CS545: Linear Models (Nonlinear Inputs; Probabilistic)

Chuck Anderson

Department of Computer Science
Colorado State University

Fall, 2009
Outline

Bayesian Regression
 Derivation
 Application to Auto MPG Data
 Application to 1-D Data
Bayesian Regression

The full Bayesian approach to regression does not solve for a single w value. Instead, an expression for the probability of a model, given the data, is formulated. Then, a sum is taken over all possible models of the prediction value for a given model weighted by the probability of that model.
Bayesian Regression

- The full Bayesian approach to regression does not solve for a single w value. Instead, an expression for the probability of a model, given the data, is formulated. Then, a sum is taken over all possible models of the prediction value for a given model weighted by the probability of that model.

- So

$$p(t_n|x_n, X, T) = \int p(t_n, \text{model}|x_n, X, T) \, d\text{model}$$

$$= \int p(t_n|\text{model}, x_n, X, T) \, p(\text{model}|X, T) \, d\text{model}$$
Bayesian Regression

- The full Bayesian approach to regression does not solve for a single w value. Instead, an expression for the probability of a model, given the data, is formulated. Then, a sum is taken over all possible models of the prediction value for a given model weighted by the probability of that model.

So

$$p(t_n|x_n, X, T) = \int p(t_n, \text{model}|x_n, X, T) \, d\text{model}$$

$$= \int p(t_n|\text{model}, x_n, X, T) \, p(\text{model}|X, T) \, d\text{model}$$

- As before, let’s choose the model to be

$$y(x_n, w) = \phi(x_n)w + \epsilon$$

where $\epsilon \sim \mathcal{N}(0, \beta^{-1})$. With this choice

$$p(t_n|\text{model}, x_n, X, T) = p(t_n|w, \phi, x_n, X, T, \beta)$$

$$= \mathcal{N}(t_n|\phi(x_n)w, \beta^{-1})$$
Bayes Theorem tells us

\[p(\text{model}|X, T) \propto p(T|X, \text{model}) p(\text{model}) \]

or

\[p(w|\phi, X, T, \beta) \propto p(T|w, \phi, X, \beta) p(w) \]
Bayes Theorem tells us

\[p(\text{model}|\mathbf{X}, \mathbf{T}) \propto p(\mathbf{T}|\mathbf{X}, \text{model})p(\text{model}) \]

or

\[p(\mathbf{w}|\phi, \mathbf{X}, \mathbf{T}, \beta) \propto p(\mathbf{T}|\mathbf{w}, \phi, \mathbf{X}, \beta)p(\mathbf{w}) \]

We will model the data likelihood function as a Gaussian,

\[
p(\mathbf{T}|\mathbf{w}, \phi, \mathbf{X}, \beta) = \mathcal{N}(\mathbf{T}|\Phi \mathbf{w}, \beta^{-1}I)
\]

\[
= \prod_{n=1}^{N} \mathcal{N}(t_n|\phi(x_n)\mathbf{w}, \beta^{-1})
\]
• Bayes Theorem tells us

\[p(\text{model}|\mathbf{X}, \mathbf{T}) \propto p(\mathbf{T}|\mathbf{X}, \text{model})p(\text{model}) \]

or

\[p(\mathbf{w}|\phi, \mathbf{X}, \mathbf{T}, \beta) \propto p(\mathbf{T}|\mathbf{w}, \phi, \mathbf{X}, \beta)p(\mathbf{w}) \]

• We will model the data likelihood function as a Gaussian,

\[p(\mathbf{T}|\mathbf{w}, \phi, \mathbf{X}, \beta) = \mathcal{N}(\mathbf{T}|\Phi\mathbf{w}, \beta^{-1}\mathbf{I}) \]

\[= \prod_{n=1}^{N} \mathcal{N}(t_n|\phi(x_n)\mathbf{w}, \beta^{-1}) \]

• Again, choose the prior distribution of the weights to be the zero-mean Gaussian

\[p(\mathbf{w}|\alpha) = \mathcal{N}(\mathbf{w}|0, \alpha^{-1}\mathbf{I}) \]
Now the original equation becomes

\[p(t_n|x_n, X, T) = \int \mathcal{N}(t_n|\phi(x_n)w, \beta^{-1}) \prod_{n=1}^{N} \mathcal{N}(t_n|\phi(x_n)w, \beta^{-1}) \mathcal{N}(w|0, \alpha^{-1}I) dw \]
Now the original equation becomes

\[p(t_n|x_n, X, T) = \int \mathcal{N}(t_n|\phi(x_n)w, \beta^{-1}) \prod_{n=1}^{N} \mathcal{N}(t_n|\phi(x_n)w, \beta^{-1}) \mathcal{N}(w|0, \alpha^{-1}I) dw \]

Let’s work on the last two terms in the integral. They involve products of Gaussians, which involve products of exponential terms with base e. These products are formed by adding the exponents, so let’s focus on the value of the exponent of e. The sum we get is

\[-\frac{1}{2}(\beta \sum_{n=1}^{N} (t_n - \phi(x_n)w)^2 + w^T \alpha / w) \]
Continuing working with the sum, we get

\[-\frac{1}{2} \left(\beta \sum_{n=1}^{N} (t_n - \phi(x_n)w)^2 + w^T \alpha / w \right) \]

\[= -\frac{1}{2} \beta \sum_{n=1}^{N} t_n^2 + \sum_{n=1}^{N} t_n \phi(x_n)w - \frac{1}{2} \left(\sum_{n=1}^{N} \phi(x_n)w \right)^2 - \frac{1}{2} w^T \alpha / w \]

\[= -\frac{1}{2} \beta \Phi^T \Phi + \beta \Phi^T \Phi w - \frac{1}{2} \beta w^T \Phi \Phi w - \frac{1}{2} w^T \alpha / w \]

\[= -\frac{1}{2} w^T (\beta \Phi^T \Phi + \alpha I) w + w^T \beta \Phi^T \Phi - \frac{1}{2} \beta \Phi^T \Phi \]

Notice the terms are grouped by ones quadratic and linear in \(w\). This allows us to figure out what the Gaussian distribution is. After all, a product of two Gaussians must be another Gaussian.
Continuing working with the sum, we get

\[-\frac{1}{2} \beta \sum_{n=1}^{N} (t_n - \phi(x_n)w)^2 + w^T \alpha / w\]

\[= -\frac{1}{2} \beta \sum_{n=1}^{N} t_n^2 + \sum_{n=1}^{N} t_n \phi(x_n)w - \frac{1}{2} (\sum_{n=1}^{N} \phi(x_n)w)^2 - \frac{1}{2} w^T \alpha / w\]

\[= -\frac{1}{2} \beta \mathbf{T}^T \mathbf{T} + \beta \mathbf{T}^T \Phi w - \frac{1}{2} \beta w^T \Phi^T \Phi w - \frac{1}{2} w^T \alpha / w\]

\[= -\frac{1}{2} w^T (\beta \Phi^T \Phi + \alpha I)w + w^T \beta \Phi^T \mathbf{T} - \frac{1}{2} \beta \mathbf{T}^T \mathbf{T}\]

Notice the terms are grouped by ones quadratic and linear in \(w\). This allows us to figure out what the Gaussian distribution is. After all, a product of two Gaussians must be another Gaussian.
Reverse engineering a Gaussian

- Look at expression (2.71) in Bishop’s book and the text around it.

\[-\frac{1}{2} (x - \mu)^T \Sigma^{-1} (x - \mu) = \]

\[-\frac{1}{2} x^T \Sigma^{-1} x + x^T \Sigma^{-1} \mu + \text{const} \]
Reverse engineering a Gaussian

- Look at expression (2.71) in Bishop’s book and the text around it.

\[-\frac{1}{2}(x - \mu)^T\Sigma^{-1}(x - \mu) =
\]

\[-\frac{1}{2}x^T\Sigma^{-1}x + x^T\Sigma^{-1}\mu + \text{const}\]

- Comparing with our previous expression

\[-\frac{1}{2}w^T(\beta\Phi^T\Phi + \alpha I)w + w^T\beta\Phi^T\mathbf{T} - \frac{1}{2}\beta\mathbf{T}^T\mathbf{T}\]
Reverse engineering a Gaussian

- Look at expression (2.71) in Bishop’s book and the text around it.

\[-\frac{1}{2} (x - \mu)^T \Sigma^{-1} (x - \mu) =\]

\[-\frac{1}{2} x^T \Sigma^{-1} x + x^T \Sigma^{-1} \mu + \text{const}\]

- Comparing with our previous expression

\[-\frac{1}{2} w^T (\beta \Phi^T \Phi + \alpha I) w + w^T \beta \Phi^T T - \frac{1}{2} \beta T^T T\]

- we see that

\[\Sigma^{-1} = \beta \Phi^T \Phi + \alpha I\]
Unfortunately, with this definition, the linear terms do not match. To make them match, we can introduce $\Sigma^{-1}\Sigma = I$ at the right place, so

$$w^T \beta \Phi^T \Phi \Sigma^{-1} \beta \Phi^T \Phi$$

becomes

$$w^T \Sigma^{-1} \Sigma \beta \Phi^T \Phi$$
Unfortunately, with this definition, the linear terms do not match. To make them match, we can introduce $\Sigma^{-1}\Sigma = I$ at the right place, so

$$w^T \beta \Phi^T \Phi \text{ becomes } w^T \Sigma^{-1}\Sigma \beta \Phi^T \Phi$$

making the full exponent

$$-\frac{1}{2} w^T (\beta \Phi^T \Phi + \alpha I) w + w^T (\beta \Phi^T \Phi + \alpha I)^{-1} \beta \Phi^T \Phi - \frac{1}{2} \beta \Phi^T \Phi$$
Unfortunately, with this definition, the linear terms do not match. To make them match, we can introduce $\Sigma^{-1}\Sigma = I$ at the right place, so

$$w^T \beta \Phi^T T$$ becomes $$w^T \Sigma^{-1} \Sigma \beta \Phi^T T$$

making the full exponent

$$-\frac{1}{2} w^T (\beta \Phi^T \Phi + \alpha I) w + w^T (\beta \Phi^T \Phi + \alpha I)(\beta \Phi^T \Phi + \alpha I)^{-1} \beta \Phi^T T - \frac{1}{2} \beta T T$$

Now we can identify the mean

$$\mu = \beta \Sigma \Phi^T T.$$
Renaming the mean and covariance matrix of this distribution of \(\mathbf{w} \) to be

\[
S_w = \Sigma = (\beta \Phi^T \Phi + \alpha I)^{-1}
\]

\[
\mu_w = \mu = \beta S_w \Phi^T \mathbf{1},
\]
Renaming the mean and covariance matrix of this distribution of \(w \) to be

\[
S_w = \Sigma = (\beta \Phi^T \Phi + \alpha I)^{-1}
\]

\[
\mu_w = \mu = \beta S_w \Phi^T \mathbf{T},
\]

We have now identified the resulting Gaussian to be

\[
\mathcal{N}(\mu_w, S_w).
\]

Our book uses variable names \(\mu_N \) and \(S_N \) for \(\mu_w \) and \(S_w \).
The initial integral

\[p(t_n|x_n, X, T) = \int \mathcal{N}(t_n|\phi(x_n)w), \beta^{-1}) \]

\[\prod_{n=1}^{N} \mathcal{N}(t_n|\phi(x_n)w, \beta^{-1})\mathcal{N}(w|0, \alpha^{-1}I)dw \]

is now

\[p(t_n|x_n, X, T) = \int \mathcal{N}(t_n|\phi(x_n)w, \beta^{-1})\mathcal{N}(w|\mu_w, S_w)dw \]
Sheesh! Another Gaussian Product

To deal with the integral of the product of these two Gaussians, we will first form the joint distribution of t and w and develop an expression for the mean and covariance matrix of the joint distribution. First, form a vector containing both t_n and w and call it z:

$$z = \begin{pmatrix} t_n \\ w \end{pmatrix}$$
Sheesh! Another Gaussian Product

- To deal with the integral of the product of these two Gaussians, we will first form the joint distribution of t and w and develop an expression for the mean and covariance matrix of the joint distribution. First, form a vector containing both t_n and w and call it z:

$$z = \begin{pmatrix} t_n \\ w \end{pmatrix}$$

- Since t_n and w are independent $p(z) = p(t_n)p(w)$ and when we multiply these two Gaussians, we just add their exponents.
\[p(t_n)p(w) \text{ is} \]

\[-\frac{1}{2} \beta t_n^2 + \beta t_n \phi(x_n)w - \frac{1}{2} w^T \phi(w)^T \phi(w_n)w \]

\[- \frac{1}{2} w^T S_w^{-1} w + w^T S_w^{-1} \mu_w - \frac{1}{2} \mu_w S_w^{-1} \mu_w \]

\[= -\frac{1}{2} \begin{pmatrix} t_n \\ w \end{pmatrix}^T \begin{pmatrix} \beta & \phi(x_n) \\ \phi(x_n) & \phi(x_n)^T - S_w^{-1} \end{pmatrix} \begin{pmatrix} t_n \\ w \end{pmatrix} \]

\[+ \begin{pmatrix} t_n \\ w \end{pmatrix}^T \begin{pmatrix} 0 \\ S_w^{-1} \mu_w \end{pmatrix} + \text{const} \]
At this point, we have followed the derivation in Section 2.3.3 up to Equation 2.106. Continuing this derivation would result in (meaning I don’t have slides for this) determining that

\[
p(t_n | x, X, T) = \int \mathcal{N}(t_n | \phi(x_n)w, \beta^{-1}) \mathcal{N}(w | \mu_w, S_w) dw,
\]

\[
= \mathcal{N}(t_n | \mu_t, S_t)
\]

where

\[
\mu_t = \phi(w) \mu_w
\]

\[
S_t = \frac{1}{\beta} + \phi(x)^T S_w \phi(x).
\]
At this point, we have followed the derivation in Section 2.3.3 up to Equation 2.106. Continuing this derivation would result in (meaning I don’t have slides for this) determining that

\[p(t_n|x, X, T) = \int \mathcal{N}(t_n|\phi(x_n)w, \beta^{-1})\mathcal{N}(w|\mu_w, S_w)dw, \]

\[= \mathcal{N}(t_n|\mu_t, S_t) \]

where

\[\mu_t = \phi(w)\mu_w \]

\[S_t = \frac{1}{\beta} + \phi(x)^T S_w \phi(x). \]

To use this result, we build our model by first calculating \(\mu_w \) and \(S_w \) given some training data \(X \) and \(T \).
At this point, we have followed the derivation in Section 2.3.3 up to Equation 2.106. Continuing this derivation would result in (meaning I don’t have slides for this) determining that

\[p(t_n | x, X, T) = \int \mathcal{N}(t_n | \phi(x_n)w, \beta^{-1}) \mathcal{N}(w | \mu_w, S_w) dw, \]

\[= \mathcal{N}(t_n | \mu_t, S_t) \]

where

\[\mu_t = \phi(w) \mu_w \]

\[S_t = \frac{1}{\beta} + \phi(x)^T S_w \phi(x). \]

To use this result, we build our model by first calculating \(\mu_w \) and \(S_w \) given some training data \(X \) and \(T \).

Then, for every data sample \(x \) we predict the target value \(t_{predicted} = \phi(x) \mu_w \), an expression very much like our frequentist solution. In addition, the Bayesian approach gives us the variance \(S_t \) of the prediction.
Application to Auto MPG Data

- Calculate μ_w and S_w, after choosing some hyperparameters.

$$S_w = \Sigma = (\beta \Phi^T \Phi + \alpha I)^{-1}$$

$$\mu_w = \mu = \beta S_w \Phi^T T,$$

```r
> beta <- 10
> alpha <- 10
> M <- 7
> S.w <- solve(beta * t(X1) %*% X1 + alpha * diag(1,M+1))
> mu.w <- beta * S.w %*% t(X1) %*% T
```
Then, for the test data, calculate the predicted MPG distribution parameters.

\[\mu_t = \phi(w) \mu_w \]

\[S_t = \frac{1}{\beta} + \phi(x)^T S_w \phi(x). \]

```r
> pred.mu <- Xtest1 %*% mu.w
> pred.var <- c()
> for (i in 1:nrow(Xtest1)) {
+   x <- Xtest1[i,drop=FALSE]
+   pred.var <- c(pred.var, 1/beta + x %*% S.w %*% t(x))
+ }
> for (i in 1:10) {cat(pred.mu[i],"+-",sqrt(pred.var[i]),"\n") }  
13.88899 +− 0.2022685
14.79652 +− 0.2033407
10.91201 +− 0.2054595
18.77275 +− 0.2021981
20.99154 +− 0.2025548
22.23494 +− 0.2024484
8.29176 +− 0.2082009
22.83277 +− 0.2029982
25.06364 +− 0.2018831
29.37667 +− 0.2036604
```
Then, for the test data, calculate the predicted MPG distribution parameters.

\[
\mu_t = \phi(w) \mu_w
\]

\[
S_t = \frac{1}{\beta} + \phi(x)^T S_w \phi(x).
\]

```r
> pred.mu <- Xtest1 %*% mu.w
> pred.var <- c()
> for (i in 1:nrow(Xtest1)) {
+   x <- Xtest1[i, , drop=FALSE]
+   pred.var <- c(pred.var, 1/beta + x %*% S.w %*% t(x))
+ }
> for (i in 1:10) {cat(pred.mu[i], "+-", sqrt(pred.var[i]), "\n") }
13.88899 +- 0.2022685
14.79652 +- 0.2033407
10.91201 +- 0.2054595
18.77275 +- 0.2021981
20.99154 +- 0.2025548
22.23494 +- 0.2024484
8.29176 +- 0.2082009
22.83277 +- 0.2029982
25.06364 +- 0.2018831
29.37667 +- 0.2036604
```

Will calculate S_T in matrix form a few slides later.
Now something a little easier to understand

- Let’s try fitting a sine curve using radial basis functions.
 First generate the x values and target values.

```r
Xall <- matrix(c(0.4, 0.6, 0.1, runif(50)))
nRBFs <- 9
rbfWidth <- 0.2
xrange <- range(Xall)
rbfCenters <- seq(xrange[1], xrange[2], len = nRBFs)
XallRBF <- rbfize1D(Xall, centers = rbfCenters, widths = rbfWidth)
beta <- 25
### Assume we know beta for target distribution.
Tall <- matrix(sin(2*pi*Xall) + rnorm(nrow(Xall), 0, sqrt(1/beta)))
```
Now something a little easier to understand

- Let’s try fitting a sine curve using radial basis functions. First generate the x values and target values.

```r
Xall <- matrix(c(0.4,0.6,0.1, runif (50)))
nRBFs <- 9
rbfWidth <- 0.2
xrange <- range(Xall)
rbfCenters <- seq(xrange[1], xrange[2], len=nRBFs)
XallRBF <- rbfize1D(Xall, centers=rbfCenters, widths=rbfWidth)
beta <- 25
### Assume we know beta for target distribution.
Tall <- matrix(sin(2*pi*Xall)+rnorm(nrow(Xall),0,sqrt(1/beta)))
```

- Then the test data.

```r
nTest <- 100
Xtest <- matrix(seq(0,1,len=nTest))
XtestRBF <- rbfize1D(Xtest, centers=rbfCenters, widths=rbfWidth)
```

![Graph showing sine curve and radial basis function approximation]
What do the RBFs look like?

```r
matplot(Xtest,XtestRBF,type="l",lwd=3,lty=1)
```
What do the RBFs look like?

```
matplot(Xtest,XtestRBF,type="l",lwd=3,lty=1)
```
Now, let’s perform Bayesian Regression to form a model.

\[S_w = \Sigma = (\beta \Phi^T \Phi + \alpha I)^{-1} \]

\[\mu_w = \mu = \beta S_w \Phi^T T \]

\[\mu_t = \phi(w) \mu_w \]

\[S_t = \frac{1}{\beta} + \phi(x)^T S_w \phi(x). \]

Remember, the last two equations are for a single sample \(x \), but we want the R code to handle multiple samples.

```r
makeBayesReg <- function(X, T, alpha, beta) {
  X1 <- cbind(1,X)
  M <- ncol(X1)
  S.w <- solve(beta * t(X1) %*% X1 + alpha * diag(1,M))
  mu.w <- beta * S.w %*% t(X1) %*% T
  list(mu.w = mu.w, S.w = S.w, alpha = alpha, beta = beta)
}

useBayesReg <- function(model, X) {
  X1 <- cbind(1,X)
  mu.t <- X1 %*% model$mu.w
  S.t <- 1/model$beta + rowSums(X1 %*% model$S.w * X1)
  append(list(mean = mu.t, variance = S.t), model)
}
```
• Now use these for different sizes of training sets to see how this affects the results. We are generating Figure 3.8 in Bishop’s text.

```r
alpha <- 0.1  # other precision parameter we need
def.par <- par(mar=c(2,2,3,1))
layout(matrix(c(1,2,3,4),2,2, byrow=TRUE)) \textcolor{red}{## read ?layout}

for (nTrain in c(1,2,4,25)) {
  Xtrain <- Xall[1:nTrain,,drop=FALSE]
  XtrainRBF <- XallRBF[1:nTrain,,drop=FALSE]
  Ttrain <- Tall[1:nTrain,,drop=FALSE]

  model <- makeBayesReg(XtrainRBF,Ttrain,alpha,beta)
  predictions <- useBayesReg(model,XtestRBF)

  plot.BayesRegression1D(model,Xtrain,Ttrain,Xtest, predictions ,nRBFs,rbfWidth)
}
par(def.par)
```
That plot function is below. Uses polygon. Read examples at end of `?polygon`.

```r
plot.BayesRegression1D <- function(model,Xtrain,Ttrain,Xtest,predictions,nRBFs,rbfWidth) {
  upper <- predictions$mean + sqrt(predictions$variance)
  lower <- predictions$mean - sqrt(predictions$variance)
  ## See demo(graphics) to see how to draw shaded region
  plot(c(Xtest,rev(Xtest)), c(upper,rev(lower)), type="n",xlab="x",ylab="t",
       ylim=c(-2,2))
  polygon(c(Xtest,rev(Xtest)), c(upper,rev(lower)), col="pink",border=NA)
  points(Xtrain , Ttrain , col="blue")
  lines(Xtest , predictions$mean,col="red")
  lines(Xtest , sin(2*pi*Xtest) , col="green")
  title(paste("nRBFs =",nRBFs," rbfWidth =",rbfWidth,
              " nTrain =",length(Xtrain)," n",
              " beta = ",model$beta,
              " alpha = ",model$alpha))
}
```
Green line is target curve.
Red line is model output mean.
Pink region shows model output variance.

- nRBFs = 9, rbfWidth = 0.05, nTrain = 1
 beta = 25, alpha = 0.1

- nRBFs = 9, rbfWidth = 0.05, nTrain = 2
 beta = 25, alpha = 0.1

- nRBFs = 9, rbfWidth = 0.05, nTrain = 4
 beta = 25, alpha = 0.1

- nRBFs = 9, rbfWidth = 0.05, nTrain = 25
 beta = 25, alpha = 0.1