 77(2):257-286, 1989.

[46] Herbert Ramoser, Johannes Muller-Gerking, and Gert Pfurtscheller. Optimal spa-
tial filtering of single trial EEG during imagined hand movement. IEEE Transac-
tions on Rehabilitation Engineering, 8(4):441-446, 2000.

[47] Sam Roweis and Zoubin Ghahramani. A unifying review of linear gaussian mod-
els. Neural Computation, 11(2):305-345, February 1999.

[48] Vitaly Schetinin. Polynomial neural networks learnt to classify EEG signals.
Technical Report NIMIA-SC2001, NATO Advanced Study Institute on Neural
Networks for Instrumentation, Measurement, and Related Industrial Applications,
2001.

[49] M.A. Stephens. EDF statistics for goodness of fit and some comparisons. Ameri-
can Statistical Association, 69(347):730-737, September 1974.

[50] Peter Sykacek and Stephen Roberts. Bayesian time series classification. In T.G.
Dietterich, S. Becker, and Z. Ghahramani, editors, Advances in Neural Information
Processing Systems 14, pages 937-944, Cambridge, MA, 2002. MIT Press.

[51] Peter Sykacek, Stephen Roberts, M. Stokes, E. Curran, M. Gibbs, and L. Pickup.
Probabilistic methods in BCI research. IEEE Transactions on Neural Systems and
Rehabilitation Engineering, 11(2):192-195, June 2003.

[52] Floris Takens. Detecting strange attractors in turbulence, dynamical systems and
turbulence. In D. A. Rand & L. S. Young, editor, Lecture Notes in Mathematics,
volume 898, pages 366—381. Springer, 1981.

[53] Leonard J. Trejo, K.R. Wheeler, C.C. Jorgensen, R. Rosipal, S.T. Clanton,
B. Matthews, A.D. Hibbs, R. Matthews, and M. Krupka. Multimodal neuroelectric
interface development. IEEE Transactions on Neural Systems and Rehabilitation
Engineering, 11(2):199-204, 2003.

[54] J. R. Wolpaw, H. Ramoser, D. J. McFarland, and G. Pfurtscheller. EEG-based
communication: improved accuracy by response verification. IEEE Transactions
Rehabilitation Engineering, 6(3):326-333, 1998.

[55] Jonathan R. Wolpaw, Gerald E. Loeh, Brendan Z. Allison, Emanuel Donchin,
Omar Feix do Nascimento, William J. Heetderks, Femke Nijboer, William G.
Shain, and James N. Turner. BCI meeting 2005 — workshop on signals and
recording methods. IEEE Transactions on Neural Systems and Rehabilitation En-
gineering, 14(2):138-141, 2006.

79



[56] Wenjie Xu, Cuntai Guan, Chng Eng Siong, S. Ranganatha, M. Thulasidas, and
Jiankang Wu. High accuracy classification of EEG signal. In Proceedings of the
17th International Conference on Pattern Recognition, pages 391 — 394, 2004.

[57] Shi Zhong and Joydeep Ghosh. HMMs and coupled HMMs for multi-channel
EEG classification. In Proc. of IEEE Int. Joint Conf. on Neural Networks, pages
1154-1159, Honolulu, Hawaii, 2002.

80



