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Abstract

Traditional methods for ATR (Automatic Target Recognition) use in-

frared (IR) sensors for detecting heat emanating from targets. IR-based

ATR techniques are susceptible to sensor-induced errors; for instance,

targets may not be detected if they are cold (when vehicle engines are

turned o�), or when the background is hot (on a hot day).

This work presents an approach to real-time color-based ATR which

uses multivariate decision trees for recursive non-parametric function

approximation to learn the color of a target from training samples, and

then detects targets by classifying pixels based on the approximated

function. Tests of the color-based system, sanctioned by the U.S. De-

fense Advanced Research Projects Agency - Unmanned Ground Vehicle

Project (DARPA-UGV), have resulted in a 90% target detection rate

(compared to the 45% detection rate of the IR-based system developed

for the same tests). When the color system was used in conjunction

with the IR-based system, 100% of the targets were detected.

1 Introduction

Traditional military ground-level Automatic Target Recognition (ATR) systems

analyze IR images for the signatures of potential targets. Although such systems

have proven quite successful in wide-spread use, they fail in certain predictable

scenarios, notably when the targets are colder than expected, or when the back-

ground is hotter than expected (see �gure 1). One approach to this problem is to

develop more sophisticated target recognition algorithms for IR images (Schachter

[17] contains a review of several methods). It is our belief, however, that the gains

possible through this line of research are limited due to problems inherent to the

data. A more promising approach, we believe, is to collect additional data using

non-IR sensors, and to look for target signatures there. The issues with this ap-

proach are cost and independence (in the sense that ATR on the additional data

should succeed in scenarios where the IR-based system fails).
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Figure 1: Visible light (left) and IR (middle) images of targets. In the IR image, not

all targets are visible, and some parts of the background are as bright as the targets.
The results (right) from applying the DARPA-UGV Demo-C IR ATR system show one

missed target and one false positive.

This paper presents an alternative approach to ATR that uses color imagery.

There are several advantages to using color (described later) which enable our

system to be used either in stand-alone mode, or with systems based on other sen-

sors. We should emphasize that we are suggesting supplementing { not replacing

{ IR-based ATR systems. IR systems work well in many scenarios and are already

in wide-spread use; color-based systems (or any other method based on visible

spectrum data), on the other hand, cannot ordinarily be used at night. However,

at least one of the scenarios in which IR systems fail (i.e., due to background heat)

is an typically daytime scenario, when color-based systems should be most reliable.

Color-based target recognition is inherently di�cult, due to (i) the camouage

on targets, and (ii) variation in the apparent color of objects under outdoor imag-

ing conditions. Camouage, is, of course, the standard counter-measure against

detection in visible light, and it forces any color-based ATR system to make very

�ne distinctions in order to separate target from background. However, the color of

background vegetation continually changes, so it is di�cult, if not impossible, for

camouage color to perfectly match the background; furthermore, mismatches in

color between target and background are made even more common by the multiple

colors used.

The apparent color of a given target (or object) varies under outdoor conditions

due to a number of factors, namely the color of the incident daylight, surface

reectance properties of the target, illumination geometry (i.e., the position and

orientation of the target surface w.r.t. the illuminant) and viewing geometry (the

position and orientation of the camera w.r.t. the target surface). The color of

daylight changes signi�cantly due to the sun-angle and weather conditions, and

the position and orientation of the target are also expected to vary. Consequently,

the apparent color of a target varies under realistic conditions. Previous methods

in computational color recognition, such as color constancy algorithms [18, 7, 6],

have dealt with varying color in highly constrained environments, and are generally

not applicable to outdoor imagery.

It will be shown that as imaging conditions vary, the apparent color of objects

forms characteristic types of clusters in color RGB space, depending on the surface

properties. The method presented here uses multivariate decision trees (MDT's)

for recursive, non-parametric function approximation to estimate the clusters in

RGB, based on training samples of targets. Given samples of a target under

di�erent lighting conditions, MDT's construct a piece-wise linear approximation



of the boundary of the region in color space. After the training phase is complete,

every image pixel can be classi�ed as target or background according to whether

or not it lies within the learned boundary. The result is a binary region-of-interest

image that marks all the pixels that lie within the region in color space occupied by

the object's representation; the target pixels in the binary images are then grouped

to produce bounding rectangles around the targets. The RGB representation of

color makes it possible to use a lookup table for real-time classi�cation on standard

hardware.

This method has been implemented in a system for ATR of camouaged mili-

tary vehicles in real-time, and has been tested in a DARPA-sanctioned study [19]

on the Ft. Carson data set [1] and at the DARPA UGV Demo-C [11]. In each test,

over 90% of the targets were detected (compared to a 45% detection rate by the

IR-based system). A combination of color and IR systems resulted in detection of

nearly 100% of the targets.

2 IR-based ATR

IR-based ATR systems detect targets based on the heat emanated in the 800-1200

nm range. They o�er the clear advantage of being useful at any time, day or

night, and can be used in many types of smoke and fog. Most IR-based ATR

systems assume that the targets are warmer than the background [17] (or have

characteristic heat signatures w.r.t. the background), and can therefore fail when

the target heat, relative to the background, varies unpredictably. This can happen

when the engines of a target vehicle have been shut o� (possibly making the

target as cool as the background), or when objects in the the background (such

as rocks on a hot day) are also warm. Figure 1 shows both these situations

encountered in a single image from the Ft. Carson data. In this scene, there are

two targets; however, only one is clearly visible in the IR image. In addition, part

of the background appears almost as bright as the target. Such problems are not

uncommon in IR imagery; furthermore, when vehicle structural design is similar,

there is no easy way to distinguish between military and civilian vehicles or enemy

and friendly vehicles, since they are likely to generate similar IR signatures.

The IR-based ATR system used at the DARPA UGV Demo-C is based on

double-window detection [11, 17]. Using this method on 25 randomly chosen im-

ages from the Ft. Carson IR data set, only 22 out of 50 targets were detected, with

5 false alarms; in addition, the only civilian vehicle in the image set was mistaken

for a target. A representative result is shown in �gure 1. While other IR-based

techniques have been proposed [17], there is no strong evidence to indicate that

these techniques can overcome the problems inherent to IR data.

3 Color imagery for ATR

This paper advocates using color to enhance ATR systems. Color imagery o�ers

a number of advantages: (i) the data is inexpensive to obtain (color cameras are

cheap and freely available, and many prototype research vehicles are equipped

with them), (ii) we have developed methods for real-time target detection shown



            

Figure 2: (From left) Sample target; Target color (RGB) in a single outdoor image

(sample extracted from vehicle hood); Variation of apparent color over several hundred
images in a single day; Variation distribution rotated.

to be e�ective under most naturally occurring daytime conditions, and (iii) the

system can be easily combined with systems based on IR (or other sensory) data

for even more reliable performance.

3.1 Problems with using color for ATR: variation of

apparent color

While color can be a useful feature for target detection, there are several issues that

complicate the use of color for recognition, especially in outdoor images. One clear

disadvantage of using color (or any other feature from the visible spectrum) for

ATR is that it cannot be used at night, in thick smoke or fog, or any conditions

under which the targets are not visible. Additionally, there are other problems

inherent to outdoor color imagery that further complicate color-based recognition.

The apparent color of an object is a function of the color of the incident light,

surface reection, illumination geometry, viewing geometry and imaging param-

eters [9]. Each of these factors can vary in outdoor conditions; in addition, the

e�ect of a host of unmodeled phenomena, such as shadows and inter-reections, is

unpredictable. Consequently, at di�erent times of the day, under di�erent weather

conditions, and at various positions and orientations of the object and camera,

the apparent color of an object can be di�erent. Figure 2 shows a camouaged

military vehicle, with its apparent color in RGB space in a single image (which is

a single point in RGB) and the variation over 100 images in one day.

The variation in the color of daylight is caused by changes in the sun-angle,

cloud cover, atmospheric haze and other weather conditions. The illumination

geometry in a scene determines the orientation of the surface with respect to the

two components of the illuminant, sunlight and (ambient) skylight, and hence the

color of the incident light. Viewing geometry, i.e., the position and orientation of

the camera with respect to the surface, determines the amount and composition

of the light reaching the camera, depending on the specular content of the surface.

Shadows and inter-reections also a�ect the color of the light incident upon a

surface [8]. Shadowing occurs either when the surface is facing away from the sun

(self-shadowing), or when a second object blocks the sunlight. Inter-reections are

caused when other surfaces reect light incident upon them, onto the surface in

question. In both cases, the color of the incident light (and hence the apparent

color of the surface) is a�ected. A number of imaging parameters cause further

color shifts. For instance, wavelength-dependent displacement of light rays by the

camera lens onto the image plane due to chromatic aberration can cause color



mixing and blurring [14]. Nonlinear camera response and digitization errors can

skew the ratio of the values in the three color bands (red, green and blue), and

the dynamic range of intensity in outdoor scenes accentuates the possibility of

blooming and clipping [14].

3.2 Previous approaches to color vision under varying

illumination

In the past, color recognition under varying illumination has generally been ad-

dressed as a color constancy problem, where the goal is to match object colors

under varying illumination without knowing the spectral composition of the in-

cident light or surface reectance. An illuminant-invariant measure of surface

reectance is recovered by �rst determining the properties of the illuminant from

variations across images. Unfortunately, in order to separate illumination condi-

tions from surface reectance e�ects, most color constancy algorithms make strong

assumptions about the nature of the world. For example, Forsyth [7] assumes a

Mondrian world with constant illumination without inter-reections or multiple

light sources; Finlayson [6] assumes that surfaces with the same reectance have

been identi�ed in two spatially distinct parts of the image, and that the unknown

illumination falls within the gamut of known arti�cial illuminants; Ohta [16] as-

sumes arti�cial illumination constrained by the CIE model to reduce performance

errors; Novak and Shafer [15, 18] assume a point light source and pure specu-

lar reection; Buchsbaum [3] assumes that the surface reectance averaged over

the entire image is grey; Maloney's work [12] is a re�nement of Buchsbaum's

but has been applied only under the constraints of an indoor world with Munsell

color chips. While many of these constancy algorithms are quite sophisticated

and perform impressively within the speci�ed constraints, Forsyth [7] aptly states,

\Experimental results for [color constancy] algorithms running on real images are

not easily found in the literature: : :Some work exists on the processes which can

contribute to real world lightness constancy, but very little progress has been made

in this area."

3.3 The nature of the variation of apparent object color in

outdoor scenes

According to the standard model of image formation [9], the observed color of

objects in images is a function of (i) the color of the incident light (daylight), (ii) the

reectance properties of the surface of the object (iii) the illumination geometry,

(iv) the viewing geometry, and (v) the imaging parameters. Theoretical parametric

models exist for the various phases of the image formation process [9, 10, 13,

18], although these models appear too restrictive to be used in unconstrained

imagery; still, they provide an approximate qualitative description of the variation

of apparent color. The CIE model [10] states that the color of daylight varies along

a characteristic curve, de�ned by the following equation in the CIE chromaticity

space (of which RGB is a linear transform).

y = 2:87x� 3:0x2� 0:275; (1)



where 0:25 <= x <= 0:38. In RGB space, the parabola stretches out into a thin

curved surface [4].

The e�ect of illumination geometry and viewing geometry depend on the re-

ectance of the surface. Most realistic surfaces have reectances that have a mix-

ture lambertian and specular components. Existing reectance models of mixed

reection surfaces [9, 13, 18] are yet be applied to unconstrained imagery in the

context of color-based recognition. We can, however, deduce from the CIE model

and the reection models, that the RGB distribution representing apparent color

variation of a surface under daylight will lie along (a) a thin continuous curved

volume if the surface is purely lambertian or purely specular, (b) a single blob if

the surface has mixed reection with a dominant lambertian component, and (c)

two distinct clusters if the surface has mixed reection with a dominant specular

component.

The goal of imaging systems is to preserve the color of objects as they appear in

the scene, depending on a few imaging parameters (focal length, response function,

etc.). Unfortunately, phenomena such as clipping, blooming and nonlinearities will

introduce distortions to the appearance of objects in color space [14].

Even if we assume that the distortions to the RGB distributions due to un-

modeled parameters are not drastic, in the absence of precise and robust models

of the various processes involved (as is the case with outdoor color images), the

only assumption that can be made is that the RGB distributions representing the

color of objects can be arbitrarily shaped.

4 Multivariate Decision Trees (MDT) for

learning target color

Our approach is to assume that we do not know the exact form of the equation

governing the observed color of objects in outdoor scenes. To recognize targets in

outdoor scenes, we therefore need to select a classi�cation scheme that performs

well on arbitrarily shaped clusters in feature space. By de�nition, parametric

classi�ers (such as minimum-distance classi�ers, as used by Crisman [5]) can be

ruled out, since the underlying equations are unknown. Based on their success in

other areas of non-parametric approximation, neural networks (i.e., feed-forward

back-propagation nets) and multivariate decision trees were considered. Neural

nets would presumably perform accurate nonlinear function approximation, but

are di�cult to analyze because of the arbitrary nature of the function approx-

imated by the hidden layer. Multivariate decision trees create piecewise-linear

approximations to surfaces in feature space by recursively dividing feature space

with hyperplanes, and have been shown to produce good classi�cation results from

relatively few training samples.

Multivariate decision trees [2] recursively subdivide the feature space by linear

threshold units (LTU's). Each LTU is a binary test represented by linear combina-

tions of feature values and associated weights. Each division attempts to separate,

in a set of known instances (the training set), target instances from non-targets.

If the two resulting subsets are linearly separable, a single LTU will separate them

and the multivariate decision tree consists of the single node. If not (as is generally
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Figure 3: Recursive discriminants of an MDT, separating the `+'s from the `-'s (left),

and MDT structure with LTU's and �nal classes (right).

the case with realistic images and objects), the LTU linearly divides the feature

space so as to separate the instances to the extent possible, and the MDT creates

and trains new LTU's on the two divisions of the instances. The result, therefore,

is a tree of LTU's recursively dividing the feature space into polygons so as to

perform a piecewise linear approximation of the region in color-space consisting

of the positive samples. The terminal nodes in the tree correspond to inseparable

sets, which are labeled as individual classes. Thus, each node in a decision tree

is either a decision or a class. Figure 3 (left) shows a decision-tree operating in

a three-dimensional feature space, where the two classes being separated are the

'+'s and the '-'s; Brodley [2] describes further details.

The LTU weights are approximated using the Recursive Least Squares (RLS)

algorithm, which minimizes the mean squared error between the estimated y
i

and true yi values, �(yi � yi)
2 of the selected features over a number of training

instances. RLS incrementally updates the weight vector W according to Wk =

Wk�1 �Kk(X
T

k
Wk�1 � yk), where Wk is the weight vector for the instance k, of

size n;Wk�1 is the weight vector for instance k � 1, Xk is the instance vector;

XT

k
is Xk transposed, and yk is the class of the instance. Kk = PkXk, where

Pk is the n� n covariance matrix for instance k, reecting the uncertainty in the

weights, and Pk = Pk�1 � Pk�1Xk[1 + XT

k
Pk�1Xk]

�1XT

k
Pk�1. The weights are

initialized randomly, and the matrix consists of 0 values everywhere except along

the diagonal, which is set to 106 (empirically determined).

If at any level, the LTU results in a non-negative value, the corresponding

set of pixels is labeled as belonging to the object (i.e., positive), otherwise, it is

labeled negative. If the set of instances at any level can be further divided, the

tree is recursively grown; if no further division is possible, that set of instances is

represented by a terminal node or a class (with the LTU determining whether the

class is positive or negative). Figure 3 (right) shows the structure of a multivariate

decision tree. In this tree, the non-terminal nodes represent the LTU tests, and

the leaf nodes the classes; the `+' leaf nodes correspond to the inseparable sets

classi�ed as one class, and the `-' nodes, the other.

Like other non-parametric learning techniques, decision trees are susceptible to

over-training. In order to correct for over-�tting, a fully grown tree can pruned by

determining the classi�cation error for each non-leaf subtree, and then comparing

it to the classi�cation error resulting from replacing the subtree with a leaf-node

bearing the class label of the majority of the training instances in the set. If the



                        

Figure 4: Post-classi�cation binary image (left), with target boundaries extracted

(right).

leaf-node results in better performance, the subtree is replaced by it [2].

5 ATR system using MDT

A decision tree for the camouaged targets is built by providing sample pixels

of the targets and background (e.g., vegetation, sky, rocks, etc.) from images

taken under various conditions. After the decision tree is built, the next step is

to build a lookup table for real-time ATR classi�cation. This is accomplished by

classifying (o�-line) every possible RGB color value into target and background

classes. Thereafter, given a color image, each pixel can be classi�ed from the

lookup table in real-time. The result of pixel classi�cation is a binary image, in

which all suspected target pixels are on (white), and the background pixels o�

(black). Figure 4 (left) shows the binary post-classi�cation image for the scene

from �gure 1.

From the binary image, the clusters of target pixels are grouped, and bounding

rectangles then extracted. Finally, overlapping bounding rectangles are merged,

to produce a region-of-interest image, with the boxes drawn around the targets;

�gure 4 shows the result of grouping and extracting target regions from the cor-

responding binary image.

6 Results

The Ft. Carson data set [1], collected in a DARPA-sanctioned study, consists of

about 150 color and IR images of camouaged military vehicles under conditions

that vary from bright (and hot) daytime to dark (and cool) dusk; the distance to

the targets ranges from 100 to about 500 meters. The two independent systems

(color and IR) were tested on corresponding images of 25 randomly chosen scenes

from the Ft. Carson set.

The color-based system was applied by cross-validation, where half the images

were used for training and the other half for testing (with rotation, so that all 25

images were used). In this test, 47 out of 50 targets were detected, with 39 false

alarms. The false alarms were all due to background foliage which was very close in

color to the camouage of the vehicles; in two images with extremely poor lighting

conditions the system missed the targets. In addition, the system was tested live

at the UGV Demo-C, with similar results (the exact numbers from Demo-C are

not available).



By comparison, the IR-based system [11] detected 22 of the 50 targets, with 5

false alarms. Four of the false alarms were from background foliage, and one was

a civilian vehicle. Two issues must be noted, however: (a) the failure of the IR

system can be attributed to the image quality { the fact that such images were

collected in a realistic DARPA exercise goes to show that IR images cannot always

be relied upon, even with sophisticated detection techniques; (b) when the color

system failed due to poor lighting conditions, the IR system successfully detected

the targets. When the two systems were combined, 100% of the targets were

detected.

7 Conclusions

This paper describes a method for using color images for highly e�ective ground-

level ATR. Although extensive tests on the Ft. Carson data and at the live UGV

Demo-C have been successful, and in some instances, better than IR-based ATR,

we do not intend to recommend that color be used in exclusion of other ATR tech-

nologies. This work demonstrates that the color-based method described can be

used as an e�ective, yet inexpensive addition to existing systems. The number of

false alarms indicates that the method is more useful as a focus-of- attention mech-

anism, than for full-edged recognition. The learning and classi�cation method

described in this paper has been applied, with similar success, to other problems

such as road/lane detection, skin recognition, detection of wildlife in aerial im-

agery, ground-level terrain detection and landmark recognition. The images and

results from the Ft. Carson tests are available at the following world-wide-web

address:

http://vis-www.cs.umass.edu/projects/learning/mdt.html.
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