User Tools

Site Tools


start

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
start [2017/10/20 14:29]
anderson
start [2017/12/19 16:31] (current)
Line 43: Line 43:
 | Week 8:\\ Oct 9 - Oct 13  | Reinforcement Learning for Two-Player Games.\\ Introduction to Neural Networks ​ | [[http://​nbviewer.ipython.org/​url/​www.cs.colostate.edu/​~anderson/​cs440/​notebooks/​15 Reinforcement Learning for Two-Player Games.ipynb|15 Reinforcement Learning for Two-Player Games]]\\ [[http://​nbviewer.ipython.org/​url/​www.cs.colostate.edu/​~anderson/​cs440/​notebooks/​16 Introduction to Neural Networks.ipynb|16 Introduction to Neural Networks]] ​ | Sections 18.6 and 18.7  | [[http://​nbviewer.ipython.org/​url/​www.cs.colostate.edu/​~anderson/​cs440/​notebooks/​A4 Negamax with Alpha-Beta Pruning and Iterative Deepening.ipynb|A4 Negamax with Alpha-Beta Pruning and Iterative Deepening]] due Wednesday, October 11th, at 10:00 PM.  | | Week 8:\\ Oct 9 - Oct 13  | Reinforcement Learning for Two-Player Games.\\ Introduction to Neural Networks ​ | [[http://​nbviewer.ipython.org/​url/​www.cs.colostate.edu/​~anderson/​cs440/​notebooks/​15 Reinforcement Learning for Two-Player Games.ipynb|15 Reinforcement Learning for Two-Player Games]]\\ [[http://​nbviewer.ipython.org/​url/​www.cs.colostate.edu/​~anderson/​cs440/​notebooks/​16 Introduction to Neural Networks.ipynb|16 Introduction to Neural Networks]] ​ | Sections 18.6 and 18.7  | [[http://​nbviewer.ipython.org/​url/​www.cs.colostate.edu/​~anderson/​cs440/​notebooks/​A4 Negamax with Alpha-Beta Pruning and Iterative Deepening.ipynb|A4 Negamax with Alpha-Beta Pruning and Iterative Deepening]] due Wednesday, October 11th, at 10:00 PM.  |
 | Week 9:\\ Oct 16 - Oct 20  | More Neural Networks ​ | [[http://​nbviewer.ipython.org/​url/​www.cs.colostate.edu/​~anderson/​cs440/​notebooks/​17 More Introduction to Neural Networks.ipynb|17 More Introduction to Neural Networks]] ​ | | Week 9:\\ Oct 16 - Oct 20  | More Neural Networks ​ | [[http://​nbviewer.ipython.org/​url/​www.cs.colostate.edu/​~anderson/​cs440/​notebooks/​17 More Introduction to Neural Networks.ipynb|17 More Introduction to Neural Networks]] ​ |
-| Week 10:\\ Oct 23 - Oct 27  |  |  |  | [[http://​nbviewer.ipython.org/​url/​www.cs.colostate.edu/​~anderson/​cs440/​notebooks/​A5 Reinforcement Learning Solution to Towers of Hanoi.ipynb|A5 Reinforcement Learning Solution to Towers of Hanoi]] due Wednesday, October 25th, at 10:00 PM.  |+| Week 10:\\ Oct 23 - Oct 27  | Introduction to Classification. Bayes Rule. Generative versus Discriminative. Linear Logistic Regression. ​ ​| ​[[http://​nbviewer.ipython.org/​url/​www.cs.colostate.edu/​~anderson/​cs440/​notebooks/​18 Introduction to Classification.ipynb|18 Introduction to Classification]] ​  |  | [[http://​nbviewer.ipython.org/​url/​www.cs.colostate.edu/​~anderson/​cs440/​notebooks/​A5 Reinforcement Learning Solution to Towers of Hanoi.ipynb|A5 Reinforcement Learning Solution to Towers of Hanoi]] due Wednesday, October 25th, at 10:00 PM.  |
  
 ===== November ===== ===== November =====
Line 49: Line 49:
 |< 100% 10% 20% 30% 20% 20%  >| |< 100% 10% 20% 30% 20% 20%  >|
 ^  Week      ^  Topic      ^  Material ​ ^  Reading ​         ^  Assignments ​ ^ ^  Week      ^  Topic      ^  Material ​ ^  Reading ​         ^  Assignments ​ ^
-| Week 11:\\ Oct 30 - Nov 3  |   ​|  | [[http://​nbviewer.ipython.org/​url/​www.cs.colostate.edu/​~anderson/​cs440/​notebooks/​Project Proposal.ipynb|Project Proposal]] due Wednesday, November 1st, at 10:00 PM. | +| Week 11:\\ Oct 30 - Nov 3  | Classification with Neural Networks  ​[[http://​nbviewer.ipython.org/​url/​www.cs.colostate.edu/​~anderson/​cs440/​notebooks/​19 Classification with Linear Logistic Regression.ipynb|19 Classification with Linear Logistic Regression]]\\ [[http://​nbviewer.ipython.org/​url/​www.cs.colostate.edu/​~anderson/​cs440/​notebooks/​20 Classification with Nonlinear Logistic Regression Using Neural Networks.ipynb|20 Classification with Nonlinear Logistic Regression Using Neural Networks]] ​ |[[http://​nbviewer.ipython.org/​url/​www.cs.colostate.edu/​~anderson/​cs440/​notebooks/​Project Proposal.ipynb|Project Proposal]] due Wednesday, November 1st, at 10:00 PM. | 
-| Week 12:\\ Nov 6 - Nov 10  |  |  |  | +| Week 12:\\ Nov 6 - Nov 10  | Reinforcement Learning with Neural Networks.\\ Lecture and Chuck'​s office hours on Thursday are <color red>​cancelled</​color>​. ​ He will be out of town.  ​| ​[[http://​nbviewer.ipython.org/​url/​www.cs.colostate.edu/​~anderson/​cs440/​notebooks/​21 Reinforcement Learning with a Neural Network as the Q Function.ipynb|21 Reinforcement Learning with a Neural Network as the Q Function]] ​ ​| ​ | 
-| Week 13:\\ Nov 13 - Nov 17  |  |  |  |+| Week 13:\\ Nov 13 - Nov 17  | Faster Reinforcement Learning. Autoencoder neural networks. ​ ​| ​[[http://​nbviewer.ipython.org/​url/​www.cs.colostate.edu/​~anderson/​cs440/​notebooks/​22 Autoencoder Neural Networks.ipynb|22 Autoencoder Neural Networks]] ​ ​| ​ | [[http://​nbviewer.ipython.org/​url/​www.cs.colostate.edu/​~anderson/​cs440/​notebooks/​A6 Neural Networks.ipynb|A6 Neural Networks]] due <color red>​Friday,​ November 17th, at 10:00 PM.</​color> ​ |
 |  Nov 20 - Nov 24  |  Fall Break  | |  Nov 20 - Nov 24  |  Fall Break  |
-| Week 14:\\ Nov 27 - Dec 1  | Constraint satisfaction. Min-conflicts ​ |  | Chapter 6.\\ [[http://​dl.acm.org/​citation.cfm?​id=1928809|A new iterated local search algorithm for solving broadcast scheduling problems in packet radio networks]] ​ | +| Week 14:\\ Nov 27 - Dec 1  | Constraint satisfaction. Min-conflicts ​ | [[http://​nbviewer.ipython.org/​url/​www.cs.colostate.edu/​~anderson/​cs440/​notebooks/​23 Constraint Satisfaction Problems.ipynb|23 Constraint Satisfaction Problems]]\\ [[http://​nbviewer.ipython.org/​url/​www.cs.colostate.edu/​~anderson/​cs440/​notebooks/​24 Min-Conflicts in Python with Examples.ipynb|24 Min-Conflicts in Python with Examples]] ​ | Chapter 6.\\ [[http://​dl.acm.org/​citation.cfm?​id=1928809|A new iterated local search algorithm for solving broadcast scheduling problems in packet radio networks]] ​ | 
  
 ===== December ===== ===== December =====
Line 59: Line 59:
 |< 100% 10% 20% 30% 20% 20%  >| |< 100% 10% 20% 30% 20% 20%  >|
 ^  Week      ^  Topic      ^  Material ​ ^  Reading ​         ^  Assignments ​ ^ ^  Week      ^  Topic      ^  Material ​ ^  Reading ​         ^  Assignments ​ ^
-| Week 15:\\ Dec 4 - Dec 8  | Propositional ​and First-Order LogicIntroduction to Prolog.  |  Chapters 7, 8, 9  ​|  +| Week 15:\\ Dec 4 - Dec 8  | Recurrent neural networks ​and use in natural language\\ <color red>Dec 7, Thursday, PLEASE ATTENDCourse Surveys will be filled out.</​color> ​ ​| ​[[http://​nbviewer.ipython.org/​url/​www.cs.colostate.edu/​~anderson/​cs440/​notebooks/​25 Natural Language.ipynb|25 Natural Language]] |   |  
-| Finals Week:\\ Dec 11 - Dec 15  |   ​| ​ |  |+| Finals Week:\\ Dec 11 - Dec 15  |   ​| ​ | | Final Project notebook is due Tuesday, Dec 12th, 10:00 pm. [[http://​nbviewer.ipython.org/​url/​www.cs.colostate.edu/​~anderson/​cs440/​notebooks/​Example of Project Report.ipynb|Here is a simple example.]]\\ Here is a [[projects|list of links to almost everyone'​s final reports]] ​ |
  
  
  
start.1508531349.txt.gz · Last modified: 2017/10/20 14:29 by anderson