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Abstract

We propose a family of regular Cayley network graphs
of degree three based on permutation groups for design of
massively parallel systems. These graphs are shown to be
based on the shuffle exchange operations, to have logarith-
mic diameter in the number of vertices, and to be maximally
fault tolerant. We investigate different algebraic properties
of these networks (including fault tolerance) and propose
a simple routing algorithm. These graphs are shown to be
able to efficiently simulate other permutation group based
graphs; thus they seem to be very attractive for VLSI imple-
mentation and for applications requiring bounded number
of I/O ports as well as to run existing applications for other
permutation group based architectures.

1 Introduction

Performance of any distributed system is significantly de-
termined by the choice of the underlying network topology.
One of the most efficient interconnection networks has been
the well known binary n-cubes or hypercubes; they have
been used to design various commercial multiprocessor ma-
chines and they have been extensively studied. For the past
several years, there has been a spurt of research on a class
of graphs called Cayley graphs which are very suitable for
designing interconnection networks. These Cayley graphs
are based on permutation groups and they include a large
number of families of graphs like star graphs [1, 2], hy-
percubes [3], pancake graphs [1, 4] and others [5]. These
graphs are symmetric (edges are bidirectional), regular and
seem to share many of the desirable properties like low di-
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ameter, low degree, high fault tolerance etc. with the well
known hypercubes (which are also Cayley graphs).

All of these Cayley graphs are regular, i.e., each vertex
has the same degree, but the degree of the vertices increases
with the size of the graph (the number of vertices) either
logarithmically or sub logarithmically. This property can
make the use of these graphs prohibitive for networks with
large number of vertices [6]. Fixed vertex-degree networks
are also very important from VLSI implementation point of
view [7]; there are applications where the computing ver-
tices in the interconnection network can have only a fixed
number of I/O ports [6]. As a matter of fact a large multipro-
cessor (with 8096 vertices) is being built by JPL around the
binary De Bruijn graphs [8], which are almost regular net-
work graphs of fixed vertex degree 4. There are also other
graphs in the literature that have almost constant vertex de-
grees like the Moebius graphs [9] of degree 3. But neither
the De Bruijn graphs [8] nor the Moebius graphs [9] are reg-
ular (and none are Cayley graphs). Also, these graphs have
a low vertex connectivity of only 2 although most of the ver-
tices in those graphs have degree larger than 2. Some fixed
degree regular networks have been studied in [10, 11, 12].

In this paper, we introduce a Cayley graph for intercon-
necting a large number of processors but with a constant de-
gree of the vertex. The proposed family of graphs is reg-
ular of degree 3 independent of the size of the graph, has
a logarithmic diameter in the number of vertices and has a
vertex connectivity of 3, i.e., the graphs are maximally fault
tolerant (vertex connectivity cannot exceed the vertex de-
gree). The proposed family of graphs offers a better and
more attractive alternative to De Bruijn graphs or Moebius
graphs for VLSI implementation in terms of regularity and
greater fault tolerance. Another interesting feature of the
proposed graphs is that it can easily simulate other permu-
tation group based graphs and hence parallel algorithms de-
signed for those topologies can be efficiently run on the new
architecture with very minimal change.



2 Shuffle-Exchange Permutation (SEP)
Graph

A Cayley graph is a vertex-symmetric graph often withn!
vertices, each assigned a label which is a distinct permuta-
tion of the set f1; 2; : : : ; ng. The adjacency among the ver-
tices is defined based on a set of permutations referred to as
generators; the neighbors of a vertex are obtained by com-
posing the generators with the label of the vertex. The set
of generators defined for a Cayley graph must be closed un-
der the inverse operation to guarantee that the graph will be
undirected. Furthermore, the set of generators together with
the Identity permutation must produce all n! permutations
on n integers (which collectively belong to set Sn), or a sub-
group of Sn when the generators are repeatedly applied to
the already generated vertices.

An n-dimensional SEP graph is an undirected regular
graph with N = n! vertices, each vertex corresponding to
a distinct permutation of the set f1; 2; � � � ; ng. Two vertices
are directly connected if and only if the label (permutation)
of one is obtained from the label of the other by one of the
following operations:

� Swapping the first two digits (the leftmost digit is
ranked as first).

� Shifting cyclically to left (or right) by one digit.

Formally, consider a set ofn distinct symbols (we use En-
glish numerals as symbols; for example, when n = 4, the
symbols are 1; 2; 3; 4). Thus, for n distinct symbols, there
are exactly n! different permutation of the symbols or the
number of vertices in SEPn is n!; using a1a2 � � � an as the
symbolic representation of an arbitrary vertex, the edges of
SEPn are defined by the following three generators in the
graph:

gL(a1a2 � � � an) = a2a3 � � � anan
gR(a1a2 � � � an) = ana1a2 � � �an�1
g12(a1a2 � � � an) = a2a1a3 � � � an

Remark 1 (i) The SEP is an undirected graph as swapping
the first two digits is a symmetric operation; and if a vertex
u is obtained from another vertex v by shifting to left, vertex
v can be obtained from u by shifting to right; thus, if u is
adjacent to v, so is v to u, (ii) The generator g12 is its own
inverse, i.e., g�112 = g12 and g�1

L
= gR (g�1

R
= gL), (ii)

Figure 1 shows the proposed trivalent Cayley graphs SEP3
and SEP4 of dimensions 3 and 4 respectively.

Remark 2 (i) The generator g12 performs the transposition
(12) on the permutations and (ii) either gL or gR performs
the n-cycle (1; 2; � � � ; n) on the permutations.

Lemma 1 The transpo-
sition (12) and the n-cycle (1; 2; : : : ; n) together generate
Sn, the group of all permutations of n distinct elements.

Proof : The proof follows from the fact that any basic 2-
cycle of a permutation can always be written in terms of the
swap and the n-cycle; for details, see [13]. 2

Lemma 2 SEPn, n � 2, is a Cayley graph.

Proof : The set of generators for SEPn, n � 2, G =

fg12; gL; gRg is closed under the inverse operation and the
generator set can generate all the elements in the vertex set
of SEPn. 2

Remark 3 Note that the two generators g(1;2) and gL could
produce all the elements of the group Sn and so could the
two generators g(1;2) and gR. The third generator is in-
cluded with two objectives: to make the generator set closed
under inversion (a requirement for the graph to be a Cay-
ley graph) and to make the graph undirected (bidirectional)
since the bandwidth of a link incident on a vertex can be
shared between the incoming traffic activated by gL (or gR)
and the outgoing traffic activated by gR (or gL).

Theorem 1 For any n, n � 2, the graph SEPn: (1) is a
symmetric (undirected) regular graph of degree 3; (2) has
n! vertices; and (3) has 3n!=2 edges.

Proof : (1) follows from Remark 1. (2) follows from
Lemma 1. (3) follows from (1) and (2). 2

Definition 1 The edges which correspond to g12 are called
Exchange orE-edges and those corresponding to gL (or gR
) are referred to as Shuffle or S-edges; an S-edge may be
referred to either as an L-edge (corresponding to left shift)
or an R-edge (corresponding to right shift).

Remark 4 This is similar to the familiar shuffle-exchange
network where adjacent labels are obtained by either shift-
ing the label cyclically to left by one digit, or by complement-
ing the rightmost digit of the label (instead of swapping).

Definition 2 We use the regular expression (E;L;R)� to
denote any sequence of generators; generator sequences
will be used to specify vertex to vertex paths in the graph.

3 Simple Routing Algorithm

SinceSEPn is a Cayley graph, it is vertex symmetric [1],
i.e., we can always view the distance between any two arbi-
trary vertices as the distance between the source vertex and
the identity permutation by suitably renaming the digits rep-
resenting the permutations. Thus, in our subsequent discus-
sion about a path from a source vertex to a destination ver-
tex, the destination vertex is always assumed to be the iden-
tity vertex I = (12 � � �n)without any loss of generality. The
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Figure 1. Example Graphs for n = 3 and n = 4

following algorithm Simple Route computes a path from an
arbitrary source vertex u to the identity vertex I .

The algorithm defines the moves to be taken at each step
(either of the three generators). Each move takes us to a new
vertex. The symbol set is given by fij1 � i � ng and for
any digit i, we use �(i) to denote the position of the digit i
in the current vertex (the leftmost digit in a permutation has
the position 1). For example, �(5) = 3 in the vertex (23541)
while �(1) = 5 in the same vertex.

Algorithm Simple Route

Step 1: If �(1) > bn=2c, then apply gR (n � �(1))

times; else apply gL �(1) times. [Digit “1” is
now at the rightmost position.

Step 2: For i, 2 � i � bn=2c, do the following:

(A) If n��(i)+1 < �(i)�1, then apply gR
(n��(i)+1) times; apply the sequence
of generators (g12; gL) (n��(i)) times
followed by a single gL;

(B) otherwise, apply gL maxf0; (�(i)�2)g
times; if �(i) > 1, then apply g12; ap-
ply the sequence of generators (gR; g12)
maxf0; (�(i)�2)g times followed by a
single gL.

[Digits “1” through “i” are now at the right-
most positions of the current vertex]

Step 3: For digits i, bn=2c < i � n � 1, do the
following: apply gL maxf0;maxf0; (�(i)�

2)g times; if �(i) > 1, then apply g12;
apply the sequence of generators (gR; g12)

maxf0; (�(i)� 2)g times followed by a sin-
gle gL.

Step 4: Apply one gL to reach the identity vertex.

Example: Consider the vertex (2143) in SEP4. The path
from this vertex to the identity vertex is computed by the
algorithm as follows: (2143)

gL
! (1432)

gL
! (4321)

gL
!

(3214)
g12
! (2314)

gR
! (4231)

g12
! (2431)

gL
! (4312)

g12
!

(3412)
gL
! (4123)

gL
! (1234). Thus the path length is 8.

Remark 5 The algorithm is not optimal; note that the ver-
tex node (2143) in SEP4 can reach the identity vertex in
6 steps as follows: (2134)

g12
! (1243)

gL
! (2431)

gL
!

(4312)
g12
! (3412)

gL
! (4123)

gL
! (1234). Nevertheless it

does establish a upper bound on the diameter of the graph,
as we see below.

We make the following observations about the worst case
behavior of the above routing algorithm:

� Step 1 takes bn=2c moves.

� There are bn=2c � 1 loops in Step 2. Consider an
arbitrary value of i in the given range. Number of
moves is maximum when �(i) = bn+2

2
c (using ei-

ther subcase (A) or (B)). Number of moves for putting
digit i in its correct place is 3(�(i) � 2) + 1 + 1

= 3�(i) � 4 = 3n�2
2

. Note that for each value of
i within the range specified in Step 2, this worst case



value of �(i) is possible. Thus, maximum possible to-
tal number of moves in Step 2 is 1

4
(n� 2)(3n� 2) =

1
4
(3n2 � 8n+ 4).

� Worst case in Step 3 occurs when �(i) = n� i+1 for
bn=2c < i � n� 1 and note that this possible. Thus,
maximum possible total number of moves in Step 3 is

n�1X

j=n=2+1

f1 + 3((n� j + 1)� 2) + 1g

=

n=2�1X

j=1

(3j � 1) =
1

8
(3n2 � 10n+ 8)

� Step 4 always takes one move.

� In the worst case, the total number of moves made by
the entire routing algorithm is given by (by summing
up the moves from different steps) 1

8
(9n2�22n+24).

Remark 6 Obviously, the diameter of SEPn for any given
n, n � 3, is upper bounded by 1

8
(9n2 � 22n + 24). We

strongly suspect that the actual diameter would be much less
although most possibly O(n2).

4 Algebraic Properties of SEPn

In this section we investigate different interesting struc-
tural properties of the proposed 3-regular Cayley graphs.

Definition 3 Any cycle in SEPn consisting of only the s-
edges (induced by the symmetric functions gL or gR) is
called an s-cycle.

Example: In Figure 1, the cycle f4312; 3124; 1243; 2431g
is an s-cycle.

Theorem 2 All of the n! vertices of SEPn of dimension
n are partitioned into vertex disjoint s-cycles of length n;
number of s-cycles in SEPn is (n� 1)!.

Proof : Consider an arbitrary vertex v = a1a2 � � �an in
SEPn. For any i, i � 1, let gi

L
(v) = gL(g

i�1
L

(v)), where
g1
L
(v) = gL(v). It is easy to observe that gn

L
(v) = v and

also gi
L
(v) 6= g

j

L
(v) for 1 � i; j � n. Thus, from an ar-

bitrary vertex v if the gL (or the gR) function is repeatedly
applied, a cycle of lengthn is traced in the graphSEPn.That
these s-cycles are vertex disjoint follows from the fact that
gL(v1) = gL(v2), if and only if v1 = v2. 2

Remark 7

� Consider the symbol set ft1; t2; � � � ; tng for SEPn.
For all k, 1 � k � n, each s-cycle in SEPn has a
unique vertex starting with tk, 1 � k � n.

� For each s-cycle in SEPn, the unique vertex start-
ing with t1 is called the leader vertex. Since there are
n symbols and the leader nodes start with t1, there
are (n� 1)! leader nodes in SEPn which is equal to
the number of s-cycles in SEPn. For example, the
leader node of the s-cycle cited in example 1 is 1243.

� Note that each leader node permutation starts with
the digit “1”. If we disregard the digit “1” in repre-
senting the leader nodes, each leader node ((n� 1)!

of them) is labeled by a distinct permutation of (n�1)

distinct digits f2; 3; � � � ; ng.

Definition 4 Two s-cycles, say si and sj , are said to be ad-
jacent if there exists a vertex v 2 si and a vertex u 2 sj
such that v = g12(u) or u = g12(v).

Theorem 3 Each s-cycle in Gn is adjacent to n different s-
cycles.

Proof : Consider an arbitrary s-cycle with the leader
v = a1a2 � � �an, where a1 = t1. Now, g12(v) =

a2a1 � � � an = y0 and the node y0 belongs to the f -cycle
with leader a1a3 � � � ana2. Then, consider the nodes yi,
1 � i < n, such that yi = g12(vi) where vi =

gi
L
(v). We have yi = g12(ai+1ai+2 � � � ana1a2 � � � ai) =

ai+2ai+1ai+3 � � � ana1a2 � � � ai); this node yi belongs to a
s-cycle with the leader a1a2 � � � aiai+2ai+1ai+3 � � � an. Ob-
viously, the nodes yi, 0 � i < n, belong to different s-
cycles (they have different leaders) and hence any s-cycle
is adjacent to n different s-cycles in SEPn. 2

Theorem 4 For any vertex v 2 SEPn, (LE)n�1(v) = v

and this defines a cycle of length 2(n� 1) in SEPn.

Corollary 1 For any vertex v 2 SEPn, (RE)n�1(v) = v

and this defines a cycle of length 2(n� 1) in SEPn.

Theorem 5 For any vertex v 2 SEPn, n > 3,
(EREL)3(v) = v and this defines a cycle of length 12 in
SEPn.

5 Fault Tolerance of SEPn

The node fault tolerance of an undirected graph is mea-
sured by the vertex connectivity of the graph. A graph G

is said to have a vertex connectivity � if the graph G re-
mains connected when an arbitrary set of less than � nodes
are faulty. Obviously, the vertex connectivity of a graph G
cannot exceed the minimum degree of a node in G; thus
�(SEPn) � 3 since SEPn is a 3-regular graph for all val-
ues of n. A graph is called maximally fault tolerant if ver-
tex connectivity of the graph equals the minimum degree of
a node. Our purpose in this section is to show that the pro-
posed graph SEPn has a vertex connectivity of 3 and hence
these graphs are maximally fault tolerant.
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Definition 5 For a givenSEPn compute the reduced graph
RSn�1 in the following way: condense each s-cycle into a
single node and label that node with the leader node of the
s-cycle without the digit “1” (see Remarks 7); connect two
arbitrary vertices by an undirected edge iff the correspond-
ing s-cycles are adjacent in SEPn.

Remark 8 Figure 2 shows the reduced graph RS3 corre-
sponding to SEP4. Each vertex in RSn�1 is labeled with a
distinct permutation of n� 1 distinct symbols; thus RSn�1
has (n � 1)! vertices each with a degree n (each vertex in
RSn�1 corresponds to a distinct s-cycle in SEPn); each
s-cycle in SEPn is of length n, has a leader node (digit
“1” followed by a distinct permutation of n � 1 digits,
f2; 3; � � � ; ng), and is adjacent to n distinct other s-cycles.

Lemma 3 The reduced graph RSn�1 (corresponding to
SEPn) is a n regular graph with (n � 1)! nodes (each
node representing a distinct permutation of n � 1 digits
f2; 3; � � � ; ng) with the generators gL, gR, and E(i; i + 1),
for 1 � i < n, where E(i; i+ 1) indicates swapping of two
adjacent digits i and i+ 1.

Proof : SEPn has (n � 1)! many s-cycles, each with
a leader denoting a distinct permutation of n � 1 digits
f2; 3; � � � ; ng and hence RSn�1 has (n � 1)! nodes. It re-
mains to show the adjacency of the s-cycles is achieved by
the said generators and nothing more.

� If two nodes u and v are adjacent in RSn�1, they cor-
respond to adjacent s-cycles in SEPn. If u = gL(v),
let v = 23::n and u = 34:::n2; restoring digit “1”,

we get the corresponding leader nodes 123:::n and
134:::n2 (in SEPn) of two s-cycles s� 1 and s2 say;
s2 has a node 2134:::n which is connected to 123:::n

by an g12 edge in SEPn and hence s � 1 and s2 are
adjacent. Similar argument holds if u = gR(v). If
u = E(i; i + 1)(v), let v = 2:::n and u = 2::(i �
1)(i + 1)i(i + 1)::n. Again restoring digit “1”, we
get the corresponding leader nodes 12:::n and 12::(i�
1)(i+1)i(i+1)::n of two s-cycles s� 1 and s2 say;
s1 has a node i(i+1)::n12::(i� 1) which has an g12
edge in SEPn to the node (i+1)i(i+2)::n12::(i�1)

that belongs to the s-cycle s2; thus s�1 and s2 are ad-
jacent.

� If two s-cycles s1 and s2 are adjacent in SEPn, their
corresponding leader nodes are adjacent in RSn�1;
similar arguments, as before, hold in reverse direc-
tion.

2

Remark 9 The reduced graphRSn�1 contains the bubble-
sort graph Bn�1 of dimension n � 1 as a subgraph; a
bubble-sort graph Bn�1 of dimension n � 1 is a (n � 2)-
regular Cayley graph with (n � 1)! vertices, each labeled
with a distinct permutation of the set of integers f1; : : : ; n�
1gwith a set of generators defined as: G = fg(i; i+1); i =

1; 2; : : : (n� 1)g [1].

Lemma 4 Vertex connectivity of a bubble-sort graphBn�1

is n� 2 [1].

Lemma 5 Vertex connectivity of RSn, n � 3, is at least 3.

Proof : For n � 4, RSn contains Bn with connectivity
n� 1 (Lemma 4) and hence RSn has vertex connectivity at
least 3. Forn = 3, exhaustive enumeration shows the result.
2

Lemma 6 Consider two arbitrary nodes u and v in SEPn
such that u and v belong to different s-cycles. Then there
exist three vertex disjoint paths between u and v.

Proof : Let u 2 si and v 2 sj where i 6= j. Consider the
following three s-cycles adjacent to si:

g12(u) = u1 2 si1; g12gL(u) = u3 2 si2; g12gR(u) = u4 2 si3

It is easy to see that for n � 3 these three s-cycles are dis-
tinct. Similarly, the node v can reach (by vertex disjoint
paths) to three distinct s-cycles, say sj1; sj2; and sj3. Note
that it is possible for given i and j that si` = sjk for some `
and k. By Menger’s theorem [14], given two sets of nodes
V and U such that jV j = jfv1; v2; � � � vngj = jU j =

jfu1; u2; � � � ; ungj = n in a n-connected graph, there are



n vertex disjoint paths connecting the nodes (vi ; ui),
1 � i � n. The reduced graph RSn�1 corresponding to
SEPn is 3-connected by Lemma 5; hence for n � 3 there
are 3 vertex disjoint paths connecting the two sets of 3 dis-
tinct s-cycles. Thus, there exist three vertex disjoint paths
between u and v. 2

Lemma 7 Consider two arbitrary nodes u and v in SEPn
such that u and v belong to the same s-cycle. Then there
exist three vertex disjoint paths between u and v.

Proof : Since u and v belong to the same s-cycle s0, we
directly get two vertex disjoint paths between u and v along
the given s-cycle s0. Consider the following two s-cycles:

g12(u) = u1 2 s1; and g12(v) = v1 2 s2

Note that s1 and s2 are distinct forn � 3 and neither of them
is the same as s0. Now, by the 3-connectivity of the reduced
graph RSn�1 corresponding to SEPn, there exist 3 vertex
disjoint paths between s1 and s2; at least two of them cannot
go via the s-cycle s0. Hence, there exists a path between the
nodes u1 to v1 in SEPn that does not go through any of the
nodes in the s-cycleu and v belong to. Thus there exist three
vertex disjoint paths between u and v. 2

Theorem 6 The graph SEPnis 3-connected for any given
n, n � 3.

Proof : Obvious from the previous two theorems. 2

6 Network Simulations

In this section we consider the simulation of three Cay-
ley networks namely, Bubble-sort, Pancake, and Star by
SEP. Efficient network simulation strategies are necessary to
run parallel algorithms on our proposed network SEP which
were originally designed for those three networks [4]. We
assume that the networks operate in the SIMD mode. At any
given step of an algorithm, the controller broadcasts the in-
struction to be executed to all the processors. The proces-
sors then apply the same instruction to their own sets of data
concurrently. In each case we determine the optimal number
of steps required for one network to simulate the other. For
network A to simulate network B, A should be able to per-
form each interconnection function offered by B in a finite
number of steps. This simulation takes place by executing a
sequence of interconnection functions provided by A. The
simulation of B by A is denoted by A �! B (i.e., A sim-
ulates B). Programs, developed to run on network architec-
ture B (i.e., that utilize the interconnection functions of B),
can now run on network A by translating each interconnec-
tion function of B required by the program into an equiva-
lent (but minimal) sequence of interconnection functions of
A.

6.1 Star, Bubble-sort and Pancake

We choose three networks, e.g., Star, Bubble-sort and
Pancake, since each of these networks is a Cayley graph
with n! vertices, each vertex labeled with a permutation of
the first n non-zero positive integers. The significant dif-
ference between any of these networks and our proposed
SEP network is that degree requirement of the nodes in each
one of them increases with the size of the network while
SEP is a fixed degree network for any size; this makes SEP
much more attractive especially for VLSI implementations
and for applications where the number of I/O ports per node
is bounded and at the same time applications developed for
other networks can run on SEP with minimal modification.
Any Cayley graph is uniquely identified by the set of gener-
ators and the Identity element (I = I = 12 : : : n).

We need three different kind of generators to define the
networks under study: (1) transposition type generators gij
which works on a permutation by swapping the ith and jth
elements in the label; (2) shift type generators gL or gR
which gives a cyclic shift to the elements in the label by one
digit to left (right); (3) flipping type generators fp (2 � p �
n), that reverses the first p elements of the node permutation.
For instance, the application of g(2;5) and f3 to the permuta-
tion I = 12345 will yield permutations 15342 and 32145,
respectively. Application of gL(gR) to I will yield 23451

(51234). We now briefly define the three Cayley networks
under study:

Star Graph Sn: Gstar = fg(1;i); 2 � i � ng,
where g(1;i) is a generator that
swaps the first and ith element.

Bubble-sort Graph Bn: GB�sort = fg(i;i+1); 1 �
i < ng; this implies that a gener-
ator can only swap the adjacent
digits in the label.

Pancake Graph Pn: GPancake = ffi; 2 � i �
ng; a generator fi in this graph
flips the leftmost i digits.

SEP Graph SEPn: GSEP = fg(1;2); gL; gRg.

6.2 Basic Principle of Simulation

Note that there are two ways to specify a generator. One
way is naturally to use the permutation obtained after the
generator is applied to the Identity element I (absolute rep-
resentation). The second way is to express this represen-
tation as a set of cycles (cycle representation). The latter
uses the property that any permutation can be viewed as a
set of cycles, i.e. cyclically ordered sets of digits with the
property that each digit’s desired position is that occupied



by the next digit in the set. For instance, the abstract rep-
resentation of gL is: (2; 3 : : : n; 1) but its cycle representa-
tion is: (1; 2 : : : n). Similarly, the generator g(i;j) has the
cycle representation of (i; j) which indicates the fact that in
the permutation label the digits in positions i and j must be
swapped. The cycle representation for other generators will
be derived later. The decomposition of a cycle representa-
tion can be easily transformed to that of its corresponding
generator. For example, (i; j) = (1; i)(1; j)(1; i) implies
g(i;j) = g(1;i) � g(1;j) � g(1;i).

In the current context, the interconnection functions of
a network are essentially its generators which are permuta-
tions themselves. Thus, the simulation problem can be re-
duced to one of expressing (or decomposing) the generators
ofB in terms of generators ofA. The following assumptions
are made:

� Each simulation involves movement of N = n! data
items among N processors.

� When simulating interconnection f , the data origi-
nally in processor p must be transferred to processor
f(p), 1 � p � N .

� The simulation time (tsimulation) is in terms of the
number of executions required to perform the simu-
lation.

� The particular interconnection function to be simu-
lated that require the most time to simulate will deter-
mine the simulation time.

Observe that no two (or more ) processors can send data
to the same processor when N data items are moved across
any of the four networks in parallel and according to a single
interconnection function. This is because every intercon-
nection function is indeed a permutation. Applying this per-
mutation to a distinct label of a given vertex can only yield
a distinct label of another vertex. Formally, if g(i;j)P1 =

g(i;j)P2 then P1 = P2, where P1 and P2 are permutations
representing the labels of two vertices and g(i;j) is a gener-
ator representing an interconnection function. The potential
of data conflict, however, exists when various interconnec-
tion functions are applied to different subnetworks.

6.3 SEP �! Bubble-sort

The cycle (k; k + 1) can be decomposed as follows:

(k; k + 1) = (1; 2; : : : ; n)k�1(1; 2)(1; 2; : : : ; n)n�k+1

The superscripts imply the repetition of the cycles. The gen-
erator g(k;k+1) can thus be expressed in one of the following
ways:

g(k;k+1) = gk�1
L

� g(1;2) � gk�1
R

; or

g(k;k+1) = gn�k+1
R

� g(1;2) � gn�k+1
L

; 2 � k < n:

The first simulation takes (2k � 1) steps whereas the 2nd
simulation takes (2n � 2k + 3) steps. It follows that if
k � bn=2c + 1, the first approach should be used. Other-
wise, the second approach will result in a faster simulation.
The simulation time is (n + 1) which is optimal. The opti-
mality follows from the fact that in order to swap two adja-
cent digits, they must be first brought into 1st and 2nd posi-
tions where the swap is allowed (i.e. g(1;2)). After the swap
the digits must be put back in place by successive appropri-
ate (left or right) shifts.

6.4 SEP �! Pancake

We need to use an inductive approach. More specifically,
assuming that the simulation of fi�1 is known, the steps to
simulate fi will be given. We use the simulation of f3 as the
induction base. The simulation of f3 requires 5 steps and is
given by:

f3 = g(1;2) � gL � g(1;2) � gR � g(1;2)

Now assuming the simulation of fi�1 is
known, we will simulate fi by first simulating fi�1 which
will change the original label of a1a2 : : : ai�1aiai+1 : : : an
to ai�1ai�2 : : : a2a1aiai+1 : : : an. We need only to bring ai
to the first position, and shift ai�1; ai�2; : : : ; a2, and a1 to
the right by one position. It is left to the reader to verify that
the following sequence will optimally make the change in
the label as required.

gi�2
L

� g(1;2) � (gR � g(1;2))
i�2

The total number of steps in the above sequence is: 3i�
5. Thus, the simulation time can be obtained by solving a
recurrence on S(i), the number of steps to simulate fi. We
have S(i+ 1) = S(i) + 3i� 5 with S(3) = 5. Solution of
this recurrence yields;

S(i) =
3i2 � 13i+ 22

2
; i � 3

Coincidentally, from the above S(2) = 1 which is true
since: f2 = g(1;2). Since S(n) will determine the maxi-
mum number of steps to simulate any pancake function, the
simulation time is given by tsimulation = 3n2�7n+4

2
. The

simulation time, in this case, is large, but optimal; This is
probably due to the nature of specific generators of the Pan-
cake graphs.

6.5 SEP �! Star

We need to simulate the generators g(1;i), 2 � i � n. To
simulate g(1;i), the digit in the ith position is first brought
to the first position such that the label a1a2 : : : an be trans-
formed to a1aia2 : : : ai�2ai�1ai+1 : : : an. This can be done



by applying the sequence g(1;2) � gL, (i � 2) times. Then
the g(1;2) can be applied to obtain
aia1a2 : : : ai�2ai�1ai+1 : : : an. Applying the sequence of
gR � g(1;2) (i � 2) times will take a1 to position i; i.e. the
label aia2 : : : ai�1a1ai+1 : : : an will be obtained. Thus,

g(1;i) = (g(1;2) � gL)
i�2 � g(1;2) � (gR � g(1;2))

i�2

The simulation can also be done using the SEP generator gR
instead of gL and then the sequence will look like

g(1;i) = (gR � g(1;2))
n�i+1 � (gL � g(1;2))

n�i � gL

Depending on the location of i in the node label, one of the
above schemes takes fewer steps, i.e., results in a faster sim-
ulation. Th e worst case occurs when i = 2n+5

4
. This sim-

ulation is optimal as no other sequence can simulate g(1;i)
in fewer steps. Thus, the simulation time is computed at
i = 2n+5

4
and is given by tsimulation = 2n� 2.

7 Conclusion

We have proposed a new family of regular Cayley net-
works which is shown to be very competitive to build mas-
sively parallel systems. The proposed networks are maxi-
mally fault tolerant and hence are more resilient to node and
link failures than the almost regular networks like DeBruijn
graphs or Möbius graphs. Another interesting feature of the
proposed family of networks is that it can efficiently simu-
late many of the popular permutation group based networks
like star graphs, bubble-sort or pancake graphs. Thus, algo-
rithms originally designed for those graphs can still run on
the proposed networks and one can still get the advantage of
the fixed degree of the network (independent of the size).
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