User Tools

Site Tools


start

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
start [2018/09/25 23:40]
127.0.0.1 external edit
start [2018/10/20 16:29] (current)
Line 9: Line 9:
  
   export PATH=/​usr/​local/​anaconda/​bin:​$PATH   export PATH=/​usr/​local/​anaconda/​bin:​$PATH
-n+
  
 This is a tentative schedule of CS440 topics for Fall, 2018.  This will be updated during the summer and as the fall semester continues. This is a tentative schedule of CS440 topics for Fall, 2018.  This will be updated during the summer and as the fall semester continues.
Line 27: Line 27:
 ^  Week      ^  Topic      ^  Material ​ ^  Reading ​         ^  Assignments ​ ^ ^  Week      ^  Topic      ^  Material ​ ^  Reading ​         ^  Assignments ​ ^
 | Week 3:\\ Sept 4 - Sept 7\\ No class on the Sept 3 (University Holiday) and Sept 5(instructor traveling). Sept 7 is optional. GTAs will answer assignment questions. ​ | Informed search. A* search. Python classes, sorting, numpy arrays. ​ |   | Rest of Chapter 3  |  [[http://​nbviewer.ipython.org/​url/​www.cs.colostate.edu/​~anderson/​cs440/​notebooks/​A1 Uninformed Search.ipynb|A1 Uninformed Search]] due Friday, Sept. 7, 10:00 PM.  Submit your notebook in Canvas.\\ Here are [[http://​www.cs.colostate.edu/​~anderson/​cs440/​notebooks/​goodones|good solutions from your classmates]] ​ | | Week 3:\\ Sept 4 - Sept 7\\ No class on the Sept 3 (University Holiday) and Sept 5(instructor traveling). Sept 7 is optional. GTAs will answer assignment questions. ​ | Informed search. A* search. Python classes, sorting, numpy arrays. ​ |   | Rest of Chapter 3  |  [[http://​nbviewer.ipython.org/​url/​www.cs.colostate.edu/​~anderson/​cs440/​notebooks/​A1 Uninformed Search.ipynb|A1 Uninformed Search]] due Friday, Sept. 7, 10:00 PM.  Submit your notebook in Canvas.\\ Here are [[http://​www.cs.colostate.edu/​~anderson/​cs440/​notebooks/​goodones|good solutions from your classmates]] ​ |
-| Week 4:\\ Sept 10 - Sept 14   | Informed search. A* search. Python classes, sorting, numpy arrays. A* optimality, admissible heuristics, effective branching factor.\\ Local search and optimization. ​ | [[http://​nbviewer.ipython.org/​url/​www.cs.colostate.edu/​~anderson/​cs440/​notebooks/​07 Informed Search.ipynb|07 Informed Search]]\\ [[http://​nbviewer.ipython.org/​url/​www.cs.colostate.edu/​~anderson/​cs440/​notebooks/​08 Python Classes.ipynb|08 Python Classes]]\\ [[http://​nbviewer.ipython.org/​url/​www.cs.colostate.edu/​~anderson/​cs440/​notebooks/​09 Heuristic Functions.ipynb|09 Heuristic Functions]]\\ [[http://​nbviewer.ipython.org/​url/​www.cs.colostate.edu/​~anderson/​cs440/​notebooks/​10 Local Search.ipynb|10 Local Search]] ​ | Chapter 4  |  [[http://​nbviewer.ipython.org/​url/​www.cs.colostate.edu/​~anderson/​cs440/​notebooks/​A2 Iterative-Deepening Search.ipynb|A2 Iterative-Deepening Search]] due Friday, Sept. 14, 10:00 PM.  Submit your notebook in Canvas. ​  |+| Week 4:\\ Sept 10 - Sept 14   | Informed search. A* search. Python classes, sorting, numpy arrays. A* optimality, admissible heuristics, effective branching factor.\\ Local search and optimization. ​ | [[http://​nbviewer.ipython.org/​url/​www.cs.colostate.edu/​~anderson/​cs440/​notebooks/​07 Informed Search.ipynb|07 Informed Search]]\\ [[http://​nbviewer.ipython.org/​url/​www.cs.colostate.edu/​~anderson/​cs440/​notebooks/​08 Python Classes.ipynb|08 Python Classes]]\\ [[http://​nbviewer.ipython.org/​url/​www.cs.colostate.edu/​~anderson/​cs440/​notebooks/​09 Heuristic Functions.ipynb|09 Heuristic Functions]]\\ [[http://​nbviewer.ipython.org/​url/​www.cs.colostate.edu/​~anderson/​cs440/​notebooks/​10 Local Search.ipynb|10 Local Search]] ​ | Chapter 4  |  [[http://​nbviewer.ipython.org/​url/​www.cs.colostate.edu/​~anderson/​cs440/​notebooks/​A2 Iterative-Deepening Search.ipynb|A2 Iterative-Deepening Search]] due Friday, Sept. 14, 10:00 PM.  Submit your notebook in Canvas.\\ Here are [[http://​www.cs.colostate.edu/​~anderson/​cs440/​notebooks/​goodones|good solutions from your classmates]] ​  |
 | Week 5:\\ Sept 17 - Sept 21   | Adversarial search. Minimax. Alpha-beta pruning. Stochastic games. ​ | [[http://​nbviewer.ipython.org/​url/​www.cs.colostate.edu/​~anderson/​cs440/​notebooks/​11 Adversarial Search.ipynb|11 Adversarial Search]] | Chapter 5  | | Week 5:\\ Sept 17 - Sept 21   | Adversarial search. Minimax. Alpha-beta pruning. Stochastic games. ​ | [[http://​nbviewer.ipython.org/​url/​www.cs.colostate.edu/​~anderson/​cs440/​notebooks/​11 Adversarial Search.ipynb|11 Adversarial Search]] | Chapter 5  |
 | Week 6:\\ Sept 24 - Sept 28   | Negamax, with pruning. Introduction to Reinforcement Learning. ​ | [[http://​nbviewer.ipython.org/​url/​www.cs.colostate.edu/​~anderson/​cs440/​notebooks/​12 Negamax.ipynb|12 Negamax]]\\ [[http://​nbviewer.ipython.org/​url/​www.cs.colostate.edu/​~anderson/​cs440/​notebooks/​13 Modern Game Playing.ipynb|13 Modern Game Playing]]\\ ​ [[http://​nbviewer.ipython.org/​url/​www.cs.colostate.edu/​~anderson/​cs440/​notebooks/​14 Introduction to Reinforcement Learning.ipynb|14 Introduction to Reinforcement Learning]] ​      | Chapter 21\\ [[http://​incompleteideas.net/​book/​bookdraft2017nov5.pdf|Reinforcement Learning: An Introduction]] ​  ​| ​ [[http://​nbviewer.ipython.org/​url/​www.cs.colostate.edu/​~anderson/​cs440/​notebooks/​A3 A*, IDS, and Effective Branching Factor.ipynb|A3 A*, IDS, and Effective Branching Factor]] due Wednesday, Sept. 26, 10:00 PM.  Submit your notebook in Canvas. ​  | | Week 6:\\ Sept 24 - Sept 28   | Negamax, with pruning. Introduction to Reinforcement Learning. ​ | [[http://​nbviewer.ipython.org/​url/​www.cs.colostate.edu/​~anderson/​cs440/​notebooks/​12 Negamax.ipynb|12 Negamax]]\\ [[http://​nbviewer.ipython.org/​url/​www.cs.colostate.edu/​~anderson/​cs440/​notebooks/​13 Modern Game Playing.ipynb|13 Modern Game Playing]]\\ ​ [[http://​nbviewer.ipython.org/​url/​www.cs.colostate.edu/​~anderson/​cs440/​notebooks/​14 Introduction to Reinforcement Learning.ipynb|14 Introduction to Reinforcement Learning]] ​      | Chapter 21\\ [[http://​incompleteideas.net/​book/​bookdraft2017nov5.pdf|Reinforcement Learning: An Introduction]] ​  ​| ​ [[http://​nbviewer.ipython.org/​url/​www.cs.colostate.edu/​~anderson/​cs440/​notebooks/​A3 A*, IDS, and Effective Branching Factor.ipynb|A3 A*, IDS, and Effective Branching Factor]] due Wednesday, Sept. 26, 10:00 PM.  Submit your notebook in Canvas. ​  |
Line 35: Line 35:
 |< 100% 10% 20% 30% 20% 20%  >| |< 100% 10% 20% 30% 20% 20%  >|
 ^  Week      ^  Topic      ^  Material ​ ^  Reading ​         ^  Assignments ​ ^ ^  Week      ^  Topic      ^  Material ​ ^  Reading ​         ^  Assignments ​ ^
-| Week 7:\\ Oct - Oct  ​| ​  ​| [[http://​nbviewer.ipython.org/​url/​www.cs.colostate.edu/​~anderson/​cs440/​notebooks/​14 Introduction to Reinforcement Learning.ipynb|14 Introduction to Reinforcement Learning]] ​  | Chapter 21\\ [[http://​incompleteideas.net/​book/​bookdraft2017nov5.pdf|Reinforcement Learning: An Introduction]] ​ |  | +| Week 7:\\ Oct - Oct  ​| ​Reinforcement Learning for Two-Player Games.  ​| [[http://​nbviewer.ipython.org/​url/​www.cs.colostate.edu/​~anderson/​cs440/​notebooks/​14 Introduction to Reinforcement Learning.ipynb|14 Introduction to Reinforcement Learning]]\\ [[http://​nbviewer.ipython.org/​url/​www.cs.colostate.edu/​~anderson/​cs440/​notebooks/​15 Reinforcement Learning for Two-Player Games.ipynb|15 Reinforcement Learning for Two-Player Games]]   | Chapter 21\\ [[http://​incompleteideas.net/​book/​bookdraft2017nov5.pdf|Reinforcement Learning: An Introduction]] ​ |  | 
-| Week 8:\\ Oct - Oct 13  ​| ​Reinforcement Learning for Two-Player Games.\\ ​Introduction to Neural Networks ​ | [[http://​nbviewer.ipython.org/​url/​www.cs.colostate.edu/​~anderson/​cs440/​notebooks/​15 Reinforcement Learning for Two-Player Games.ipynb|15 Reinforcement Learning for Two-Player Games]]\\ [[http://​nbviewer.ipython.org/​url/​www.cs.colostate.edu/​~anderson/​cs440/​notebooks/​16 Introduction to Neural Networks.ipynb|16 Introduction to Neural Networks]] ​ | Sections 18.6 and 18.7  |   | +| Week 8:\\ Oct - Oct 12  | Introduction to Neural Networks ​ | [[http://​nbviewer.ipython.org/​url/​www.cs.colostate.edu/​~anderson/​cs440/​notebooks/​16 Introduction to Neural Networks.ipynb|16 Introduction to Neural Networks]]\\ [[http://​nbviewer.ipython.org/​url/​www.cs.colostate.edu/​~anderson/​cs440/​notebooks/​17 More Introduction to Neural Networks.ipynb|17 More Introduction to Neural Networks]] ​ | Sections 18.6 and 18.7  |   | 
-| Week 9:\\ Oct 16 - Oct 20  | More Neural Networks ​ | [[http://​nbviewer.ipython.org/​url/​www.cs.colostate.edu/​~anderson/​cs440/​notebooks/​17 More Introduction to Neural Networks.ipynb|17 More Introduction to Neural Networks]] ​ | +| Week 9:\\ Oct 15 - Oct 19  | More Neural Networks ​ | [[http://​nbviewer.ipython.org/​url/​www.cs.colostate.edu/​~anderson/​cs440/​notebooks/​17 More Introduction to Neural Networks.ipynb|17 More Introduction to Neural Networks]] ​ | 
-| Week 10:\\ Oct 23 - Oct 27  | Introduction to Classification. Bayes Rule. Generative versus Discriminative. Linear Logistic Regression. ​ | [[http://​nbviewer.ipython.org/​url/​www.cs.colostate.edu/​~anderson/​cs440/​notebooks/​18 Introduction to Classification.ipynb|18 Introduction to Classification]] ​  ​| ​ |   |+| Week 10:\\ Oct 22 - Oct 26  | Introduction to Classification. Bayes Rule. Generative versus Discriminative. Linear Logistic Regression. ​ | [[http://​nbviewer.ipython.org/​url/​www.cs.colostate.edu/​~anderson/​cs440/​notebooks/​18 Introduction to Classification.ipynb|18 Introduction to Classification]] ​  ​| ​ | [[http://​nbviewer.ipython.org/​url/​www.cs.colostate.edu/​~anderson/​cs440/​notebooks/​A4 Reinforcement Learning Solution to Towers of Hanoi.ipynb|A4 Reinforcement Learning Solution to Towers of Hanoi]] due Monday, Oct. 22, 10:00 PM.  Submit your notebook in Canvas. ​  ​|  ​|
  
 ===== November ===== ===== November =====
Line 44: Line 44:
 |< 100% 10% 20% 30% 20% 20%  >| |< 100% 10% 20% 30% 20% 20%  >|
 ^  Week      ^  Topic      ^  Material ​ ^  Reading ​         ^  Assignments ​ ^ ^  Week      ^  Topic      ^  Material ​ ^  Reading ​         ^  Assignments ​ ^
-| Week 11:\\ Oct 30 - Nov 2  | Classification with Neural Networks ​ | [[http://​nbviewer.ipython.org/​url/​www.cs.colostate.edu/​~anderson/​cs440/​notebooks/​19 Classification with Linear Logistic Regression.ipynb|19 Classification with Linear Logistic Regression]]\\ [[http://​nbviewer.ipython.org/​url/​www.cs.colostate.edu/​~anderson/​cs440/​notebooks/​20 Classification with Nonlinear Logistic Regression Using Neural Networks.ipynb|20 Classification with Nonlinear Logistic Regression Using Neural Networks]] ​ | |[[http://​nbviewer.ipython.org/​url/​www.cs.colostate.edu/​~anderson/​cs440/​notebooks/​Project Proposal.ipynb|Project Proposal]] due Wednesday, Oct 31st, at 10:00 PM. +| Week 11:\\ Oct 29 - Nov 2  | Classification with Neural Networks ​ | [[http://​nbviewer.ipython.org/​url/​www.cs.colostate.edu/​~anderson/​cs440/​notebooks/​19 Classification with Linear Logistic Regression.ipynb|19 Classification with Linear Logistic Regression]]\\ [[http://​nbviewer.ipython.org/​url/​www.cs.colostate.edu/​~anderson/​cs440/​notebooks/​20 Classification with Nonlinear Logistic Regression Using Neural Networks.ipynb|20 Classification with Nonlinear Logistic Regression Using Neural Networks]] ​ | | | 
-| Week 12:\\ Nov 5 - Nov 9  | Reinforcement Learning with Neural Networks. ​ | [[http://​nbviewer.ipython.org/​url/​www.cs.colostate.edu/​~anderson/​cs440/​notebooks/​21 Reinforcement Learning with a Neural Network as the Q Function.ipynb|21 Reinforcement Learning with a Neural Network as the Q Function]] ​ |  |+| Week 12:\\ Nov 5 - Nov 9  | Reinforcement Learning with Neural Networks. ​ | [[http://​nbviewer.ipython.org/​url/​www.cs.colostate.edu/​~anderson/​cs440/​notebooks/​21 Reinforcement Learning with a Neural Network as the Q Function.ipynb|21 Reinforcement Learning with a Neural Network as the Q Function]] ​ | | [[http://​nbviewer.ipython.org/​url/​www.cs.colostate.edu/​~anderson/​cs440/​notebooks/​A5 Neural Networks.ipynb|A5 Neural Networks]] due Monday, Nov. 5, 10:00 PM.\\ [[http://​nbviewer.ipython.org/​url/​www.cs.colostate.edu/​~anderson/​cs440/​notebooks/​Project Proposal.ipynb|Project Proposal]] due Friday, November 9th, at 10:00 PM.   |
 | Week 13:\\ Nov 12 - Nov 16  | Faster Reinforcement Learning. Autoencoder neural networks. ​ | [[http://​nbviewer.ipython.org/​url/​www.cs.colostate.edu/​~anderson/​cs440/​notebooks/​22 Autoencoder Neural Networks.ipynb|22 Autoencoder Neural Networks]] ​ |  |  | | Week 13:\\ Nov 12 - Nov 16  | Faster Reinforcement Learning. Autoencoder neural networks. ​ | [[http://​nbviewer.ipython.org/​url/​www.cs.colostate.edu/​~anderson/​cs440/​notebooks/​22 Autoencoder Neural Networks.ipynb|22 Autoencoder Neural Networks]] ​ |  |  |
 |  Nov 19 - Nov 23  |  Fall Recess ​ | |  Nov 19 - Nov 23  |  Fall Recess ​ |
start.txt · Last modified: 2018/10/20 16:29 (external edit)