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ABSTRACT OF THESIS

ANALYSIS OF LVQ IN THE CONTEXT OF SPONTANEOUS EEG SIGNAL

CLASSIFICATION

Learning Vector Quantization (LVQ) has proven to be an e�ective classi�cation proce-

dure. Since its introduction by Kohonen in 1990 several extensions to the basic algorithm

have been proposed. This paper investigates what and how LVQ learns in the context

of EEG signal classi�cation. LVQ is shown to be comparable with other Neural Network

algorithms for the task of classifying electroencephalograph (EEG) signals, yielding ap-

proximately 80% classi�cation accuracy for three out of the four subjects tested when

di�erentiating between two di�erent mental tasks.

The best classi�cation accuracy was obtained with unnormalized, sixth-order au-

toregressive, AR(6), coe�cients derived from raw, un�ltered EEG signals. The LVQ2.1

algorithm outperformed any of the other traditional LVQ algorithms tested, yielding a

slightly higher classi�cation accuracy than the LVQ3 algorithm. The highest classi�ca-

tion accuracy for di�erentiating between two tasks was obtained using 16 codebook or

reference vectors per task and a learning rate, �, of 0.1. The value of the window width

parameter had no e�ect on the classi�cation accuracy of LVQ2.1 The window width pa-

rameter speci�es the width of a window centered around the hyperplane separating the

two reference vectors to be updated. Reference vector updates only take place if the data

vector currently being considered lies in the area de�ned by the window.

Initializing reference vectors at random data points resulted in an insigni�cantly

higher classi�cation accuracy than using K-means to initialize the reference vectors. Us-

ing the OLVQ algorithm as part of the initialization procedure did not a�ect the overall

iii



classi�cation accuracy. LVQ2.1 exhibited only a moderate degree of over-�tting through

the use of an excessive number of reference vectors and showed no signs of over-�tting

through excessive training.

It is well known that LVQ2.1 does not continue over time to approximate the class

distributions nor the optimal Bayesian decision boundary. This study illustrates this

e�ect in the context of spontaneous EEG signals as well as in a simple arti�cial problem

that provides a clearer insight into this phenomenon. Explanations for this phenomenon

are o�ered based on probabilistic arguments as well as theoretical arguments related to

the gradient derivations. The paper concludes with identifying theoretical di�culties

associated with LVQ and the di�erences between LVQ classi�cation and optimal Bayesian

classi�cation.

Daniel Kermit Ford

Department of Computer Science

Colorado State University

Fort Collins, Colorado 80523

Summer, 1996
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Chapter 1

INTRODUCTION

This work is part of an ongoing project to �nd representations of electroencephalo-

graph (EEG) signals that can be used to identify which of several mental tasks a subject

is performing, the goal being to provide a paralyzed person a means of controlling a de-

vice like a wheelchair. The objective of this study is to determine the potential of using

learning vector quantization as a method to classify between di�erent spontaneous EEG

signals, as well as to analyze learning vector quantization (LVQ) as a general classi�cation

method.

Previous EEG signal classi�cation attempts are presented in so far as they relate

to learning vector quantization. The classi�cation task was limited to distinguishing be-

tween two relatively distinct mental tasks to enable greater insight into the e�ects of

learning vector quantization.The e�ect of such standard signal preprocessing as �ltering

out frequencies above 60Hz and normalizing the data vector coe�cients was studied. The

classi�cation potential of di�erent LVQ algorithms as well as the e�ect of varying param-

eter values was explored in great detail. Empirical studies and theoretical analysis were

used to illustrate and explain the well known fact that the reference vectors of the LVQ2.1

algorithm do not continue approximating the class distributions over time.

Our research found that sixth-order autoregressive, AR(6), coe�cients of the EEG

signals were more accurately classi�ed when they were left unnormalized and based on

the raw un�ltered signals that were not down-sampled. The speci�c LVQ algorithm used,

the number of reference vectors, and the learning rate, were the only signi�cant factors

e�ecting the classi�cation accuracy. The insensitivity of the LVQ2.1 algorithm to early

stopping techniques is explained in terms of its imbalance in attractive and repulsive
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forces as well as the the peculiar form of the learning curve. The algorithm's unexplained

insensitivity to di�erent initialization techniques is also documented.

This study is unique in providing an in depth analysis of learning vector quantization

in the context of the di�cult real world problem of spontaneous EEG signal classi�cation.

The classi�cation results obtained demonstrate that LVQ is competitive with using an

arti�cial neural network as a method for classifying spontaneous EEG signals. Arguments

describing the bene�ts of using a vector quantization architecture are presented, as well as

theoretical reasons that the existing LVQ algorithms are likely to be able to be improved

even more. Most notably, theoretical causes have been discovered to explain why LVQ2.1

does not continue over time to approximate the optimal Bayesian decision boundary. This

phenomenon is related to the goal of LVQ as expressed by the formula that it is designed

to approximate as well as di�culties in implementing the gradient movements derived

from the formula.

The remaining chapters in this paper cover the following topics. Chapter 2 summa-

rizes the most relevant previous research attempts in the �eld of EEG signal classi�cation.

Chapter 3 introduces the various learning vector quantization (LVQ) algorithms that have

been developed. Chapter 4 provides the underlying theory of learning vector quantiza-

tion as well as some preliminary work at formal calculations of the complexity of vector

codebook representations. Chapter 5 describes the experimental method used for the

classi�cation experiments. Chapter 6 presents the classi�cation results. Chapter 7 ana-

lyzes the positive and negative aspects of the LVQ2.1 algorithm as a vector quantization

classi�er. Chapter 8 reanalyzes learning vector quantization in the context of minimizing

misclassi�cation error probability.



Chapter 2

PREVIOUS EEG CLASSIFICATION RESULTS

The vast majority of the current EEG classi�cation research has focused solely on

event related potentials as opposed to spontaneous EEG signals. Event related potentials

are commonly abbreviated ERP. This chapter introduces these two types of electrical brain

recordings and the previous classi�cation e�orts for each.

Event-related potentials (ERP) are the EEG signals that occur in response to some

speci�c stimulus that occurs at a precise moment in time. The signals are characterized by

the onset of a particular e�ect of a limited duration that begins shortly after the prompt

- the event that the subject has been instructed to respond to.

Spontaneous EEG signals are the EEG signals recorded throughout the performance

of a particular mental activity. They are characterized by their lack of punctuality. There

is no speci�c moment of onset of a particular e�ect. EEG signals are not recorded before

the subject begins the mental task nor after the subject �nishes. The ongoing thought

process is recorded, not the changes associated with either their onset or their conclusion.

Spontaneous EEG signals are inherently more impure, and hence more di�cult to

classify, than event related signals. It doesn't appear possible to ascertain how well a

subject is able to maintain a steady level of concentration on the task at hand throughout

the duration of time that the EEG signals are measured. Questions as to the type and

diversity of EEG signals that occur during lapses of concentration remain unanswered

and uctuations in the subjects concentration level over time add an extra dimension of

complexity to the classi�cation task.
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2.1 Review of ERP Classi�cation e�orts

The vast majority of experiments with ERP's has been conducted in Graz, Austria

under the supervision of Professor Gert Pfurtscheller at the Department of Medical Infor-

matics, Institute of of Biomedical Engineering, Graz University of Technology and Ludwig

Boltzmann Institute of Medical Informatics. A summary of the research is divided into

three sections: learning vector quantization, classi�cation algorithms versus signal prepro-

cessing, and progress towards a brain-computer interface (BCI).

2.1.1 Learning Vector Quantization

LVQ is similar to the data compression technique of vector quantization, which repre-

sents the data by a smaller, limited number of codebook vectors. However, learning vector

quantization is a classi�cation method whose goal is to use the data samples to position

the codebook or reference vectors in such a way that a nearest neighbor classi�cation

method will result in the maximum classi�cation accuracy.

Since di�erent event related potential (ERP) recordings are generally not phase-

locked, the ERP data of a particular class appears more naturally as a compilation of

several subclasses than as one homogeneous unit [34]. By allowing the user to specify the

number of codebook or reference vectors per class, learning vector quantization is well

suited to representing the phenomena of subclasses where the number of reference vectors

per class symbolically represents the number of subclasses for that class.

The number of reference vectors per response to be di�erentiated is critical. ERP

signals perform optimally with a very limited number of reference vectors: one to two per

distinguishable response. Using more reference vectors causes over-�tting [12]. Variations

in the values of the other parameters have much less e�ect on the classi�cation accuracy.

A common learning rate or step size is 0:01 � � � 0:05: A common value for the window

width parameter is between 0.3 and 0.8. For LVQ3, the value of � is commonly bounded

by 0:3 � � � 0:8 and directly related to the value of the window width [28] [10] (for a

more detailed discussion of the parameters refer to Chapter 4.)
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The potential of classifying spatio-temporal rhythmic cognitive activity within the al-

pha frequency without resorting to averaging techniques was demonstrated using absolute

band power values, the squared amplitudes associated with the lower and upper alpha

frequencies, 8-10 and 10-12Hz, and the LVQ2 algorithm initialized by K-means clustering

[33]. The classi�cation potential of LVQ using non-averaged data is signi�cant since aver-

aging assumes a stationary signal, whereas EEG signals, due to uctuations in the state

of wakefulness, attention, ..., are never stationary. Classi�cation accuracy was generally

increased when K-means initialization was performed with K = 3 as opposed to K = 2.

Other important classi�cation factors were: the number of reference vectors per class, the

localization of the time interval prior to movement, nd the number and type of frequency

bands (lower or upper alpha band). The classi�cation accuracy for the three subjects

tested was 64%, 74% and 85% [33].

Pregenzer developed a modi�ed learning vector quantization method, Distinction Sen-

sitive Learning Vector Quantization (DSLVQ) as a feature selector [39]. Its usefulness as

a feature selection signal preprocessor was demonstrated on Breiman's waveform data

and Kohonen's 'hard' classi�cation task. A major disadvantage of LVQ is that all ele-

ments of the input vector have the same inuence on classi�cation. DSLVQ eliminates

this disadvantage by weighting vector components according to how much they increase

the classi�cation accuracy. DSLVQ is more reliable and consistent than event-related

desynchronization (ERD) di�erence maps in analyzing cortical activity patterns related

to di�erent brain states [34]. Another study comparing DSLVQ to a genetic algorithm

(GA) demonstrated that though they perform essentially the same �ltering, DSLVQ re-

quired an order of magnitude less computing time [13]. DSLVQ also provides a list of the

importance of each feature which can serve as a guide for future experiments, i.e. which

electrodes should be used for which EEG patterns.

2.1.2 Classi�cation Algorithm versus Signal Preprocessing

A comparison of Back Propagation (BP), Partially Recurrent (PR) and Cascade-

Correlation (CC) neural networks demonstrated the superiority of CC networks for clas-

sifying ERP [30]. The BP and PR networks performed poorly and unreliably - they
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didn't converge on the test data until they were trimmed so that the number of processing

elements in the �rst hidden layers was reduced to two. In contrast the CC network success-

fully classi�ed all data with similar architectures for all subjects: the network generated

two more hidden nodes for subject three then for subjects one and two. Additionally the

CC network learned twenty times faster than the BP and PR networks. The CC net-

work performed better with an asymmetric as opposed to a symmetric sigmoid transfer

function: only half the number of hidden units, 3, a little less than half the number of

training epochs, 460, were required, and a slightly higher classi�cation accuracy, 80% on

an untrained test set, was achieved with the asymmetric sigmoid transfer function.

Three signal preprocessing feature extraction techniques were compared:

� A matrix of band power values of EEG data was created. The columns represented

the individual channels; the rows successive time points. The mean subtracted

row/column values were divided by its standard deviation.

� The mean subtracted input vector component values were divided by the features

standard deviation.

� The input vector component values were linearly interpolated to the range [0,1].

A linear interpolation of the input vector component values worked best. This method

resulted in greater classi�cation accuracy than the other two methods and required fewer

training epochs. The choice of a classi�cation algorithm appeared much less important

than the signal preprocessing technique used [30].

A similar study comparing a multi-layer perceptron, a partially recurrent network,

a cascade correlation network, and learning vector quantization, showed no di�erence in

the classi�cation results of one classi�cation algorithm versus any other [35]. This same

study revealed signi�cant di�erences in the classi�cation accuracy depending on the signal

preprocessing used. Feature extraction methods included:

� simple band power values, requiring only the squaring of each sample,

� Complex Demodulation, and
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� Hilbert Transform.

Band power values yielded the worst results, 70-80% classi�cation accuracy, and the

Hilbert Transform yielded the best, approximately 90%. Complex Demodulation and

the Hilbert Transform are methods designed to locate the envelope of the signal. Opti-

mizing the time interval around the minimum envelope value, i.e. the maximum ERD,

improved the classi�cation accuracy by another 10-15% compared to using a �xed time

interval beginning 0-5 sec after the movement stimulus.

A study on di�erentiating between the mental preparation involved in �nger, toe and

tongue movements revealed that the most reactive frequency bands were 10-12 Hz, 30-

33Hz, and 38-40 Hz for �nger, toe and tongue movement respectively [36]. Discrimination

between right and left index �nger movements using only the 10-12 Hz was possible with

83% accuracy. Discrimination between all 4 di�erent movements yielded between 51-58%

accuracy with only alpha band components and 62-70% including the gamma band. The

gamma band must thus be related to planning of one or two of the �nger, toe or tongue

movements that were compared.

Another study comparing the classi�cation capabilities of various combinations of self-

organising feature maps (SOFM), learning vector quantization (LVQ3), back-propagation

(BP), and K-means, con�rmed the previous �ndings that the selection of relevant fea-

tures was more important than the type of classi�er used [32]. LVQ3 initialized with

SOFM, was compared to K-means, BP, and BP initialized with K-means on classifying

non-averaged ERP. The SOFM/LVQ3 combination yielded roughly 90% classi�cation ac-

curacy compared to approximately 87.5% for the K-means/BP combination, and 80%

for the K-means and BP algorithms when used separately. The classi�cation accuracy

of the SOFM/LVQ3 combination deteriorated when the number of reference vectors per

class increased beyond one or two: the algorithm appeared to over-�t the training data,

creating overly complex decision borders. The BP algorithm was relatively insensitive to

the number of hidden units used, but more sensitive to signal preprocessing than LVQ3.

Though BP yielded a higher accuracy than K-means on the training data, their classi�-

cation accuracy on the testing data was practically identical.
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The use of various spectral parameters derivable from EEG signals, e.g. amplitude,

frequency, phase and power, as features requires at least one second of time stationarity

[32]. Since the time stationarity of ERP data is far less than one second, time invariant AR

models were used. AR models were chosen over Fourier transformation because they give

equivalent resolution and require fewer samples. An order �ve AR model (AR5) worked

best. More electrode signals did not improve classi�cation accuracy. Using all frequencies

and power values as input features to the classi�er yielded the poorest results. Omitting

the frequency values improved classi�cation success, and using only those power values

that corresponded to the maximum energy within a pre-speci�ed frequency band yielded

the best results.

Still another study compared three signal preprocessing techniques: common average

reference, local average reference, and weighted average reference [12]. Common average

reference subtracts the average of the potentials of all electrodes from each measured po-

tential. Local average reference weights the potential of up to eight neighboring electrodes

by their inverse linear distance to the current electrode [15, 14]. This is an estimate the

gradient of the potential �eld of that electrode which is an approximation to the radial

source current density [37]. Weighted average reference combines the other two methods:

instead of only using neighboring electrodes all electrodes are inversely linearly weighted.

Preprocessing always improved classi�cation results; however, no signi�cant di�er-

ence was discernible from the three tested. The motor, somato-sensory, and pre-motor

areas associated with the planning of movement involve di�erent neuronal structures and

systems. Electrodes located near the area associated with hand movement will not only

pick up signals from this area but from neighboring and sub-cortical areas as well. With

signal preprocessing, not only is this problem, known as the reference problem, solved,

but the EEG spatial resolution can also be improved. Three di�erent time resolutions

of the power estimates were also compared. 125 and 250 ms time resolutions resulted in

similar performance, both superior to that obtained with 500 ms resolution. The length of

recording time of the EEG signals was also experimented with, and it was demonstrated

that a longer recording period resulted in higher classi�cation accuracy [12].
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A comparison of a Cascade Correlation (CC) network and LVQ3 on simulated and real

EEG data contrasted with previous experiments involving Hilbert Transform preprocessing

[33, 30]. The highest ERD values were obtained from non-averaged EEG signals (in

general, averaging reduces the amount of time-variant ERD information while improving

the signal-to noise ratio). Provided that the ERD e�ect is contained somewhere within

the sampling window, the noise-insensitive CC network treats less than optimal window

positioning as an insigni�cant amount of additional noise. In contrast, both LVQ3 and

the CC network were hyper-sensitive to the relative distance between reactive and non-

reactive alpha frequency components. LVQ3 performed best with 3 reference vectors per

class [31].

2.1.3 Brain Computer Interface (BCI)

It has been shown that learning vector quantization is particularly well suited as

an on-line classi�er primarily due to its algorithmic speed [11]. BCI I trained LVQ3 on

preparatory movements of the left and right hand. Testing involved moving a screen

cursor left or right based solely on the subjects mental activity. Four reference vectors per

class were found to yield the highest accuracy. Feedback to the subject helped to improve

classi�cation results, resulting in approximately 75.5% correct classi�cation [20].

BCI II is a continuation of BCI I with the addition of foot exions to the left and

right hand movements as a third type of movement [19]. BCI II attempts to di�erentiate

between three distinct movements as opposed to BCI which only di�erentiated between

two. The results are much less clear with BCI II than with BCI I. Nonetheless, the

performance of all subjects was greater than random selection: more trials were classi�ed

correct than were classi�ed incorrect. The fact that 20% of all trials were not classi�ed at

all indicates that additional improvements can be expected through further modi�cation

of the threshold. In a session where no physical activity took place, three out of the four

subjects had the majority of trials correctly classi�ed. Potential sources of improvement

include [12, 19]: optimal frequency band selection (e.g. addition of the beta band), optimal

electrode placement, and more sessions.
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2.1.4 Summary

Feedforward, partially recurrent, LVQ and cascade correlation networks and K-means

methods have been found to be able to correctly distinguish between two ERPs with

roughly equal accuracy 87-90% [30, 35, 12], where LVQ and cascade correlation networks

are perhaps slightly better than the others [30, 12]. K-means clustering has been shown

to be an e�ective initialization technique for LVQ [10, 33]. LVQ has not been nearly

as successful at distinguishing between three responses: the results are closer to random

chance than to the 90% accuracy achieved when distinguishing between two responses

[20]. ERP classi�cation accuracy is subject dependent [33] and much more sensitive to

the preprocessing technique used to extract the relevant features that comprise the data

vectors submitted to the classi�er than to the classi�cation algorithm employed [30, 35, 12].

Studies have shown mean subtracted potentials to yield higher classi�cation accuracy

than raw potentials. However multiplying the e�ect of each potential by a weight related

to the distance to the potential in question produces no clear improvement [12]. Filtering

out frequencies outside of the range of 5 to 40 Hz and using order 5 autoregressive models,

AR(5), are common techniques to improve classi�cation accuracy [20, 35]. Using power

values instead of frequency values has improved results, especially if only those power

values that correspond to the maximum energy within a pre-speci�ed frequency band are

used [12]. Linearly interpolating the power values to fall within the range [0,1] appears

to work better than mean subtracting them [30]. Comparisons of power values, complex

demodulation and Hilbert transforms have shown the former to yield the worst results

and the later to yield the best results [35].

2.2 Previous Spontaneous EEG Signal Classi�cation E�orts

Pattern classi�cation of spontaneous EEG signals produced from di�erent mental

states is complicated by several sources of noise. The surface electrodes used to record

the signals introduce noise through movements on the scalp and pick up the interference

caused by the signals passing through the various layers of the cranium. Muscular activity

like eye blinks produce signals of much greater amplitude than those produced by the
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cortical activity that we would like to measure. Cognitive factors such as the variance of

concentration over time are another immeasurable source of noise.

The data used for this study was obtained from recordings done previously in con-

nection with the research of Keirn and Aunon [22, 21]. The EEG signals from seven

subjects were recorded while the subjects performed each of �ve mental tasks. Keirn

and Aunon focused on classifying between pairs of tasks using a Bayesian classi�cation

method. They were able to obtain between 70% to 100% correct classi�cation when using

a frequency-based signal representation.

Keirn and Aunon's results were promising; however, they were also very limited.

Only one single quarter-second or two-second segment was chosen from each 10 second

recording session. This segment was chosen such that it was free of eye blinks and near

the middle of the 10 second recording session: it was assumed that the subject was most

likely to be concentrating on the requested mental task during the middle of the session. A

second limitation involves their use of a quadratic Bayesian classi�er. A Bayesian classi�er

requires that the classes have a Gaussian distribution and thus do not involve any complex,

nonlinear relationships.

In another study Lin, Tsai, and Liou [29] used EEG signals collected in a manner

similar to that of Keirn and Aunon. Lin, et al., used Kohonen's self organizing map

(SOM) algorithm [24] to separate the collection of EEG signals into �ve clusters of similar

patterns associating each cluster with a speci�c task. The algorithm was trained on the

data of one subject during one recording session for all �ve tasks. The resulting map

was used to classify the EEG signals from the same subject during another session and

di�erent subjects. The poor classi�cation results of this study attest to the di�culty of

this problem involving the simultaneous classi�cation of �ve tasks combined with inter

subject testing. The tasks appeared to vary in terms of di�culty of classi�cation, with

the math task (Section 5.1.1) yielding the best results.



Chapter 3

LVQ THEORY

This chapter is divided into two sections. The �rst section introduces the theoretical

foundations for the Learning Vector Quantization algorithms presented in the following

chapter. The second section makes preliminary steps toward formalizing the complexity of

the algorithms in an attempt to provide guidelines for the appropriate number of reference

vectors necessary for a particular problem.

3.1 Approximation of Optimal Bayes Decision Boundary

Learning Vector Quantization uses a vector quantization architecture to approximate

the optimal Bayesian classi�cation boundaries. Traditional classi�cation methods classify

directly from the approximated conditional probabilities. LVQ, however, places reference

vectors into the data space in such a way that a nearest neighbor classi�cation technique

can be used for classi�cation.

This section begins with an introduction of various measures of similarity necessary

for the clustering inherent in any classi�cation technique. Di�erent classi�cation methods

are then presented followed by an introduction of optimal Bayesian classi�cation. The

section concludes with the derivation of the gradients upon which the LVQ algorithms are

based.

3.1.1 Measures of Similarity

This section introduces the formulas for the Euclidean distance metric, the Minkowski

metric, a continuous valued logic metric, the correlation metric, the Mahalanobis metric,

the direction cosine metric, the Tanimoto metric, and the Kullback-Leibler divergence

metric.
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The Euclidean distance metric [27] is the most common similarity metric for vector

spaces. Consider two n-dimensional vectors, x = (�

1

; �

2

; :::�

n

) and y = (�

1

; �

2

; :::�

n

) then

their similarity as measured by the Euclidean distance metric is inversely proportional to

the Euclidean distance separating the two vectors:

d

E

(x; y) =k x� y k=
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u

u
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n

X

i=1
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i

� �

i

)

2

: (3.1)

The Minkowski metric [27] is a generalization of the Euclidean distance metric. The

Minkowski metric equals the Euclidean metric when � = 2:

d

M

(x; y) =
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�

!

1=�

; � 2 R:

A metric based on continuous-valued logic [27]. The logical operators and and or

are translated into the respective vector equivalents minimum and maximum. Thus the

following logical relation and the vector equation are equivalent:

(a � b) = (�a ^

�

b) _ (a ^ b)

e(�

i

; �

i

) = maxfmin(�

i

; �

i

);min[(1� �); (1 � �)]g:

This yields a metric whose form is similar to that of the Minkowski metric:

S

M

(x; y) =

 

n

X

i=1

[e(�

i

; �

i

)]

�

!

1=�

; � 2 R:

The dot product or correlation metric [27] is well suited for dealing with Gaussian

noise and comparing nearly periodic signals. A simple modi�cation of the basic formula
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allows for phase shifts:

C =

n

X

i=1

�

i

�

i

C

m

= max

k

n

X

i=1

�

i

�

i�k

; k = �n;�n+ 1; ::: + n:

The Mahalanobis metric [27] allows the vectors x and y to be mutually dependent.

Any noise is assumed to be normally distributed and  is the de�ned as the inverse of the

covariance matrix of x and y:

d

 

(x; y) =k x� y k

 

=

q

(x� y)

T

 (x� y);

Related to the correlation coe�cient of statistics is the Direction Cosine metric [27].

Similarity is inversely related to the degree to which the two vectors are orthogonal to one

another. When the vectors are orthogonal cos � = 0; and cos � = 1 signi�es the greatest

possible similarity between x and y: Where (x,y) is de�ned as the dot product the cosine

is calculated by:

cos � =

(x; y)

k x kk y k

:

From set theory comes the Tanimoto metric [27]. Its most notable success has been

in evaluating the similarity of written documents. The metric is based on dividing the

number of common elements by the number of elements that are di�erent:

S

T

(x; y) =

(x; y)

k x k

2

+ k y k

2

�(x; y)
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Popular in Information Theory, Physics and Economics is a metric derived from the

minimum relative entropy principle and known as the Kullback-Leibler divergence metric

[23]:

d

re

(x; y) =

n

X

i=1

x

i

ln

x

i

y

i

:

The above are all distance metrics useful in vector spaces as examples of measures

of similarity. Measures of similarity useful for strings or coded patterns include the Ham-

ming distance, the Levenshtein distance, and the related Maximum Posterior Probability

distance. Kohonen [27] justi�es the use of Euclidean distance metric for LVQ based on

its common use by other vector quantization methods, its computationally e�ciency, and

that for many applications empirical studies have shown that the classi�cation results are

quite similar regardless of the similarity metric used. Kohonen, however, does not back

up the claim that the di�erent similarity metrics have similar classi�cation potential. And

though he indirectly acknowledges that for certain applications this would not be the case,

he makes the Euclidean distance metric an integral part of LVQ and does not provide any

insight into how these applications for which the Euclidean distance metric and hence

LVQ are sub-optimal could be identi�ed.

3.1.2 Classi�cation Methods

A variety of di�erent vector classi�cation methods are possible. Classi�cation meth-

ods are usually associated with either one speci�c or a few highly related distance metrics.

Since LVQ uses the popular Euclidean distance metric we focus here on the classi�cation

methods usable in combination with this metric.

� Nearest Neighbor method: The simplest classi�cation method is the Nearest Neigh-

bor method using the Euclidean distance as a measure of similarity. This method

computes the distance between an unknown pattern x and all reference patterns

x

r

2 X and classi�es x based on the closest x

r

to x: Note that the amount of

calculation required depends directly on the number of reference patterns used [27].
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� K-Nearest Neighbor (KNN) method: The KNN method is a generalization of the

Nearest Neighbor method designed for the cases where the reference patterns of

di�erent classes overlap. Instead of determining the class of an unknown pattern

based solely on the nearest neighbor, the unknown pattern is classi�ed according to

the class with the most reference patterns among the unknown patterns K nearest

neighbors [27].

� Other methods: Many other classi�cation schemes based on the distance metrics

discussed above are possible. Classi�cation by the vector direction based on the

Direction Cosine metric and a statistical classi�cation metric loosely related to the

Mahalanobis distance metric is known as the Parametric Classi�cation Scheme are

but two possibilities [27].

3.1.3 LVQ approximation of Bayesian Classi�cation

An optimal decision in the context of statistical pattern recognition is most often

de�ned according to Bayes theory of probability. Bayesian Classi�cation assumes that all

samples come from a �nite set of overlapping classes S

k

where the discriminant functions

are de�ned in terms of the conditional probability density, p(xjx 2 S

k

), and the a priori

probability of the class S

k

:

�

k

(x) = p(xjx 2 S

k

)P (S

k

): (3.2)

Unknown samples are optimally classi�ed on average if the class of a sample x is determined

by:

x 2 S

c

; where c = argmax

k

f�

k

(x)g:

Traditional statistical classi�cation methods approximated the values of p(xjx 2 S

k

)

and P (S

k

) and used the approximations to directly classify a pattern based on Equation

3.2. LVQ assigns a subset of codebook vectors to each class S

k

; positions the codebook

vectors based on the data vectors (i.e. patterns whose class is known a priori) and classi�es

unclassi�ed patterns according to the class of the closest reference vector to the pattern,

using the nearest neighbor rule and the Euclidean distance metric. The classi�cation
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boundaries de�ned by this technique approximate the optimal Bayesian decision boundary

to the extent that the reference vectors accurately approximate the conditional probability

density, i.e. p(xjx 2 S

k

); near the class borders [27].

The optimal Bayesian decision borders are an upper limit on the quality of the

class boundaries formed by any classi�cation algorithm. LVQ approximates these bor-

ders through the positions of reference vectors in relative close proximity to it. It is

evident that the class boundaries formed by the reference vectors are optimal if the refer-

ence vectors accurately estimate the conditional probability density, i.e. p(xjx 2 S

k

); of

the data vectors near the class borders. The conditional probability density of the data

vectors far away from the decision boundaries is unimportant [27].

3.1.4 Gradient Derivations

Since exact convergence limits for LVQ are not known, convergence is discussed in

terms of the observed approximation of p(x), or some monotonic function of it, by VQ

methods. The Euclidean distance metric is used to de�ne the error, E, in terms of absence

of similarity. Let x represent a data vector and m

i

for i � N all the reference vectors.

The Euclidean error is de�ned by,

E

i

=

Z

k x�m

i

k

2

p(x)dx:

The most similar reference vector, m

i

; to the data vector x is de�ned as,

m

c

= min

i

E

i

LVQ is derived from approximating a non-negative function f(x) (refer to �gure 3.1)

based on �

k

(x). Given the optimal Bayesian boundaries dividing the vector space into

classes B

k

, de�ned by equation 3.2, the collection of all the borders, C

B

, is de�ned by:

C

B

= fxjf

k

(x) = 0 for all kg (3.3)

where,

f

k

(x) = p(xjx 2 S

k

)P (S

k

)�max

h

fp(xjx 2 S

h

)P (S

h

)g x 2 B

k

and h 6= k: (3.4)
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Figure 3.1: The discriminate functions �
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(x) and the function f(x) derived from them.
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The gradient is obtained by minimizing the average expected quantization error. For

each of the original discriminant functions, �

k

(x) the gradient is de�ned as:

�

m

i

E = �2

Z

�

ci

(x�m

c

)�

k

(x)dx

where,

�

ci

=

(

1 for c = i

0 otherwise,

whereas the gradient for the function f(x) derived from the original �

k

(x)'s is:

�

m

i

E = �2

Z

�

ci

(x�m

c

)[p(xjx 2 S

k

)P (S

k

)�max

h

fp(xjx 2 S

h

)P (S

h

)gdx

To illustrate the gradient at a particular time t we de�ne x(t) as simply the data vector

presented to the algorithm at time t andm

i

(t) as the reference vectorm

i

at the same time t.

m

c

(t) is therefore the most similar reference vector, as de�ned by the Euclidean distance

metric (Equation 3.1), to the data vector x(t) at time t. Then the gradient at time t

corresponding to the original discriminant functions, �

k

(x), is:

�

m

c

(t)

E = �2�

ci

[x(t)�m

i

(t)]; (3.5)

and the corresponding gradients associated with f(x) which is used as the basis of LVQ

are:

�

m

c

(t)

E =

(

�2�

ci

[x(t)�m

i

(t)] for x(t) 2 S

k

+2�

ci

[x(t)�m

i

(t)] for x(t) 2 S

r

,

(3.6)

where r signi�es the label of the class with the second highest probability density function:

r = argmax

h

fp(xjx 2 S

h

)P (S

h

)g and r 6= k. The following vector update rules for m

i

associated with the original discriminant functions, �

k

(x), follow immediately:

m

i

(t+ 1) = m

i

(t) +

(

�[x(t) �m

i

(t)] if i = c

0 otherwise

(3.7)

The corresponding update rules for m

i

associated with the function f(x) based on the

original discriminant functions, �

k

(x) are the same as those for �

k

(x) with the addition of

the move along the gradient away from the data vector x:

m

i

(t+ 1) = m

i

(t) +

8

>

<

>

:

�[x(t) �m

i

(t)] if i = c, x(t) 2 B

k

and x(t) 2 S

k

��[x(t) �m

i

(t)] if i = c, x(t) 2 B

k

and x(t) 2 S

r

0 otherwise

(3.8)
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Note that the update equations for the function f(x) rely on knowing in which

Bayesian region, B

k

, a data vector x is located. The Bayesian regions, B

K

, must thus be

de�ned a priori which is impossible since approximating the Bayesian regions is precisely

the goal of the update equations.

3.2 Vapnik-Chervonenkis dimension of LVQ

To talk about the Vapnik-Chervonenkis dimension of LVQ is miss-leading. It does

not matter which algorithm one uses to train this architecture. Only the possible output

class of the algorithm is relevant. The output class of LVQ is the same as any VQ method:

e.g. the codebook of reference vectors.

The complexity of vector quantization (VQ) methods as de�ned by the Vapnik-

Chervonenkis dimension depends on the complexity of the codebook, i.e. the collection

of reference vectors. The Vapnik-Chervonenkis dimension of a class of codebooks is the

largest number of data vectors that can be shattered by codebooks from that class. Ap-

plying a particular codebook speci�es a speci�c label for each of the data vectors in a set.

Based on the number of data vectors in the set and the number of di�erent possible labels

per data vector, there are a limited number of di�erent possible labelings for the set of

data vectors. If every possible labeling can be realized by applying a particular codebook

from the class of codebooks, then the class of codebooks shatters that set of data vectors.

3.2.1 Problem

The VC dimension of a class of f0,1g valued functions on the n dimension Euclidean

space that can be computed by a vector quantizer (VQ) where the reference vectors have

labels f0,1g. Initially, we will characterize this class by two parameters:

n � the input dimension

k � the number of reference vectors

The VC dimension is the cardinality of the largest set S that can be shattered by V Q(n; k),

i.e. on which V Q(n; k) can compute any function f : S ! 0; 1:
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3.2.2 Bounds

Trivial lower bounds are immediately evident by noting that V Cdim(V Q(n; k)) � k:

Choose an arbitrary set S of k di�erent points and let it be the set of reference vectors.

By assigning labels to them in all possible ways we obtain all functions on S.

Furthermore, an n � 1 dimensional hyperplane can be represented by two reference

vectors: Choose two vectors on each side of the hyperplane such that the hyperplane

is perpendicular to the line connecting them and intersects it in the middle. The VC

dimension of hyperplanes is known to be equal to n+ 1 [2]. This yields the lower bound

V Cdim(V Q(n; k)) � n+ 1:

Upper bounds can be calculated in a variety of ways. One possible method is to

design a neural feed-forward architecture that can compute any function in V Q(n; k):

Such a net, however, should have hidden units that can compute analog functions because

the distances to the reference vectors should be computed somehow inside the net. Upper

bounds for the VC dimension of analog (e.g. sigmoidal) neural nets are known but they

give only poor upper bounds in the case of V Q(n; k); i.e. approximately equal to the

number of weights squared [2]. Tighter upper bounds should be derivable if we stick

closer to the problem and think in geometric terms.

Using an approach described in [4], a set S of m vectors can be shattered provided

there exist codebooks capable of correctly encoding each of the 2

m

subsets of S [3]. As-

sume,

� there exists a codebook capable of correctly encoding each subset of S and

� no codebook can correctly encode more than one subset of S:

Then, the VC dimension of the class of codebooks capable of shattering m vectors must

contain at least 2

m

distinct codebooks. Consider the class of N -vector codebooks, with

k components in each vector, where each component can be represented in b bits. This

class contains at most

 

(2

b

)

k

N

!
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distinct codebooks. An upper bound on the VC dimension is thus simply the number of

bits necessary to represent the codebook.

log

2

 

(2

b

)

k

N

!

� bkN:

3.2.3 Error estimates based on the VC dimension

Assuming optimal Bayesian classi�cation, the expected worst case generalization error

for zero error on training examples is bounded by

� �

d

m

: (3.9)

where d is the VC dimension and m the number of data samples. This d=m ratio is known

in other �elds as the inverse power law [4]. Consider applying LVQ using a codebook

of 32, 36-dimensional reference vectors, where each coe�cient was encoded by 32 bits,

to a problem with 480 examples (Section 5.1.4). Assume that the algorithm was able to

achieve zero error on training and yielded a codebook that gave a good approximation to

an optimal Bayesian decision boundary. Based on Equation 3.9 and the preceding bounds

on the VC dimension of VQ methods, the algorithm would have an upper bound on the

approximate worst-case generalization error of between 32=480 and 32

3

=480; e.g. between

7% and 7,000%.

This range is not only quite large, but the lower �gure of 7% is useless since it is a

lower bound on an upper bound of the expected error, and the upper �gure of 7,000%

is above 100% and likewise useless. This con�rms the �ndings of Cohn et al. that the

theoretical bounds on the generalizable error derivable from estimates of the VC dimension

of vector quantizers are far too loose to provide any practical guidance [4].



Chapter 4

LEARNING VECTOR QUANTIZATION ALGORITHMS

Learning Vector Quantization (LVQ) is a supervised Vector Quantization (VQ)

method. LVQ focuses on classi�cation [27], unlike unsupervised VQ methods such as

Self Organized Maps (SOM) which are useful for discovering hidden structure or rela-

tionships between the data vectors, i.e. data clusters. LVQ divides the data space into

quantization regions whose borders are hyper-planes. These regions are equivalent to the

Voronoi sets in VQ.

The Voronoi sets, commonly called Voronoi tessellations, are formed by calculating

the hyperplane the bisects the line segment connecting every pair of neighboring reference

vectors (Section 7.1.1, Figure 7.1). The overlapping portions of the hyperplanes are trun-

cated to leave every reference vector encapsulated in a region de�ned by interconnecting

hyperplane segments that de�ne the set of points equal distance between the two closest

reference vectors.

The piecewise linearity of the classi�cation border is evident from the fact that it

is entirely composed of those tessellations that separate the Voronoi sets into di�erent

classes. With enough input vectors and the correct number of reference vectors, the class

borders of LVQ eventually approximate the optimal Bayes decision borders [27]. There

currently exists a number of variations of the basic LVQ algorithm.

4.1 LVQ1

LVQ1 was the original learning vector quantization algorithm developed by Kohonen

in 1989 as a classi�cation method using a vector quantization architecture in combination

with labeled vectors and supervised training based on a system of rewards and punishments

[27]. The algorithm is designed to approximate the optimal Bayesian decision boundary
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by approximating a function derived from the conditional probabilities of the di�erently

labeled data vectors (Section 3.1.4, Equation 3.4).

Let m

c

denote the closest among N reference vectors to a particular data vector x;

where c = argmin

i

fkx �m

i

kg; for i 2 f1; 2; :::; Ng: If m

c

belongs to the same class as x;

m

c

is moved closer to it to increase the future probability of correct classi�cation:

m

c

(t+ 1) = m

c

(t) + �(t)[x(t) �m

c

(t)]: (4.1)

If m

c

belongs to a di�erent class than x; m

c

is moved farther away from it to decrease the

future probability of misclassi�cation:

m

c

(t+ 1) = m

c

(t)� �(t)[x(t) �m

c

(t)] (4.2)

All other reference vectors, m

i

where i 6= c, remain unchanged, m

i

(t + 1) = m

i

(t): The

learning rate, �(t), decreases monotonically over time, where 0 � �(t) < 1 for all t [27].

4.2 Optimized LVQ1

Optimized LVQ1 (OLVQ1) is a computationally fast approximation to LVQ1 [27]. It

is based on the observation that if independent learning rates, �

i

(t), are assigned to each

reference vector m

i

, the �

i

(t) values resulting in the fastest convergence of equations 4.1

and 4.2 can be calculated from the recursive equation:

�

i

(t) =

�

i

(t� 1)

1 + s(t)�

i

(t� 1)

;

where m

c

is the closest reference vector to the data vector x; L(x) is the label of x, i.e.

the class that x belongs to, and,

s(t) =

(

+1 if L(m

c

) = L(x)

�1 otherwise

This computational optimization is based on the approximately optimal statistical

accuracy of the trained codebook vectors when every data vector is used equally: relative

to the �nal positions of the reference vectors, the e�ects of changes in their positions made
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due to comparisons with each data vector are approximately equal in magnitude. It is

derived by �rst combining 4.1 and 4.2 into one equation yielding:

m

c

(t+ 1) = [1� s(t)�

c

(t)]m

c

(t) + s(t)�

c

(t)x(t):

From this equation it is evident that the inuence of the current data vector, x(t); is scaled

by �

c

(t); the inuence of the previous data vector, x(t�1); is scaled by [1�s(t)�

c

(t)]�

c

(t�

1); and so on. For the e�ects on the reference vectors of these two data vectors to be equal

their scaling must also be equal:

�

c

(t) = [1� s(t)�

c

(t)]�

c

(t� 1):

Extending this requirement to all t yields equation 4.2.

4.3 LVQ2

LVQ2 was created as a more accurate method of approximating the gradient move-

ment away from a data vector by a reference vector belonging to the runner-up class:

the class with the second highest conditional probability density at the point speci�ed by

the data vector (Section 3.1.4, Equation 3.6). The LVQ1 algorithm speci�es a movement

along this gradient every time that the label of the closest reference vector is di�erent from

that of the data vector regardless of whether the reference vector belongs to the runner-up

class or not [27].

Note that this is only a problem when there exists more than two classes of vectors.

The class of reference vector with the same label as the data vector is always assumed to

be the winner. If there are only two classes then the class of a reference vector with a

label di�erent from that of the data vector is by default the runner-up class.

A secondary improvement of LVQ2 compared to LVQ1 is that LVQ2 is more compu-

tationally e�cient than LVQ1. By updating the two closest, di�erently-labeled, reference

vectors to a particular point, the two reference vectors are guaranteed to de�ne part of a

decision boundary. In LVQ2 the two closest reference vectors, m

i

and m

j

, to a particular

data vector, x are updated simultaneously if they satisfy two constraints:
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1. One of the reference vectors must belong to the same class as the data vector, m

i

,

and the other must belong to a di�erent class m

j

.

2. Let d

i

and d

j

represent the corresponding Euclidean distance between the data vector

x and the corresponding reference vectors m

i

and m

j

: d

i

� d

j

and the ratio of d

i

to

d

j

is constrained by a window-width parameter 0 � w � 1 such that:

d

i

d

j

>

1� w

1 + w

:

The reference vector of the same class, m

i

, is moved towards the data vector according to

equation 4.1 and the reference vector of the other class, m

j

, is moved away according to

equation 4.2 [25].

The window width parameter, w, creates an area (i.e. window) of a particular width

de�ned by w centered on the hyperplane representing the decision boundary between the

two reference vectors. The data vector under consideration only has an inuence on the

two reference vector positions via Equations 4.1 and 4.2 if the data vector lies within the

area de�ned as the window.

4.4 LVQ2.1

LVQ2.1 is the current version of LVQ2. The only di�erence between LVQ2 and LVQ2.1

is that LVQ2.1 makes no distinction between which of the two reference vectors, m

i

and

m

j

, is the closest to the data vector, x [25]. LVQ2 requires that the reference vector with

the same label as the data vector, e.g. m

i

, be farther away from the data vector, x, than

the reference vector with a di�erent label, m

j

. The window width constraint of LVQ2 is

thus modi�ed to:

minf

d

i

d

j

;

d

j

d

i

g >

1� w

1 + w

: (4.3)

This relaxation of LVQ2 was motivated by the observation that there is an imbal-

ance between the movements toward the data vector and the movements away. LVQ2

conducts simultaneously pair-wise updates such that at every time t every movement to-

ward the data vector �m

i

(t) is associated with a corresponding movement away �m

i

(t).

The movements �m

i

(t) and �m

j

(t) are directly correlated to the distances between the
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corresponding reference vectors, m

i

(t) and m

j

(t), and the data vector x(t), i.e. d

i

(t) and

d

j

(t). Since d

i

(t) � d

j

(t) from Condition (2) in Section 4.3 above, �m

i

(t) � �m

j

(t). This

results in an overall imbalance in favor of movements toward the data vectors as well a

monotonic decrease in the distance k m

i

�m

j

k [25].

Note that unlike LVQ1 the learning rate of the two LVQ2 algorithms cannot be

optimized, i.e. it's not possible to construct an OLVQ2 algorithm. Due to inaccuracies

in LVQ2's approximation of Equation 3.6, on average �

i

would not decrease and the

algorithm would not converge [27].

Kohonen points out that both of versions of LVQ2 may result in an asymptotic

equilibrium at suboptimal reference vector positions and cites this as the motivation for the

LVQ3 algorithm to ensure that reference vectors continue at least a rough approximation

of the class distributions [25]. A detailed discussion of this topic is the subject of Chapter

7.

4.5 LVQ3

With LVQ2.1 the reference vectors are not guaranteed to continue approximating

the class distributions and the algorithm does not continue over time to approximate the

optimal Bayesian decision boundaries. LVQ3 addresses this fact by adding an update to

the LVQ2.1 algorithm in the case where the two reference vectors lie within the window

centered around the midpoint between m

i

and m

j

whose width is de�ned by w; but where

they both belong to the same class as the data vector [27]. If m

i

, m

j

and x belong to the

same class, then update both m

i

and m

j

identically:

m

k

(t+ 1) = m

k

(t) + ��(t)[x(t) �m

k

(t)]; for k 2 fi; jg: (4.4)

The additional parameter 0 � � � 1 varies the step size of this move as a percentage

of the standard step size, �(t): It is evident that LVQ2.1 is a speci�c instance of LVQ3

where � = 0. If � = 0; Equation 4.4 becomes m

k

(t + 1) = m

k

(t) + 0. Since this equation

is the only di�erence between LVQ3 and LVQ2.1, LVQ3 with � = 0 is the same algorithm

as LVQ2.1.
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4.6 DSLVQ

Distinction Sensitive Learning Vector Quantization (DSLVQ) was designed to reduce

the high feature selection dependence of LVQ. DSLVQ addresses the problem in LVQ that

all the elements, i.e. features, that comprise the reference and input vectors are given

equal importance. DSLVQ is identical to LVQ3 with the addition of a weight, w

i

, for each

feature or vector element. This weight is dynamically adjusted during learning based on

its classi�cation contribution. The weight value is increased for features which improve

classi�cation accuracy and decreased for those that are inconsistent, frequently leading to

misclassi�cations [39].

When calculating the closest reference vector to an input vector, DSLVQ uses a

weighted distance function instead of the standard Euclidean distance function. The

distance between two vectors x and y with the weight vector w is given by:

DSLV Qdist(x; y; w) =

v

u

u

t

n

X

h=1

(w

h

[x

h

� y

h

])

2

w

h

(t+ 1) = N [T (w

h

(t) + �

fw

(t) (wn

h

(t)�w

h

(t)))] ;

where the function N [x] is a normalizing function de�ned as,

N [x] = x

,

n

X

h=1

jx

h

j ; where n = number of features;

and the threshold function T (x) is de�ned as,

threshold(x) =

8

>

<

>

:

0:0001 if x � 0:0001

1 if x � 1

x otherwise ;

the weighted normal function wn(t) is de�ned as,

wn(t) = N [d

i

(t)� d

j

(t)] ;

and the function d

k

(t) de�nes the Euclidean distance at time t between the the reference

vector m

k

and the data vector x,

d

k

(t) =k x(t)�m

k

(t) k; for k 2 fi; jg :
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The �

fw

(t) in Equation 4.6 is the feature weights' learning rate. Since the feature

weights will be updated N times more often than the average reference vector, where N

represents the number of reference vectors, �

fw

(t) should generally be a factor of N less

in magnitude than the � used for training the reference vectors.

DSLVQ can be used autonomously or as a noisy feature �lter preprocessor for another

classi�er. When used autonomously, the inuence of noisy features are reduced as their

weight values decrease. When used as a preprocessor, a threshold value is applied to the

feature weight values to identify the least important features and they are removed from

the original input vectors, leaving only the most important features as input to the �nal

classi�er [39]. The usefulness of DSLVQ as a feature selection signal preprocessor was

demonstrated on Breiman's waveform data and Kohonen's 'hard' classi�cation task [39].

When used as a feature selection signal preprocessor DSLVQ performed as well as genetic

algorithms [13].

4.7 DVQ

Dynamic Vector Quantization (DVQ) guarantees that the closest reference vector to

a data vector of the same class will not be farther away from the data vector than �:

Whenever the distance between the two vectors is greater than � a new reference vector

is created and initialized to be at most � away from the data vector [38]. DVQ methods

are the only LVQ methods able to actively identify isolated pockets of data vectors of

the same class. Other LVQ methods rely on good initializing techniques to identify these

clusters. By consequence, however, DVQ has a greater sensitivity to outlying data points

caused by noise.

Poechmueller [38] adds pruning methods to DVQ to eliminate excess reference vectors.

The �rst method, cleaning, addresses over generalization, retaining only those centrally

located reference vectors of a class, by requiring a reference vector to have at least a

minimum percentage of its neighbors which belong to the same class as itself. The second

method, reduction, addresses the e�cient use of reference vectors, eliminating any reference

vectors whose Voronoi tessellation does not contribute to de�ning the class boundaries.
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4.8 MEP

The Minimum Error Probability (MEP) algorithm is the result of Diamantini's obser-

vation [8] that the underlying goal of LVQ1 is not precisely minimizing error probability.

Kohonen claims [25], p.1470 that the goal of LVQ1 is:

min

m

i

(

n

X

i=1

Z

B

i

k x�m

i

k

2

jf(x)jdx

)

i = 1; 2; :::; N;

where f(x) = P (A)p(xjA) � p(B)p(xjB); where A is the label for reference vectors asso-

ciated with the Bayesian region, B

i

; and B the label of the others. Diamantini, however,

shows that the actual goal is to maximize Equation 4.5 for those reference vectors with

the same label as the region B

i

and minimize the equation for those reference vectors with

a di�erent label:

1

2

N

X

i=1

Z

B

i

k x�m

i

k

2

f(x)dV

x

+K; (4.5)

where dV

x

is the di�erential volume in the data space and K is a constant. Diamantini

also proves that there is no guarantee that LVQ1 is able to �nd a stable solution [9].

That the goal of LVQ1 is not purely the approximation of Equation 3.4 (Section 3.1.4)

is evident from the lack of vector labels in Equation 3.4 and their crucial role in the LVQ1

algorithm (Section 4.1) [9]. This observation is also true for all the other LVQ algorithms

in this section since they all rely on vector labels and claim to be derived from Equation

3.4.

The MEP algorithm is most closely related to LVQ2.1. In MEP the two closest

reference vectors, m

i

and m

j

, to a particular data vector, x are updated simultaneously

if they satisfy two constraints:

1. One of the reference vectors must belong to the same class as the data vector, m

i

,

and the other must belong to a di�erent class m

j

.

2. Let x

ij

represent the projection of the data vector x onto the boundary surface

between the classi�cation regions represented by m

i

andm

j

, i.e. the decision surface

separating the data space into a region where the conditional probability density of

data vectors of the same class as the reference vector m

i

is highest, and a region



31

where the conditional probability density of data vectors of the same class as the

reference vector m

j

is highest. The reference vector values are only updated if for

some small parametric constant �:

k x� x

ij

k�

�

2

(4.6)

The reference vector of the same class, m

i

, is moved towards the data vector, x(t),

according to an equation similar to Equation 4.1,

m

i

(t+ 1) =m

i

(t) +

�(t)

k m

i

(t)�m

j

(t) k

[x(t)�m

i

(t)]: (4.7)

and the reference vector of the other class, m

j

, is moved away according an equation

similar to Equation 4.2,

m

j

(t+ 1) = m

j

(t)�

�(t)

k m

i

(t)�m

j

(t) k

[x(t)�m

i

(t)] (4.8)

Since the term 1= k m

i

(t) �m

j

(t) k cannot be absorbed into the step size, all the

other LVQ algorithms in this chapter do not minimize the error probability [9]. Diamantini

has thus shown that the goal of the other LVQ algorithms in this chapter is neither to

approximate Equation 3.4 nor to minimize the misclassi�cation error probability (see

Section 8.4.2 for a more in depth analysis of this algorithm and its importance in the �eld

of Learning Vector Quantization.)

4.9 Additional LVQ Algorithms

DeSieno's Conscience Learning has been combined with LVQ to yield a version of LVQ

called Conscience Learning Vector Quantization (CLVQ) Though CLVQ approximates the

overall data vector density more accurately than LVQ, it does not directly address the

critical issue of improving the approximation to the optimal Bayes decision boundaries

[38, 5]. Nevertheless, it has been reported to yield a slight improvement in classi�cation

accuracy.

Learning Vector Classi�cation (LVC), proposed by Verleysen et al. [40], is based on

the realization that reference vectors that are relatively far away from the class bound-

aries, whose Voronoi tessellation do not touch these boundaries, do not contribute to the
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de�nition of the class boundaries. Likewise, data vectors relatively far away from the de-

cision boundaries are much less likely to contribute to the de�nition of the class boundary

than are those more proximal to it. LVC selects only those vectors that are not farther

than � away from the currently estimated class borders. Data vectors that fall outside the

region are simply ignored, and reference vectors falling outside the region are replaced by

new reference vectors randomly initialized to fall within the region. By gradually decreas-

ing the value of �, and hence the size of the region encompassing the estimated decision

boundaries the resulting reference vectors positions are optimally positioned to be in close

proximity to the decision boundaries.



Chapter 5

EXPERIMENTAL METHOD

This chapter describes the method used to obtain the results presented in the following

chapter. The �rst section describes the data collection method. This section includes

de�nitions of the two mental tasks that are to be di�erentiated, the procedure used for

recording the EEG signals, including the conditions the subject was placed in, the length

and number of recording sessions, the positioning of the electrodes, the sampling frequency,

and the detection and handling of artifacts, i.e. eye blinks. The AR modeling section

describes the speci�cs of the AR model used to pre-process the raw EEG signals and the

motivations for using this model. The �nal section describes the technique used to divide

AR coe�cients from di�erent recording sessions up into multiple training, cross-validation,

and testing data suites.

The second section describes the results of experiments on common preprocessing

techniques. Two signal preprocessing techniques were experimented with: normalizing

the AR coe�cients, and low pass �ltering combined with down-sampling the raw EEG

signals before AR modeling. Since both of these common preprocessing techniques resulted

in poorer classi�cation accuracy, neither were used for the remainder of the classi�cation

experiments.

The �nal section describes the principle suite of experiments conducted whose results

are presented in the following chapter. The parametric search method is presented, as

well as the motivation for conducting each set of experiments.

5.1 Data Collection

The data consists of ten sessions of ten seconds each per subject recorded on two

separate days. The coe�cients from an AR(6) model of the original signal were calculated
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and then balanced so that corresponding sessions of di�erent tasks contained an equal

number of data samples. This data was then divided up into separate training, cross-

validation and testing sets.

5.1.1 Mental Tasks

The two mental tasks described below were selected from among the �ve tasks used

in a previous study [22]:

Base The subject was to relax as much as possible with their eyes open. This baseline

task was designed to measure the alpha waves and asymmetries naturally present

across di�erent electrodes and EEG bands during relaxation.

Math The subject is given a non-trivial multiplication problem to solve, e.g. 49 times

78. The problems do not repeat and are complicated enough that the answer is

not immediately evident. The subject is instructed not to vocalize or make any

extraneous movements while working and to verify at the end whether or not they

were able to solve the problem.

5.1.2 EEG Signal Recording

Subjects were seated in a sound-proof, dimly-lit, room. EEG signals were recorded

from six electrodes in standard positions referred to as C3, C4, O1, O2, P3, and P4 in the

10-20 system of electrode placement [17]. The electrodes were connected to Grass 7P511

ampli�ers that bandpass �ltered the signals at 0.1-100 Hz. The EEG signals were sampled

at 250 samples per second and digitized with 12 bits of accuracy.

Data was recorded from each subject for a duration of 10 seconds while the subject

was performing a single task with their eyes open and each task was repeated �ve times per

session. Each session resulted in 250 samples/second x 10 seconds x 6 channels, or 15,000

values. Most subjects attended two such sessions which were recorded on separate weeks.

Repeating the tasks several times on di�erent occasions gives a measure of intra-subject

variability. Each 10 second recording session was divided into half-second windows with

a quarter-second of overlap.
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All half-second windows of data recorded during an eye blink were removed from the

data set. Eye blinks were detected by means of a separate channel of data recorded from

two electrodes placed above and below the subject's left eye. An eye blink was said to

have occurred if a change in magnitude greater than 100 �Volts occurred within a time of

10 milliseconds.

5.1.3 AR Modeling

Parametric methods are often used to model EEG signals to reduce the e�ect of noise

in the signals on further analysis. AR models are a common technique. The vast majority

of work in AR modeling of EEG has involved scalar AR models of single channels of EEG

data. Jansen [16] provides a brief tutorial on applying scalar AR methods to biological

signals.

Two previous studies reported good performance with order six, scalar AR models

[22, 1]. To facilitate comparison with these earlier studies, order six, scalar AR models

were also used for these experiments. The scalar AR coe�cients were calculated using the

Burg method. Coe�cients were calculated for each of the half-second windows that were

free of eye blinks.

For all trials, the order one coe�cients have the largest magnitude, showing that

the linear relationship between the signals' values and their past values is strongest, and

usually positive, for the immediately preceding values. The relationship at larger orders

is relatively weak.

5.1.4 Training and Testing Data Sets

The removal of recording segments with eye blinks resulted in a di�erent number of

data vectors per recording session per task. For unbiased classi�cation results it is helpful

to have an equal number of data vectors for each class. Inter-trial classi�cation required

the pairing of data vectors resulting from a single recording of the base task with an equal

number of data vectors resulting from a single recording of the math task. In the case

where the number of vectors in each of the two tasks designated to form a pair were not

equal, excess vectors from the end of the task with the smaller number of eye blinks were



36

Subject Number of Data Vectors

1 277

3 238

4 208

6 241

Table 5.1: Total number of data vectors available per subject per task.

removed until the two tasks contained the same number of vectors. The number of data

vectors available per individual task ranged from 35 to 4. The total number of data vectors

available per subject per task is given in Table 5.1.

The data were used to create thirty independent experimental sets using selection

without replacement: one of the ten task pairs was selected for testing, a di�erent task pair

was selected for cross validation, and the remaining eight task pairs were used for training.

The classi�cation accuracies reported are the average of the classi�cation accuracies over

all thirty sets.

In addition to the trial independent training sets, separate training sets were formed

where the data from all trials for a particular subject were mixed together. The mixed

method combined all the data vectors from each of the 8 pairs of 2 tasks for a particular

subject. Selection without replacement was used to randomly select one tenth of the

vectors for testing and an equivalent amount of the remaining data vectors for cross

validation, leaving the remaining 80% for training.

5.2 Signal Processing

Preliminary tests were conducted using two common signal processing techniques,

normalization and low-pass �ltering, to determine the best signal representation for the

analysis of the classi�cation results using LVQ. Normalizing the data and �ltering out

frequencies above 60Hz signi�cantly decreased the classi�cation accuracy of LVQ. This

section describes the normalization and �ltering methods used as well as the basis from

which these conclusions were reached.
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5.2.1 Normalizing AR Coe�cients

The common practice of normalizing the values of the individual features of data

vectors is generally inappropriate for LVQ methods. LVQ calculates relative distances

between vectors based on a Euclidean coordinate system. In AR models the values of the

coe�cients reect the degree of correlation to the original data. For LVQ methods this dif-

ference acts as a weighting factor, giving more importance to features that more accurately

represent the original data and less importance to those that less accurately represent the

original data. Normalizing the data eliminates this weighting factor. Normalizing the AR

coe�cients reduced the classi�cation accuracy across all subjects by roughly 5%.

In contrast to other neural network methods, LVQ is well-suited to take advantage of

the relative di�erences in magnitudes of the AR coe�cients produced by the AR model.

Normalizing the data eliminates information inherent in the original AR coe�cients related

to the amount of representational bias the AR model introduced. LVQ may thus be less

sensitive to the order of the AR model used than other neural network methods. The more

unbalanced the AR coe�cients are the greater the improvement in classi�cation accuracy

one would expect to see by using LVQ as opposed to other neural network algorithms that

rely on normalized data.

5.2.2 Low pass �ltering

Signals of 60Hz as well as those above 60Hz are generally considered artifacts related to

muscle movements such as eye blinks when measuring cortical EEG signals. Experiments

were run comparing un�ltered data to data �ltered to exclude all frequencies of 60Hz and

above (Table 5.2). FIR low pass �ltering was combined with down-sampling by a factor

of 2, reducing the e�ective sampling rate to 125Hz.

Filtering out signal frequencies of 60Hz and above signi�cantly decreased classi�cation

accuracy by between 1% and 17% depending on the subject. Filtering decreased the

classi�cation accuracy more when the data from separate trials was pooled together than

when the data was segregated by trials. In general, the greater the increase in accuracy

o�ered by pooling the various trials together, the greater the decrease in accuracy if the

data is low-pass �ltered.



38

Classi�cation Accuracy

Un-�ltered Filtered

Subject Seg. Mix. Seg. Mix.

1 78% � 3% 90% � 1% 72% � 3% 75% � 2%

3 73% � 7% 91% � 1% 60% � 4% 74% � 2%

4 82% � 4% 85% � 2% 79% � 4% 84% � 1%

6 82% � 3% 88% � 1% 73% � 3% 82% � 2%

Table 5.2: Classi�cation accuracy of AR(6) coe�cients from raw EEG signals versus

classi�cation accuracy of AR(6) coe�cients from 60Hz low pass �ltered EEG signals that

were down sampled by a factor of 2.

The results of classi�cation with data from separate trials mixed together was ap-

proximately 10% better - 85% versus 75% that results when the data was segregated by

trials. There was also signi�cantly less variance in the results from one subject to another

when the data from all the trials were mixed together. Using a low pass �lter on the data

where all trails are pooled together caused a 10% to 15% decrease in accuracy for subjects

1 and 3, a 5% decrease in accuracy for subjects 6 and had no signi�cant e�ect on subject

4. Using a low pass �lter on the data segregated by trials resulted in a 5% to 10% decrease

in accuracy for all four subjects.

This peculiar decrease in classi�cation accuracy after low pass �ltering con�rms the

similar �ndings of Anderson et al. [1] where a neural network with forty hidden nodes was

used to classify the same data. Anderson et al. reported 53:2%� 0:6 correct classi�cation

on the raw un�ltered data and 51:1% � 0:6 correct classi�cation after the data had been

�ltered and down-sized as described above.

5.3 Overview of Experiments

A preliminary search for the e�ect on the classi�cation accuracy of varying the number

of reference vectors from between 2 and 16 was conducted using OLVQ on segregated and

mixed combinations of the raw AR(6) coe�cients of subject 3 for up to 50 epochs (an

epoch is de�ned to equal training on each of the 400+ training data vectors available for

each of the 30 data sets.)
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The same procedure was repeated for LVQ1 for 100 epochs using OLVQ as an ini-

tialization procedure for between 5 and 10 epochs and a learning rate of 0.05 (see rec-

ommendations in Section 2.1.1 and [10, 28]) and varying the number of reference vectors

between 2 and 256. 64 reference vectors yielded the best results, and the alpha rate was

varied between 0.0001 and 1.0 using logarithmic steps. A relatively large learning rate,

0.1, produced the highest classi�cation accuracy, which was signi�cantly higher than that

obtained with OLVQ alone.

Similar experiments were conducted using LVQ2.1, initially varying the number of

reference vectors using a learning rate of 0.1 and a window width of 0.5, then varying

learning rate, and then varying the window width between 0.1 and 1.0. 32 reference

vectors, a learning rate of 0.1 and a window width of 0.9 yielded the best results.

Parameter searches using the LVQ3 algorithm beginning with � = 0:3 and varying the

value of � between 0 and 1.0 con�rmed the values of the best parameters found when using

the other LVQ versions and yielded the best classi�cation accuracy when � = 0 (LVQ3

with � = 0 is identical to LVQ2.1).

Additional experiments, still concentrating on subject 3, using LVQ2.1 and various

combinations of reference vectors, learning rates, window widths near the best values ob-

tained while training for up to 1000 epochs con�rmed the optimal values found previously.

The same parameter search conducted on the data from the other subjects yielded better

results with slightly fewer reference vectors and a slightly lower learning rate.

Experiments with combinations of normalized and �ltered data per the procedure

in the previous section using the LVQ2.1 algorithm, 16 reference vectors, a learning rate

of 0.08 and a window width of 0.8 yielded poorer classi�cation accuracies than the same

experiments conducted on the unprocessed data (Section 5.2.2, Table 5.2). Varying the

parameters in proximity to the best values did not signi�cantly change this result.

The experiments of the following chapter thus were all conducted using unnormalized,

un�ltered, AR(6) coe�cients of the data segregated by trials, each base trial paired with

a math trial, and organized into training, cross-validation, and testing sets as described

in the previous two sections of this chapter.
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Throughout the previous preliminary experiments no signi�cant inter-dependence was

observed between varying the value of one parameter and the value of another parameter

that produced the best results. The accuracy of the piecewise parameter optimization

procedure described above was supported by this lack of parameter inter-dependence.

The e�ect of varying a single parameter was clearest when the other parameters were at

or near their optimal values. Separate experiments were thus conducted to methodically

vary each of the parameter values independently in a way to best illustrate their e�ect on

the classi�cation accuracy of the LVQ2.1 algorithm (Section 6.1, Figures 6.1, 6.2, 6.3, and

6.4.)

LVQ2.1 does not continue to approximate the optimal Bayesian decision boundaries

[27]. Yet, it yields a higher classi�cation accuracy than all the other LVQ algorithms

tested. The continued approximation of the Bayesian decision boundaries is only theoret-

ically important if the �nal reference vector positions are used. If learning is stopped at

the moment when the best approximation to the Bayesian decision boundary occurs, then

it does not matter what happens afterwards. This prompted experiments with LVQ2.1

adapted to include cross-validation as an early stopping technique. The results are pre-

sented in Table 6.1. Limited parameter variations were conducted without any signi�cant

changes in the results.

The reason behind the failure of early stopping to improve the results of LVQ2.1

was found by analyzing the learning curve of the algorithm using di�erent initial learning

rates and di�erent decay methods (see Section 6.4, Figures 6.2 and 6.6). The learning

curves demonstrated the peculiar phenomenon of either a stable, non-decreasing cross-

validation and testing classi�cation accuracy after a certain time point, or a decreasing

cross-validation and testing classi�cation accuracy followed by an increase sometimes to a

higher classi�cation accuracy than was obtainable by any other means. This peculiar form

of the learning curves motivated an analysis of the e�ect of using di�erent initialization

techniques. Neither the e�ect of varying the initial learning rate nor the e�ect of di�erent

learning schedules, nor the e�ect of di�erent initialization procedures provided any insight

into the cause of the peculiar shape of the learning curve associated with the optimal

learning rate.
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An analysis of the �nal positions of the reference vectors using LVQ2.1 with optimal

parameters and no early stopping �nally revealed some insight into the peculiar form of the

learning curve and the failure of an early stopping technique to improve the classi�cation

accuracy of LVQ2.1 (Section 7.1.1, Figure 7.1). The insight into this cause is seen to be

related to the failure of LVQ2.1 to continue to approximate the optimal Bayesian decision

boundary over time.



Chapter 6

CLASSIFICATION RESULTS

The classi�cation accuracies presented in this paper were obtained by averaging the

classi�cation accuracies of each of the 30 independent data sets, and the standard devia-

tions were calculated based on the di�erences between the classi�cation accuracies of the

30 independent data sets.

Data sets were comprised as described in the previous chapter from unnormalized,

AR(6) models of the raw EEG signals for each subject. Except for those in the �rst

section, the results refer to un�ltered data whose data sets were formed from blocks of

data segregated by trial, as opposed to the data sets where the data from all trials for a

particular subject were pooled together.

The results of an extensive parameter search are followed by a comparison of some

of the more common LVQ algorithms. The superior classi�cation accuracy of LVQ2.1 is

explored in light of the fact that it does not continue to approximate the optimal Bayesian

decision boundary. The �nal reference vector values are analyzed using Voronoi tessella-

tions, comparing the values of the individual features, and comparing the average values

of the vectors of the two di�erent tasks. The ine�ectiveness of cross validation to improve

the classi�cation accuracy is explained by the unusual learning dynamics observed. The

peculiar form of the learning curve is related to the fact that LVQ2.1 does not guarantee

a continued approximation over time of the optimal Bayesian decision boundary. The in-

e�ectiveness of more elaborate initializing techniques, i.e. OLVQ and K-means, reinforces

the importance of the observed learning dynamics.

6.1 E�ects of Parameter Values
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Figure 6.1: LVQ3 classi�cation accuracy sensitivity versus the number of reference vectors

for the AR(6) coe�cients of the raw EEG signals of all four subjects. The remaining

parameters were �xed at their optimal values| � = 0:08; a window width equal to 0:8;

and � = 0:

An extensive parameter search was performed using LVQ3. The number of reference

vectors was varied from 1 to 250, � ranged between 0.0001 and 1.0, the window width

ranged from 0.1 to 1.0, and � ranged between 0 and 1.0. The graphs represent the e�ect

of varying one parameter while the others were �xed at their optimal values|32 reference

vectors, � = 0:08; a window width equal to 0:8 and � = 0: Figures 6.1, 6.2, 6.4, and 6.3

show the e�ect of varying one parameter while keeping the other parameters �xed at their

optimal value. The error bars represent 90% con�dence intervals.

When combined with a reasonable learning rate, choosing the appropriate number

of reference vectors was the most important factor in maximizing the classi�cation ac-

curacy. An extensive search for the optimal number of reference vectors was conducted

for combinations of �ltered and un�ltered data with data sets segregated by subject and

data sets where the data from all the subjects were pooled together. Using di�erent signal
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Figure 6.2: LVQ3 classi�cation accuracy sensitivity versus the step size, �, for the AR(6)

coe�cients of the raw EEG signals of all four subjects. The remaining parameters were

�xed at their optimal values| 32 reference vectors, a window width equal to 0:8; and

� = 0:

preprocessing techniques in combination with data sets segregated by trials and mixed

together did not signi�cantly a�ect the optimal parameters.

The most signi�cant parametric di�erence between LVQ classi�cation of event related

versus spontaneous EEG data is in the optimal number of reference vectors. Whereas

with event related data only one to two reference vectors per distinguishable response

was declared optimal [12], the spontaneous data performed best with approximately 16

reference vectors per distinguishable task. The relatively large number of reference vectors

necessary for adequate classi�cation accuracy is an indication of a more complex vector

space.

The optimal number of reference vectors, 32 (Figure 6.1), is roughly 7.5% of the

total number of data vectors used for training. In general the risk of over-�tting, de�ned

as an eventual decrease in the classi�cation accuracy on the test data associated with
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Figure 6.3: LVQ3 classi�cation accuracy sensitivity versus the window width for the AR(6)

coe�cients of the raw EEG signals of all four subjects. The remaining parameters were

�xed at their optimal values| 32 reference vectors, � = 0:08; and � = 0:

a continued increase in the classi�cation accuracy on the training data, increases as the

number of reference vectors becomes a larger percentage of the number of training data

vectors. Data from one of the subjects exhibited signs of over-�tting when more than 8

vectors per class were used. Two other subjects exhibited signs of over-�tting when more

than 16 vectors per class were used. The remaining subject's signals were much more

di�cult to classify and did not exhibit any sign of over-�tting even with 128 vectors per

class, approximately one reference vector for every two training data vectors (Figure 6.1).

There was a very noticeable decay in the classi�cation accuracy for large learning

rates, �

0

. The classi�cation accuracy of three of the four subjects began to decay for

�

0

> 0:08 and for �

0

� 0:4 the results were no greater than chance, 50% (Figure 6.2).

Subject 4 showed a marked preference for a higher learning rate, i.e. �

0

= 0:16, exhibiting

a sharp decay for larger learning rates with classi�cation no better than chance at �

0

� 0:8:
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Figure 6.4: LVQ3 classi�cation accuracy sensitivity versus the value of �, for the AR(6)

coe�cients of the raw EEG signals of all four subjects. Except as indicated the parameter

values are �xed at their optimal values| 32 reference vectors, � = 0:08; and a window

width equal to 0:8

This was the same subject that exhibited signs of over�tting earlier than the others, i.e.

more than 8 reference vectors per class (Figure 6.1).

The e�ect of varying the window width was completely insigni�cant and inconsistent

from one subject to another. A constant classi�cation associated with a large variance

makes changes in the values of the window width particularly unimportant. Neither were

there any trends toward preferring a larger or a smaller window width and any window

width yielding a slightly higher average accuracy for one subject yielded a slightly lower

accuracy for another subject (Figure 6.3).

The variance in the classi�cation associated with varying the value of � was also

insigni�cant. In this case, as opposed to variances in the value of the window width, there

is a clear trend by two subjects ,subjects 1 and 6, to yield higher classi�cation accuracies
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with lower values of � (Figure 6.4.) All four subjects yielded the highest classi�cation

accuracy with � = 0 (LVQ3 with � = 0 is identical to LVQ2.1.)

6.2 LVQ Variations

Algorithms that only update one vector at a time, e.g. LVQ1 and OLVQ, modify

all reference vectors regardless of whether they contribute to the formation of the class

boundaries or not. If the two closest reference vectors to a data point are of di�erent

classes they must contribute to the de�nition of the decision boundary. LVQ algorithms

that use such pair-wise updates are more e�cient than those that update only one vector

at a time. It has also been suggested without proof that pair-wise updates lead to more

accurate approximations of the Bayes decision boundary [27].

None of the LVQ algorithms introduced to date explicitly ensure that all of the refer-

ence vectors that make up the class decision boundaries will be modi�ed. This is, however,

guaranteed by any initialization technique that initializes reference vector positions to the

positions of data vectors in the training set.

The results of our experiments comparing the classi�cation accuracies of some of the

more fundamental LVQ algorithms di�ers slightly from those previously reported by Koho-

nen [28, 26, 27]. Our results indicated that LVQ2.1 outperformed LVQ3 by approximately

2%, which was roughly 2% more accurate than LVQ1. LVQ1 was in turn approximately 4%

more accurate than OLVQ (where di�erences greater than 3% were statistically signi�cant

with 90% con�dence).

6.3 Cross-Validation

The higher classi�cation accuracy of LVQ3 with � = 0 (equivalent to LVQ2.1) when

compared with LVQ3 with � > 0, combined with the well known failure of LVQ2.1 to con-

tinue to approximate the class distributions over time [25, 27], motivated the introduction

of cross-validation as an early stopping method. Incorporating an early stopping method

into LVQ2.1 would make irrelevant its failure to continue to approximate the optimal

Bayes decision boundary over time. The only important criteria is that the algorithm
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E�ect of Cross Validation

Subject With Without

1 76% � 3% 79% � 3%

3 61% � 7% 61% � 7%

4 75% � 3% 73% � 3%

6 76% � 3% 79% � 3%

Table 6.1: Classi�cation accuracy at the end of 1000 training epochs versus at the optimal

early stopping point within 1000 epochs as determined by cross-validation using LVQ2.1

with optimal parameter values as de�ned in Section 6.1.

at some time gives a good approximation of the optimal generalizable decision boundary.

Since the position of the reference vectors corresponding to the best approximation of

the optimal generalizable decision boundary are retained as the �nal result of training, it

wouldn't matter whether the best reference vector positions occur at the end of training

or sometime earlier.

LVQ2.1 consistently showed near-best results after 50 epochs. When the optimal

early stopping point over 1000 epochs was determined by cross-validation the resulting

classi�cation accuracy was not any better than that obtained after training for the full

1000 epochs (Table 6.1). LVQ2.1 appears not to be subject to over�tting by excessive

training.

6.4 Learning Curves

The failure of cross-validation to improve the classi�cation accuracy of LVQ2.1

prompted investigation of the learning dynamics of the algorithm and further investi-

gation of the e�ect of the learning rate �. The learning curves were investigated for initial

values of alpha, �

0

; from 0.001 to 0.8 and for two di�erent scaling methods. Figure 6.5

illustrates the results of using a linear decay to zero,

�

t

= jSj�

0

(t

max

� t) t

max

= 400; jSj � 400;

where jSj is the size of the training set. Figure 6.6 illustrates the results of varying �

t

as

an inverse of the elapsed time,

�

t

=

C�

0

C + t

t

max

= 400; C = t

max

=100 = 4
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Figure 6.5: E�ect of di�erent values of �

0

, where alpha decays linearly over time, on the

classi�cation accuracy of the training, cross-validation, and test data per training epoch

for over 400 epochs.

where C is a constant.

The graphs in Figure 6.5 illustrate the e�ect on the classi�cation accuracy per epoch

for di�erent values of �

0

when the linear decay model was used. The graphs in Figure

6.6 illustrate the same e�ects for di�erent values of �

0

when alpha

t

varies as an inverse

of the elapsed time t. A linearly decaying learning rate performed best (Figures 6.5 and

6.6). The plots exhibit no evidence of a tendency to over-�t the training set over time and

explain the lack of cross-validation to increase the classi�cation accuracy.

Moderately high values of � of between 0.08 and 0.2 revealed a peculiar phenomena

(Figure 6.5): a decrease in classi�cation accuracy and an increase in the variance during

the middle of training, followed by an increase in classi�cation accuracy and a decrease
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Figure 6.6: E�ect of di�erent values of �

0

, where alpha is inversely related to time, on the

classi�cation accuracy of the training, cross-validation, and test data per training epoch

for over 400 epochs.

in the variance at the end of training (Figure 6.5). This unusually shaped learning curve

was hypothesized to be the result of poor initialization and exploration for a better local

optima as the step size, �; decreases over time.

6.5 Initialization Method

The initialization of reference vectors is critical to guaranteeing that all of the refer-

ence vectors that make up the class decision boundaries will be modi�ed. It was hypothe-

sized that the peculiar form of the optimal learning curves, a decrease in accuracy followed

by an increase to the highest value (Section 6.4, Figure 6.2), might be the result of a less

than optimal initialization procedure. It was further hypothesized that a better initializa-

tion procedure might not only improve the overall classi�cation accuracy, but change the

learning dynamics as well such that an early stopping method, i.e. cross-validation, might

prove useful and yield further improvements. All of the previous experiments had been

conducted by initializing the reference vectors at random data points and then running

OLVQ for four epochs.

The peculiar form of the optimal learning curves (Section 6.4, Figure 6.2) rendering

early stopping methods useless was unchanged by varying the initializing technique. K-

means initialization was compared with initialization to random chosen data vectors using
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the K-nearest neighbors method (KNN) alone and in combination with OLVQ. The KNN

method initializes the reference vectors at points identical to randomly chosen data vectors

as long as the majority of the K nearest neighbors, i.e. data vectors, are of the same class

as the data vector whose position the reference vector is adopting.

Initial experiments tested values of K between 1 and 128 inclusive for KNN with no

observable trend nor statistically signi�cant di�erence in the �nal classi�cation accuracy:

K = 2 was used as a simple value that appeared to be at least as good as any other.

Experiments were run using OLVQ for 100 epochs with no signi�cant change after the �rst

couple epochs. In order to ensure su�cient initialization, OLVQ was generally allowed to

run for four epochs. LVQ2.1 was run for 400 epochs. Only the �rst approximately 100

epochs are presented to better illustrate the e�ect of the initialization techniques (Figure

6.7). Classi�cation accuracies are plotted on a scale of from 60% to 100% on all three

graphs to facilitate comparison.

Overall K-means initialization resulted in a classi�cation accuracy of approximately

73%, OLVQ a �nal accuracy of approximately 80%, and initialization at random data

points a �nal classi�cation accuracy of approximately 83%. Since in general di�erences

of greater than 6% are statistically signi�cant it appears that K-means initialization gives

worse �nal results than the other two initialization techniques.
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Figure 6.7: E�ect of di�erent initialization techniques on the classi�cation accuracy of the

training, cross-validation, and test data per training epoch for the �rst �fty epochs.



Chapter 7

ANALYSIS OF LVQ2.1

An analysis of the �nal positions of the reference vectors using LVQ2.1 with optimal

parameters and no early stopping �nally revealed some insight into the peculiar form

of the learning curve and the failure of an early stopping to improve the classi�cation

accuracy of LVQ2.1 (Figure 7.1). The cause is related to the failure of LVQ2.1 to continue

to approximate the class distributions over time as is the inability to optimize step size of

LVQ2.1 to produce OLVQ2.1: on average the step size would not decrease and the process

would not converge [27] (Section 4.4).

Kohonen [25, 27] takes advantage of two methods to stabilize the reference vector

positions while retaining pair-wise reference vector updates of LVQ2.1. The window width

constraint limits the e�ect of the gradient away from the data vector by limiting updates

to cases where the two reference vectors are relatively equal distance away from the data

vector. In order for reference vectors to continue to be pushed farther away both reference

vectors must already be pushed a relatively equal distance away from the data vectors

concerned (Section 7.2, Figure 7.4). The second method directly adds an additional force

of attraction scaled down by the value of �:

Though these two methods do not directly oppose the gradient calculations of Equa-

tion 3.6, neither are they the most accurate approximation of these equations. That their

principal purpose is to interact to stabilize the reference vector positions is evident from

Kohonen's recommendation to associate larger, more constraining, values of � with larger,

less constraining, window widths and vice versa [27]. More accurate gradient approxima-

tions can theoretically be implemented through small window widths and large � values.

The empirical superiority of the LVQ2.1 algorithm is puzzling in light of its failure

to continue to approximate the class distributions. Its superiority over LVQ1 appears to
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be due to the method of pair-wise updates introduced with LVQ2. The less signi�cant

superiority of LVQ2.1 over LVQ3 must be the result of Equation 4.4. This equation is

the only di�erence between LVQ2.1 and LVQ3 and was introduced to assure at least a

rough approximation of the class distributions over time.This suggests that either contin-

ued approximation of the class distributions is unnecessary or that the Equation 4.4 is

inappropriate.

This chapter focuses on analyzing the failure of LVQ2.1 to continue to approximate

the class distributions. The values of the reference vectors after training are analyzed

�rst in relation to the values of the data vectors followed by an analysis of the average

coe�cient values for the two di�erent classes, math and base (Section 5.1.1). The failure

of LVQ2.1 to continue to approximate the class distributions is explained and illustrated

by a a simple example. A discussion of the sub-optimality of these �nal reference vector

positions is followed by a discussion of Kohonen's solution to this problem, LVQ3.

7.1 Empirical Observations

What LVQ2.1 learned during training was investigated by analyzing the values of the

reference vectors after training. Two techniques were used to aid in visualizing the ref-

erence vectors. Sammon Mapping [18] is a non-linear dimensionality reduction technique

that strives to preserve the same relative distance between reference vectors in two dimen-

sions that existed in the original k dimensions, where k > 2. This permits the comparison

of reference vectors among themselves as well as to the data vectors, allowing the visual-

ization of the Voronoi tessellations and the resultant classi�cation boundary. Averaging

was used to combine the reference vectors to analyze the average values of the coe�cients

of the reference vectors.

7.1.1 Sammon Mapping

To aid in the graphical visualization of Voronoi tessellations, the Sammon mapping

[18] method of dimensionality reduction was used. This is a non-linear dimensionality

reduction algorithm that over repeated cycles adjusts the positions of the data points in
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the lower dimensionality data set to more accurately represent the relative positions of

the data points in the higher dimensionality set [18].

Let d

�

ij

represent the distance between two reference vectors i and j in the original

higher dimensional space, d

ij

represent the distance between two reference vectors in the

desired lower dimensional space and N the number of reference vectors in each of the two

spaces. The dimensionality reduction or mapping error is:
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:

The error is minimized though a stochastic approximation method using gradient

descent. Let r equal the dimensionality of the reduced dimensionality space, then at time

t,
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:

The vector update equation for the reduced dimensionality space is,
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It was observed through Sammon mapping that at the end of 400 epochs the LVQ2.1

reference vectors formed a ring around the data vectors. All reference vectors were more

or less equal distance from the center of the data cloud. The reference vectors of one class

were grouped together to form half the ring and those of the other class formed the other

half (Mapping Error = 0.17).

Voronoi Tessellations Decision Boundary

Figure 7.1: Sammon Mapping of LVQ2.1 reference vectors after training. (x's represent

data vectors for the math task, o's represent data vectors for the base task, +'s represent

reference vectors for the math task, *'s represent reference vectors for the base task.)

Figure 7.1 as well as all subsequent similar plots show the relative position of the

reference vectors and corresponding data vectors from the test set. The size of the test set

comprises approximately one tenth of the total number of data vectors available. The plot

represents the vectors from one of the thirty examples sets of Subject 1, chosen arbitrarily

(Section 5.1.4). All thirty of the experimental sets exhibited the same phenomenon, as

did the reference vector mappings for the other subjects. Verleysen et al. [40] claim that

such reference vector positions are limited in the data distributions that they are able to

accurately classify (see Section 7.3 for a more detailed discussion of this point).

7.1.2 Averaging

After training the thirty di�erent training sets using LVQ2.1 with optimal parameters,

the thirty di�erent sets of �nal reference vectors were averaged together to produce 32
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average reference vectors, 16 base vectors and 16 math vectors. Figure 7.2 displays the

values of each of the 36 features of the 32 reference vectors plotted in Figure 7.1. Each

line represents a reference vector. The �rst six columns correspond to the coe�cients of

the �rst order or the sixth order AR model, the next six columns the second order and

so on (Section 5.1.3). Black or solid boxes represent positive values and white or empty

boxes negative values. The size of the boxes is directly proportional to the magnitude of

the feature. Thus, very small boxes of di�erent colors represent values close to zero, and

very large boxes of di�erent colors represent the two extremes of possible values.

The reference vectors are organized by position beginning with the base reference the

farthest to the right and continuing counter-clockwise around the circle of reference vectors

ending with the math vector the farthest to the right. According to the Sammon mapping

dimensionality reduction procedure used to produce Figure 7.1, neighboring reference

vectors in Figure 7.2 are more similar to each other than more distant reference vectors.

Due to the circular nature of the reference vectors the same is true of the vectors at the

two extremes. The only signi�cant factor we are able to see in Figure 7.2 is the general

di�erence between the values of the reference vectors representing base tasks and those

representing math tasks.

An important requirement of any averaging technique is the consistency of what is

being averaged. In our example it was essential for the resulting average to have any

meaning that those reference vectors that represented the same section of the data space

be averaged together and that reference vectors that represented di�erent sections of the

data space not be averaged together. This task was made easier in the case of LVQ2.1,

by the fact that Sammon mapping was able to completely separate the base and math

vectors in two dimensions (Figure 7.1).

The consistent pattern of a ring of reference vectors surrounding the data space

consisting of two distinct arcs, one of math vectors and the other of base vectors made

correlating vectors across the various reference vectors sets for averaging a fairly simple

and accurate method of generalizing the results. The Sammon mapping separation of the

reference vectors into two distinct clusters also supports the validity of comparing the

average of all the base vectors to the average of all the math vectors.
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Math Reference Vectors

Figure 7.2: Reference vector feature coe�cients. Columns correspond to �rst through

sixth order AR coe�cients for channels C
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The comparison of the average of all the base vectors to the average of all the math

vectors (Figure 7.1.2) makes the di�erences more clear. It is evident from the average

magnitudes of the coe�cients that the classi�cation potential of the coe�cients decreases

as the AR order of the coe�cients increases. There are clear di�erences, however, between

the average math and base vectors coe�cients for all AR-orders. The coe�cients obtained

when averaging the sixteen math and base vectors (Figure 7.1.2) correlate strongly to the

coe�cients of the math and base vectors when LVQ2.1 was run with only two reference

vectors.

7.2 Statistical Observations

The observed consistent long term e�ect of LVQ2.1 to move reference vectors com-

pletely out of the data vector space and their resulting pattern of two arcs, one for each

class, appears to be undesirable [40]. The analysis of the coe�cients of the reference

vectors by averaging techniques provides no insight into the reasons behind this peculiar

phenomenon. An explanation for this result, however, is available based on probabilities,

speci�cally the probability that the closest reference vector to a data vector will be of the

same class as the data vector.

If an LVQ algorithm is classifying better than chance, then most often the closest

reference vector to a data vector will be of the same class. LVQ1 only updates the closest

reference vector, which will most often be of the same class as the data vector and hence

over time the updates will move the reference vectors closer to the data vectors.

LVQ2.1 determines the closest two reference vectors to a particular data vector|if

these two vectors are labeled di�erently, e.g. base and math, then they are updated. The

reference vector with the label the same as the data vector is moved toward the data

vector: � times the distance between it and the data vector. The other reference vector is

moved away from the data vector: �� times the distance between it and the data vector.

Thus if LVQ2.1 is classifying better than chance, then over time the updates will move

the reference vectors away from the data vectors, as was observed in our experiments with

LVQ2.1 (Figure 7.1) where the reference vectors were pushed outside the data space. The
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Figure 7.4: E�ect of repulsive update on LVQ2.1 after training for �ve epochs with 32

reference vectors, � = 0:08; and a window width equal to 0:8

bounds on this e�ect are realized when the two closest reference vectors to a data vector

belong to the same class as the data vector.

A simple example was constructed to more clearly illustrate this e�ect (Figure 7.4a).

Two non-overlapping bands of di�erently labeled data in close proximity to each other

were generated. The result of applying LVQ2.1 to this problem clearly illustrates the long

term e�ects of the repulsive reference vector updates after as few as �ve training cycles.

The di�erence between the standard LVQ2.1 algorithm, and the LVQ2.1 algorithm without

repulsion is clear (Figure 7.4b&c).
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As was seen with the experimental EEG data (Section 7.1.1, Figure 7.1) the overall

repulsive e�ect on data segregated into two parallel bands is symmetrical (Figure 7.4b).

Thus, though LVQ2.1 does not approximate the class distributions, it does not always

adversely e�ect the decision boundary and the resulting classi�cation accuracy (Section

6.2).

7.3 Sub-optimality of �nal LVQ2.1 reference vector positions

It is quite easy to see that any decision boundary formed by reference vectors in a

ring around the data vector space can be duplicated by reference vectors positioned within

the data vector space. It is equally evident that the reverse is not true. The position of

reference vectors outside the data vector space reduces the number of di�erent decision

boundaries possible for a given number of reference vectors. The assumption of the sub-

optimality of LVQ2.1 rest �rst of all on the assumption that there exist certain problems

for which the best decision boundary formed by reference vectors outside the data space

is signi�cantly worse than the best decision boundary formed by reference vectors within

the data space.

Secondly, if a method of early stopping, e.g. cross-validation, is used in conjunction

with LVQ2.1, it must also be assumed that the best decision boundary formed during

the movement of the reference vectors outside the data space is signi�cantly worse than

the best decision boundary formed when the reference vectors remain in the decision

boundary. This assumes that the algorithm imposes a particular path on the movement

of the reference vectors, thereby limiting their possible positions within the data vector

space before they are eventually expelled.

Similarly, we must �nally assume that the positions that the reference vectors pass

through on the way to leaving the data vector space are somehow inferior to the positions

they would pass through if they were not being pushed out of the data vector space.

However, this assumption is entirely dependent on the assumption that the algorithmic

updates which lead to the eventual expulsion of the reference vectors are signi�cantly

inferior to some other possible updates that do not have the same long term expulsion

e�ect.
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Diamantini [7], actually proves that the LVQ2 algorithms lead to sub-optimal decision

boundaries. An example is also given using LVQ2.1 to classify two equiprobable bivariate

normal density functions with identical mean and di�erent covariance matrices using four

reference vectors. It is evident that there exists a repositioning of the �nal reference vector

positions that would result in a more accurate approximation of the optimal Bayesian

decision boundary and hence greater classi�cation accuracy. The same results were also

found for LVQ1, [8]. Diamantini [7] also shows an example where her Minimum Error

Probability (MEP) algorithm (Section 4.8, Equations 4.7 and 4.8) results in only 1.3%

greater error probability than the optimal Bayesian classi�er. The error probability of

LVQ2.1 given the same classi�cation task is 13.3% greater than that of the Bayesian

classi�er.

It is signi�cant to note with all three algorithms, LVQ1, LVQ2.1 and MEP, the greater

error probability appears to be caused by a LVQ decision boundary that was outside the

Bayesian decision boundary [7, 8]. This is clearly what would be expected by the imbalance

in favor of repulsive forces in the case of LVQ2.1. It also appears to be a likely result of

the MEP algorithm given its similarity to LVQ2.1 (Equations 4.1, 4.7, 4.2, 4.8, 4.3 and

4.6). It is, however, a rather surprising result in the case of LVQ1.

7.4 Continued Approximation of the Bayesian Decision Boundary

The cause behind the failure of LVQ2.1 to continue to approximate the class distri-

butions has been explained through simple statistical observations. It was shown that

this cause is a direct result of the relative strengths of the attractive and repulsive forces

exerted on the reference vectors. The fact that goal of LVQ1 is not strictly to minimize

misclassi�cation error probability, but rather to maximize its cost function with respect to

units of the same class and minimize the cost function with respect to units of the other

class has been proven by Diamantini [8, 6, 9]. Diamantini also demonstrates that LVQ2.1

doesn't minimize the misclassi�cation error probability either [7].

It appears that errors of LVQ2.1 in approximating the optimal Bayesian decision

boundary are due to its failure to continue to approximate the class distributions. Kohonen
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introduces LVQ3 (Section 4.5) as a method to provide at least a rough approximation of

the class distributions over time. LVQ3 adds an additional update to the reference vectors,

albeit by a lesser amount, a factor of �, when the two closest reference vectors are of the

same sign as the data vector. Provided the value of � is between 0.1 and 0.5, the addition

of this attractive force to the algorithm tends to keep the reference vectors in the same

region as the data [27]. There is no theoretical justi�cation given for this modi�cation. It

is simply o�ered as a solution to the apparent advantage of continued rough approximation

of the class distributions.

It is also worth noting that constraint of LVQ2.1 introduced by the notion of a window

width also helps the algorithm to approximate the class distributions. A data vector must

be situated within a certain distance, as speci�ed by the window width parameter, of

the class decision boundary separating the two closest reference vectors in order for it to

inuence the position of the reference vectors. This provides a constraint on the ratio

of the relative distances separating the reference vector and the data vector, Equation

4.3, and by consequence a similar constraint is placed on the relative distances that the

two reference vectors are moved: the distance that each reference vector is moved is an

equal proportion, �, of the distance between them and the data vector. However, this

constraint, by itself, is generally not strong enough to guarantee that the reference vectors

continue to approximate the class distributions (Figure 7.1 and [27]).

An exception to this was observed with the simple example presented in the preceding

section of classifying two non-overlapping bands of di�erently labeled data. In this case it

was found that LVQ2.1 with a window width w < 0:05 was su�cient to provide continued

approximation of the class distributions. w < 0:05 permits reference vectors to be updated

only when the minimum of the ratio of the distances between a data vector and the two

closest reference vectors, which must also belong to di�erent classes, be greater than 0.9,

(Section 4.4, Equation 4.3.) It is evident from Figure 7.4 that this is unlikely to ever be the

case, which would mean that the only reason the window width parameter is guaranteeing

continued approximation of the class distributions is because it is preventing LVQ2.1 from

updating the positions of the reference vectors, leaving the reference vectors at the same

positions they were initialized.
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Figure 7.5: LVQ3 � = 0:1 & 0:5: Decision Boundary (Mapping Error =0.15).

Our experiments con�rm Kohonen's [28, 27] that the LVQ3 algorithm with � values

of between 0.1 and 0.5 adds a force pulling the reference vectors towards the data vectors

that is strong enough to contain the reference vector positions within the data space.

Figure 7.5 shows representative �nal reference vector and test data vector positions for

two di�erent � values. Previous results showed no signi�cant variance in the classi�cation

accuracy for di�erent values of � (Section 6.1, Figure 6.4).

It was for this reason that the algorithm was simpli�ed by eliminating a parameter,

choosing � = 0 (LVQ3 with � = 0 is equivalent to LVQ2.1). The impact of the value of

the parameter � is also dependent on the number of reference vectors per class. If there

is only one reference vector per class then LVQ3 and LVQ2.1 are again equivalent: the

reference vector update speci�ed by Equation 4.4 will never be used since the algorithm

does not posses two reference vectors of the same class. The impact of the value of � is

roughly correlated to the number of reference vectors per class minus one divided by the

total number of reference vectors.



Chapter 8

THEORETICAL ANALYSIS OF LVQ

Diamantini [7, 8, 6, 9] proves that the traditional LVQ algorithms proposed by Koho-

nen neither approximates Equation 3.4, nor minimizes the misclassi�cation error probabil-

ity. This chapter analyzes some of the basic theoretical concepts of LVQ, focusing on the

proposed goal of LVQ (Equation 3.4), its gradient (Equation 3.6), and its approximation

(which depends on certain assumptions that are not altogether evident.) These facets of

LVQ are analyzed independently and in the context of minimizing misclassi�cation error

probability.

The chapter begins with a discussion of the errors of traditional LVQ in approximating

Equation 3.4. Of particular interest is the e�ort to balance the repulsive and attractive

forces necessary for continued function approximation over time and the deviation from a

theoretically accurate approximation of Equation 3.4 induced by these e�orts.

The next section is an ad-hoc presentation of alternative methods to balance the

repulsive and attractive forces necessary for continued function approximation over time.

This section is complemented by occasional preliminary results to demonstrate that radical

deviations from a theoretical approximation of Equation 3.4 yield classi�cation results

comparable to LVQ3.

The following section returns to Equation 3.4. The question as to why the theoret-

ically more accurate approximation of the equation represented by LVQ2.1 yields poorer

function approximation in practice than other LVQ variations including the radical vari-

ants presented in the previous section is discussed. Secondly, the relationship between

Equation 3.4 and minimizing misclassi�cation error probability is analyzed especially in

light of work by Diamantini associated with the MEP algorithm.
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The chapter concludes with a discussion of the MEP algorithm and the quest for a

classi�er based on Vector Quantization that approximates optimal Bayesian Classi�cation.

8.1 Errors in Approximating Equation 3.4

The approximation of Equation 3.6 is based on the Robbins-Monro theory of stochas-

tic approximation [27]. Though the theory is well established and central to the theory

of iterative approximations it is often only super�cially understood. Unfortunately a de-

tailed expose of the theory is beyond the scope of this study. Instead we will focus on

several key assumptions for LVQ regarding the vector updates formulas in approximating

gradient descent (Section 3.1.4, Equation 3.6):

1. Every data vector x is assumed to be situated in some Bayesian region B

k

where k

identi�es the label associated with the region, i.e. x(t) 2 B

k

.

2. Assume a speci�c Bayesian region, B

k

. Any update speci�ed by the gradient assumes

that the reference vectors to be updated, m

i

(t) and m

j

(t), and the current data

vector, x(t), are in the region B

k

(i.e. m

i

(t);m

j

(t); x(t) 2 B

k

. If a reference vector

to be moved, e.g. m

i

(t), has the same label as the data vector x(t), then x(t) is

assumed to belong to the class with the highest discriminant function in that region,

x(t) 2 S

k

(Section 3.1.3, Figure 3.1 and Equation 3.2). Thus, the label or class

of x(t) is assumed to be the same as the class associated with the region, and the

gradient speci�es moving m

i

toward x(t) (Equation 3.6).

3. If a reference vector, m

i

, to be moved at time t has a di�erent label than x(t), then

x(t) is assumed not to belong to the class with the highest discriminant function in

the Bayesian region where it is located, x(t) 62 S

k

.

4. x(t) 62 S

k

implies x(t) 62 S

r

: In other words, if, per assumption 3, x(t) is assumed not

to be a member of the class with the highest discriminant function in the Bayesian

region where it is located, then it is assumed that x(t) belongs to the class with the

second highest discriminant function in the Bayesian region where it is located. The

gradient thus speci�es moving m

i

away from x(t) (Equation 3.6). When only two

classes of items are considered x(t) 62 S

k

implies x(t) 62 S

r

by default.
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In the case of pair-wise updates of di�erently classed reference vectors, e.g. LVQ2.1,

assumption 2 conicts with assumption 3. The reference vector of the same class as the

data vector x(t) leads us to conclude that x(t) 2 S

k

per assumption 2. At the same time, t,

the reference vector of a di�erent class than the same data vector x(t) leads us to conclude

that x(t) 62 S

k

per assumption 3.

The choice of which gradient direction to move in (Equation 3.6) depends on whether

the label of the reference vector matches the label of the Bayesian region, B

k

; where it is

presently located. After selecting the closest reference vector to a data point, determining

which gradient direction to move in, if any, relies on determining whether a data point

belonging to a particular conditional probability distribution lies within its Bayesian region

B

k

or outside of it. This requires that the regions B

k

be de�ned a priori. Approximating

these regions, however, is the goal of the algorithm.

The notion of a window width parameter, introduced in LVQ2 and used in all sub-

sequent versions of LVQ based on LVQ2, provides for a more accurate approximation of

the gradient as the value of the parameter decreases. A small window width constrains

the second closest reference vector to be nearly as close to the data vector as the closest

reference vector. In the limit as the window width approaches 0 the two reference vectors

are equal distance from the data vector and are thus both the closest reference vector to

the data vector and both subject to be updated per Equation 3.6.

A small window width constrains the region where data vectors are able to inuence

the reference vector positions to be in close proximity to the hyperplane representing the

decision boundary between the two reference vectors. Thus in the LVQ2 algorithms a small

window width limits the adjustment of the decision boundaries at a particular time to be

the result of inuence only from those data vectors situated near the current estimates of

the decision boundaries at that time.

The optimal Bayesian decision boundaries are de�ned at points where the two highest

conditional probability densities are equal. Assume that the probability densities at the

Bayesian decision boundaries are more accurately approximated by neighboring probabil-

ity densities the closer they are to actual Bayesian decision boundaries. Then provided
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we also assume good initialization, a relatively small window width should increase the

accuracy of the approximation of the optimal Bayesian decision boundaries.

The use of a small window width also help to balance the attractive and repulsive

forces of LVQ2.1 providing for better continued approximation of the class distributions.

Preliminary results have indicated that a window width where w < 0:01 provides for con-

tinued approximation of some simple class distributions that were not approximated for

larger values of w. These values of w fall outside the range of previously tested window

widths, and the inuence of such small window widths on the classi�cation accuracy on

more complicated data distributions as well as their success in continued rough approxi-

mation of the class distributions remains to be tested.

For small window widths, the modi�cations of LVQ3 should improve the approxima-

tion of Equation 3.6. They do so in a biased way however, since LVQ3 does not update

the two closest reference vector positions when the closest reference vectors belongs to the

same class as each other but to a di�erent class than the data vector. It would appear that

an even more accurate approximation of Equation 3.6 would be to update only the closest

reference vectors position when the window width constraint was not satis�ed, i.e. the

closest reference vector was signi�cantly closer to the data vector than the second closest

reference vector.

8.2 LVQ Algorithms not Based on Equation 3.4

Of all the LVQ algorithms investigated, LVQ2.1 results in the worst empirical ap-

proximation of the class distributions and hence of Equation 3.4. Yet, it is precisely this

algorithm that theoretically appears to give the most accurate approximation of Equation

3.4 [7, 27]. Section 4.8 discusses the related observation that LVQ2.1 yields the worst

empirical approximation of Equation 3.4, but the highest classi�cation accuracy.

This section demonstrates that the LVQ3 solution of ensuring a more accurate con-

tinued approximation of the class distributions over time than LVQ2.1 is by no means

the only possibility. The deviation of LVQ3 from a theoretical approximation of Equation

3.6 motivates the investigation of other deviations. In general the algorithms that follow
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represent more radical deviations from a theoretical approximation of Equation 3.6 than

LVQ3.

Limited empirical studies were conducted based on some of the algorithms to demon-

strate that not only are there a wide variety of alternative methods to improve the empir-

ical approximation of the class distributions of LVQ2.1, the classi�cation results of some

of those tested are comparable with those obtained with LVQ3. The empirical results of

this section, though limited, demonstrate a surprising degree of insensitivity to the im-

plementation of reference vector movements and hence the basis of LVQ as a theoretical

approximation of Equation 3.4.

A simple solution to the problem of LVQ2.1 pushing the reference vectors out of the

data space is to bound the repulsive movements to be less than or equal to the attractive

movements. This bound is directly expressible in terms of the size of the window width

w; (Section 4.3, Equation 4.3.) The reference vector positions are only modi�ed when the

ratio of the distances between the data vector and closest reference vector to that of the

distance between the data vector and second closest reference vector is greater than

1�w

1+w

:

Multiplying � in Equation 4.2 for LVQ2.1 (Section 4.4) by

1�w

1+w

guarantees that the sum

of all forces pushing reference vectors away from data vectors is less than or equal to the

sum of all forces pulling reference vectors toward data vectors. Letting L(x) represent the

label of x, this algorithm can be expressed as:

m

c

(t+ 1) =

(

m

c

(t) + �(t)[x(t)�m

c

(t)] if L(m

c

) = L(x)

m

c

(t)�

1�w

1+w

�(t)[x(t) �m

c

(t)] otherwise

As this bounds the attractive forces to be greater than the repulsive forces, the distance

between the reference vectors might decrease asymptotically, though not monotonically

as with LVQ2. It is hypothesized that the use of an early stopping technique with this

algorithm would increase classi�cation accuracy.

It is also possible to further limit the attractive and repulsive forces to be exactly

equal: the distance moved away from a data vector by one reference vector can be con-

strained to equal the distance moved away from the same data vector by a di�erent refer-

ence vector. An equal step size for both movements is made while preserving the gradient
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direction of each. If the step sizes are made equal along each separate dimension then the

direction of the gradients are altered and the expressibility of the collection of reference

vectors is limited by holding the center of mass of the reference vectors �xed. Preserving

the gradient direction requires a signi�cant amount of additional geometric calculations

likely to slow down the algorithm.

Another relatively simple alternative is to eliminate any dependence on the distance

between a reference vector and the data vector when moving reference vector away:

m

(i)

c

(t+ 1) =

(

m

(i)

c

(t) + �(t) if m

(i)

c

� x

(i)

m

(i)

c

(t)� �(t) otherwise

(8.1)

A slightly more complicated approach uses a logarithmic scale where movements away

from the data vector are inversely proportional to the relative proximity of the reference

vector in each of the dimensions of the vector space:

m

(i)

c

(t+ 1) =

(

m

(i)

c

(t) + (V

(i)

� jx

(i)

�m

(i)

c

j)�(t)) if m

(i)

c

� x

(i)

m

(i)

c

(t)� (V

(i)

� jx

(i)

�m

(i)

c

j)�(t)) otherwise

(8.2)

V

(i)

equals the maximum range of values across each dimension. Indexing V by the

dimension preserves the relative importance of di�erent features represented by the scaling

of the data vectors across dimensions. The optimal value of  will need to be determined

experimentally. Common sense suggests 0 <  < V for Equation 8.1, or 0 <  < max

i

V

(i)

for Equation 8.2.

The results of implementing Equation 8.2 for repulsive updates were statistically

equivalent to the classi�cation accuracy obtained with LVQ3. The results of using Equa-

tion 8.1 for repulsive updates was statistically equivalent to the results when using either

Equation 8.1 or Equation 8.2 for both repulsive as well as attractive updates: the clas-

si�cation accuracy was statistically equivalent to that obtained with LVQ1. It is rather

surprising that the reference vector updates either independent of inversely related to

the proximity of the reference vectors to the data vector did not signi�cantly decrease

classi�cation accuracy.

Replacing moves away from di�erently classed data vectors with moves towards data

vectors of the same class is another alternative. Although this solution resolves the prob-

lems of continued approximation of class distributions because of an imbalance between



72

the attractive and repulsive forces of LVQ2.1, it introduces a problem of an attractive

force concentrated around a speci�c data vector as opposed to a cluster of data vectors.

Rather than moving toward one particular data vector of the same type it would be better

to move toward the center of a cluster of data vectors of the same type. However, since

the distribution of data vectors is not known a priori, the optimal size of a collection of

data vectors cannot be determined.

To reduce the over attraction to the closest data vector of the same class to the

detriment of simultaneously representing nearby similarly classed data vectors, the force

of this attraction can be scaled down by a factor � � 1: The lower bound on � can be

safely established as equal to the number of data vectors in the sample that are not of a

particular class. As a guideline, if � equals the number of oppositely classed data vectors

that exerted a force on it, then the attractive force towards the closest data vector of

the same class would be doubled. Preliminary experimental evidence suggests that this

alternative also yields statistically equivalent classi�cation accuracy as that obtained with

LVQ3.

8.3 Problems with Equation 3.4

The advantage of the Equation 3.4 is that, provided the initialization has separated

the reference vectors into appropriate B

k

regions, an accurate approximation of the func-

tion that preserves this separation of the reference vectors leads to an similarly accurate

approximation of the optimal Bayesian decision boundaries. Note that this transformation

and the segregation of di�erent reference vectors into di�erent regions is a direct result of

the nearest neighbor rule used for classi�cation. The k-nearest neighbor rule is potentially

capable of determining which probability density function or which class of reference vec-

tors predominate in a particular region, and thus does not require a complete separation

the classes for accurate Bayesian classi�cation.

The decision boundaries are identi�ed by those points where Equation 3.4 is zero. For

accurate classi�cation, it is only the regions that de�ne the decision boundaries, where

Equation 3.4 equals zero, that we need to accurately approximate. As long as these
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regions are accurately approximated, including a positive probability density in areas near

these regions, then errors in the remainder of the function approximation are irrelevant:

values close to zero, or even equal to zero provided the segregation of classed reference

vectors remained appropriate, would actually yield to a more e�cient algorithm focusing

the placement of reference vectors near the decision boundaries where they are needed.

It is immediately evident that the fact that Equation 3.4 is zero at the decision

boundaries means that the reduction in the probability density is greatest at these points.

A VQ approximation of Equation 3.4 will thus place many fewer reference vectors in

this region than would be the case in approximating an accumulation of the discriminant

functions. The region in close proximity to the decision boundaries is where the greatest

percentage of reference vectors should ideally be located for optimal classi�cation. The

problem, is the practical one of insuring that the reference vectors will not cross the

Bayesian decision boundaries, while placing the greatest percentage of reference vectors

in the closest proximity of these boundaries that simultaneously enables the accurate

determination of these boundaries as possible.

It is also to be observed that classifying non-overlapping probability distributions can

be done by separately approximating the individual probability density functions. The

triviality of this situation is interesting only in so far as it provides guidelines on appropri-

ately approximating overlapping conditional probability densities functions (Equation 3.2)

or a function derived from them (Equation 3.4). Nevertheless, classes that are completely

separable should reduce to a sum of separately approximated densities. If there is no

overlap in the probability densities, then there is no di�erence between the discriminant

functions, Equation 3.2 for all S

k

and the transformed function, Equation 3.4, for all B

k

.

No overlap is equivalent to saying that S

k

2 B

k

for all B

k

: Thus for x 2 B

k
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) = 0 :
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fp(xjx 2 S

h
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h

)g

= p(x): (8.3)

(8.4)
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This leads to the familiar attractive portion of the LVQ1 update, Equation 4.1. With-

out any repulsive force it is essential that the algorithm is properly initialized so that the

reference vectors are already appropriately separated by the initialization method.

The formula for repulsive updates (Section 3.1.4, second part of Equation 3.4) was

based on a function transformation (Sections 3.1.3 and 3.1.4, Equations 3.2 and 3.4, Figure

3.1) that appears unnecessary. The function transformation to Equation 3.4 is formed by

subtracting the conditional probability density at x of the class with the highest conditional

probability density at x from the conditional probability density at x of the class with the

second highest conditional probability density at x.

This transformation is such that f(x) = 0 at all Bayesian decision borders. A Bayesian

decision boundary is by de�nition the point at which the conditional probability densi-

ties at x of the classes with the two highest conditional probability densities are equal.

This provides for a convenient de�nition for the Bayesian borders, even though it is not

theoretically necessary.

There are, however, practical arguments for such a transformation. Any accurate

method of approximating this function should discourage reference vectors from crossing

the Bayesian decision boundary, since the value of the function at these boundaries is 0.

Thus to the extent that the initialization method has successfully segregated the reference

vectors into the appropriate regions, approximating the transformed function may well

preserve this segregation while providing a more precise estimate of the borders.

This function transformation, however, is at the root of the failure of LVQ2.1 to

continue to approximate the class distributions and consequently fail to guarantee an

approximation of the Bayesian decision boundaries for all distributions. The gradient

calculations of the original discriminant functions specify only an attractive force (Section

3.1.4, Equation 3.7). The gradient calculations of the transformed function, Equation 3.4,

specify both an attractive force as well as a repulsive force (Equation 3.8). As previously

mentioned (Section 7.4), it is the di�culty in balancing these two forces that causes LVQ2.1

to fail to approximate the class distributions.

Theoretical justi�cations for this transformation appear lacking. In addition it intro-

duces an additional level of complexity in dealing with a gradient that speci�es movements
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in two diametrically opposed directions (Section 3.1.4, Equation 3.6). It appears, however,

that the practical bene�ts of such a transformation when combined with a nearest-neighbor

classi�cation method are quite solid. Empirical studies using LVQ2.1 where the repulsive

updates were omitted resulted in a reduction in classi�cation accuracy of approximately

10%, from 82% to 72% correct classi�cation. Additional support for the usefulness of

repulsive forces and related function transformation is given by the fact that the MEP al-

gorithm which is theoretically based on minimizing the misclassi�cation error probability

is strikingly similar to LVQ2.1.

8.4 Maximizing Classi�cation Accuracy

Kohonen confuses function approximation with classi�cation by failing to give ade-

quate importance to the labels of the reference vectors. Optimal Bayesian classi�cation

according to the nearest neighbor rule requires:

1. The reference vectors be segregated by label into Bayesian regions.

2. For every set of two di�erently labeled reference vectors that are each the closest

reference vector of a di�erent label to the other, the midpoint of the line connecting

them lies on the Bayesian border.

This section discusses this important distinction in light of the segregation of reference

vectors by class or label required by the nearest neighbor classi�cation rule for optimal

classi�cation accuracy. The MEP algorithm is then compared with LVQ2.1 and analyzed

in light of this distinction.

8.4.1 Segregating Reference Vectors by Label

The function (Equation 3.4) that Kohonen's LVQ algorithms are derived from is

completely independent of the labels of the reference vectors. This places a great deal of

importance on the initialization method as a means of segregating the di�erently labeled

reference vectors.

The approximation of each of the B

k

regions by a di�erent collection of reference

vectors, each collection identi�ed by the label k is more complicated than approximating
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the Equation 3.4 by a collection of reference vectors. The former problem is what is

required by LVQ: using only one class of reference vectors, or multiple classes or reference

vectors that are not separated into separate B

k

regions is less than ideal. The sole bene�t

of using the transformation from the collection of p(x) to f(x) is so that each B

k

region

contains only those reference vectors appropriate to that region. If this is the case a more

precise determination of the optimal Bayesian decision boundary is possible.

Moreover, the Equation 3.4 is a potentially discontinuous combination of k equations,

one for each of the B

k

regions. f(x) implicitly assumes that the reference vectors reposi-

tioned in a particular region B

k

are the appropriate reference vectors for that region. There

is nothing in the approximation through movements in the direction of the gradient that

provides for sorting a mix of di�erently labeled reference vectors into separately labeled

B

k

regions. The gradient calculations simply work toward approximating the function as

a whole, making no distinction between the reference vectors in one B

k

region and those

in another.

An appropriate approximation of f(x) by LVQ relies on proper initialization of the

reference vectors, i.e. the reference vectors must be already sorted into separate B

k

regions.

Additionally, the stochastic gradient approximation method does not guarantee that the

di�erently labeled reference vectors will not get mixed up during the iterative function

approximation.

8.4.2 Discussion of MEP algorithm

The MEP algorithm is quite similar to LVQ2.1. There are only two di�erences, the

window width constraint of LVQ2.1 is replaced by a � constraint and the MEP algorithm

introduces an additional term in the update equations, 1= k m

i

(t) � m

j

(t) k. The �

constraint of MEP (Equation 4.6), like the window width constraint of LVQ2.1 places a

constraint on the distance between the data vector and the midpoint between the two

reference vectors to be updated. The � constraint, however, also includes an angular

component, placing a constraint on the angle between the data vector and the decision

surface. The projection of data vector unto the decision surface is large when the two

relatively parallel and close, and small when they are relatively orthogonal and far apart.
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The � condition is therefore more likely to be satis�ed when the data vector is close to

and relatively parallel with the decision surface and less likely to be satis�ed when the

data vector is far away from and relatively orthogonal to it.

The MEP algorithm would appear, like LVQ2.1, to contain an overly powerful repul-

sive force causing the algorithm under certain data distributions to fail to approximate

the class distributions by pushing the reference vectors away from the sections in the data

space with high conditional probability densities, creating a biased and sub-optimal deci-

sion boundary. The major di�erence between the two algorithms is the additional term

in the update equations of the MEP algorithm, 1= k m

i

(t)�m

j

(t) k. By scaling the step

size in inverse proportion to the distance separating the two reference vectors this should

slow the movement of reference vectors away from the sections in the data space with high

conditional probability densities as the distance between the reference vectors increases.

This should place a constraint on the maximum distance between a pair of simultane-

ously update-able reference vectors. It is not evident, however, that this additional term

completely redresses the overly powerful repulsive force of LVQ2.1.

Figure 2 in [7] shows an example comparison of the reference vectors positions af-

ter training using the MEP algorithm, the resultant decision boundary, and the optimal

Bayesian decision boundary. The task was to di�erentiate two bivariate normal distribu-

tions having the same mean and di�erent covariant matrices. The Bayesian classi�cation

error was 2.7%, the MEP classi�cation error was 3.8% (the classi�cation error associated

with LVQ2.1 was 5%.) The decision boundary formed by MEP completely encloses the

Bayesian decision boundary. The lower classi�cation accuracy of the MEP algorithm com-

pared to Bayesian classi�cation is due to the vectors being pushed too far away from the

center where the conditional probability densities are highest. This is exactly what we

would also expect with LVQ2.1.

Diamantini demonstrates that LVQ1 is a sub-optimal approximation of the optimal

Bayesian decision boundary, by illustrating how a di�erent con�guration of the �nal ref-

erence vector positions would result in a higher classi�cation accuracy. Since the decision

boundary formed by MEP in the example problem described above completely encloses
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the Bayesian decision boundary, this same argument also applies to MEP. Thus, in so far

as the di�erence between LVQ2.1 and MEP does not signi�cantly a�ect the well docu-

mented tendency of LVQ2.1 to fail to approximate the class distributions because of an

over-powerful repulsive force away from the data vectors, and in so far as this e�ect is

undesirable and results in a sub-optimal reference vector con�guration and a lower classi-

�cation accuracy, the MEP algorithm, for all its possible other bene�ts, has not resolved

the most glaring shortcoming of LVQ2.1.



Chapter 9

CONCLUSION

The objective of this study was to determine the potential of using learning vector

quantization as a method to classify between di�erent spontaneous EEG signals, as well

as to analyze learning vector quantization as a general classi�cation method.

The best classi�cation accuracy was obtained with unnormalized, AR(6) coe�cients

derived from raw, un�ltered EEG signals. The fact that a Vector Quantization architecture

does not require normalized data allows LVQ to capitalize on any information contained

in the di�erences in the variances of the coe�cients of the input vectors. The geometric

nature of a Vector Quantization architecture also gives a means of interpreting what the

algorithm has learned that is not available with neural network architectures using hidden

nodes.

The classi�cation results obtained demonstrate that LVQ is competitive with using an

arti�cial neural network as a method for classifying spontaneous EEG signals. The high-

est classi�cation accuracy, approximately 80% correct classi�cation, was obtained using

LVQ2.1 with 16 reference vectors per class and a learning rate of 0.1. The LVQ2 and LVQ3

algorithms were relatively insensitive to the value of the window width parameter and the

method of initialization. LVQ2.1 exhibited only a moderate degree of over-�tting through

the use of an excessive number of reference vectors and showed no signs of over�tting

through excessive training.

LVQ2.1 yields the highest classi�cation accuracy despite its failure to approximate

the class distributions. Variants on LVQ2.1, e.g. LVQ3, successfully guarantee continued

rough approximation of the class distributions, but yield the same or worse classi�cation

accuracy. The lack of LVQ2.1 to provide long term approximation of the class distributions
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is the result of the di�culties in balancing the force pushing reference vectors away from

data vectors and force pulling them closer. The repulsive force is the direct consequence

of a function transformation which appears to be motivated for practical as opposed to

theoretical reasons.

The MEP algorithm of Diamantini has demonstrated a much better approximation

of the optimal Bayesian classi�cation accuracy than LVQ2.1 for certain distributions. Its

not clear, however, that the MEP algorithm provides signi�cantly better long term ap-

proximation of the class distributions than LVQ2.1. It is argued that at least a rough

approximation of the class distributions is necessary for optimal classi�cation. It is evi-

dent that by the same method Diamantini uses to argue that LVQ2.1 is suboptimal because

there exists alternate reference vector positions that would more accurately approximate

the optimal Bayesian decision boundary, the MEP algorithm can also be seen to be subop-

timal, though perhaps to a lesser degree. This observation appears inconsistent with the

fact that the MEP algorithm is presumed to be derived with the exact goal of minimizing

misclassi�cation error probability. Diamantini has proven this is not the the exact goal of

LVQ1, and that the analytic form of LVQ1 is di�erent from that claimed by Kohonen.

One of Kohonen's principal weaknesses in providing theoretical motivations for his

algorithms is the lack of importance and rigor that is given to the treatment of labels. It is

the vector labels that di�erentiate the problem of pure function approximation from min-

imizing misclassi�cation error. Intimately connected with vector labels is the importance

of initialization and the fact that LVQ is a local search technique that uses the nearest

neighbor classi�cation rule. It is the nearest neighbor classi�cation rule that requires the

segregation of the reference vectors by labels at the Bayesian decision boundary. This

combined with the the fact that LVQ is a local search technique gives rise to the theoreti-

cal importance of initialization. Empirically, however, it was found that initialization had

little impact on the classi�cation accuracy.

The classi�cation task was limited to intra-subject classi�cation of AR(6) models of

the EEG signals of two of the �ve mental task collected in association with the research of

Keirn and Aunon. One of the most obvious extensions is to attempt a simultaneous
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classi�cation of all �ve of the mental tasks. Inter-subject classi�cation is potentially

an even more di�cult problem. Most EEG classi�cation research has found that the

signal preprocessing techniques used are more important in terms of overall classi�cation

accuracy then the classi�cation procedure. A great many signal processing techniques

exist whose inuence in classifying EEG signals is unknown. Neither the use of DSLVQ as

a signal preprocessor to �lter out noisy coe�cients, nor the potential bene�t of combining

Hidden Markov Models with LVQ was explored. Lastly, very little is known about the

optimal conditions for reducing the noise associated with recording cognitive signals. In

addition to the position of the electrodes and the conditions under which the recording

sessions are performed there also exist other methods of recording cognitive signals that

have received far less attention than EEG recordings.

The theoretical analysis of LVQ in this study has been empirically and intuitively

motivated without much attention to mathematical rigor. Aside from Kohonen the only

critical analysis of the potential and di�culties in supervised vector quantization classi�-

cation known to this author is the work of Diamantini. There appears to be a great deal

of work left in understanding the exact theoretical foundations of the current versions of

LVQ, its limitations, and the development of an optimal VQ classi�cation algorithm for

minimizing misclassi�cation error probability.

LVQ has been shown to be as successful as other methods for EEG signal classi�cation.

It's potential, however, has not yet been reached. Besides its use in combination with

signal pre-processing time series modeling techniques, there remain some fundamental

questions as to the mathematical goal of the various LVQ algorithms, the application of

stochastic approximation methods to a complex gradient with two opposing directions,

and the optimal method of using the Vector Quantization architecture to approximate the

Bayesian decision boundaries to minimize the misclassi�cation error probability.
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