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ABSTRACT 
A multi-layer neural network with multiple hidden layers was trained as an 
autoencoder using steepest descent, scaled conjugate gradient and alopex 
algorithms. These algorithms were used in different combinations with steepest 
descent and alopex used as pretraining algorithms followed by training using 
scaled conjugate gradient. All the algorithms were also used to train the 
autoencoders without any pretraining. Three datasets: USPS digits, MNIST 
digits, and Olivetti faces were used for training. The results were compared 
with those of Hinton et al. (Hinton and Salakhutdinov, 2006) for MNIST and 
Olivetti face dataset. Results indicate that while we were able to prove that 
pretraining is important for obtaining good results, the pretraining approach 
used by Hinton et al. obtains lower RMSE than other methods. However, 
scaled conjugate gradient turned out to be the fastest, computationally. 

1. INTRODUCTION 
Dimensionality reduction is a method of obtaining the information from a high 

dimensional feature space using fewer intrinsic dimensions.  Reducing dimensionality of 
high dimensional data is good for better classification, regression, presentation and 
visualization of data. 

Recently Hinton et al. (Hinton and Salakhutdinov, 2006) used a deep autoencoder 
for dimensionality reduction of multiple datasets. The autoencoders are multi-layer 
identity mapping neural networks represented by a function f(x) = x, where x is a 
multidimensional input vector to the network. They argue that deep autoencoders could 
be easily trained using a gradient descent method provided the initial weights are near 
good solutions. They claimed that by pretraining, they were able to obtain a good set of 
initial weights and the fine tuning which followed the pretraining approach was able to 
reduce the data dimensionality very efficiently. Their results support their arguments, 
however, there still remain some areas which require additional studies. 

Firstly, they reported deep autoencoders showed significant improvement when 
pretrained over the ones without pretraining (see supporting material of (Hinton and 
Salakhutdinov, 2006) for details). However, they studied conjugate gradient algorithm 
with line search for fine tuning and their results cannot be extended to other gradient 
based methods which do not use line search. Secondly, their pretraining approach is very 
complicated. It assigns a probability to every possible image via an energy function. We 
thought it would be pertinent to pretrain a deep autoencoder with a less complicated 
approach. Thirdly, one of the problems that has been identified with training multi-layer 
neural networks using gradient based algorithms, is the problem of local minima. 
Keeping this in view, we thought it would be important to train our network with a non-
gradient based algorithm.  

We want to further investigate some of the aspects of the dimensionality reduction 
using neural networks that were not explored fully by Hinton et al. In particular we want 
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to focus on the pretraining and weight initialization of multi-layer neural  networks. We 
hypothesize that, gradient based algorithms can train a deep autoencoder and obtain 
competitive results without pretraining; secondly, simpler pretraining approaches 
followed by fine tuning using a gradient descent method can obtain competitive results; 
and finally, non-gradient based algorithm can train a deep autoencoder with competitive 
results. In these hypotheses, competitive results would mean that the RMSE values 
between the input and the reconstructed datasets are lower or equal to those obtained by 
Hinton et al. (Hinton and Salakhutdinov, 2006). 

 In order to investigate our first hypothesis, we will train our deep autoencoders 
using scaled conjugate gradient (Moller, 1993) and steepest descent methods without 
pretraining. The second hypothesis will be verified by, firstly, pretraining layer by layer, 
using steepest descent followed by fine tuning using scaled conjugate gradient. Secondly, 
repeat fine tuning phase by replacing steepest descent in the pretraining phase with the 
correlation based non gradient algorithm, alopex (Unnikrishnan and Venugopal, 1994). 
To test our third hypothesis, the multi-layer neural network will be trained using alopex 
without pretraining. 

2. BACKGROUND 
Over the years many algorithms have been suggested to train autoencoders for 

efficient dimensionality reduction. DeMers et al. (DeMers and Cottrell, 1993),  Nielsen 
(Nielsen, 1995), and Kambhatla et al. (kambhatla and Leen, 1997) independently 
observed that optimizing weights in non-linear autoencoders that have multiple layers is a 
very difficult task because of the choice of initial weights.  

Recently Hinton et al. came up with a very efficient approach for dimensionality 
reduction. They argue that a gradient descent method could be used to train deep 
autoencoders very efficiently, if our initial set of weights were close to a good solution. 
They reason that autoencoders would find poor local minima with large initial weights 
and the gradients in the early layers would be tiny with small initial weights. This would 
make it infeasible to train autoencoders with many hidden layers (Hinton and 
Salakhutdinov, 2006). In order to overcome this, they suggested that we should pretrain 
our deep autoencoders first, so that we initialize the weights close to a good solution and 
then we could use a gradient descent method to fine tune the network. They pretrained 
their network using Restricted Boltzmann Machines (RBM). An RBM is a two layer 
Boltzmann machine without any connections between the hidden units. A Boltzmann 
machine is a stochastic recurrent neural network with simulated annealing dynamics. In 
an RBM the first layer is the visible layer, which is observable, and the second layer 
corresponding to the hidden layer is used for feature detection. The features learned from 
one RBM act as an input to train the next RBM in the group.  
 
2.1 ALTERNATIVE ALGORITHMS  

We will be using three different algorithms to address the hypotheses: steepest 
descent, scaled conjugate gradient and alopex. The motivation for using these algorithms 
is three fold: firstly, we wanted to use a very simple approach for training a deep neural 
network, steepest descent is one of the simplest gradient based algorithms. Secondly, they 
used a conjugate gradient method for fine tuning. We wanted to formulate a method 
which would be similar to the one used by them but at the same time we did not want to 
replicate the results already produced. Therefore, scaled conjugate gradient appeared to 
be a good alternative because it does not use the line search method unlike other 
conjugate gradient algorithms. Thirdly, we had to use a non-gradient based algorithm, we 
chose to use alopex algorithm. It uses error correlations which would avoid poor local 
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optimum selection. The reason behind using it are two fold: firstly, it would help us know 
the impact of using gradient information, and secondly, this could not only be an 
algorithm for fine tuning but we could also see its effect as a pretraining algorithm in 
combination with a gradient based fine tuning method. 

3. RESULTS 
The main performance metric of our experiments is the error between the neural 

network input data and the reconstructed data at the output of the network. We also focus 
on the CPU time taken by the methods for MNIST dataset for which we were able to 
replicate Hinton et al.'s results. Each dataset was normalized in all our experiments. 

3.1 USPS DATASET 
USPS (Hastie et al., 2001) is a hand written zip code dataset. It has 256 features of 

values 0-255(the brightness value of 16x16 gray-scale image of the character). There 
were 7291 training samples and 2007 test samples. An eight layer autoencoder 
represented as, 256-1000-500-250-30-250-500-1000-256, was used for our experiment. 
This network was chosen based on pilot experiments.  

 

 
 
 
 
 

Figure 1: A comparison of the RMSE 
values for USPS dataset using 

algorithms with and without pretraining.

Figure 2: Comparison of test RMSE 
when different algorithms were used to 
train an 8 layer autoencoder for MNIST 

dataset.  

 
A boxplot result of different combinations of the methods is presented in Fig. 1 for 

comparison. GradDescConjG algorithm in Fig. 1 represents pretraining using steepest 
descent followed by training using scaled conjugate gradient. AlopexCG is characterized 
by pretraining using alopex followed by scaled conjugate gradient training. This 
algorithm did slightly better than the one where we use steepest descent pretraining and 
much better than the other algorithms where no pretraining is being used. The variations 
in the results of the algorithms without pretraining are due to the multiple runs and the 
random initialization of the weights. 

3.2 MNIST DATASET 
MNIST (Roweis, 2007a) is a subset of the NIST digits dataset with 60000 training 

samples and 10000 test samples. The dimensionality of the dataset is 784. We used the 
same dataset and the same network, 784-1000-500-250-30-250-500-1000-784, that was 
used by Hinton et al. We not only ran our experiments with and without pretraining, but 
also reproduced results using Hinton et al.'s source code.  
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In order to visualize how our experiments did in comparison to each other and 
Hinton et al.'s approach, a boxplot is presented in Fig. 2. GradDescCG algorithm is a 
combination of steepest descent pretraining and conjugate gradient training. AlopexCG is 
alopex pretraining and conjugate gradient training. A visual comparison of Fig. 2 
indicates Hinton et al.'s approach has produced the best results. Against an RMSE of 1.22 
obtained using Hinton et al.'s approach we could get as close as 3.22 using conjugate 
gradient to train a network whose initial weights were set by alopex algorithm. However, 
this is not a big difference since it is over 784 intensity values. Again, the variations in 
the results of the algorithms without pretraining are due to the multiple runs and the 
random initialization of the weights. 

 

 

Figure 3: Comparison of test RMSE when different algorithms were used to train 
an autoencoder for Olivetti face dataset. GDescCG is steepest descent 

pretraining with scaled SCG training. AlopexConjGradient is an algorithm with 
alopex pretraining and SCG training. 

3.3 OLIVETTI FACE DATASET  
Olivetti (Roweis, 2007b) dataset was also the same as the one used by Hinton et al. 

It contains 10 64x64 images of each of forty different people. The authors' code was not 
accessible so we had to compare our results to the ones reported by Hinton et al. This 
dataset required some preprocessing as was done by Hinton et al. We constructed a 
dataset of 166000, 25x25 images from the original 400 images, by rotating (-90 to +90), 
scaling (1.4 to 1.8), cropping and subsampling. The rotation and scaling ranges were the 

inov, 2006). The dataset 
mages. A network, 625-
was used to train this 

t pretraining and with 
same as the ones reported by Hinton et al. (Hinton and Salakhutd
was further divided into 41400 test images and 124600 training i
2000-1000-500-30-500-1000-2000-625 used by Hinton et al., 
dataset. The results were obtained using algorithms withou

pretraining by steepest descent and alopex, followed by training using scaled conjugate 
gradient. These results are presented in Fig. 3 along with a least RMSE value reported by 
Hinton et al. (Hinton and Salakhutdinov, 2006). We found the least RMSE of 131.0644 
against Hinton's 126. This is a very small difference over 625 intensity values. In Fig. 3 
the numbers at the tails of the arrows indicate the lowest RMSE value obtained using an 
algorithm. 
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4. STATISTICAL ANALYSIS  
We carried out pairwise t-tests between the different algorithms for each dataset. We 

used multiple comparison t-tests with pooled standard deviation and Holms method for p-
value adjustment. A summary of these tests is presented in Table 1. The p-value reported 
is the least we  could obtain using the corresponding algorithm whose difference is 
statistically significant than all other algorithms. For USPS dataset, steepest descent with 
conjugate gradient has statistically significant difference to other methods without 
pretraining, than alopex as a pretraining method. The two methods with pretraining for 
this dataset were statistically similar. For Olivetti, since we had only one value for Hinton 
et al. results (reported in (Hinton and Salakhutdinov, 2006)) we could not carry out any t-
tests using their results. Within other methods there was no statistically significant 
difference between any of the approaches. For this dataset the lowest p-value is reported. 

 

Table 1: Pairwise t-test results showing the lowest p-value of various algorithms for 
different datasets. 

Dataset Algorithm p-value 
USPS Steepest Descent with Conjugate Gradient 2e-16 
MNIST Hinton 2e-16 
OLIVETTI Steepest Descent with Conjugate Gradient 0.39 

 
 
We found that conjugate gradient was the fastest algorithm. We saved the CPU time 

using cputime command of Matlab used by each algorithm for each dataset. However, 
since we could compare our results with Hinton et al.’s code for only MNIST datasets, so 
we carried out pairwise t-test on that dataset alone. We found that conjugate gradient was 
significantly faster than the rest of the algorithms including Hinton et al.’s method with a 
p-value of 2e-16.  

5. DISCUSSION  
We started with three hypotheses which could be summarized as: gradient based 

algorithms like steepest descent and scaled conjugate gradient and non gradient based 
algorithm like alopex could produce competitive results in comparison to the approach 
used by Hinton et al. We also hypothesized that a simpler pretraining approach than 
RBM, using steepest descent or alopex followed by training using scaled conjugate 
gradient algorithm would get us competitive results when compared with Hinton et al.  

Our results indicate some interesting findings. Firstly, Hinton et al.'s argument that 
pretraining followed by training would get better results holds true. A closer look at 
Fig.’s 1, 2, and 3 indicate that training followed by pretraining does indeed improve the 
results. Secondly, pretraining helps to find a good set of initial weights and the training 
that follows it tries to fine tune those weights in order to obtain better results. In Fig.’s 1 
and 2, we can notice that the algorithms without pretraining have a variation around the 
median RMSE values while as the RMSE values obtained using pretraining and training 
do not show any such variation. This is because the training phase only tries to fine tune 
the weights such that it restricts itself to a particular search area so that it can find the 
global optimum.  

Alopex by itself did not perform well on Olivetti dataset unlike gradient descent and 
scaled conjugate gradient. However, alopex performed equally well as the other methods 
for other two datasets without pretraining. It performed better than steepest descent when 
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used as a pretraining algorithm for MNIST dataset, shown in Fig. 2. This leads us to an 
important observation. It seems that weight optimization in deep autoencoders is not 
entirely related to poor local optima while using gradient based algorithms.  

An important finding of this research is that we were able to come up with 
alternative pretraining approaches, which found a low RMSE value for Olivetti face 
dataset, very close to Hinton et al.'s approach. We also came very close to Hinton et al.'s 
results for MNIST dataset. These results were achieved because steepest descent as well 
as alopex did well as pretraining methods. Of these two pretraining approaches, statistical 
results indicate steepest descent to be slightly better than alopex.  

Another important result is that computationally, scaled conjugate gradient is the 
fastest approach. This points to a possibility of obtaining a more robust and faster training 
of deep autoencoders using a scaled conjugate gradient based approach with different 
combinations of steepest descent and alopex as pretraining algorithms. One of the 
possibilities would be to explore the effect of varying the number of units in the hidden 
layers. Another possible approach would be to train the autoencoder using Hinton et al.'s 
pretraining approach in combination with scaled conjugate gradient training algorithm. 
We could also try reversing the order of our pretraining and training algorithms. 

6. CONCLUSIONS 
In this research three different algorithms in different combinations for both 

pretraining and training were used to train deep autoencoders for three different datasets. 
One of the main intrinsic goals regarding pretraining was proved. Pretraining does indeed 
help to find a good set of initial weights and thereby help find a good solution using a 
gradient descent based method in a deep autoencoder. We were able to prove that other 
pretraining methods could perform well. However, further tuning of these other methods 
as pretraining and training algorithms might obtain much better results. The performance 
of alopex pointed towards the possibility that deep autoencoders might not be prone to 
local minima as we had initially thought. A more careful analysis using these algorithms 
could lead to more insights into training deep autoencoders and a better understanding of 
the weight optimization in such networks. 
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