Computer Science Colo (%(C)

Technical Report O

Node-to-Set Vertex Disjoint Paths in
Hypercube Networks*

Shahram Latifif, Hyosun Ko, and Pradip K Srimani®

Technical Report CS-98-107

Computer Science Department
Colorado State University
Fort Collins, CO 80523-1873

Phone: (970) 491-5792 Fax: (970) 491-2466
WWW: http://www.cs.col ostate.edu

*To appear in the Proceedings of 1998 | nternational Conference on Parallel and Distributed Pro-
cessing Techniques and Applications (PDPTA ’98), Las Vegas, July 13-16, 1998

t Department of Electrical Engineering, University of Nevada, Las Vegas, NV 89154

Department of Electrical Engineering, University of Nevada, Las Vegas, NV 89154

§ Department of Computer Science, Colorado State University, Ft. Collins, CO 80523

Node-to-Set Vertex Disjoint Paths in Hypercube Networks*

Shahram L atifif Hyosun K of and Pradip K Srimani?

1 Introduction

Design features for an efficient interconnection topol-
ogy include properties like low degree, regularity,
small diameter, high connectivity, efficient routing al-
gorithms, high fault-tolerance, low fault diameter etc.
Since more and more processors must work concur-
rently these days in a multiple processor environment,
the criterion of high fault tolerance and computing node
digoint paths has become increasingly important. One
of the most efficient interconnection network has been
thewell known binary n-cubesor hypercubes; they have
been used to design various commercial multiprocessor
machines[1]. The fault tolerance of an interconnection
network is usually measured by the vertex connectivity
of the underlying graph as well as the fault diameter.
Vertex connectivity of an n-cube (which is an-regular
graph) isn and the corresponding fault diameterisn + 1
(the fault-free diameter isn) [2]. It is also important to
compute the set of node digoint paths given a source
node and a set of & distinct destination nodes. Menger’s
theorem guarantees the existence of n such paths be-
tween a source and a set of n destination nodesin a hy-
percube ,, of dimension n; but, it's non trivial to iden-
tify those paths and even more so to make those paths
as minimal as possible. Our purpose in this paper is to
design asimple algorithm to compute such pathsin @,
and to show that the length of each of the pathsis upper
bounded by n + 1. This result was previously known
[3]; but the proof in [3] iscomplicated. Our algorithmis
much simpler and it is much easier to argue the correct-
ness of the bound on length. We expect the technique
would be useful to prove similar results for other struc-
tured graphs.

*To appear in the Proceedings of 1998 I nter national Conference
on Parallel and Distributed Processing Techniques and Applica-
tions (PDPTA ’98), Las Vegas, July 13-16, 1998

t Department of Electrical Engineering, University of Nevada, Las
Vegas, NV 89154

*Department of Electrical Engineering, University of Nevada, Las
Vegas, NV 89154

§ Department of Computer Science, Colorado State University, Ft.
Coallins, CO 80523

2 Hypercube @Q,, of Dimension n

Hypercubes are introduced under different names (n-
cube, binary n-cube, Boolean n-cube, etc.). A hyper-
cube @,,, of order n, is defined to be a symmetric graph
G = (V, E) whereV isthe set of 2™ vertices, each rep-
resenting adistinct n-bit binary number and E isthe set
of symmetric edges such that two nodes are connected
by an edge iff the Hamming distance between the two
nodesis 1, i.e., the number of positions where the bits
differ in the binary labels of the two nodesis 1. Links
(edges) are also labeled such that link 7,0 < i < n —1,
connectstwo nodeswhich differ in the i-th bit position,
with the rightmost bit being in the 0-th position. For ex-
ample, in @3, thenode 010 is connected to node 110 by
link 2, to node 000 by link 1 and to node 011 by link
0. Any sub-cube @,,_,, of a Q,, may be described by
(n — m) fixed bits and m arbitrary bits each denoted
by “x”. For example, a sub-cube @)» of ()5 consisting
of 4 nodes {00100,00110,01100,01110} is denoted as
0z1z0. Similarly, z"~10 denotes the (n — 1) dimen-
sional sub-cube of (9,, with all nodeswith the last bit 0.
Theweight of anodew in @, isdefined to be the number
of 1'sinthebinary label of v and the Hamming distance
of two nodes« and v isdenoted by H (u, v).

3 One to Many Digoint Paths in
Qn

Given ahypercube (),,, asourcenode s = (00..0) and a
set of ¢ distinct destinationnodes D = {d;,ds, - -, d;},
1 < ¢ < n,theobjectiveinthissectionistodesignanal-
gorithm to compute node disjoint paths from the source
node to the destination nodes.

Remark 1 @, isnodesymmetric[2] and hencewe can
consider the identity node (the all zero node (00..0)) to
be the source node for our purpose without any loss of
generality. We also note that (),, (denoted also by x™)
consists of two sub-cubes z”~'1 and z”~'0. A node u
inQ, isdenoted asu = (up—1uUp—2 - ug) Where u;

denotesthei-th bit of thenodelabel, 0 < i < n —1 (the
dimensionsare numbered 0 throughn — 1 fromleast sig-
nificant bit (LSB) position to most significant bit (MSB)
position.

Definition 1 A path P(u,v) in @,, between two nodes
u and v is denoted by a sequence of link labels. For ex-
ample, the path P(0001,1010) = 0001 — 0000 —
0010 — 1010 in @, is denoted by P(0001,1010) =
(0,1, 3). Notethat P(1010,0001) = (0, 1, 3) denotesa
different pathe.g., 1010 — 1011 — 1001 — 0001,
between the same two nodes. Since the sequence of link
labels is ordered, we apply the sequence P(u,v) start-
ing at node u and reaching node v. The length of a path
is defined to be the number of links in the path.

Definition 2 Given two nodes v and v in @, the first
Hamming distance path FHP(u,v) is the minimal
(shortest) path obtained by flipping the non matching
bits in ascending order of dimensions. For example in
Q4, FHP(0001,1010) = (0,1, 3) = 0001 — 0000 —
0010 — 1010.

Definition 3 Consider an arbitrary set of (n — 1) dis-
tinct nodes V. = {v',v%,---o" "1} in Q,. ANy (v?),
1 < i < n —1,isdefined to be an adjacent node v’ =
vl _ vl _o -+ vivh of vl suchthatv!,_; ---v}0 ¢ V and
v is obtained as follows: (1) if possible, v is obtained
from v? by inverting the first “ 17 (in %) in descending
dimension order, or (2) if v' cannot be obtained by (1),
then v’ is obtained fromv* by inverting the first “ 0” (in
v?) in descending dimension order. 5y (v?) is defined to
be the bit position of v* that is reversed to get v'.

Example 1: Consider V' = {0101,0111,0110} in
Q4; wehave Ny (0111) = 0011 and 7y (0111) = 2. As
another example, consider V' = {0101, 0001, 0100}in
Q4; we get Ny/(0101) = 1101 and 7y (0101) = 3.
Note that in the second example Ny (0101) cannot be
obtained by reversing any of the “1” bits of the node
0101. &

Lemmal Givenanyset V of (n — 1) distinct nodesin
Qn, Ny (v), v € V, always exists.

Proof : Consider an arbitrary nodev € V. Sincew €
Qn, node v has n distinct neighborsin @, and |V | =
n — 1, Ny (v) dwaysexists. O

Our strategy in designing the algorithmistouseare-
cursive approach —wetrace a path to one of the destina

tion nodes restricted to one of the two component sub-
cubesand then maptherest of the destination nodesonto
the other sub-cube and then repeat the process.

e Consider two sub-cubes z"~10 and z" 11 of Q,,.
Of n destination nodes, consider the set S; of
those nodes that are in z”~'1 and choose one,
say v € & (resolve ties arbitrarily), closest to
the source node s and trace a shortest (FHP) path
from node s to node v. Note that since the FHP is
computed in ascending order of thedimensions, all
pointsin this path areinz™'1.

e We delete node v from the set D (also from S;)
and map therest of the nodesin S; to the sub-cube
2™~ 10 (notethat the source node s isin 2~ 10).

—If for any node y = yp—1---y190 IN
S1 — {v}, there does not exist any node
W = Wp_1---wiwp iN D — {v} such that
Yn1 -0 =w =w, 1 -w0,thenuse
Yn_1---410 as the new destination node in
™10 (corresponding to the node y);

— otherwise, use the node w,,_1 - - - w1 0 as the
new destination nodein 20 (correspond-
ing to the node y), where w = Np_,3(y).

e We need to map the nodesin D — S;. If §; = 0,
then we choose one, say v € D, farthest to the
source node, and go from node v to v’ by travers-
ing link 0 and then trace a shortest (FHP) path
from node s to the node v’ (all points in the path
are in z"~'1). For each remaining node y =
Yn—1"""Y1Y0 inD — Si, use Yn—1*" y10 as the
new destination node in ™10 (corresponding to
the node y).

e We now have a set of (n — 1) destination nodes
and a source nodein z"~10 (whichisan — 1 di-
mensional hypercube); invoke the algorithm recur-
sively.

Example 2:. Consider the source node
s = (00000) and the set of destination nodes
D = {01100,11100,01010,00010,01110} in Qs.

Note that at this stage of the algorithm the set S; is
empty. Thenodes01110 and 11100 both have the max-
imum weight of 3. We choose 01110 arbitrarily, and
compute the path P(00000,01110) = {0,3,2,1}.
At the second stage of recursion we have a
source node (0000) and a set of destination nodes

Destination | Path from Source
Nodes to Destination
01100 23
11100 432
01010 31
00010 1

01110 03210

01010

T .
o\ 00000 00010
. .

3 2 1 o
00001 01001 01101 01111 01110

[]

Figure 1. Stepwise Execution of the Algorithmin Q5

{0110,1110,0101,0001}. At this stage, S; con-
sists of two nodes {0101,0001} of which the node
0001 is closer to the source and we compute the path
P(0000,0001) = {0}. For the other node 0101, we go
to itsimage 01000 in 2200 and take the images of the
other nodes as well. So, at the third stage of recursion,
we have a source node 000 and a set of destination
nodes {011, 111,010}. Farthest nodein S; is111 and
we compute the path P(000,111) = {4, 3,2}. For the
other node 011 in the set S; we cannot smply take
its image in 22000 since it will then coincide with the
other remaining destination node; hence, we go to its
nearest neighbor 000 (by following the path {3,2})
which happens to be source node. See Figure 1 for
details; note that the paths in the table are given as
link sequences from the source node to the destination
nodes. <o

3: Consider the source node
s = (0000000) and the set of destination
nodes D = {0001100,0101001,0111011,
1010111,1100010, 1110000, 1110010}. At this stage,
S, consistsof 3nodes{0101001,0111011,1010111} of
which 0101001 is closest to the source node and hence
we trace the path P(s,0101001) = (0, 3,5). At the
second stage of recursion, we have six destination nodes

Example

Destination | Path from Source
Nodes to Destination
0001100 | 23
0101001 | 035
0111011 | 34510
1010111 64210
1100010 | 156
1110000 | 564
1110010 | 4516

0011000 2 0111000 q 0111010
. 'y 'y 1010111

4 0001001
3

0101001

0001100

0000000

1100010

1110000
1110010

> 1010111
1010000 1010100

1010110 O

Figure 2: Stepwise Execution of the Algorithmin Q7

{000110,011101, 101011, 110001, 111000, 111001}
and a source node s = (000000) in Q¢. S; consists of
4 nodes {011101,101011,110001, 111001} of which
110001 is closest to the source node and hence we trace
the path P(000000, 110001) = (1, 5, 4) — note that this
is aso the path P(0000000,1100010) in the original
problem. The rest of the computation is similar. See
Figure 2 for the details; note that the paths in the table
are given as link sequences from the source node to the
destination nodes. O

We now can present the pseudo-codeof theal gorithm
that generates the digoint paths in @),, given a source
node s = 00..0 and n destination nodes. P[] and Q| |
are two array variables of ordered sets (sequences) to
storethe generated link |abel sequencesfor the nodedis-
joint paths. D* variables are set variables to hold the
destination nodes at each stage of recursion. We useone
primitivefunction IT: x ITy, where both z and y are or-
dered set variables, returns a new sequence obtained by
appending the sequence y to the sequence x. See Fig-
ure ?? for the compl ete pseudo-code.

Lemma 2 Then paths, generated by the algorithmare

Function Node_Digjoint_paths (k, D*, P[1..k], Q[1..k-1])

(0) if k=1 then exit;

@ j=kD=0;

(1) ComputeS; ={y|y e D*Aye b1},
(2 ifS) #0then

(3) begin

(4 Select v such that w(v) = minges, {w(u)};

(5) Computethe path F H P(s,v); P[j| = FHP(s,v) I Q[j];

(6) Foreachy € {S; —v} do

0 J=i-1

@) if Yr1yn—2-- 110 € {D* — v}

(8) then

(9) begin

(10) Dk=1 = pk=1 U¥Yn—1Yn—2""* Yn—k+1,

(11) P[j] = {n— K} Q]

(13) end

(14) else

(15) begin

0 Compute the node u = Nypr_,1(y); = npr o} (1)

0 DF=1 = DF=Y Yy _qtp—n -+ - gt

0 Pljl ={n—k,z} I Q[jl;

0 end;

0 end

0 if | DF — S) |# 0 then

O begin

0 if j = k then S =0%*\

0 begin

a7 Select v such that w(v) = max,cpr{w(uw)}; D* = D* N {v};

(18) Computethe path p = FHP(s,vp—1Vn—2 - Un—k+11); P[§] = {k} L p T Q[4];
end;

(19) For eaChy = Yn—1Yn—2"""Yn—k € {Dk - Sl} do

(20) D* ' = DM Uy s Ynksrid =5 — 1 Pl = {k} T Q)

0 end

0 Node_Disjoint_paths (k — 1,D*~t, P[1..k-1], P[1..k-1]);

mutually node-digoint.

Proof : The node-digoint property follows from the
fact that at each stage of recursion, we are computing
the path from one destination node to the source node
(at any stage the hypercube has two sub-cubes:. the 0-
sub-cube and the 1-sub-cube say; the path istraced only
in the 1-sub-cube) and mapping the other destination
nodes to distinct nodes in the 0-sub-cube (intermediate
nodes on the path are always chosen from the 1-sub-
cube). Thus, the paths computed at any stage of recur-
sion cannot intersect with each other. Also note that the
nearest neighbor node always exists since there are a-
ways one fewer node to have conflict with than the de-

gree of anode. Notethat in step 2 only the closest node
to the source is considered so that the path will not go
through any other destination node at that stage. Simi-
larly for thepath computed for anodein D — Sy, thepath
consists of nodesin the 1-sub-cubewhile all destination
nodes are in the 0-sub-cube. a

Remark 2 The length of a path, from a destination
node to the source node, generated by the CSR algo-
rithm, can begreater thanitsdistanceto the source node
iff we pay a penalty by flippinga“0” toa“1" in gen-
erating the FHP at some stage(s) of the algorithm; each
time we pay a penalty, the path length increases by 2.

Assumethat for agiven set D of n destination nodes,
our CSR agorithm generatesapath of length> n+2in
Q.. Let the specific destination node be v (in D) such
that w(v) = m.

Lemma3 2<m<n-—2.

Proof : m cannot be 1 since for the path to node v to
be of length > n + 2 the node must enter the set S; at
some stage of recursion to pay the penalty.

m = n — 1 isnot possible since in that case thereis
only onezero in the bit string of nodew and thereisonly
one penalty possible and hencethelength of the path can
beatmostn —1+2=mn+1. |

Assume that for the path we pay 2 number of penal-
ties (i.e,, weflip an original “0” to “1” x times) — each
penalty adds 2 to the path length — thus, we must have

m+2x>n+1

Now, let us see what happensto the node v when we
execute the algorithm; assume v = 000...11..1 without
any loss of generality with all them onesat theend. For
usto pay the penalty, theremust be at least "m” destina-
tions which will coincide with the label of the trouble-
some node after changing one of its”m” 1'sto 0 aswell
asthereisone nodethat is already mapped to the source
node; so, for thefirst penalty for node v, thereareat least
m+2 nodes(including v). Consider the scenario of next
penalty —thenodew (initsreduced versionin asub-cube
of theoriginal cube) hasstill m 1's(penalty meansone 0
was flipped to 1) —for usto penalty, there again must be
m other offending nodes—only one of them can befrom
the offending nodes of the previous stage dueto the spe-
cial 1inthenodev because of previous penalty. Repeat
the argument to get

m+2+(x—1)(m—-1)<n

or
(m—-—1zx<n-—3

Combining the two inequalities we see that in order
for apath to node v to have alength greater thann + 1,
we must have m = 2. If m = 2, then the minimum
valueof n is7 in order to satisfy the inequalitiesand the
corresponding z is4. Thisisimpossibleinthe execution
of the algorithm CSR sincem must be bigger than « (for
nodev to pay penalty at at any stage, v must bein S; for
that stage, i.e., the rightmost bit of v must be “1”; aso
notethat a“0” isflippedto “1” (asapenaty) in aleft to

right fashion and the al gorithm proceedson aright to | eft
fashion); similarly, larger values of n and x withm = 2
are also ruled out since m must be bigger than . Thus,
we can state the following theorem.

Theorem 1 The maximum length of any path traced by
the algorithm CSRin a hypercube @, isn + 1.

4 Conclusion

We have proposed a simple and efficient algorithm to
compute the n vertex digoint paths in a hypercube),
of dimension n, given asource node and an arbitrary set
of at most n. destination nodes; our algorithm is compu-
tationally much simpler than that of [3].

References

[1] C. L. Seitz. The cosmic cube. Communications
ACM, 28(1):22—33, January 1985.

[2] Y. Saad and M. H. Shultz. Topological properties
of hypercubes. IEEE Transactions on Computers,
37(7):867-872, July 1988.

[3] M. A. Rahin. Efficient dispersal of information for
security. Journal of ACM, 36(2):335-348, 1989.

