
THESIS

GENERATION OF TERRAIN TEXTURES USING NEURAL NETWORKS

Submitted by

Santiago Alvarez

Department of Computer Science

In partial ful�llment of the requirements

for the degree of Master of Science

Colorado State University

Fort Collins, Colorado

Fall, 1995



COLORADO STATE UNIVERSITY

September 30, 1995

WE HEREBY RECOMMEND THAT THE THESIS PREPARED UNDER OUR

SUPERVISION BY SANTIAGO ALVAREZ ENTITLED GENERATION OF TERRAIN

TEXTURES USING NEURAL NETWORKS BE ACCEPTED AS FULFILLING IN

PART REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE.

Committee on Graduate Work

Adviser

Department Head

ii



ABSTRACT OF THESIS

GENERATION OF TERRAIN TEXTURES USING NEURAL NETWORKS

Realistic visualization of terrain can be achieved by combining color and topographic

information. Three-dimensional terrain models obtained from Digital Elevation Models

(DEMs) can be rendered by mapping aerial photographs on top of them. However, there

may be terrain models for which a texture (photograph) is not available. In those cases, it is

useful to have some technique which generates arti�cial textures using terrain information

of similar regions.

This project explores the use of neural networks, Multi-Layer Perceptrons (MLPs)

in particular, to generate arti�cial terrain textures from DEMs. This type of neural

network has been referred as a universal function approximator. In this case, the network

approximates the mapping between elevation samples and pixel colors.

Three main issues were address in this project: �rst, the quality of the textures

produce by the MLP; second, the e�ect of di�erent input representations on the tex-

ture quality, in particular, the e�ect of including slope information and a neighborhood

of elevation samples in the input vector; and third, the accuracy of the trained MLP

in rendering unseen terrain with similar characteristics as those used during training.

Santiago Alvarez

Department of Computer Science

Colorado State University

Fort Collins, Colorado 80523

Fall, 1995
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Chapter 1

INTRODUCTION

Terrain textures are essential for rendering high-quality terrain images. Realistic vi-

sualization can be obtained by combining color and topographic information (Cohen and

Gotsman, 1994; Miller, 1986; Taylor and Barrett, 1994). Terrain color can be obtained

from aerial or satellite images. These photographs usually cover a small portion of ter-

rain from a vertical view angle. Topographic information can be obtained from Digital

Elevation Models (DEMs). A DEM contains a number of elevation samples that can be

extracted from stereoscopic terrain photographs.

The rendering of terrain models using computer graphics has multiple applications.

It is used by the military for ight simulation, simulation of the displays of some electro-

optical weapons, and mission planning. This technology is also used in the civilian market

for urban and rural planning, the generation of animations, and many other applications.

The most common method to render realistic images of actual terrain is to obtain a

3D polygonal model of the terrain from a DEM (Fowler, 1979; McCullagh, 1982; Tarvy-

das, 1984; Scarlatos, 1990). This polygonalization reduces the complexity of the terrain

representation allowing faster access and processing. Once the terrain model has been

created, the terrain texture is mapped onto it, and projected according to the desired

view. The �nal realism of the rendered image depends on the resolution and quality of

the 3D model generated, and the realism of the terrain texture mapped onto the model.

However, terrain textures are not always available. In those cases where a terrain

texture cannot be obtained, it would be useful to have some technique that would generate

terrain textures with an acceptable quality using elevation and land cover information. In

such cases, an arti�cially generated model can be rendered. Such a model could be the
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result of a simulation process that tries to predict some terrain parameters, or could also

be an arbitrary model built for visualization purposes.

This project explored the use of neural networks to generate arti�cial terrain textures

from terrain models. A simpli�ed model structure containing only elevation data was used.

The goal was to be able to generate terrain textures from elevation data using a neural

network trained with available terrain models and photographs. Speci�cally, it was of

most interest to determine the quality of the terrain textures that could be obtained from

elevation data, and how the input representation could a�ect the results. Additionally,

the generality of this approach was addressed.

The simpli�ed terrain model was expected to produce enough information to address

the texture generation problem. The appearance of terrain at a given point is highly

inuenced by its altitude and slope. This relationship should be similar within a limited

geographical area. If such a close relationship exists, a neural network can be used to �nd

an interpolation of the mapping between elevation and color.

Even though elevation is not the only factor that determines the terrain texture, it

should play an important role. Other factors such as light exposure, type of soil, and

weather have a major impact on the kind of vegetation and rocks found on some terrain.

However, their inuence on the appearance of the terrain was assumed constant or closely

related to elevation or slope for this project.

We can overcome the lack of a general model that relates elevation with terrain

texture by using neural networks. One feature of neural networks is that they can be

trained on a relatively small number of examples of a relationship. Once trained, the

network can induce a complete relationship that interpolates in a sensible way. The use of

this characteristic should give some insight about how close a relationship there is between

elevation and texture, and how realistic the results produced by a trained network are.

1.1 Data Description

Two basic types of data were considered in this project: Digital Elevations Models

(DEMs) and aerial photographs. As de�ned by Burrough (1992), \any digital representa-

tion of relief over space is known as a DEM." Their uses include:
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� Elaboration of topographic maps by government agencies,

� Support of construction projects (especially for volume estimations),

� Display of image simulation models for military purposes and landscape planning,

� Analysis of statistical features, and comparison of di�erent kinds of terrain,

� Elaboration of Geographic Information Systems (GIS).

There are two basic methods to represent DEMs: mathematical methods and image

methods (Mark, 1978). The image methods are divided into line models, speci�ed usually

as contour lines, and point models which are commonly given as altitude matrices. These

matrices or regular grids are the most common form of DEMs, and are particularly popular

because of the ease with which they can be handled using a computer (Figure 1.1a). This

type of DEM was used in this project to obtain elevation information.
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Figure 1.1: (a) Block diagram of a DEM, (b) Aerial photograph of the same terrain (taken

from one of the data sets used)

Although altitude matrices are the most popular format for DEMs, they have some

important disadvantages. First, the terrain elevation is sampled at the same rate in areas

of high detail and areas of low detail. The resolution may be too coarse in areas with
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critical features, while uniform areas may contain redundant information. In addition, the

orientation of the axis makes computations along the grid lines simple, while computations

at other angles require trigonometric calculations to compute distances and angles.

Altitude matrices are usually obtained from stereoscopic aerial photographs by using

a matching process to obtain depth information (Gro�, 1994). First, a correspondence be-

tween pixels in the stereoscopic photographs is determined. Once the image coordinates

are known for a given pixel, the world coordinates of that point can be found by trian-

gulation using the camera geometry. This process is sensitive to distortions and errors

during the pixel correspondence phase. Thus, subpixel interpolations or multiple views

can be used to provide higher accuracy.

The U.S. Geological Survey (USGS) possesses DEMs covering all of the contiguous

United States, Hawaii, and limited portions of Alaska (US Geological Survey, 1990a.)

Three distinct digital elevation products are distributed for the contiguous United States:

� 1-Degree DEM. A 1- by 1-degree block with a 3- by 3-arc-second data spacing,

� 7.5-Minute DEM. A 7.5- by 7.5-minute block with a 30- by 30-meter data spacing,

� 30-Minute DEM. Four 15- by 15-Minute blocks with a 2- by 2-arc-second data spac-

ing.

The other type of data used in this project was obtained from terrain images that

provide color (texture) information (Figure 1.1b). These images are acquired from aerial

or satellite photographs which provide a vertical view of the terrain. When an ortho-

graphic projection of the terrain scene cannot be assumed, a geometric reciti�cation of

the image is required (Jensen, 1986). This process recti�es the original image to a map

coordinate system. Initially, a spatial interpolation is performed by identifying ground

control points (GCPs) in the original image and on a reference map. Finally, an intensity

(color) interpolation is performed since there is not a one-to-one mapping between the

input pixel and output pixel locations.
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1.2 Neural Network Model

The Multi-Layer Perceptron (MLP) was the neural network model considered for this

project. This network is an extension of the Simple Perceptron which consists of a single

layer of processing units. An MLP overcomes the limitations of the single layer perceptron,

which can only be used to classify inputs that are linearly separable. That is, the training

algorithm for a single perceptron converges to a solution where the connection weights

specify a hyperplane that divides the input space into two parts.

An MLP is a feed-forward neural network with one or more layers of processing units

(nodes) between the inputs and the output layer (Figure 1.2). The units that directly

produce the network output are called output units, whereas the other units are called

hidden units. Each unit performs a simple linear combination of its inputs, and then

applies a function to obtain an activation value for the unit. The linear combination of

the inputs is computed using the connection weights associated with each input.

x2 x3x1

’x1

w11 w34

’x4

w’11 w’42

’x j

2y1y

x i

yk

Inputs

Hidden Units

Output Units

Figure 1.2: A two-layer perceptron showing the notation for units and weights

The MLP, unlike the simple perceptron, uses a continuous activation function. This

allows the network to be used not only for classi�cation tasks, but also for function ap-

proximation problems in general. This project exploited this feature to �nd a mapping

between elevation and color. MLPs have been referred to as universal approximators

(Hornik, 1991; Chen, and Jain, 1994.)
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This type of neural network was not used in the past because of the lack of an e�ective

training algorithm to determine adequate connection weights. The invention of the back-

propagation learning algorithm showed how to make an MLP learn a particular function.

It was invented independently by Bryson and Ho (1969), Werbos (1974), Parker (1985)

and Rumelhart, Hinton, and Williams (1986a, b).

The back-propagation algorithm is based on a gradient descent technique that min-

imizes the output error. Using the notation given in Figure 1.2, the error function to be

optimized is given by

E(w) =

1

2

X

�

X

l

(d

�

l

� y

�

l

)

2

(1.1)

where d

l

is the desired (target) output value for unit l, y

l

is the actual unit output, and

� is an index into the set of training vectors. Since a target or desired output is required

for every input during training, back-propagation is classi�ed as a supervised learning

algorithm.

Given the cost (error) function (1.1), the gradient descent rule yields the following

equation for the input-to-hidden connections

�w

ij

= ��

@E

@w

ij

: (1.2)

Similarly, we obtain for the hidden-to-output connections

�w

0

jk

= ��

@E

@w

0

jk

: (1.3)

where � is called the learning rate, which is a scale factor that indicates how far to move

in the direction of the gradient. The learning rate may be di�erent for each layer. A

momentum term can also be included to improve the results obtained with equations

1.2 and 1.3 (Hertz, Krogh and Palmer, 1991). This term helps attenuate the oscillation

behavior that can take place during learning.

The activation function has to be di�erentiable in order to be able to apply this

gradient descent technique. It is common to use a sigmoid function for the activation

function. The functions generally used are di�erentiable and generate bounded outputs.

Figure 1.3 shows two common activation functions.
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The iterative application of the weight update rules needs to be stopped at an appro-

priate stage. If that process is performed for too long, the network will produce excellent

results for the inputs used for training, but poor results for new inputs unless the network

is simple enough to not over�t. At that point, the network has lost its generalization

feature. This ability to generalize is highly desirable since the training data is usually a

relative small group of samples of the input space.

A cross-validation mechanism can be used to avoid losing the generalization feature

of the network during training. The input-target pairs available for training are divided

into three sets: a training set, a validation test, and a test set. The pairs in the training

set are actually used for training. The inputs and targets in the validation set are used

at every epoch to measure the error that the network makes with data that is not being

used for training. The Root Mean Square Error (RMSE) between each single output and

target is used as an error measure. The desired set of connection weights is found when

the lowest error of the validation set pairs is detected. At that point, the test set is used

to compute an estimation of the network error on a totally new data set that has not been

used either for training or validation.

There are several features that make MLPs an appealing technique. They can operate

with noisy data. Each unit relies only on local information to compute its activation value.

The large number of connections provides a high degree of redundancy that makes the
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network fault-tolerant. Only a subset of the possible inputs is needed to train the network

in many cases. Once it is trained, the network interpolates for unseen input vectors.

However, there are some limitations and disadvantages that need to be considered.

The input and output data may need to be preprocessed (normalized, scaled, translated,

etc) in order to exploit the information it can provide and obtain the desired results. The

training phase is an iterative process that can be computationally expensive. That is,

the training data may have to be processed by the network a number of times before a

satisfactory solution is reached. Moreover, the learning algorithm is not guaranteed to

converge to a global optimal solution. Although this is not a critical problem, several

training sessions may be needed to �nd a good set of weights for a given architecture.

Besides, there is not a clear method to know a priori the right architecture and parameters

for a speci�c problem.

Some successful applications of MLPs that have been published include: speech recog-

nition (Lippman, 1989), hand-written ZIP code recognition (Le Cun et al., 1989), car

navigation (Pomerleau, 1989), sonar target recognition (Gorman and Sejnowski, 1988a,

b), phoneme generation from text (Sejnowski and Rosenberg, 1987), and signal prediction

and forecasting (Lapedes and Farber, 1988; Farmer and Sidorowich, 1987, 1988).



Chapter 2

DATA PREPARATION

This project used four DEM-photograph pairs: cam1, cam2, cam3, and cam4. They

contain information for a small area in the Colorado State Forest next to the northwest

border of the Rocky Mountain National Park in Northern Colorado. Some of the natural

features covered include: Michigan River, Diamond Peaks, Seven Utes Mountain, Mount

Mahler, Lake Agnes, Nokhu Crags, Snow Lake, Static Peak, Mount Richthofen, and Tepee

Mountain. Table 2.1 shows the exact location of the data sets in Universal Transverse

Mercator (UTM) coordinates.

The relative location of the four data sets is presented in Figure 2.1. Hidrographic

information and the contour lines of the area are also displayed. The elevation data used

was obtained from 7.5-minute Digital Elevation Models created by the U.S. Geological

Survey. Most of the samples are inside of the DEM Mt. Richthofen (No. 4010548). The

four data sets partially overlap. In particular, Lake Agnes, the lake with a small island

in the middle, is included in all data sets. Some portions of the adjacent DEMs Fall

River Pass (No. 4010547), Chambers Lake (No. 4010557), and Clark Peak (No. 4010558)

are also covered. These four 7.5-minute DEMs can be obtained from the U.S. Geological

Survey (http://www.usgs.gov/).

Each DEM-photograph pair was previously registered so both the DEM and the aerial

photograph had the same location, area, and sampling rate. That is, each sample on the

altitude matrix corresponds to the pixel in the same location on the aerial photograph,

and vice versa. The original 7.5-minute DEMs had a data spacing of 30 by 30 meters.

After the registration process, both the DEMs and the aerial photographs had a 5- by

5-meter data spacing. This resampling process was performed using a linear interpolation

of the original elevation samples in the 7.5-minute DEMs.
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Table 2.1: DEM-Photograph Location in Universal Transverse Mercator (UTM) coordi-

nates

UTM Coordinates cam1 cam2 cam3 cam4

North 4,483,020 4,482,210 4,485,420 4,485,390

South 4,478,760 4,478,550 4,480,950 4,480,980

East 423,930 426,570 426,720 423,810

West 419,340 422,640 422,070 419,070

Figure 2.1: Relative location of cam1, cam2, cam3, and cam4. The DEMMount Richthofen

(No. 4010548) is outlined as a reference.
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Figure 2.2 shows the four aerial photographs. Cam2 and cam4 are rather dominated

by a single type of terrain texture. Cam2 includes the highest elevations and, therefore,

covers terrain with scarce vegetation. Cam4, on the other hand, contains the lowest eleva-

tions which have little rock texture. Cam1 and cam3 show a greater degree of variation in

color. Lake Agnes can be easily identi�ed in cam1, cam2 and cam3, but is ocluded in cam4

(lower right corner.) Cam1 was selected as the primary data set for experimentation. The

other three were left to analyze the ability of the network to generalize using new terrain.

cam1 cam2

cam3 cam4

Figure 2.2: Registered aerial photographs.
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Figure 2.3 shows the cam1, cam2, cam3, and cam4 DEMs. They are shown as block

diagrams by creating a square grid with adjacent samples. The resolution of the diagrams

is thirty times lower than the original DEMs. All four data sets have elevation samples

within similar ranges. Cam3 and cam4 cover adjacent fragments of the valley north of

Lake Agnes and Snow Lake. Cam1 covers the wavy area to the left of Mount Richthofen.

Cam2 covers the area with the steepest slopes including Mount Mahler, Mount Richthofen,

and Static Peak.
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Figure 2.3: Block diagrams of the registered digital elevation models.
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2.1 Normalization

Initial tests using MLPs to �nd the elevation-to-color mapping were performed with

small pieces of the cam1 terrain. The input vector was built using a nine-element neigh-

borhood for each elevation sample. The output vector contained three color components

at each given pixel. Despite the increase in the dimensionality of the input vector, using

a neighborhood was expected to produce better results. The single elevation value was

believed to provide insu�cient information for a satisfactory estimation of the terrain

color at that point. Two points at the same altitude can have extremly di�erent colors

depending on vegetation, the presence of water, and terrain features like slope. The use

of a neighborhood was expected to help cope with this problem.

Due to the homogeneity present in the small fragments of terrain, the network mapped

all inputs to the same outputs. The �nal result was an image with the same gray value

in all its pixels. This problem was expected to be alleviated in part using larger pieces

of terrain with more signi�cant di�erences in elevation. However, a more general solution

was selected by transforming the data so that the e�ect of the width of the input and

output ranges could be further reduced.

The four data sets were linearly transformed using the elevation and color means

and standard deviations (Equation 2.1). This normalization converts the original data

to a distribution with zero mean and unit standard deviation where x

i

is an elevation

or color sample, X is the sample mean and �

X

is the sample standard deviation. This

transformation enhances the relative di�erences between samples while preserving the

original distribution by translating and scaling each value x

i

to a new sample x

0

i

.

x

0

i

=

x

i

�X

�

X

(2.1)

However, the parameters used for normalization must be obtained from the distri-

bution associated with the terrain to which the neural network is expected to generalize.

Using a general distribution guarantees that all inputs that would eventually be fed to

the network would be scaled consistently. In order to approximate a general distribution

for the type of terrain considered, the four data sets (cam1, cam2, cam3, and cam4) were
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blended to obtain a combined set of elevations and a combined set of pixel colors. These

two sets were used to obtain the normalization parameters.

Figure 2.4 shows distributions of the combined data sets. Figure 2.4a shows the

elevation histogram of the samples in the four original DEMs. Figures 2.4b, c, and d show

the combined color distributions using the Red-Green-Blue (RGB) color model. Table

2.2 shows the parameters of the elevation and color distributions including the mean and

standard deviation used for normalization. The parameters for the color distributions in

the Hue-Saturation-Value (HSV) color model are also included.
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Figure 2.4: Histograms of the combined DEMs and the combined photographs using the

RGB color model. (a) Elevation histogram. (b) Red component histogram. (c) Green

component histogram. (d) Blue component histogram

The HSV color model was additionally considered to train the network. The orig-

inal color information was in RGB format. Therefore, the color component had to be

transformed to generate the new outputs before training. The shadows present in the
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Table 2.2: Distribution parameters of the combined DEMs, and the combined photographs

using the RGB and the HSV color models

Parameter Elevation Red Green Blue Hue Saturation Value

Lower Bound - 0 0 0 0 0.000 0.000

Upper Bound - 255 255 255 360 1.000 1.000

Minimum 2827.38 0 0 0 0.00 0.000 0.000

Maximum 3942.57 255 255 255 359.10 1.000 1.000

Mean 3260.02 156.07 149.15 140.48 121.04 0.284 0.679

Standard Dev. 209.08 73.29 47.69 37.42 92.75 0.147 0.230

photographs used for training a�ect the network performance. Using the HSV model, a

shadow should a�ect mainly the value component of the pixel. Using the RGB model,

on the other hand, all three color components are a�ected by a shadow. The same nor-

malization procedure was performed on the transformed color components. Figure 2.5

shows the distributions of the combined data sets using the HSV color model including

the distribution of the combined elevation samples again.

The normalized inputs were directly fed to the network without any further trans-

formation. However, the normalized output values needed to be mapped to the proper

output range of the network. The exact parameters of this transformation depended on

the activation function used in the output units used and the minimum and maximum

values of the color components.

Only a portion of the total activation function range was used when transforming the

color components. The two asymptotic ends of the sigmoid functions (see Section 1.2)

are hardly reached by a network. A extremely high or low weighted sum is required to

produce an output close enough to the respective asymptote. The 90% center of the range

was actually used when mapping the outputs in order to accelerate the network training

and improve performance.

2.2 Training, Validation, and Test Sets

Cam1 was used as the primary data set for experimentation. It contains approxi-

mately 1;600;000 elevation and color samples. A training set, a validation set, and a test
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Figure 2.5: Histograms of the combined DEMs and the combined photographs using the

HSV color model. (a) Elevation histogram. (b) Hue component histogram. (c) Saturation

component histogram. (d) Value component histogram

set were created by sampling the data set at random. These three sets are used in the

cross-validation mechanism described in chapter 1.

The elevation-color pairs were divided in di�erent proportions to create the three

sets. The validation set was created with 5% of the sample pairs. Di�erent sizes were

used for the training set. Preliminary tests showed that the validation error decreased

asymptotically with the percentage of pairs used for training. That is, there is little

di�erence in the results for high percentages of samples. Therefore, a reduced number of

elevation/color pairs could be used to train the network with a satisfactory performance.

Based on these observations, the percentage of samples taken to build the training set

was subject to experimentation. The actual values used are described in the next chapter.
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Finally, the test set was constructed with all the pairs that were not used for the training

set or the validation set.



Chapter 3

EXPERIMENT DESCRIPTION

3.1 Parameter Search and Percentage of Data Sampled

One of the limitations of most neural networks is the lack of a clear theoretical base

to select adequate values for their parameters. Useful values are generally expected within

certain ranges, but speci�c values in those ranges can generate networks with important

di�erences in performance. Moreover, adequate values are generally problem dependent,

and previous experiences are not always useful. Therefore, some exploration of the pa-

rameter space is required to ensure that an acceptable performance is achieved.

However, the number of scenarios de�ned by the combination of several parameter

values easily becomes too expensive. Therefore, the number of parameters to be explored,

and the number of values that each of them can take, need to be reduced. This reduction

of the parameter space does not guarantee an optimal con�guration, but certainly makes

more manageable the selection of parameter values.

An initial approach to the selection of appropriate parameter values was performed

on a 128-node CNAPS Server II from Adaptive Solutions, Inc. Even though the training

time is greatly reduced by this machine, the lack of oating-point arithmetic a�ects the

results. This limitation should not be important for classi�cation applications, but it is

prejudicial for function approximation purposes. This constraint led to the use of a single-

processor workstation, reducing the number of scenarios to be studied due to the lower

computing capacity.

Four basic network parameters were �xed: number of layers, momentum term, acti-

vation function, and ratio between the learning rate in the hidden layer and the learning

rate in the output layer. A two-layer network was used since it is the minimum number of
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layers required to overcome the limitations of a single perceptron. The parameter values

selected for experimentation were chosen based on the preliminary results obtained with

the CNAPS Server. The momentum term was set to zero, and the ratio between the hid-

den layer learning rate and the output layer learning rate was set to four. The traditional

logistic function (3.1) was used as the activation function for both layers:

g(h) =

1

1 + e

�h

(3.1)

The number of units in the hidden layer and the learning rate were the two parameters

explored. Three di�erent numbers of hidden units were considered: 25, 35, and 45. Two

learning rates were used: 0.01 and 0.1. These values de�ne six di�erent scenarios that

were explored.

Each experiment de�ned by the combination of hidden units and learning rate was

replicated �ve times. Experiment replications allow computation of a better estimation

of the error measures obtained during training. Replications also give some idea of the

variability of the results. This replicated parameter search was performed with �ve dif-

ferent training sets. All of them were taken from cam1, but contain di�erent amounts of

training information as explained in the next section.

Preliminary experiments showed the necessity for reducing the number of elevation-

color pairs used for training. The execution time dramatically increased in proportion to

the number of pairs. However, the test error did not decrease proportionally. Therefore,

it was desirable to use as few pairs for training as possible, but using enough samples to

�nd a proper elevation-to-color mapping.

Five di�erent percentages of sample pairs from cam1 were used to perform the pa-

rameter search: 1%, 5%, 10%, 25%, and 40%. That is, when 1% of the pairs were used for

training, each sample was selected with probability 0:01. The eight closest neighbors of

each selected sample were used to build an input vector with nine components. This input

vector was expected to produce better results since it provides more global information

that just the single sample.
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3.2 Including the Surface Normal Vector

A DEM describes a piece of terrain as a two-dimensional elevation function which

can also be visualized as a three-dimensional surface. The normal vector is one of the

attributes of a surface. This vector gives information about the surface orientation at a

given point. The e�ect of adding the normal vector to the input vectors was studied.

This inclusion increased the length of the input vector by four components (three normal

components and the magnitude value of the vector.)

The inclusion of the normal vector in the input vector may look redundant. As

mentioned before, the input vector was initially built using a 9-element neighborhood

(the elevation sample and its eight adjacent neighbors.) Therefore, the normal could be

estimated from these nine inputs by the network if it is important to estimate the outputs.

However, the use of additional information should yield better results since it implies some

amount of preprocessing.

The normal vector was estimated using the elevation gradient vector,

~

G = hg

x

; g

y

i.

The normal vector, ~n, is computed by taking the cross product of the two gradient com-

ponents (equation 3.2).

~n = ~g

x

� ~g

y

(3.2)

The gradient components were computed using an adjustable gradient �lter proposed

by Goss (1994). This �lter represents an improvement over the �xed-response �lters

commonly used to approximate the gradient vector. The �lter is generated by truncating

(limiting in space) an ideal gradient �lter and multiplying it by a window function (Kaiser

window). The width of the window function can be adjusted using a parameter � which

controls how quickly it tapers o� to zero at the edges. Di�erent � values produce di�erent

levels of smoothing in the gradient.

For a �lter with an even number of non-zero elements, M (M=2 element to the right

and left of the center element zero), the convolution with the elevation data (x

i;j

) that

estimates the gradient vector hg

x

; g

y

i is given by:

g

x

=

M=2

X

m=�M=2

�

I

0

(�)

I

0

(�)

(�1)

m

�m

�

x

i+m;j

(3.3)
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where I

0

(�) is the order zero modi�ed Bessel function of �, and � is calculated using �,

m, and M , as follows:

� = �

s

1�

�

2m

M � 1

�

2

(3.5)

A �lter with 7 elements and an � value of four was used to compute the gradient

information (�lter values [0:1086;�0:3167; 0:8964; 0:0000;�0:8964; 0:3167;�0:1086]). This

con�guration preserves the high frequency detail in the elevation grid much better than

the traditional center-di�erence method used for gradient estimation (Goss, 1994).

3.3 Using the HSV Color Model

Shadows are one of the problems that may a�ect the generation of terrain textures.

Aerial photographs are taken under special atmospheric conditions, and during speci�c

periods of time. However, shadows have to be tolerated to some extent. A small amount of

clouds could still be present or the sun may not be right on its zenith. The transformation

of the output (color) values to the HSV color model is expected to reduce the e�ects that

shadows can have on the neural network. Shadows act as a very strong source of noise

since points at similar elevations can have important color di�erences due to shadows.

The HSV (Hue-Saturation-Value) is a color model that is based on the intuitive appeal

of the artist's model of tint, shade, and tone. The value of H ranges from zero to 360.

The values of S and V go from zero to one. A hue value with saturation and value

one represents the pure pigment used as starting point in mixing colors. Decreasing S

corresponds to adding white to the original pigment. Decreasing V , on the other hand,

corresponds to adding black to the pigment.

The V component is expected to be the main di�erence between two points with

similar terrain cover, but one covered with shadow. The presence of shadows on cam1 is

especially evident on the highest peaks. In most peaks, one of the slopes was receiving

light directly from the sun, while the other was receiving reected light. Two of the three

color components (hue and saturation) are expected to be similar for points in either of
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the two slopes. In the RGB color model, the three color components are expected to be

di�erent for those points.

A set of experiments were run using the HSV color model. The training pairs were

constructed with the transformed color values. Foley et al (1994) describe the algorithms

required to convert from the RGB color model to the HSV model. The same structure

of the input vector described in Section 3.2 was used (a 9-element neighborhood plus the

normal vector information). 5% of the samples in cam1 was taken at random for training,

and the same parameter search for the learning rate and the number of hidden units was

performed.

3.4 Network Generalization

Once trained, a neural network is expected to generate a sensible approximation of

similar inputs. Cam2, cam3, and cam4 were used to test the capacity of the neural network

to generalize terrain textures. These experiments attempted to determine if the elevation-

to-color mapping found by the neural network can be applied to nearby terrain. It is

important to determine this generalization capacity since this would be the intended use

of this technique. The trained network should be used to generate an approximation of a

texture from a terrain model that does not necessarily exist. Previous experiments used

cam1 to train and test the neural network.

The input vector described in Section 3.2 was used for these DEMs. This vector has

the highest dimensionality of the ones tried, and it contains the most information about

the data sets. The network used was the one that gave the lowest test error after being

trained with data from cam1. Section 4:2 discusses the architecture and parameters of

this network.

The neural network is expected to color unseen elevation samples by interpolating

from the pairs that were used for training. However in some cases, the network had to

color elevations that were not in the range of the training data. Table 3.1 shows the

elevation ranges of the DEMs used. Cam2 has higher elevations and cam4 has lower

elevations than the ones from cam1 used for training. Furthermore, cam2 has steeper
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slopes that the one in cam1. In those cases, the neural network also had to extrapolate

points.

Table 3.1: Elevation ranges of the DEMs used

DEM Minimum Elevation Maximum Elevation

cam1 2875.00 m 3886.31 m

cam2 3109.00 m 3942.56 m

cam3 2898.00 m 3788.43 m

cam4 2827.38 m 3652.38 m



Chapter 4

RESULTS

This chapter contains the results of the experiments described in the previous chapter.

Each section matches one section in chapter 3 where all the details of the experiments are

presented. Section 4.1 contains the results of the parameter search performed with an

input vector built with a 9-element neighborhood. The results obtained by including the

normal vector and its magnitude in the input vector are presented in section 4.2. Section

4.3 presents the results of transforming the color information to the HSV color model.

Finally, the results of the generalization experiments are included in section 4.4.

4.1 Parameter Search and Percentage of Data Sampled

Figure 4.1 presents the test and training errors for the two learning rates (� = 0:01

and � = 0:1) and the �ve di�erent percentages of samples (1%, 5%, 10%, 25%, and 40%)

considered. All experiments used a 9-element neighborhood of elevation samples as input

vector, and the color outputs in RBG format.The results obtained with � = 0:01 (Figures

4.1a and 4.1b) are similar to the ones observed in preliminary experiments. Both the test

and the training error decrease as the percentage of samples used increases. However, the

behavior of the test error for � = 0:1 was signi�cantly di�erent. In this case, the test error

shows a minimum around 5%. That minimum has the lowest test error of all the scenarios

considered.

The behavior in Figure 4.1b may be a symptom of over�tting. As the percentage of

samples increases, the network is trained with a larger number of pairs before checking

for over�tting. If the addition of more samples is not providing new information, there

is a greater chance that the network over�ts the training pairs and loses its ability to

generalize.
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Figure 4.1: Test and training errors (RMSE) for training sets with di�erent sizes. (a)

Test error with � = 0:01 (b) Test error with � = 0:1 (c) Training error with � = 0:01 (d)

Training error with � = 0:1

Based on the previous result, the percentage of samples used in training was �xed

to 5% for all the experiments. This might not necessarily be the best value since the

parameter search was not exhaustive. However, this percentage yielded the best results

and helped reduce the training time to reasonable values. Training using 5% of the sam-

ples typically required between three and �ve hours depending on the actual network

parameters and architecture, and the load on the HP 9000/715/50 workstations used.

The search for good values for the learning rate and the number of hidden units was

performed independently for each of the di�erent input vectors considered. The network

con�guration that produced the best results for the nine-element neighborhood considered

at this point had � = 0:1 and 45 hidden units. These values were consistent with the
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number of hidden units and the learning rate that were found best for most of the other

scenarios. The test error during training for this scenario was 0:1678.

Figure 4.2 shows the results obtained with this input vector (nine-element neighbor-

hood of elevation samples). The output texture, the target texture (cam1) and an error

image are displayed as a at image, and mapped onto the terrain. The error image cor-

responds to the distance between pixels in RGB space. A darker gray means a greater

distance between pixels, i.e. a higher error magnitude.

The regions that have a homogeneous land cover in the output and the target texture

have a close resemblance. The �rst di�erence that can be noted is the lack of high-

frequency detail. The output texture does not show the spots at low elevations that are

not covered with vegetation. There is also a smooth transition between rock and vegetation

that is much sharper in the target texture. Moreover, the network seems to de�ne several

thresholds on the elevation where the terrain color changes smoothly. The smoothing

e�ect observed in the output is directly associated with the noise removal properties of

neural networks and the use of a neighborhood as an input vector.

The colors in the target and the output textures also have a close resemblance es-

pecially in the areas covered with vegetation. These areas have a bluish appearance on

both textures, but the red component has lower values in the target texture. The bluish

appearance of the target texture can be explained by the multiple factors that inuence

perception of distant vegetation. In particular, there are atmospheric e�ects (light scat-

tering and absorption) that distort color.

The color approximation of lake Agnes is especially poor. There is not a sharp edge

between water and ground, and the lake shore is totally missing in some parts of the lake.

Besides, the vegetation and water color are similar. However, these two colors are also

very alike in the target texture. In this case, the lake is mainly recognized by its shape.

Moreover, the small island inside the lake is not present in the output. This situation is

caused by the lack of elevation samples of that feature in the original 7.5-minute DEM.

As shown on the error image (Figures 4.2e and 4.2f), the areas with the highest error

are along the tree line. These errors are expected since the tree line is not de�ned by
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(c) (d)

(e) (f)

Figure 4.2: Results obtained using a 9-element neighborhood of elevation samples. (a)

output image. (b) Output image mapped onto the terrain. (c) Original photograph (target

image). (d) Original photograph mapped onto the terrain (e) Error image (di�erence

between output and target images) (f) Error image mapped onto the terrain
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a hard elevation threshold. That is, there are points with similar elevation that fall in

areas covered with vegetation while others are covered by rock. This problem is directly

associated with the fact that the color should be a function of many variables, not just

elevation.

4.2 Including the Surface Normal Vector

The best results obtained with this extended input vector (9-element neighborhood of

elevations samples, three normal vector components, and normal magnitude) are presented

in Figure 4.3. The network con�guration used to get this result had � = 0:1 and 35 hidden

units (all other parameters remaining the same). The test error was 0:1956.

The output texture has some artifacts that give it a blocky appearance. The regu-

larity of those artifacts made very unlikely that they were caused by the neural network.

Therefore, the elevation values were checked at those points where major color discontinu-

ities were detected. Figure 4.4 shows how signi�cant elevation discontinuities were found

in the DEM.

The distance between discontinuities shows that this problem was originally in the

7.5-minute DEMs. It was not created by the linear interpolation of elevation samples that

was performed during the registration step of the DEMs and the aerial photographs. This

problem can be approached by smoothing the elevation map (Dudgeon and Mersereau,

1984). Another approach is to apply a non-linear interpolation that guarantees continuity

(Press et al, 1992).

There are several features where the improvement over the previous result can be

perceived. The tree line is much better de�ned. Also, the network produced a similar

color di�erence between the two slopes of Mount Mahler on the left. An analogous shadow

pattern is generated, but the color generated on the right side of the mount is darker than

desired. The error image (Figures 4.3e and 4.3f) shows how the di�erence between the

output and the target textures concentrates on the highest elevations.

There is an important improvement in the appearance of Lake Agnes. About half

of the lake shore is now clearly de�ned. The border of the lake seems to be partially
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(a) (b)

(c) (d)

(e) (f)

Figure 4.3: Results obtained using a 9-element neighborhood of elevation samples and the

surface normal vector. (a) output image. (b) Output image mapped onto the terrain. (c)

Original photograph (target image). (d) Original photograph mapped onto the terrain (e)

Error image (di�erence between output and target images) (f) Error image mapped onto

the terrain
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Figure 4.4: Slope discontinuities in the DEMs that a�ect the elevation-to-color mapping

surrounded by steep slopes. The inclusion of the normal vector generates this feature on

the output texture. However, there are other portions of the lake, especially the upper left

side, where its boundaries are still poorly approximated. The water color and the island

inside the lake remain as problems that do not bene�t from the inclusion of the normal

vector.

In general, the inclusion of the normal in the input vector improved the appearance

of the the output texture despite the increase in the test error (from 0:1678 to 0:1956) due

to a greater color di�erence in the output texture. This di�erence is mainly associated

with the red component. The red values at low elevations are higher and at high elevation

are lower that they should be.

Figure 4.5 shows how the network generates color distributions for the red and blue

components that resemble the original distributions. The location of the highest peaks are

approximated with an acceptable degree of accuracy despite the di�erences in magnitude

and the di�erences in color ranges. However, the network produces a poor result for the

red component. The original distribution reects the great number of samples that have a

very high red component which correspond to rock. The output distribution, on the other

hand, has a peak around the middle. This error accounts for most of the color di�erences

in the output texture.
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Figure 4.5: Color distributions of the target and output textures for cam1. (a) Red

component (target) (b) Red component (output) (c) Green component (target) (d) Green

component (output) (e) Blue component (target) (f) Blue component (output)
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After �nding how the normal vector improves the results, a reduced version of this

input vector was tried. The nine input components corresponding to the nine-element

neighborhood were reduced to only the center element. The components corresponding

to the normal vector remained in the same position. Since the neural network was not

implemented on a parallel machine, the reduction of the input vector means an important

decrease in computation time.

Figure 4.6 shows the results obtained. The output texture looks similar to the result

obtained using all nine elements of the neighborhood. However, the blocky appearance

is more obvious. The use of a neighborhood partially smooths the discontinuities present

in the DEM. This approach would rely much more on smoothing the elevation values

previous to processing.

This reduced input vector generates a greater range of terrain colors. For instance,

those areas with a small slope and low elevation have a lighter color. This coloration helps

visualize the terrain, but does not necessarily corresponds to the target texture. Besides,

the di�erence in color between the two slopes of the mountains does not show up in the

output texture. This feature should be closely related to the normal vector of the terrain,

but the inclusion of a neighborhood seems to play an important role in its generation.

The detail around Lake Agnes con�rms the importance of the normal vector in the

generation of this area. The problem with the water color remains since it is related to

the close similarity in the water and the terrain colors in the target texture. The absence

of island inside the lake also remains since it is caused by undersampling and similarities

in elevation.

4.3 Using the HSV Color Model

Figure 4.7 presents the best results obtained using the HSV color model. The network

parameters used were: � = and 25 hidden units. Once again, 5% of the samples in cam1

were used for training, the learning rate for the hidden layer was four times larger, and

the momentum term was set to zero. The input vector was composed of a 9-element

neighborhood, the three normal vector components, and the normal vector magnitude.

The test error was 0:207248.
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(a) (b)

(c) (d)

(e) (f)

Figure 4.6: Results obtained using the single elevation sample and the surface normal

vector. (a) output image. (b) Output image mapped onto the terrain. (c) Original

photograph (target image). (d) Original photograph mapped onto the terrain (e) Error

image (di�erence between output and target images) (f) Error image mapped onto the

terrain
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(a) (b)

(c) (d)

(e) (f)

Figure 4.7: Results obtained using a 9-element neighborhood of elevation samples and the

surface normal vector (HSV outputs). (a) output image. (b) Output image mapped onto

the terrain. (c) Original photograph (target image). (d) Original photograph mapped

onto the terrain (e) Error image (di�erence between output and target images) (f) Error

image mapped onto the terrain
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Despite the di�erences in color, the general appearance of the output texture is very

similar to the result obtained with the RGB color model. However, there is a high error in

the areas covered by rock. Those areas do not have a redish color as in the target texture,

but a bright green color instead. Nevertheless, the areas covered with vegetation have a

better approximation. The error image contains dark areas (high error) on the highest

elevations, but light gray tones (low error) on the lower elevations. The approximation

of the vegetation texture is signi�cantly better than the previous results obtained. The

target texture is clearly dominated by two hue values: green and red, and the network

is �nding a better relationship between elevation and color for those points with a green

hue.

This error di�erence between the areas covered with vegetation and those covered

with rock was unexpected since the use of the HSV should have yielded better results

for higher elevations (with a redish coloration) where shadows are present. However, the

assumption that the color of those rock areas covered with shadows di�er mainly on the

V component was found incorrect. The inspection of cam1 gives indication that in most

cases the opposite holds. The V component remains almost unchanged, while the hue

and the saturation vary. This unexpected feature should be related to the remote sensing

process of the terrain.

4.4 Network Generalization

Figure 4.8 shows the results obtained for cam2, cam3 and cam4. The original terrain

textures are also presented for comparison. All textures were mapped onto the DEMs and

rendered as seen from the west. The network used corresponds to the one described at

the beginning of section 4.2 (� = 0:1 and 35 hidden units, trained with 5% of cam1).

The output textures for cam2, cam3, and cam4 have visually the same quality of

the texture obtained for cam1. Snow Lake, which is east of lake Agnes, is rendered with

the same color as the surrounding rock. It is recognized by its homogeneous coloration

and its edges. The lake shore has steep slopes that cause a shadow e�ect that give a 3D

appearance to the lake. The two lakes can be recognized in the output textures, even

though they cannot always be recognized in the respective target texture.
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(a) (b)

(c) (d)

(e) (f)

Figure 4.8: Results obtained using a 9-element neighborhood of elevation samples and

the surface normal vector from cam1. (a) cam2, (b) Network approximation of cam2, (c)

cam3, (d) Network approximation of cam3, (e) cam4, (f) Network approximation of cam4
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Figure 4.9 shows the error (RMSE) between the target and the output textures for

each of the color components. The error values are relatively similar for all DEMs. The

error in the output texture obtained for cam2 is slightly higher. This data set contains

terrain that is at high elevations and is mostly covered by rock. Moreover, the highest

elevations are actually above the range of cam1. Therefore, the network extrapolates at

these points and should be prone to produce outputs with a higher error.
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Figure 4.9: RMSE between target and output textures using network trained with cam1

data

The RMSE value for each data set seems to be associated with the amount of rock.

This may be caused by insu�cient training samples from those zones in cam1 covered with

rock. Those areas have the highest values for the red component which has the highest

RMSE. Using a target texture for training with a more even distribution of terrain types

should help reduce this problem.



Chapter 5

DISCUSSION

This project shows how MLPs can be used to approximate a mapping between ter-

rain elevation and color. This type of neural network has been proved to be capable of

producing arbitrarily accurate approximations to an arbitrary function. Even though the

color of a given terrain location does not only depend on its elevation, the relationship

between these two is strong enough to produce a result that clearly resembles the original

terrain.

The input representation was an important factor for the generation of results. The

normal vector was found to be essential to improve the quality of the output textures

obtained. Features like shadows, lakes and the tree line are signi�cantly sharper when

the normal vector is included. The magnitudes of the connection weights in the hidden

layer also con�rm the important role that the normal plays. Similar results might be ob-

tained by replacing the three normal components and its magnitude with the two gradient

components of the elevation.

However, there are several limitations associated with this approach. The noise re-

moval feature of neural networks contributes to the smooth appearance of the output

textures. This characteristic is intrinsic to neural networks, therefore image enhancement

and restoration techniques will be required to improve the �nal image (Jain, 1989; Gon-

zalez and Woods, 1992). In addition, a trained network will only produce textures with

visible di�erences if the elevation maps have signi�cant di�erences.

Another limitation of this approach is associated with the availability of adequate

training data. The DEM and the aerial photograph used for training should provide

enough samples of all the terrain features that want to be approximated. This limitation
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is contributing to the color errors of rock and lakes in the data sets used. Moreover, the

training data should have an elevation range wide enough so the network does not have

to extrapolate color values when a new DEM is processed.

The applicability of a trained network is also limited to terrain that has features

similar to the training data. In other words, a network can only generate terrain it has

been taught. A network trained with terrain that has some particular elevation range

and land cover should produce poor results if used to approximate texture of terrain with

di�erent features. Moreover, some features that are not related to elevation, such as

man-made structures, are not likely to appear in the output textures.

The training time can be seen as a drawback of the back-propagation algorithm used

to train MLPs. The training times ranged between three and �ve hours for most exper-

iments as run in this project. However, this might not be a problem if more computing

resources are available or if a parallel machine can be used. One of the positive features

of this approach is its generalization capability. The error measures obtained when apply-

ing the trained network to new DEMs show that this technique is useful to approximate

terrain textures within the constraints previously mentioned.

However, some important problems remain to be solved. To remove the blocky ap-

pearance of some of the textures, the DEMs should be smoothed before processing them.

Nevertheless, this e�ect could persist to some degree depending on the severity of the dis-

continuities in the original data. The error in the estimation of the red component is the

main cause of color di�erences. This problem could be related to an insu�cient number

of samples with a high red intensity used during training.

Even though the use of the HSV color model did not proved useful for removing

shadows, it helped improve the results for areas covered with vegetation. It would be

desirable to �nd a way to take advantage of this feature, and obtain the rock approximation

generated with the RGB color model at the same time.

An insu�cient number of samples is also causing the di�erences in the coloration of

lakes. A greater number of samples corresponding to the lakes should be used. Alterna-

tively, some arti�cial training pairs could be used to make the network learn an appropriate

color when the normal vector is zero.
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Finally, the arti�cial textures produced by the neural network might be improved

by using additional terrain information. In particular, larger input vector could include

land cover information. The land cover maps distributed by the USGS includes terrain

classi�cations such as: forest land, water, wetland, barren land and tundra (US Geological

Survey, 1990b). Maps with more speci�c classi�cations (level II) are also available. The

inclusion of this information should sharpen the terrain texture (e.g. the tree line,) and

help attenuate the blocky appearance obtained so far.

However, the inclusion of this information also has some drawbacks. A larger input

vector imposes a grater number of restrictions on the terrain models that can be applied

to a trained network. Also, the generation of terrain models to be applied to a trained

network might become a problem. Some of the additional information might not be

available or could not be estimated. Furthermore, a larger input vector implies a greater

amount of resources needed for storing and processing the terrain models.
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