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Abstract

We propose a family of regular Cayley network graphs
of degree three based on permutation groups for design of
massively parallel systems. These graphs are shown to be
based on the shuffle exchange operations, to have logarith-
mic diameter in the number of vertices, and to be maximally
fault tolerant. e investigate different algebraic properties
of these networks (including fault tolerance) and propose
a simple routing algorithm. These graphs are shown to be
able to efficiently simulate other permutation group based
graphs; thusthey seemto be very attractive for VLS imple-
mentation and for applications requiring bounded number
of 1/0 portsaswell asto run existing applicationsfor other
permutation group based architectures.

1 Introduction

Performanceof any distributed systemissignificantly de-
termined by the choice of the underlying network topol ogy.
One of the most efficient interconnection networkshas been
the well known binary n-cubes or hypercubes; they have
been used to design various commercial multiprocessor ma-
chines and they have been extensively studied. For the past
several years, there has been a spurt of research on a class
of graphs called Cayley graphs which are very suitable for
designing interconnection networks. These Cayley graphs
are based on permutation groups and they include a large
number of families of graphs like star graphs [1, 2], hy-
percubes [3], pancake graphs [1, 4] and others [5]. These
graphs are symmetric (edges are bidirectional), regular and
seem to share many of the desirable propertieslike low di-
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ameter, low degree, high fault tolerance etc. with the well
known hypercubes (which are also Cayley graphs).

All of these Cayley graphs are regular, i.e., each vertex
hasthe same degree, but the degree of the verticesincreases
with the size of the graph (the number of vertices) either
logarithmically or sub logarithmically. This property can
make the use of these graphs prohibitive for networks with
large number of vertices[6]. Fixed vertex-degree networks
are also very important from VLS| implementation point of
view [7]; there are applications where the computing ver-
tices in the interconnection network can have only a fixed
number of 1/O ports[6]. Asamatter of fact alarge multipro-
cessor (with 8096 vertices) isbeing built by JPL around the
binary De Bruijn graphs[8], which are almost regular net-
work graphs of fixed vertex degree 4. There are also other
graphsin the literature that have amost constant vertex de-
grees like the Moebius graphs [9] of degree 3. But neither
the De Bruijn graphs[8] nor the Moebiusgraphs[9] arereg-
ular (and none are Cayley graphs). Also, these graphs have
alow vertex connectivity of only 2 although most of thever-
tices in those graphs have degree larger than 2. Some fixed
degree regular networks have been studied in [10, 11, 12].

In this paper, we introduce a Cayley graph for intercon-
necting alarge number of processorsbut with aconstant de-
gree of the vertex. The proposed family of graphsis reg-
ular of degree 3 independent of the size of the graph, has
alogarithmic diameter in the number of vertices and has a
vertex connectivity of 3, i.e., the graphs are maximally fault
tolerant (vertex connectivity cannot exceed the vertex de-
gree). The proposed family of graphs offers a better and
more attractive alternative to De Bruijn graphs or Moebius
graphsfor VLS| implementation in terms of regularity and
greater fault tolerance. Another interesting feature of the
proposed graphsis that it can easily simulate other permu-
tation group based graphs and hence parallel algorithms de-
signed for those topol ogies can be efficiently run on the new
architecture with very minimal change.



2 Shuffle-Exchange
Graph

Permutation (SEP)

A Cayley graphisavertex-symmetric graph oftenwith n!
vertices, each assigned a label which is a distinct permuta-
tion of theset {1,2,...,n}. The adjacency among the ver-
ticesis defined based on a set of permutations referred to as
generators; the neighbors of a vertex are obtained by com-
posing the generators with the label of the vertex. The set
of generatorsdefined for a Cayley graph must be closed un-
der the inverse operation to guarantee that the graph will be
undirected. Furthermore, the set of generatorstogether with
the Identity permutation must produce al n! permutations
onn integers(which collectively belongto set S,,), or asub-
group of S,, when the generators are repeatedly applied to
the already generated vertices.

An n-dimensional SEP graph is an undirected regular
graph with N = n! vertices, each vertex corresponding to
adistinct permutation of theset {1,2,---,n}. Two vertices
aredirectly connected if and only if the label (permutation)
of oneis obtained from the label of the other by one of the
following operations:

e Swapping the first two digits (the leftmost digit is
ranked asfirst).

e Shifting cyclicaly to left (or right) by one digit.

Formally, consider aset of n distinct symbols(we use En-
glish numerals as symbols; for example, whenn = 4, the
symbolsare 1,2,3,4). Thus, for n distinct symbols, there
are exactly n! different permutation of the symbols or the
number of verticesin SEP,, isn!; using ayas - - - a,, asthe
symbolic representation of an arbitrary vertex, the edges of
SEP, are defined by the following three generatorsin the

graph:

gr(aias - - ap) = a2a3 - - apan
gr(aias -+ ap) = apaias - - Gp_1
gi2(aias - ay) = asaraz - - ap

Remark 1 (i) The SEP isan undirected graph as swapping
the first two digitsis a symmetric operation; and if a vertex
u is obtained from another vertex v by shifting to left, vertex
v can be obtained from v by shifting to right; thus, if v is
adjacent to v, so iswv to u, (ii) The generator g isits own
inverse, i.e, g’ = gz andg;' = gr (95" = gu), (i)
Figure 1 showsthe proposed trivalent Cayley graphs S E P
and SE P, of dimensions 3 and 4 respectively.

Remark 2 (i) Thegenerator g, performsthetransposition
(12) on the permutations and (ii) either g, or gr performs
then-cycle (1,2, ---,n) on the permutations.

Lemmal The transpo-
sition (12) and the n-cycle (1,2, ..., n) together generate
Sy, the group of all permutations of n. distinct elements.

Proof : The proof follows from the fact that any basic 2-
cycle of a permutation can always be written in terms of the
swap and the n-cycle; for details, see [13]. |

Lemma?2 SEP,,n > 2,isaCayley graph.

Proof : The set of generators for SEP,, n > 2, G =
{912, 91, 9r} is closed under the inverse operation and the
generator set can generate al the elementsin the vertex set
of SEP,. O

Remark 3 Notethat thetwo generators g, ») and gz, could
produce all the elements of the group .S,, and so could the
two generators g(; ») and gg. The third generator is in-
cluded with two objectives: to makethegenerator set closed
under inversion (a requirement for the graph to be a Cay-
ley graph) and to make the graph undirected (bidirectional)
since the bandwidth of a link incident on a vertex can be
shared between the incoming traffic activated by g7, (or gg)
and the outgoing traffic activated by g (or gr).

Theorem 1 For any n, n > 2, thegraph SEP,: (1) isa
symmetric (undirected) regular graph of degree 3; (2) has
n! vertices; and (3) has3n!/2 edges.

Proof : (1) follows from Remark 1. (2) follows from
Lemmal. (3) followsfrom (1) and (2). |

Definition 1 The edgeswhich correspond to ¢,- are called
Exchangeor E-edgesand those correspondingto gy, (or gr
) are referred to as Shuffle or S-edges; an S-edge may be
referred to either asan L-edge (corresponding to left shift)
or an R-edge (corresponding to right shift).

Remark 4 Thisis similar to the familiar shuffle-exchange
network where adjacent labels are obtained by either shift-
ingthelabel cyclicallytoleft by onedigit, or by complement-
ing the rightmost digit of the label (instead of swapping).

Definition 2 We use the regular expression (E, L, R)* to
denote any sequence of generators; generator sequences
will be used to specify vertex to vertex pathsin the graph.

3 Simple Routing Algorithm

Since SE P, isaCayley graph, itisvertex symmetric[1],
i.e., we can always view the distance between any two arbi-
trary vertices as the distance between the source vertex and
theidentity permutation by suitably renaming the digitsrep-
resenting the permutations. Thus, in our subsequent discus-
sion about a path from a source vertex to a destination ver-
tex, the destination vertex is always assumed to be the iden-
tity vertex I = (12 - - - n) without any loss of generality. The
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Figure 1. Example Graphs forn =3 and n =4

following agorithm Simple_Route computes a path from an
arbitrary source vertex u to the identity vertex I.

The algorithm defines the movesto be taken at each step
(either of thethree generators). Each movetakesusto anew
vertex. The symbol setisgivenby {i|1 < i < n} and for
any digit 7, we use p(i) to denote the position of the digit i
inthe current vertex (the leftmost digit in a permutation has
theposition 1). For example, p(5) = 3inthevertex (23541)
while p(1) = 5 in the same vertex.

Algorithm Simple_Route
Step 1: If p(1) > [n/2], thenapply gr (n — p(1))
times; elseapply g, p(1) times. [Digit“1” is
now at the rightmost position.

Step 2: For i, 2 < i < |n/2], dothefollowing:

(A) Ifn—p(i)+1 < p(i)—1,thenapply gr
(n—p(i)+1) times; apply the sequence
of generators (g2, 91) (n— p(i)) times
followed by asingle gy;

(B) otherwise, apply g1, max{0, (p(i)—2)}
times; if p(i) > 1, then apply g12; ap-
ply the sequenceof generators(gr, g12)
max{0, (p(i) — 2)} timesfollowed by a
singlegr,.

[Digits “1” through “i” are now at the right-
most positions of the current vertex]

Step 3: For digits ¢, [n/2] < ¢ < n — 1, dothe

following: apply g, max{0, max{0, (p(i) —

2)} times; if p(i) > 1, then apply gio;
apply the sequence of generators (gg, g12)
max{0, (p(7) — 2)} timesfollowed by asin-

glegr.

Step 4. Apply one g, to reach the identity vertex.
Example: Consider the vertex (2143) in SEP,. The path
from this vertex to the identity vertex is computed by the
algorithm as follows: (2143) %5 (1432) 5 (4321) &
(3214) 23 (2314) 28 (4231) 2% (2431) & (4312) 8
(3412) %5 (4123) %5 (1234). Thusthe path lengthis 8.

Remark 5 The algorithmis not optimal; note that the ver-
tex node (2143) in SE P, can reach the identity vertex in
6 steps as follows: (2134) 25 (1243) 25 (2431) %
(4312) 18 (3412) %5 (4123) %5 (1234). Neverthelessit
does establish a upper bound on the diameter of the graph,
as we see below.

We make the following observations about the worst case
behavior of the above routing algorithm:

e Step 1takes [n/2] moves.

e There are |[n/2] — 1 loopsin Step 2. Consider an
arbitrary value of i in the given range. Number of
moves is maximum when p(i) = |[22] (using ei-
ther subcase (A) or (B)). Number of movesfor putting
digit i in its correct place is 3(p(i) — 2) + 1 + 1
= 3p(i) —4 = 222, Note that for each value of
i within the range specified in Step 2, this worst case



vaueof p(i) ispossible. Thus, maximum possibleto-
tal number of movesin Step 2is 1 (n —2)(3n —2) =
1(3n? — 8n +4).

e Worst casein Step 3 occurswhen p(i) = n—i+1for
[n/2]| < i < n —1andnotethat this possible. Thus,
maximum possible total number of movesin Step 3is

n—1

> {143((n—j+1)-2)+1}

j=n/2+1

n/2—1 1
= > Bi-1)= g(?,n2 —10n + 8)
j=1

e Step 4 always takes one move.

¢ Intheworst case, the total number of moves made by
the entire routing algorithmis given by (by summing
up themovesfromdifferent steps) 1 (9n* —22n+24).

Remark 6 Obvioudy, the diameter of SEF,, for any given
n,n > 3, isupper bounded by £ (9n® — 22n + 24). We
strongly suspect that the actual diameter would be much less
although most possibly O(n?).

4 Algebraic Propertiesof SEP,

In this section we investigate different interesting struc-
tural properties of the proposed 3-regular Cayley graphs.

Definition 3 Any cycle in SEP,, consisting of only the s-
edges (induced by the symmetric functions g, or gg) is
called an s-cycle.

Example: In Figure 1, the cycle {4312,3124,1243,2431}
isan s-cycle.

Theorem 2 All of the n! vertices of SEP, of dimension
n are partitioned into vertex digoint s-cycles of length n;
number of s-cyclesin SEP, is(n — 1)\

Proof : Consider an arbitrary vertex v = ajas---a, in
SEP,. Foranyi,i > 1,let g% (v) = gr(g% *(v)), where
gi(v) = gr(v). Itiseasy to observe that g% (v) = v and
dso g (v) # ¢} (v) for1 < i,j < n. Thus, froman ar-
bitrary vertex v if the g, (or the gg) function is repeatedly
applied, acycleof lengthn istracedinthegraph SE P,,.That
these s-cycles are vertex digoint follows from the fact that
gr.(v1) = gr(v2), if and only if v; = vs. O

Remark 7

e Consider the symbol set {t1,t2,---,t,} for SEP,,.
For all k,1 < k < n, each s-cyclein SEP,, hasa
unique vertex starting with ¢, 1 < k < n.

e For each s-cyclein SEP,,, the unique vertex start-
ing with ¢; iscalled the leader vertex. Sncethereare
n symbols and the leader nodes start with ¢, there
are (n — 1)! leader nodesin SEP,, whichisegual to
the number of s-cyclesin SEP,. For example, the
leader node of the s-cycle cited in example 1is 1243.

¢ Note that each leader node permutation starts with
thedigit“ 1" . If we disregard the digit “ 1" in repre-
senting the leader nodes, each leader node ((n — 1)!
of them) islabeled by a distinct permutation of (n—1)
distinct digits {2,3, - - -, n}.

Definition 4 Two s-cycles, say s; and s;, are said to be ad-
jacent if there exists a vertex v € s; and a vertex u € s;
suchthat v = g12(u) Or w = g12(v).

Theorem 3 Each s-cyclein G,, isadjacent to n different s-
cycles.

Proof : Consider an arbitrary s-cycle with the leader
v = aiaz---ap, Wherea; = t;. Now, gi2(v) =
asay - --ap = yo and the node yo belongs to the f-cycle
with leader ajas - --anaz. Then, consider the nodes y;,
1 < i < n,suchthat y; = gi2(v;) where v; =
g1,(v). Wehavey; = gi2(ait10i12---apaias---a;) =
Ai+20i+10i+3 "+ ApG1G2 - - a;); this node y; belongs to a
S-CyC|EWith theleaderaias - - - Qi 2A41Aj43 - Ap. Ob-
vioudly, the nodes y;, 0 < i < n, belong to different s-
cycles (they have different leaders) and hence any s-cycle
is adjacent to n different s-cyclesin SEP,,. |

Theorem 4 For any vertexv € SEP,, (LE)" }(v) = v
and this defines a cycle of length 2(n — 1) in SEP,.

Corollary 1 For any vertexv € SEP,, (RE)" (v) = v
and this defines a cycle of length 2(n — 1) in SEP,.

Theorem5 For any vertex v € SEP,, n > 3,
(EREL)3(v) = v and this defines a cycle of length 12 in
SEP,.

5 Fault Tolerance of SEP,

The node fault tolerance of an undirected graph is mea-
sured by the vertex connectivity of the graph. A graph G
is said to have a vertex connectivity ¢ if the graph G re-
mains connected when an arbitrary set of less than £ nodes
are faulty. Obvioudly, the vertex connectivity of agraph G
cannot exceed the minimum degree of a node in G; thus
&(SEP,) < 3dince SEP, isa3-regular graph for all val-
uesof n. A graphiscalled maximally fault tolerant if ver-
tex connectivity of the graph equal s the minimum degree of
anode. Our purposein this section is to show that the pro-
posed graph S E P,, hasavertex connectivity of 3 and hence
these graphs are maximally fault tolerant.
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to SEP,

Definition 5 For agiven S E P,, computethereduced graph
RS, inthefollowing way: condense each s-cycleinto a
single node and label that node with the leader node of the
s-cycle without the digit “ 1" (see Remarks 7); connect two
arbitrary vertices by an undirected edge iff the correspond-
ing s-cyclesare adjacent in SEP,,.

Remark 8 Figure 2 shows the reduced graph R.S3 corre-
spondingto SEP,. Eachvertexin RS,,_; islabeled with a
distinct permutation of n. — 1 distinct symbols; thus RS,, 1
has (n — 1)! vertices each with a degree n (each vertex in
RS, 1 corresponds to a distinct s-cycle in SEP,); each
s-cycle in SEP, is of length n, has a leader node (digit
“1" followed by a distinct permutation of n — 1 digits,
{2,3,---,n}), and is adjacent to n distinct other s-cycles.

Lemma 3 The reduced graph RS, 1 (corresponding to
SEP,) is a n regular graph with (n — 1)! nodes (each
node representing a distinct permutation of n — 1 digits
{2,3,--,n}) with the generators gz, gr, and E(i,i + 1),
for 1 < i < n,where E(i,: + 1) indicates swapping of two
adjacent digitsi and ¢ + 1.

Proof : SEP, has (n — 1)! many s-cycles, each with
a leader dencting a distinct permutation of n — 1 digits
{2,3,---,n} and hence RS,y has (n — 1)! nodes. It re-
mains to show the adjacency of the s-cyclesis achieved by
the said generators and nothing more.

e Iftwonodesu andv areadjacentin RS,,_1, they cor-
respond to adjacent s-cyclesin SEP,,. If u = g1 (v),
let v = 23.n and v = 34...n2; restoring digit “1”,

we get the corresponding leader nodes 123...n and
134...m2 (in SEP,) of two s-cycless — 1 and s, say;
s2 hasanode 2134...n which is connected to 123...n
by an g1» edgein SEP,, and hence s — 1 and s, are
adjacent. Similar argument holds if u = gg(v). If
w=E(,i+1)(v),letv = 2.nandu = 2..( —
1)(i + 1)i(¢i + 1)..n. Again restoring digit “1”, we
get thecorresponding leader nodes12...n and 12..(i —
1)@+ 1)i(i+ 1)..n of two s-cycless — 1 and s say;
s1 hasanodei(i+ 1)..n12..(¢ — 1) which hasan g;»
edgein SEP, tothenode (i+1)i(i+2)..n12..(i—1)
that belongstothe s-cycle s, ; thuss—1 and s, are ad-
jacent.

o If two s-cycless; and s, areadjacentin SE P, their
corresponding leader nodes are adjacent in RS, _1;
similar arguments, as before, hold in reverse direc-
tion.

O

Remark 9 Thereduced graph RS,,—1 containsthe bubble-
sort graph B,,_; of dimension n — 1 as a subgraph; a
bubble-sort graph B,,_; of dimensionn — lisa (n — 2)-
regular Cayley graph with (n — 1)! vertices, each labeled
with a distinct permutation of the set of integers{1,...,n —
1} with a set of generatorsdefinedas: G = {g(i,i+1),i =
1,2,...(n—1)} [1].

Lemma 4 Vertex connectivity of a bubble-sort graph B,, _,
ism—2 [1].

Lemma5 Vertex connectivity of RS,,, n > 3, isat least 3.

Proof : Forn > 4, RS, contains B,, with connectivity
n — 1 (Lemma4) and hence RS, has vertex connectivity at
least 3. For n = 3, exhaustive enumeration showstheresult.
]

Lemma 6 Consider two arbitrary nodesu and v in SEP,,
such that « and v belong to different s-cycles. Then there
exist three vertex digoint paths between « and v.

Proof : Letu € s; andv € s; wherei # j. Consider the
following three s-cycles adjacent to s;:

g12(u) = w1 € si1, gr129n(u) = us € Si2, gi2gr(w) = U4 € 853

Itiseasy to seethat for n > 3 these three s-cycles are dis-
tinct. Similarly, the node v can reach (by vertex disoint
paths) to three distinct s-cycles, say s;1, 552, and sj3. Note
that it is possible for giveni and j that s;; = s, for some ¢
and k. By Menger’s theorem [14], given two sets of nodes
V and U such that |V| = [{vy,v2,---v,} = |U| =
[{wi,u2,---,u,}| = n inan-connected graph, there are



n vertex digoint paths connecting the nodes (v; ~ u;),
1 < i < n. Thereduced graph RS,, 1 corresponding to
SEP, is 3-connected by Lemma 5; hence for n > 3 there
are 3 vertex digoint paths connecting the two sets of 3 dis-
tinct s-cycles. Thus, there exist three vertex digoint paths
between v and v. ]

Lemma 7 Consider two arbitrary nodesuw and v in SE P,
such that » and v belong to the same s-cycle. Then there
exist three vertex digoint paths between « and v.

Proof :  Since u and v belong to the same s-cycle s’, we
directly get two vertex digoint paths between v and v along
the given s-cycle s’. Consider the following two s-cycles:

g12(w) = u1 € s1, and ¢12(v) = vy € 89

Notethat s; and s» aredistinct for n > 3 and neither of them
isthesameas s’. Now, by the 3-connectivity of the reduced
graph RS,,_, corresponding to SE P, there exist 3 vertex
digoint pathsbetween s, and s»; at least two of them cannot
goviathe s-cycle s’. Hence, there exists a path between the
nodeswu; tov; in SEP,, that does not go through any of the
nodesinthe s-cycleu and v belongto. Thusthereexist three
vertex digoint paths between « and v. a

Theorem 6 The graph SE P,is 3-connected for any given
n,n > 3.

Proof :  Obviousfrom the previous two theorems. O

6 Network Simulations

In this section we consider the ssmulation of three Cay-
ley networks namely, Bubble-sort, Pancake, and Star by
SEP. Efficient network simulation strategies are necessary to
run parallel algorithmson our proposed network SEP which
were originally designed for those three networks [4]. We
assumethat the networksoperateinthe SIMD mode. At any
given step of an algorithm, the controller broadcaststhe in-
struction to be executed to all the processors. The proces-
sorsthen apply the same instruction to their own sets of data
concurrently. In each case we determinethe optimal number
of steps required for one network to simulate the other. For
network A to smulate network B, A should be able to per-
form each interconnection function offered by B in afinite
number of steps. Thissimulation takes place by executing a
sequence of interconnection functions provided by A. The
simulation of B by A isdenotedby A — B (i.e., A sim-
ulates B). Programs, developed to run on network architec-
ture B (i.e., that utilize the interconnection functions of B),
can now run on network A by trandating each interconnec-
tion function of B required by the program into an equiva-
lent (but minimal) sequence of interconnection functions of
A.

6.1 Star, Bubble-sort and Pancake

We choose three networks, e.g., Star, Bubble-sort and
Pancake, since each of these networks is a Cayley graph
with n! vertices, each vertex labeled with a permutation of
the first n non-zero positive integers. The significant dif-
ference between any of these networks and our proposed
SEP network isthat degree requirement of the nodesin each
one of them increases with the size of the network while
SEPis afixed degree network for any size; this makes SEP
much more attractive especially for VLS| implementations
and for applications where the number of 1/0O ports per node
is bounded and at the same time applications developed for
other networks can run on SEP with minimal modification.
Any Cayley graphisuniquely identified by the set of gener-
atorsand the Identity element (I = I = 12...n).

We need three different kind of generatorsto define the
networks under study: (1) transposition type generators g;;
which works on a permutation by swapping the ith and jth
elements in the label; (2) shift type generators gy, or ggr
which givesacyclic shift to the elementsin the label by one
digit to left (right); (3) flipping type generators f, (2 < p <
n), that reversesthefirst p elementsof the node permutation.
For instance, the application of g, 5) and f3 to the permuta-
tion I = 12345 will yield permutations 15342 and 32145,
respectively. Application of gz.(gr) to I will yield 23451
(51234). We now briefly define the three Cayley networks
under study:
Star Graph Sn’ Gstar = {g(l,i)§ 2<i < n}1
where g, ;) is a generator that
swaps thefirst and ith element.

Bubble-sort Graph B,,: Gp_sort = {g(i,i+1); 1<
i < n}; thisimpliesthat agener-
ator can only swap the adjacent
digitsin thelabel.

GPancake = {fz, 2 < ] <
n}; agenerator f; in this graph
flips the leftmost ¢ digits.

Pancake Graph P,,:

SEP Graph SEP,: Gspp =1{901,2),9L,9R}

6.2 Basic Principle of Simulation

Note that there are two ways to specify a generator. One
way is naturally to use the permutation obtained after the
generator is applied to the Identity element I (absolute rep-
resentation). The second way is to express this represen-
tation as a set of cycles (cycle representation). The latter
uses the property that any permutation can be viewed as a
set of cycles, i.e. cyclically ordered sets of digits with the
property that each digit's desired position is that occupied



by the next digit in the set. For instance, the abstract rep-
resentation of gy, is: (2,3...n,1) but its cycle representa-
tionis: (1,2...n). Similarly, the generator g; ;) has the
cyclerepresentation of (¢, j) which indicatesthe fact that in
the permutation label the digitsin positionsi and j must be
swapped. The cycle representation for other generatorswill
be derived later. The decomposition of a cycle representa-
tion can be easily transformed to that of its corresponding
generator. For example, (4,5) = (1,4)(1,4)(1,¢) implies
9G,5) = 9(1,6) — 9(1,5) — 9(1,i)-

In the current context, the interconnection functions of
anetwork are essentially its generators which are permuta
tions themselves. Thus, the simulation problem can be re-
duced to one of expressing (or decomposing) the generators
of B intermsof generatorsof A. Thefollowing assumptions
are made:

e Each simulation involves movement of N = n! data
items among N processors.

e When simulating interconnection f, the data origi-
nally in processor p must be transferred to processor
f(p),1<p<N.

e The simulation time (ts;muiation) IS in terms of the
number of executions required to perform the simu-
lation.

e The particular interconnection function to be simu-
lated that requirethe most time to simulate will deter-
mine the simulation time.

Observe that no two (or more ) processors can send data
to the same processor when N dataitems are moved across
any of thefour networksin parallel and accordingtoasingle
interconnection function. This is because every intercon-
nection functionisindeed apermutation. Applying this per-
mutation to a distinct label of a given vertex can only yield
adistinct label of another vertex. Formally, if g; 1 =
9g(i,j) > then P, = P, where P, and P, are permutations
representing the labels of two verticesand g(; ;) is a gener-
ator representing an interconnection function. The potential
of data conflict, however, exists when various interconnec-
tion functions are applied to different subnetworks.

6.3 SEP — Bubble-sort

Thecycle (k, k + 1) can be decomposed as follows:
(k,k+1)=(1,2,...,n)k1(1,2)(1,2,...,n)""kH

The superscriptsimply the repetition of thecycles. Thegen-
erator g x+1) can thusbe expressedin one of thefollowing
ways:

Ik k41 9t =90 -9kt or
Ikt = gp T —gag—gr Y, 2<k<n.

The first simulation takes (2k — 1) steps whereas the 2nd
simulation takes (2n — 2k + 3) steps. It follows that if
k < |n/2] + 1, thefirst approach should be used. Other-
wise, the second approach will result in a faster simulation.
Thesimulationtimeis (n + 1) which is optimal. The opti-
mality follows from the fact that in order to swap two adja
cent digits, they must be first brought into 1st and 2nd posi-
tionswherethe swap isallowed (i.e. g, 2)). After the swap
the digits must be put back in place by successive appropri-
ate (left or right) shifts.

6.4 SEP — Pancake

We need to use an inductive approach. More specifically,
assuming that the simulation of f;_; isknown, the steps to
simulate f; will begiven. We usethe simulation of f3 asthe
induction base. The simulation of f5 requires5 stepsandis
given by:

fa= 9(1,2) — 9L — 9(1,2) — 9R — 9(1,2)

Now assuming the smulation of f;_; s
known, we will smulate f; by first simulating f;_; which
will changethe original label of aias ...a; 10:a:11 ...0n
toa;_1a; o...a2a10;0;41 .. .a,. Weneedonly tobringa;
to the first position, and shift a; 1,a; »,...,as, and a; to
theright by one position. Itisleft to the reader to verify that
the following sequence will optimally make the change in
the label asrequired.

9272 - 90,2 — (9r — 9(172))1._2

Thetotal number of stepsin the above sequenceis: 3i —
5. Thus, the simulation time can be obtained by solving a
recurrence on S(i), the number of stepsto simulate f;. We
have S(i 4+ 1) = S(i) + 3i — 5 with S(3) = 5. Solution of
thisrecurrenceyields;

S(i) = 3i% — 13i+22,

2
Coincidentally, from the above S(2) = 1 which is true
since: fo = g(1,2). Since S(n) will determine the maxi-
mum number of stepsto simulate any pancake function, the
simulation time is given by ¢imuiation = W_# The
simulation time, in this case, is large, but optimal; Thisis
probably dueto the nature of specific generators of the Pan-
cake graphs.

t>3

6.5 SEP — Star

We need to simulate the generators g, ;), 2 < i < n. To
simulate g, ;), the digit in the ith position is first brought
to the first position such that the label a, a5 . . . a,, betrans
formedtoaja;as . ..a; 2a; 1a:11 . ..a,. Thiscanbedone



by applying the sequence g(1 2) — gz, (i — 2) times. Then
the 9(1,2) can be applied to obtain
@;a10s3 ... Q;—20;—10i+1 - - - . Applying the sequence of
gr — 9a1,2) (i — 2) timeswill take a; to position i; i.e. the
|abel a;as ...a;—1a1 @41 - - - Gp will be obtained. ThUS,

ga, = (9a,2) — gL)F2 — 91,2 — (9r — 9(1,2))i72
The simulation can also be done using the SEP generator g
instead of g7, and then the sequence will look like

)n7i+1 _ (

91, = (9r — 9(1,2) gL —902)" "=

Depending on the location of i in the node label, one of the
above schemestakesfewer steps, i.e., resultsin afaster sm-
ulation. Th e worst case occurswhen i = 225, Thissim-
ulation is optimal as no other sequence can simulate g, ;
in fewer steps. Thus, the simulation time is computed at
i = 225 andis given by tsimutation = 21 — 2.

7 Conclusion

We have proposed a new family of regular Cayley net-
works which is shown to be very competitive to build mas-
sively parallel systems. The proposed networks are maxi-
mally fault tolerant and hence are moreresilient to node and
link failuresthan the almost regular networkslike DeBruijn
graphsor Mobiusgraphs. Another interesting feature of the
proposed family of networks s that it can efficiently simu-
late many of the popular permutation group based networks
like star graphs, bubble-sort or pancake graphs. Thus, algo-
rithms originally designed for those graphs can still run on
the proposed networks and one can still get the advantage of
the fixed degree of the network (independent of the size).
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