
Computer Science
Technical Report

Node-to-Set Vertex Disjoint Paths in
Hypercube Networks�

Shahram Latifiy, Hyosun Koz, and Pradip K Srimanix

Technical Report CS-98-107

Computer Science Department
Colorado State University

Fort Collins, CO 80523-1873

Phone: (970) 491-5792 Fax: (970) 491-2466
WWW: http://www.cs.colostate.edu

�To appear in the Proceedings of 1998 International Conference on Parallel and Distributed Pro-
cessing Techniques and Applications (PDPTA ’98), Las Vegas, July 13–16, 1998

yDepartment of Electrical Engineering, University of Nevada, Las Vegas, NV 89154
zDepartment of Electrical Engineering, University of Nevada, Las Vegas, NV 89154
xDepartment of Computer Science, Colorado State University, Ft. Collins, CO 80523

Node-to-Set Vertex Disjoint Paths in Hypercube Networks�

Shahram Latifiy, Hyosun Koz, and Pradip K Srimanix

1 Introduction

Design features for an efficient interconnection topol-
ogy include properties like low degree, regularity,
small diameter, high connectivity, efficient routing al-
gorithms, high fault-tolerance, low fault diameter etc.
Since more and more processors must work concur-
rently these days in a multiple processor environment,
the criterion of high fault tolerance and computing node
disjoint paths has become increasingly important. One
of the most efficient interconnection network has been
the well known binaryn-cubes or hypercubes; they have
been used to design various commercial multiprocessor
machines [1]. The fault tolerance of an interconnection
network is usually measured by the vertex connectivity
of the underlying graph as well as the fault diameter.
Vertex connectivity of an n-cube (which is a n-regular
graph) is n and the corresponding fault diameter is n+1

(the fault-free diameter is n) [2]. It is also important to
compute the set of node disjoint paths given a source
node and a set of k distinct destination nodes. Menger’s
theorem guarantees the existence of n such paths be-
tween a source and a set of n destination nodes in a hy-
percubeQn of dimension n; but, it’s non trivial to iden-
tify those paths and even more so to make those paths
as minimal as possible. Our purpose in this paper is to
design a simple algorithm to compute such paths in Qn

and to show that the length of each of the paths is upper
bounded by n + 1. This result was previously known
[3]; but the proof in [3] is complicated. Our algorithm is
much simpler and it is much easier to argue the correct-
ness of the bound on length. We expect the technique
would be useful to prove similar results for other struc-
tured graphs.

�To appear in the Proceedings of 1998 International Conference
on Parallel and Distributed Processing Techniques and Applica-
tions (PDPTA ’98), Las Vegas, July 13–16, 1998

yDepartment of Electrical Engineering, University of Nevada, Las
Vegas, NV 89154

zDepartment of Electrical Engineering, University of Nevada, Las
Vegas, NV 89154

xDepartment of Computer Science, Colorado State University, Ft.
Collins, CO 80523

2 HypercubeQn of Dimension n

Hypercubes are introduced under different names (n-
cube, binary n-cube, Boolean n-cube, etc.). A hyper-
cube Qn, of order n, is defined to be a symmetric graph
G = (V;E) where V is the set of 2n vertices, each rep-
resenting a distinct n-bit binary number andE is the set
of symmetric edges such that two nodes are connected
by an edge iff the Hamming distance between the two
nodes is 1, i.e., the number of positions where the bits
differ in the binary labels of the two nodes is 1. Links
(edges) are also labeled such that link i, 0 � i � n� 1,
connects two nodes which differ in the i-th bit position,
with the rightmost bit being in the 0-th position. For ex-
ample, in Q3, the node 010 is connected to node 110 by
link 2, to node 000 by link 1 and to node 011 by link
0. Any sub-cube Qn�m of a Qn may be described by
(n � m) fixed bits and m arbitrary bits each denoted
by “x”. For example, a sub-cube Q2 of Q5 consisting
of 4 nodes f00100; 00110; 01100; 01110g is denoted as
0x1x0. Similarly, xn�10 denotes the (n � 1) dimen-
sional sub-cube of Qn with all nodes with the last bit 0.
The weight of a node v inQn is defined to be the number
of 1’s in the binary label of v and the Hamming distance
of two nodes u and v is denoted by H(u; v).

3 One to Many Disjoint Paths in
Qn

Given a hypercubeQn, a source node s = (00::0) and a
set of ` distinct destination nodesD = fd1; d2; � � � ; d`g,
1 � ` � n, the objective in this section is to design an al-
gorithm to compute node disjoint paths from the source
node to the destination nodes.

Remark 1 Qn is node symmetric [2] and hence we can
consider the identity node (the all zero node (00::0)) to
be the source node for our purpose without any loss of
generality. We also note that Qn (denoted also by xn)
consists of two sub-cubes xn�11 and xn�10. A node u
in Qn is denoted as u = (un�1un�2 � � �u0) where ui

denotes the i-th bit of the node label, 0 � i � n�1 (the
dimensions are numbered 0 throughn�1 from least sig-
nificant bit (LSB) position to most significant bit (MSB)
position.

Definition 1 A path P (u; v) in Qn between two nodes
u and v is denoted by a sequence of link labels. For ex-
ample, the path P (0001; 1010) = 0001 �! 0000 �!

0010 �! 1010 in Q4 is denoted by P (0001; 1010) =

(0; 1; 3). Note that P (1010; 0001) = (0; 1; 3) denotes a
different path e.g., 1010 �! 1011 �! 1001 �! 0001,
between the same two nodes. Since the sequence of link
labels is ordered, we apply the sequence P (u; v) start-
ing at node u and reaching node v. The length of a path
is defined to be the number of links in the path.

Definition 2 Given two nodes u and v in Qn, the first
Hamming distance path FHP (u; v) is the minimal
(shortest) path obtained by flipping the non matching
bits in ascending order of dimensions. For example in
Q4, FHP (0001; 1010) = (0; 1; 3) = 0001! 0000!

0010! 1010.

Definition 3 Consider an arbitrary set of (n � 1) dis-
tinct nodes V = fv1; v2; � � � vn�1g in Qn. NV (v

i),
1 � i � n � 1, is defined to be an adjacent node v0 =
v0n�1v

0
n�2 � � � v

0
1v

0
0 of vi such that v0n�1 � � � v

0
10 62 V and

vi is obtained as follows: (1) if possible, v0 is obtained
from vi by inverting the first “1” (in vi) in descending
dimension order, or (2) if v0 cannot be obtained by (1),
then v0 is obtained from vi by inverting the first “0” (in
vi) in descending dimension order. �V (vi) is defined to
be the bit position of vi that is reversed to get v0.

Example 1: Consider V = f0101; 0111; 0110g in
Q4; we haveNV (0111) = 0011 and �V (0111) = 2. As
another example, consider V = f0101; 0001; 0100gin
Q4; we get NV (0101) = 1101 and �V (0101) = 3.
Note that in the second example NV (0101) cannot be
obtained by reversing any of the “1” bits of the node
0101. 3

Lemma 1 Given any set V of (n� 1) distinct nodes in
Qn, NV (v), v 2 V , always exists.

Proof : Consider an arbitrary node v 2 V . Since v 2
Qn, node v has n distinct neighbors in Qn and jV j =
n� 1, NV (v) always exists. 2

Our strategy in designing the algorithm is to use a re-
cursive approach – we trace a path to one of the destina-

tion nodes restricted to one of the two component sub-
cubes and then map the rest of the destination nodes onto
the other sub-cube and then repeat the process.

� Consider two sub-cubes xn�10 and xn�11 of Qn.
Of n destination nodes, consider the set S1 of
those nodes that are in xn�11 and choose one,
say v 2 S1 (resolve ties arbitrarily), closest to
the source node s and trace a shortest (FHP) path
from node s to node v. Note that since the FHP is
computed in ascending order of the dimensions, all
points in this path are inxn�11.

� We delete node v from the set D (also from S1)
and map the rest of the nodes in S1 to the sub-cube
xn�10 (note that the source node s is in xn�10).

– If for any node y = yn�1 � � � y1y0 in
S1 � fvg, there does not exist any node
w = wn�1 � � �w1w0 in D � fvg such that
yn�1 � � � y10 = w = wn�1 � � �w10, then use
yn�1 � � � y10 as the new destination node in
xn�10 (corresponding to the node y);

– otherwise, use the node wn�1 � � �w10 as the
new destination node in xn�10 (correspond-
ing to the node y), where w = ND�fvg(y).

� We need to map the nodes in D � S1. If S1 = ;,
then we choose one, say v 2 D, farthest to the
source node, and go from node v to v0 by travers-
ing link 0 and then trace a shortest (FHP) path
from node s to the node v0 (all points in the path
are in xn�11). For each remaining node y =

yn�1 � � � y1y0 in D � S1, use yn�1 � � � y10 as the
new destination node in xn�10 (corresponding to
the node y).

� We now have a set of (n � 1) destination nodes
and a source node in xn�10 (which is a n � 1 di-
mensional hypercube); invoke the algorithm recur-
sively.

Example 2: Consider the source node
s = (00000) and the set of destination nodes
D = f01100; 11100; 01010; 00010; 01110g in Q5.
Note that at this stage of the algorithm the set S1 is
empty. The nodes 01110 and 11100 both have the max-
imum weight of 3. We choose 01110 arbitrarily, and
compute the path P (00000; 01110) = f0; 3; 2; 1g.
At the second stage of recursion we have a
source node (0000) and a set of destination nodes

Destination Path from Source
Nodes to Destination

01100 23
11100 432
01010 31
00010 1
01110 03210

00000

00001 01001 01101 01111 01110

0

3 2 1 0

00010

0101001000

1

1110010000
11000

4

3 2

0110000100

2

3

3

1

Figure 1: Stepwise Execution of the Algorithm in Q5

f0110; 1110; 0101; 0001g. At this stage, S1 con-
sists of two nodes f0101; 0001g of which the node
0001 is closer to the source and we compute the path
P (0000; 0001) = f0g. For the other node 0101, we go
to its image 01000 in x300 and take the images of the
other nodes as well. So, at the third stage of recursion,
we have a source node 000 and a set of destination
nodes f011; 111; 010g. Farthest node in S1 is 111 and
we compute the path P (000; 111) = f4; 3; 2g. For the
other node 011 in the set S1 we cannot simply take
its image in x2000 since it will then coincide with the
other remaining destination node; hence, we go to its
nearest neighbor 000 (by following the path f3; 2g)
which happens to be source node. See Figure 1 for
details; note that the paths in the table are given as
link sequences from the source node to the destination
nodes. 3

Example 3: Consider the source node
s = (0000000) and the set of destination
nodes D = f0001100; 0101001; 0111011;

1010111; 1100010; 1110000; 1110010g. At this stage,
S1 consists of 3 nodesf0101001; 0111011; 1010111gof
which 0101001 is closest to the source node and hence
we trace the path P (s; 0101001) = (0; 3; 5). At the
second stage of recursion, we have six destination nodes

Destination Path from Source
Nodes to Destination

0001100 23
0101001 035
0111011 34510
1010111 64210
1100010 156
1110000 564
1110010 4516

0000000

6

4

2 1 0

4

5 1 6
1110010

6

4

2 1 0
1010111

0

3 5
0101001

2

3
0001100

5

6 4 1110000

1 5 6
1100010

0000010 0100010

0100000 1100000

0010000 0110000 0110010

1010111

1000000

10101101010000 1010100

0000100

0000001 0001001

0001000

0011000 0111000 0111010

Figure 2: Stepwise Execution of the Algorithm in Q7

f000110; 011101; 101011; 110001; 111000; 111001g

and a source node s = (000000) in Q6. S1 consists of
4 nodes f011101; 101011; 110001; 111001g of which
110001 is closest to the source node and hence we trace
the path P (000000; 110001) = (1; 5; 4) – note that this
is also the path P (0000000; 1100010) in the original
problem. The rest of the computation is similar. See
Figure 2 for the details; note that the paths in the table
are given as link sequences from the source node to the
destination nodes. 3

We now can present the pseudo-code of the algorithm
that generates the disjoint paths in Qn given a source
node s = 00::0 and n destination nodes. P [] and Q[]

are two array variables of ordered sets (sequences) to
store the generated link label sequences for the node dis-
joint paths. Dk variables are set variables to hold the
destination nodes at each stage of recursion. We use one
primitive functionq: xqy, where both x and y are or-
dered set variables, returns a new sequence obtained by
appending the sequence y to the sequence x. See Fig-
ure ?? for the complete pseudo-code.

Lemma 2 The n paths, generated by the algorithm are

Function Node Disjoint paths (k, Dk, P[1..k], Q[1..k-1])
(0) if k = 1 then exit;
(0) j = k; Dk�1 = ;;
(1) Compute S1 = fy j y 2 Dk ^ y 2 xk�11g;
(2) if S1 6= ; then
(3) begin
(4) Select v such that w(v) = minu2S1fw(u)g;
(5) Compute the path FHP (s; v); P [j] = FHP (s; v)qQ[j];
(6) For each y 2 fS1 � vg do
() j = j � 1;
(7) if yn�1yn�2 � � � y10 62 fDk � vg
(8) then
(9) begin
(10) Dk�1 = Dk�1 [yn�1yn�2 � � � yn�k+1;
(11) P [j] = fn� kg qQ[j];
(13) end
(14) else
(15) begin
() Compute the node u = NfDk�vg(y); x = �fDk�vg(y);
() Dk�1 = Dk�1 [un�1un�2 � � �un�k+1:
() P [j] = fn� k; xg qQ[j];
() end;
() end
() if j Dk � S1 j6= 0 then
() begin
() if j = k then /* S1 = ; *n
() begin
(17) Select v such that w(v) = maxu2Dkfw(u)g; Dk = Dk \ fvg;
(18) Compute the path � = FHP (s; vn�1vn�2 � � � vn�k+11); P [j] = fkg q � qQ[j];

end;
(19) For each y = yn�1yn�2 � � � yn�k 2 fDk � S1g do
(20) Dk�1 = Dk�1 [yn�1yn�2 � � � yn�k+1;j = j � 1; P [j] = fkg qQ[j]

() end
() Node Disjoint paths (k � 1,Dk�1, P[1..k-1], P[1..k-1]);

mutually node-disjoint.

Proof : The node-disjoint property follows from the
fact that at each stage of recursion, we are computing
the path from one destination node to the source node
(at any stage the hypercube has two sub-cubes: the 0-
sub-cube and the 1-sub-cube say; the path is traced only
in the 1-sub-cube) and mapping the other destination
nodes to distinct nodes in the 0-sub-cube (intermediate
nodes on the path are always chosen from the 1-sub-
cube). Thus, the paths computed at any stage of recur-
sion cannot intersect with each other. Also note that the
nearest neighbor node always exists since there are al-
ways one fewer node to have conflict with than the de-

gree of a node. Note that in step 2 only the closest node
to the source is considered so that the path will not go
through any other destination node at that stage. Simi-
larly for the path computed for a node in D�S1, the path
consists of nodes in the 1-sub-cube while all destination
nodes are in the 0-sub-cube. 2

Remark 2 The length of a path, from a destination
node to the source node, generated by the CSR algo-
rithm, can be greater than its distance to the source node
iff we pay a penalty by flipping a “0” to a “1” in gen-
erating the FHP at some stage(s) of the algorithm; each
time we pay a penalty, the path length increases by 2.

Assume that for a given setD of n destination nodes,
our CSR algorithm generates a path of length� n+2 in
Qn. Let the specific destination node be v (in D) such
that w(v) = m.

Lemma 3 2 � m � n� 2.

Proof : m cannot be 1 since for the path to node v to
be of length � n + 2 the node must enter the set S1 at
some stage of recursion to pay the penalty.

m = n� 1 is not possible since in that case there is
only one zero in the bit string of node v and there is only
one penalty possible and hence the length of the path can
be at most n� 1 + 2 = n+ 1. 2

Assume that for the path we pay x number of penal-
ties (i.e., we flip an original “0” to “1” x times) – each
penalty adds 2 to the path length – thus, we must have

m+ 2x > n+ 1

Now, let us see what happens to the node v when we
execute the algorithm; assume v = 000:::11::1 without
any loss of generality with all them ones at the end. For
us to pay the penalty, there must be at least ”m” destina-
tions which will coincide with the label of the trouble-
some node after changing one of its ”m” 1’s to 0 as well
as there is one node that is already mapped to the source
node; so, for the first penalty for node v, there are at least
m+2 nodes (including v). Consider the scenario of next
penalty – the node v (in its reduced version in a sub-cube
of the original cube) has stillm 1’s (penalty means one 0
was flipped to 1) – for us to penalty, there again must be
m other offending nodes – only one of them can be from
the offending nodes of the previous stage due to the spe-
cial 1 in the node v because of previous penalty. Repeat
the argument to get

m+ 2+ (x � 1)(m� 1) � n

or
(m� 1)x � n� 3

Combining the two inequalities we see that in order
for a path to node v to have a length greater than n+1,
we must have m = 2. If m = 2, then the minimum
value of n is 7 in order to satisfy the inequalities and the
correspondingx is 4. This is impossible in the execution
of the algorithm CSR sincemmust be bigger than x (for
node v to pay penalty at at any stage, v must be in S1 for
that stage, i.e., the rightmost bit of v must be “1”; also
note that a “0” is flipped to “1” (as a penalty) in a left to

right fashion and the algorithm proceeds on a right to left
fashion); similarly, larger values of n and x with m = 2

are also ruled out since m must be bigger than x. Thus,
we can state the following theorem.

Theorem 1 The maximum length of any path traced by
the algorithm CSR in a hypercube Qn is n+ 1.

4 Conclusion

We have proposed a simple and efficient algorithm to
compute the n vertex disjoint paths in a hypercube Qn

of dimension n, given a source node and an arbitrary set
of at most n destination nodes; our algorithm is compu-
tationally much simpler than that of [3].

References

[1] C. L. Seitz. The cosmic cube. Communications
ACM, 28(1):22–33, January 1985.

[2] Y. Saad and M. H. Shultz. Topological properties
of hypercubes. IEEE Transactions on Computers,
37(7):867–872, July 1988.

[3] M. A. Rabin. Efficient dispersal of information for
security. Journal of ACM, 36(2):335–348, 1989.

