User Tools

Site Tools


start

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
start [2018/01/20 17:07]
127.0.0.1 external edit
start [2018/05/04 08:28] (current)
Line 1: Line 1:
 ====== Schedule ====== ====== Schedule ======
  
-/* 
-Follow this link to view all [[https://​echo.colostate.edu/​ess/​portal/​section/​37e 
-115b6-e68b-4318-89ff-d1ecf025c0b9|lecture videos]]. 
-*/ 
 ===== Announcements ===== ===== Announcements =====
 +
  
 Lecture videos are available at this [[https://​colostate.instructure.com/​courses/​61937/​external_tools/​2755|CS445 video recordings site]]. Lecture videos are available at this [[https://​colostate.instructure.com/​courses/​61937/​external_tools/​2755|CS445 video recordings site]].
Line 14: Line 11:
 |< 100% 10% 20% 30% 20% 20%  >| |< 100% 10% 20% 30% 20% 20%  >|
 ^  Week      ^  Topic      ^  Material ​ ^  Reading ​         ^  Assignments ​ ^ ^  Week      ^  Topic      ^  Material ​ ^  Reading ​         ^  Assignments ​ ^
-| Week 1:\\  Jan 16 - Jan 19    | Overview. Intro to machine learning. Python. ​ | [[http://​nbviewer.ipython.org/​url/​www.cs.colostate.edu/​~anderson/​cs445/​notebooks/​01 Course Overview.ipynb|01 Course Overview]]\\ [[http://​nbviewer.ipython.org/​url/​www.cs.colostate.edu/​~anderson/​cs445/​notebooks/​02 Matrices and Plotting.ipynb|02 Matrices and Plotting]]\\ [[http://​nbviewer.ipython.org/​url/​www.cs.colostate.edu/​~anderson/​cs445/​notebooks/​03 Linear Regression.ipynb|03 Linear Regression]]  | [[http://​www.labri.fr/​perso/​nrougier/​from-python-to-numpy/​|From Python to Numpy]], Chapters 1 - 2\\ [[http://​www.deeplearningbook.org/​|Deep Learning]], Chapters 1 - 5.1.4  | +| Week 1:\\  Jan 16 - Jan 19    | Overview. Intro to machine learning. Python. ​ | [[http://​nbviewer.ipython.org/​url/​www.cs.colostate.edu/​~anderson/​cs445/​notebooks/​01 Course Overview.ipynb|01 Course Overview]]\\ [[http://​nbviewer.ipython.org/​url/​www.cs.colostate.edu/​~anderson/​cs445/​notebooks/​02 Matrices and Plotting.ipynb|02 Matrices and Plotting]] ​ | [[http://​www.labri.fr/​perso/​nrougier/​from-python-to-numpy/​|From Python to Numpy]], Chapters 1 - 2\\ [[http://​www.deeplearningbook.org/​|Deep Learning]], Chapters 1 - 5.1.4  | 
-| Week 2:\\ Jan 22 - Jan 26    |  +| Week 2:\\ Jan 22 - Jan 26    ​| Fitting linear models to data as a direct matrix calculation,​ and incrementally using stochastic gradient descent (SGD)  | [[http://​nbviewer.ipython.org/​url/​www.cs.colostate.edu/​~anderson/​cs445/​notebooks/​03 Linear Regression.ipynb|03 Linear Regression]]\\ [[http://​nbviewer.ipython.org/​url/​www.cs.colostate.edu/​~anderson/​cs445/​notebooks/​04 Linear Regression Using Stochastic Gradient Descent (SGD).ipynb|04 Linear Regression Using Stochastic Gradient Descent (SGD)]]  ​
-| Week 3:\\ Jan 29 - Feb 2    |  |  |  | [[http://​nbviewer.ipython.org/​url/​www.cs.colostate.edu/​~anderson/​cs445/​notebooks/​A1 Linear Regression.ipynb|A1 Linear Regression]] due Tuesday, January ​30, 10:00 PM  |+| Week 3:\\ Jan 29 - Feb 2    | Ridge regression. Data partitioning. ​ Probabilistic Linear Regression. Regression with fixed nonlinearities. ​  [[http://​nbviewer.ipython.org/​url/​www.cs.colostate.edu/​~anderson/​cs445/​notebooks/​05 Linear Ridge Regression and Data Partitioning.ipynb|05 Linear Ridge Regression and Data Partitioning]]\\ [[http://​nbviewer.ipython.org/​url/​www.cs.colostate.edu/​~anderson/​cs445/​notebooks/​06 Probabilistic Linear Regression.ipynb|06 Probabilistic Linear Regression]]\\ [[http://​nbviewer.ipython.org/​url/​www.cs.colostate.edu/​~anderson/​cs445/​notebooks/​07 Linear Regression with Fixed Nonlinear Features.ipynb|07 Linear Regression with Fixed Nonlinear Features]] ​  ​|[[http://​www.deeplearningbook.org/​|Deep Learning]], Section 7.3\\  [[http://​www.nytimes.com/​2016/​12/​14/​magazine/​the-great-ai-awakening.html?​_r=0|The Great A.I. Awakening]],​ by Gideon Lewis-Krause,​ NYT, Dec 14, 2016.  | [[http://​nbviewer.ipython.org/​url/​www.cs.colostate.edu/​~anderson/​cs445/​notebooks/​A1 Linear Regression.ipynb|A1 Linear Regression]] due Wednesday, January ​31, 10:00 PM.  Here are some [[http://​www.cs.colostate.edu/​~anderson/​cs445/​goodSolutions|good solutions.]] ​ |
  
 ===== February ===== ===== February =====
Line 22: Line 19:
 |< 100% 10% 20% 30% 20% 20%  >| |< 100% 10% 20% 30% 20% 20%  >|
 ^  Week      ^  Topic      ^  Material ​ ^  Reading ​         ^  Assignments ​ ^ ^  Week      ^  Topic      ^  Material ​ ^  Reading ​         ^  Assignments ​ ^
-| Week 4:\\ Feb 5 - Feb 9   |  +| Week 4:\\ Feb 5 - Feb 9   | Introduction to nonlinear regression with neural networks. ​ | [[http://​nbviewer.ipython.org/​url/​www.cs.colostate.edu/​~anderson/​cs445/​notebooks/​08 Stochastic Gradient Descent with Parameterized Activation Function.ipynb|08 Stochastic Gradient Descent with Parameterized Activation Function]]\\ [[http://​nbviewer.ipython.org/​url/​www.cs.colostate.edu/​~anderson/​cs445/​notebooks/​09 Scaled Conjugate Gradient for Training Neural Networks.ipynb|09 Scaled Conjugate Gradient for Training Neural Networks]] ​ | [[http://​www.deeplearningbook.org/​|Deep Learning]], Chapter 6 (skip 6.2)  ​
-| Week 5:\\ Feb 12 - Feb 16  |  +| Week 5:\\ Feb 12 - Feb 16  | <color red>​Lectures on Feb 12th and 14th are canceled.</​color> ​ Friday, more neural networks ​ | [[http://​nbviewer.ipython.org/​url/​www.cs.colostate.edu/​~anderson/​cs445/​notebooks/​10 More Nonlinear Regression with Neural Networks.ipynb|10 More Nonlinear Regression with Neural Networks]] ​ | 
-| Week 6:\\ Feb 19 - Feb 23  |  +| Week 6:\\ Feb 19 - Feb 23  | Autoencoders. Activation functions. ​ | [[http://​nbviewer.ipython.org/​url/​www.cs.colostate.edu/​~anderson/​cs445/​notebooks/​11 Autoencoder Neural Networks.ipynb|11 Autoencoder Neural Networks]] ​ | [[https://​arxiv.org/​pdf/​1710.05941.pdf|Searching for Activation Functions]],​ by Ramachandran,​ Zoph, and Le  | [[http://​nbviewer.ipython.org/​url/​www.cs.colostate.edu/​~anderson/​cs445/​notebooks/​A2 Neural Network Regression.ipynb|A2 Neural Network Regression]] due Tuesday, February 20, 10:00 PM. Here are some [[http://​www.cs.colostate.edu/​~anderson/​cs445/​goodSolutions|good solutions.]] ​ | 
-| Week 7:\\ Feb 26 - Mar 2  | +| Week 7:\\ Feb 26 - Mar 2  | Classification. LDA and QDA. K-Nearest Neighbors. ​ | [[http://​nbviewer.ipython.org/​url/​www.cs.colostate.edu/​~anderson/​cs445/​notebooks/​12 Introduction to Classification.ipynb|12 Introduction to Classification]] <color red>​(qdalda.py updated March 20)</​color>​\\ [[http://​nbviewer.ipython.org/​url/​www.cs.colostate.edu/​~anderson/​cs445/​notebooks/​13 Gaussian Distributions.ipynb|13 Gaussian Distributions]] ​  ​| ​ |[[http://​nbviewer.ipython.org/​url/​www.cs.colostate.edu/​~anderson/​cs445/​notebooks/​A3 Activation Functions.ipynb|A3 Activation Functions]] due Thursday, March 1, 10:00 PM.  Here are some [[http://​www.cs.colostate.edu/​~anderson/​cs445/​goodSolutions|good solutions.]] ​ |
  
 ===== March ===== ===== March =====
Line 31: Line 28:
 |< 100% 10% 20% 30% 20% 20%  >| |< 100% 10% 20% 30% 20% 20%  >|
 ^  Week      ^  Topic      ^  Material ​ ^  Reading ​         ^  Assignments ​ ^ ^  Week      ^  Topic      ^  Material ​ ^  Reading ​         ^  Assignments ​ ^
-| Week 8:\\ Mar 5 - Mar 9   ​| ​+| Week 8:\\ Mar 5 - Mar 9   | Classification with Neural Networks ​ | [[http://​nbviewer.ipython.org/​url/​www.cs.colostate.edu/​~anderson/​cs445/​notebooks/​14 Classification with Linear Logistic Regression.ipynb|14 Classification with Linear Logistic Regression]]\\ [[http://​nbviewer.ipython.org/​url/​www.cs.colostate.edu/​~anderson/​cs445/​notebooks/​15 Classification with Nonlinear Logistic Regression Using Neural Networks.ipynb|15 Classification with Nonlinear Logistic Regression Using Neural Networks]] ​ <color red>​(updated March 18)</​color>​\\ [[http://​nbviewer.ipython.org/​url/​www.cs.colostate.edu/​~anderson/​cs445/​notebooks/​16 Introduction to Pytorch.ipynb|16 Introduction to Pytorch]]  ​|
 |  Mar 12 - Mar 16  |  Spring Break  | |  Mar 12 - Mar 16  |  Spring Break  |
-| Week 9:\\ Mar 19 - Mar 23 |  +| Week 9:\\ Mar 19 - Mar 23 | Analysis of Trained Networks. Bottleneck Networks. Classifying Hand-Drawn Digits. ​ | [[http://​nbviewer.ipython.org/​url/​www.cs.colostate.edu/​~anderson/​cs445/​notebooks/​17 Analysis of Neural Network Classifiers and Bottleneck Networks.ipynb|17 Analysis of Neural Network Classifiers and Bottleneck Networks]] ​ <color red>​(updated March 19, 10:20 AM)</​color>​\\ [[http://​nbviewer.ipython.org/​url/​www.cs.colostate.edu/​~anderson/​cs445/​notebooks/​18 Dealing with Time Series by Time-Embedding.ipynb|18 Dealing with Time Series by Time-Embedding]]\\ [[http://​nbviewer.ipython.org/​url/​www.cs.colostate.edu/​~anderson/​cs445/​notebooks/​19 Recurrent Neural Networks.ipynb|19 Recurrent Neural Networks]] ​ | | 
-| Week 10:\\ Mar 26 - Mar 30  | +| Week 10:\\ Mar 26 - Mar 30  ​| Convolutional Neural Networks ​ | [[http://​nbviewer.ipython.org/​url/​www.cs.colostate.edu/​~anderson/​cs445/​notebooks/​20 Classifying Hand-drawn Digits.ipynb|20 Classifying Hand-drawn Digits]]\\ [[http://​nbviewer.ipython.org/​url/​www.cs.colostate.edu/​~anderson/​cs445/​notebooks/​21 Convolutional Neural Networks.ipynb|21 Convolutional Neural Networks]]\\ [[http://​nbviewer.ipython.org/​url/​www.cs.colostate.edu/​~anderson/​cs445/​notebooks/​22 Introduction to Reinforcement Learning.ipynb|22 Introduction to Reinforcement Learning]] ​ | [[https://​drive.google.com/​file/​d/​1xeUDVGWGUUv1-ccUMAZHJLej2C7aAFWY/​view|Reinforcement Learning: An Introduction]],​ by Sutton and Barto   | [[http://​nbviewer.ipython.org/​url/​www.cs.colostate.edu/​~anderson/​cs445/​notebooks/​A4 Classification with QDA, LDA, and Logistic Regression.ipynb|A4 Classification with QDA, LDA, and Logistic Regression]] <color red>​(use() return value updated March 20)</​color>​ due Tuesday, March 27, 10:00 PM. Here are some [[http://​www.cs.colostate.edu/​~anderson/​cs445/​goodSolutions|good solutions.]] ​   ​|
  
 ===== April ===== ===== April =====
Line 40: Line 37:
 |< 100% 10% 20% 30% 20% 20%  >| |< 100% 10% 20% 30% 20% 20%  >|
 ^  Week      ^  Topic      ^  Material ​ ^  Reading ​         ^  Assignments ​ ^ ^  Week      ^  Topic      ^  Material ​ ^  Reading ​         ^  Assignments ​ ^
-| Week 11:\\ Apr 2 - Apr 6   |  +| Week 11:\\ Apr 2 - Apr 6   | Reinforcement Learning. Games using Tabular Q functions. ​ | [[http://​nbviewer.ipython.org/​url/​www.cs.colostate.edu/​~anderson/​cs445/​notebooks/​23 Reinforcement Learning with Neural Network as Q Function.ipynb|23 Reinforcement Learning with Neural Network as Q Function]] ​ |  | [[https://​drive.google.com/​open?​id=1KHAxeIwL3ait2ZUbILdbJjCLW47JwxKpdjsAr5kkkZk|Project proposal]] due at 10 pm Friday evening. You are welcome to start with a copy of the linked Google Doc.   | 
-| Week 12:\\ Apr 9 - Apr 13  |  +| Week 12:\\ Apr 9 - Apr 13  ​| Reinforcement Learning using Neural Networks as Q functions. ​ | [[http://​nbviewer.ipython.org/​url/​www.cs.colostate.edu/​~anderson/​cs445/​notebooks/​24 Reinforcement Learning to Control a Marble.ipynb|24 Reinforcement Learning to Control a Marble]]\\ [[http://​nbviewer.ipython.org/​url/​www.cs.colostate.edu/​~anderson/​cs445/​notebooks/​25 Reinforcement Learning for Two Player Games.ipynb|25 Reinforcement Learning for Two Player Games]] ​  
-| Week 13:\\ Apr 16 - Apr 20  |  +| Week 13:\\ Apr 16 - Apr 20  | Unsupervised Learning. Dimensionality Reduction. ​ Clustering. ​ | [[http://​nbviewer.ipython.org/​url/​www.cs.colostate.edu/​~anderson/​cs445/​notebooks/​26 Linear Dimensionality Reduction.ipynb|26 Linear Dimensionality Reduction]]\\ [[http://​nbviewer.ipython.org/​url/​www.cs.colostate.edu/​~anderson/​cs445/​notebooks/​27 Examples of Linear Dimensionality Reduction.ipynb|27 Examples of Linear Dimensionality Reduction]]\\ [[http://​nbviewer.ipython.org/​url/​www.cs.colostate.edu/​~anderson/​cs445/​notebooks/​28 K-Means Clustering.ipynb|28 K-Means Clustering]] ​ | 
-| Week 14:\\ Apr 23 - Apr 27  | +| Week 14:\\ Apr 23 - Apr 27  | Hierarchical clustering. K Nearest Neighbors Classification. Support Vector Machines. ​ | [[http://​nbviewer.ipython.org/​url/​www.cs.colostate.edu/​~anderson/​cs445/​notebooks/​29 Hierarchical Clustering.ipynb|29 Hierarchical Clustering]]\\ [[http://​nbviewer.ipython.org/​url/​www.cs.colostate.edu/​~anderson/​cs445/​notebooks/​30 Nonparametric Classification with K Nearest Neighbors.ipynb|30 Nonparametric Classification with K Nearest Neighbors]]\\ [[http://​nbviewer.ipython.org/​url/​www.cs.colostate.edu/​~anderson/​cs445/​notebooks/​31 Support Vector Machines.ipynb|31 Support Vector Machines]] ​ |  | [[http://​nbviewer.ipython.org/​url/​www.cs.colostate.edu/​~anderson/​cs445/​notebooks/​A5 Control a Marble with Reinforcement Learning.ipynb|A5 Control a Marble with Reinforcement Learning]] due Tuesday, April 24th, 10:00 PM  |
  
 ===== May ===== ===== May =====
Line 49: Line 46:
 |< 100% 10% 20% 30% 20% 20%  >| |< 100% 10% 20% 30% 20% 20%  >|
 ^  Week      ^  Topic      ^  Material ​ ^  Reading ​         ^  Assignments ​ ^ ^  Week      ^  Topic      ^  Material ​ ^  Reading ​         ^  Assignments ​ ^
-| Week 15:\\ Apr 30 - May 4  |  +| Week 15:\\ Apr 30 - May 4  | Ensembles. ​ Other topics. ​ | [[http://​nbviewer.ipython.org/​url/​www.cs.colostate.edu/​~anderson/​cs445/​notebooks/​32 Ensembles of Convolutional Neural Networks.ipynb|32 Ensembles of Convolutional Neural Networks]]\\ [[http://​nbviewer.ipython.org/​url/​www.cs.colostate.edu/​~anderson/​cs445/​notebooks/​33 Machine Learning for Brain-Computer Interfaces.ipynb|33 Machine Learning for Brain-Computer Interfaces]]\\ ​ [[http://​nbviewer.ipython.org/​url/​www.cs.colostate.edu/​~anderson/​cs445/​notebooks/​34 Modeling Global Climate Change.ipynb|34 Modeling Global Climate Change]] ​ | 
-| May 7 - May 10  |  Final Exams  | +| May 7 - May 10  |  Final Exams  ​| ​ |  | Final Project Report due Wednesday, May 9, 10:00 PM. Here is a [[http://​nbviewer.ipython.org/​url/​www.cs.colostate.edu/​~anderson/​cs445/​notebooks/​Project Report Example.ipynb|Project Report Example]] ​ |
  
  
  
start.1516493237.txt.gz · Last modified: 2018/01/20 17:07 by 127.0.0.1