User Tools

Site Tools


start

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
Next revision Both sides next revision
start [2018/01/21 15:18]
anderson [January]
start [2019/01/03 15:25]
127.0.0.1 external edit
Line 1: Line 1:
 ====== Schedule ====== ====== Schedule ======
  
-/* 
-Follow this link to view all [[https://​echo.colostate.edu/​ess/​portal/​section/​37e 
-115b6-e68b-4318-89ff-d1ecf025c0b9|lecture videos]]. 
-*/ 
 ===== Announcements ===== ===== Announcements =====
  
-Lecture videos are available at this [[https://​colostate.instructure.com/​courses/​61937/​external_tools/​2755|CS445 video recordings site]]. +This is a tentative schedule ​Changes will be made as the semester progresses.
  
 ===== January ===== ===== January =====
Line 14: Line 9:
 |< 100% 10% 20% 30% 20% 20%  >| |< 100% 10% 20% 30% 20% 20%  >|
 ^  Week      ^  Topic      ^  Material ​ ^  Reading ​         ^  Assignments ​ ^ ^  Week      ^  Topic      ^  Material ​ ^  Reading ​         ^  Assignments ​ ^
-| Week 1:\\  Jan 16 - Jan 19    | Overview. Intro to machine learning. Python. ​ | [[http://​nbviewer.ipython.org/​url/​www.cs.colostate.edu/​~anderson/​cs445/​notebooks/​01 Course Overview.ipynb|01 Course Overview]]\\ [[http://​nbviewer.ipython.org/​url/​www.cs.colostate.edu/​~anderson/​cs445/​notebooks/​02 Matrices and Plotting.ipynb|02 Matrices and Plotting]] ​ | [[http://​www.labri.fr/​perso/​nrougier/​from-python-to-numpy/​|From Python to Numpy]], Chapters 1 - 2\\ [[http://​www.deeplearningbook.org/​|Deep Learning]], Chapters 1 - 5.1.4  | +| Week 1:\\  Jan 22 - Jan 25    | Overview. Intro to machine learning. Python. ​ | [[http://​nbviewer.ipython.org/​url/​www.cs.colostate.edu/​~anderson/​cs445/​notebooks/​01 Course Overview.ipynb|01 Course Overview]]\\ [[http://​nbviewer.ipython.org/​url/​www.cs.colostate.edu/​~anderson/​cs445/​notebooks/​02 Matrices and Plotting.ipynb|02 Matrices and Plotting]] ​ | [[http://​www.labri.fr/​perso/​nrougier/​from-python-to-numpy/​|From Python to Numpy]], Chapters 1 - 2\\ [[http://​www.deeplearningbook.org/​|Deep Learning]], Chapters 1 - 5.1.4  | 
-| Week 2:\\ Jan 22 Jan 26    | Fitting linear models to data as a direct matrix calculation,​ and incrementally using stochastic gradient descent (SGD)  | +| Week 2:\\ Jan 28 Feb 1    | Fitting linear models to data as a direct matrix calculation,​ and incrementally using stochastic gradient descent (SGD)  | [[http://​nbviewer.ipython.org/​url/​www.cs.colostate.edu/​~anderson/​cs445/​notebooks/​03 Linear Regression.ipynb|03 Linear Regression]]\\ [[http://​nbviewer.ipython.org/​url/​www.cs.colostate.edu/​~anderson/​cs445/​notebooks/​04 Linear Regression Using Stochastic Gradient Descent (SGD).ipynb|04 Linear Regression Using Stochastic Gradient Descent (SGD)]] ​ |
- [[http://​nbviewer.ipython.org/​url/​www.cs.colostate.edu/​~anderson/​cs445/​notebooks/​03 Linear Regression.ipynb|03 Linear Regression]]\\ [[http://​nbviewer.ipython.org/​url/​www.cs.colostate.edu/​~anderson/​cs445/​notebooks/​04 Linear Regression Using Stochastic Gradient Descent (SGD).ipynb|04 Linear Regression Using Stochastic Gradient Descent (SGD)]] ​ ​| ​ hi  |  h  | +
-| Week 3:\\ Jan 29 - Feb 2    |  |  |  | [[http://​nbviewer.ipython.org/​url/​www.cs.colostate.edu/​~anderson/​cs445/​notebooks/​A1 Linear Regression.ipynb|A1 Linear Regression]] due Tuesday, January 30, 10:00 PM  |+
  
 ===== February ===== ===== February =====
Line 23: Line 16:
 |< 100% 10% 20% 30% 20% 20%  >| |< 100% 10% 20% 30% 20% 20%  >|
 ^  Week      ^  Topic      ^  Material ​ ^  Reading ​         ^  Assignments ​ ^ ^  Week      ^  Topic      ^  Material ​ ^  Reading ​         ^  Assignments ​ ^
-| Week 4:\\ Feb - Feb   |  +| Week 3:\\ Feb - Feb 8    | Ridge regression. Data partitioning. ​ Probabilistic Linear Regression. Regression with fixed nonlinearities. ​  ​| [[http://​nbviewer.ipython.org/​url/​www.cs.colostate.edu/​~anderson/​cs445/​notebooks/​05 Linear Ridge Regression and Data Partitioning.ipynb|05 Linear Ridge Regression and Data Partitioning]]\\ [[http://​nbviewer.ipython.org/​url/​www.cs.colostate.edu/​~anderson/​cs445/​notebooks/​06 Probabilistic Linear Regression.ipynb|06 Probabilistic Linear Regression]]\\ [[http://​nbviewer.ipython.org/​url/​www.cs.colostate.edu/​~anderson/​cs445/​notebooks/​07 Linear Regression with Fixed Nonlinear Features.ipynb|07 Linear Regression with Fixed Nonlinear Features]] ​  ​|[[http://​www.deeplearningbook.org/​|Deep Learning]], Section 7.3\\  [[http://​www.nytimes.com/​2016/​12/​14/​magazine/​the-great-ai-awakening.html?​_r=0|The Great A.I. Awakening]],​ by Gideon Lewis-Krause,​ NYT, Dec 14, 2016.  | 
-| Week 5:\\ Feb 12 - Feb 16  |  +| Week 4:\\ Feb 11 - Feb 15   | Introduction to nonlinear regression with neural networks. ​ | [[http://​nbviewer.ipython.org/​url/​www.cs.colostate.edu/​~anderson/​cs445/​notebooks/​08 Stochastic Gradient Descent with Parameterized Activation Function.ipynb|08 Stochastic Gradient Descent with Parameterized Activation Function]]\\ [[http://​nbviewer.ipython.org/​url/​www.cs.colostate.edu/​~anderson/​cs445/​notebooks/​09 Scaled Conjugate Gradient for Training Neural Networks.ipynb|09 Scaled Conjugate Gradient for Training Neural Networks]] ​ | [[http://​www.deeplearningbook.org/​|Deep Learning]], Chapter 6 (skip 6.2)  | 
-| Week 6:\\ Feb 19 - Feb 23  |  +| Week 5:\\ Feb 18 - Feb 22  | More neural networks ​ | [[http://​nbviewer.ipython.org/​url/​www.cs.colostate.edu/​~anderson/​cs445/​notebooks/​10 More Nonlinear Regression with Neural Networks.ipynb|10 More Nonlinear Regression with Neural Networks]] ​ | 
-| Week 7:\\ Feb 26 - Mar  ​| ​+| Week 6:\\ Feb 25 - Mar 1  | Autoencoders. Activation functions. ​ | [[http://​nbviewer.ipython.org/​url/​www.cs.colostate.edu/​~anderson/​cs445/​notebooks/​11 Autoencoder Neural Networks.ipynb|11 Autoencoder Neural Networks]] ​ | [[https://​arxiv.org/​pdf/​1710.05941.pdf|Searching for Activation Functions]],​ by Ramachandran,​ Zoph, and Le  |  |
  
 ===== March ===== ===== March =====
Line 32: Line 25:
 |< 100% 10% 20% 30% 20% 20%  >| |< 100% 10% 20% 30% 20% 20%  >|
 ^  Week      ^  Topic      ^  Material ​ ^  Reading ​         ^  Assignments ​ ^ ^  Week      ^  Topic      ^  Material ​ ^  Reading ​         ^  Assignments ​ ^
-| Week 8:\\ Mar - Mar   |  +| Week 7:\\ Mar 4 - Mar 8  | Classification. LDA and QDA. K-Nearest Neighbors. ​ | [[http://​nbviewer.ipython.org/​url/​www.cs.colostate.edu/​~anderson/​cs445/​notebooks/​12 Introduction to Classification.ipynb|12 Introduction to Classification]] \\ [[http://​nbviewer.ipython.org/​url/​www.cs.colostate.edu/​~anderson/​cs445/​notebooks/​13 Gaussian Distributions.ipynb|13 Gaussian Distributions]] ​  ​| ​ | | 
-|  Mar 12 - Mar 16  ​| ​ Spring Break  | +| Week 8:\\ Mar 11 - Mar 15   ​| Classification with Neural Networks ​ | [[http://​nbviewer.ipython.org/​url/​www.cs.colostate.edu/​~anderson/​cs445/​notebooks/​14 Classification with Linear Logistic Regression.ipynb|14 Classification with Linear Logistic Regression]]\\ [[http://​nbviewer.ipython.org/​url/​www.cs.colostate.edu/​~anderson/​cs445/​notebooks/​15 Classification with Nonlinear Logistic Regression Using Neural Networks.ipynb|15 Classification with Nonlinear Logistic Regression Using Neural Networks]] \\ [[http://​nbviewer.ipython.org/​url/​www.cs.colostate.edu/​~anderson/​cs445/​notebooks/​16 Introduction to Pytorch.ipynb|16 Introduction to Pytorch]]  ​
-| Week 9:\\ Mar 19 - Mar 23  +|  Mar 18 - Mar 22  ​| ​ Spring Break  | 
-Week 10:\\ Mar 26 Mar 30  ​| ​+| Week 9:\\ Mar 25 - Mar 29 Analysis of Trained Networks. Bottleneck Networks. Classifying Hand-Drawn Digits.  ​[[http://​nbviewer.ipython.org/​url/​www.cs.colostate.edu/​~anderson/​cs445/​notebooks/​17 Analysis of Neural Network Classifiers and Bottleneck Networks.ipynb|17 Analysis of Neural Network Classifiers and Bottleneck Networks]]  ​\\ [[http://​nbviewer.ipython.org/​url/​www.cs.colostate.edu/​~anderson/​cs445/​notebooks/​18 Dealing with Time Series by Time-Embedding.ipynb|18 Dealing with Time Series by Time-Embedding]]\\ [[http://​nbviewer.ipython.org/​url/​www.cs.colostate.edu/​~anderson/​cs445/​notebooks/​19 Recurrent Neural Networks.ipynb|19 Recurrent Neural Networks]] ​ | | |
  
 ===== April ===== ===== April =====
Line 41: Line 34:
 |< 100% 10% 20% 30% 20% 20%  >| |< 100% 10% 20% 30% 20% 20%  >|
 ^  Week      ^  Topic      ^  Material ​ ^  Reading ​         ^  Assignments ​ ^ ^  Week      ^  Topic      ^  Material ​ ^  Reading ​         ^  Assignments ​ ^
-| Week 11:\\ Apr - Apr   |  +| Week 10:\\ Apr 1 - Apr 5  | Convolutional Neural Networks ​ | [[http://​nbviewer.ipython.org/​url/​www.cs.colostate.edu/​~anderson/​cs445/​notebooks/​20 Classifying Hand-drawn Digits.ipynb|20 Classifying Hand-drawn Digits]]\\ [[http://​nbviewer.ipython.org/​url/​www.cs.colostate.edu/​~anderson/​cs445/​notebooks/​21 Convolutional Neural Networks.ipynb|21 Convolutional Neural Networks]]\\ [[http://​nbviewer.ipython.org/​url/​www.cs.colostate.edu/​~anderson/​cs445/​notebooks/​22 Introduction to Reinforcement Learning.ipynb|22 Introduction to Reinforcement Learning]] ​ | [[http://​incompleteideas.net/​book/​the-book.html|Reinforcement Learning: An Introduction]],​ by Sutton and Barto, 2nd ed.   ​| ​ | 
-| Week 12:\\ Apr - Apr 13  |  +| Week 11:\\ Apr - Apr 12   | Reinforcement Learning. Games using Tabular Q functions. ​ | [[http://​nbviewer.ipython.org/​url/​www.cs.colostate.edu/​~anderson/​cs445/​notebooks/​23 Reinforcement Learning with Neural Network as Q Function.ipynb|23 Reinforcement Learning with Neural Network as Q Function]] ​ |  | [[https://​drive.google.com/​open?​id=1KHAxeIwL3ait2ZUbILdbJjCLW47JwxKpdjsAr5kkkZk|Project proposal]] due at 10 pm Friday evening. You are welcome to start with a copy of the linked Google Doc.   | 
-| Week 13:\\ Apr 16 - Apr 20  |  +| Week 12:\\ Apr 15 - Apr 19  | Reinforcement Learning using Neural Networks as Q functions. ​ | [[http://​nbviewer.ipython.org/​url/​www.cs.colostate.edu/​~anderson/​cs445/​notebooks/​24 Reinforcement Learning to Control a Marble.ipynb|24 Reinforcement Learning to Control a Marble]]\\ [[http://​nbviewer.ipython.org/​url/​www.cs.colostate.edu/​~anderson/​cs445/​notebooks/​25 Reinforcement Learning for Two Player Games.ipynb|25 Reinforcement Learning for Two Player Games]] ​  
-| Week 14:\\ Apr 23 Apr 27  ​| ​+| Week 13:\\ Apr 22 - Apr 26  | Unsupervised Learning. Dimensionality Reduction. ​ Clustering. ​ | [[http://​nbviewer.ipython.org/​url/​www.cs.colostate.edu/​~anderson/​cs445/​notebooks/​26 Linear Dimensionality Reduction.ipynb|26 Linear Dimensionality Reduction]]\\ [[http://​nbviewer.ipython.org/​url/​www.cs.colostate.edu/​~anderson/​cs445/​notebooks/​27 Examples of Linear Dimensionality Reduction.ipynb|27 Examples of Linear Dimensionality Reduction]]\\ [[http://​nbviewer.ipython.org/​url/​www.cs.colostate.edu/​~anderson/​cs445/​notebooks/​28 K-Means Clustering.ipynb|28 K-Means Clustering]] ​ | 
 +| Week 14:\\ Apr 29 May 3  ​| ​Hierarchical clustering. K Nearest Neighbors Classification. Support Vector Machines. ​ | [[http://​nbviewer.ipython.org/​url/​www.cs.colostate.edu/​~anderson/​cs445/​notebooks/​29 Hierarchical Clustering.ipynb|29 Hierarchical Clustering]]\\ [[http://​nbviewer.ipython.org/​url/​www.cs.colostate.edu/​~anderson/​cs445/​notebooks/​30 Nonparametric Classification with K Nearest Neighbors.ipynb|30 Nonparametric Classification with K Nearest Neighbors]]\\ [[http://​nbviewer.ipython.org/​url/​www.cs.colostate.edu/​~anderson/​cs445/​notebooks/​31 Support Vector Machines.ipynb|31 Support Vector Machines]] ​ |  |  }
  
 ===== May ===== ===== May =====
Line 50: Line 44:
 |< 100% 10% 20% 30% 20% 20%  >| |< 100% 10% 20% 30% 20% 20%  >|
 ^  Week      ^  Topic      ^  Material ​ ^  Reading ​         ^  Assignments ​ ^ ^  Week      ^  Topic      ^  Material ​ ^  Reading ​         ^  Assignments ​ ^
-| Week 15:\\ Apr 30 - May  |  +| Week 15:\\ May 6 - May 10  | Ensembles. ​ Other topics. ​ | [[http://​nbviewer.ipython.org/​url/​www.cs.colostate.edu/​~anderson/​cs445/​notebooks/​32 Ensembles of Convolutional Neural Networks.ipynb|32 Ensembles of Convolutional Neural Networks]]\\ [[http://​nbviewer.ipython.org/​url/​www.cs.colostate.edu/​~anderson/​cs445/​notebooks/​33 Machine Learning for Brain-Computer Interfaces.ipynb|33 Machine Learning for Brain-Computer Interfaces]]\\ ​ [[http://​nbviewer.ipython.org/​url/​www.cs.colostate.edu/​~anderson/​cs445/​notebooks/​34 Modeling Global Climate Change.ipynb|34 Modeling Global Climate Change]] ​ |  | Final Project Report due Wednesday, May 8, 10:00 PM. Here is a [[http://​nbviewer.ipython.org/​url/​www.cs.colostate.edu/​~anderson/​cs445/​notebooks/​Project Report Example.ipynb|Project Report Example]] ​ | 
-| May - May 10  ​| ​ Final Exams  | +| May 13 - May 16  ​| ​ Final Exams  ​| ​ |  |  |
  
  
  
start.txt · Last modified: 2019/06/03 13:46 by anderson