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A b s t r a c t

A study was conducted to determine the
ability of neural networks to extract high
level control information from cylinder
pressure data.  Various experiments were
performed us ing neural  networks  for
pattern recognition on a series of data files
consist ing of  cylinder pressure versus
crank angle.  The goal of these experiments
was to estimate spark timing based on the
cylinder pressure signature -- all other
engine parameters  were held constant
during the data collection process.  Test
results indicate that an approximate spark
timing value can be obtained using cylinder
pressure data as the inputs to a neural
network and spark timing as the output.

1 . I n t r o d u c t i o n

In-cylinder pressure data provides one of
the most direct measures of combustion
quality in an internal combustion engine.
Cylinder pressure data has been used for
design and diagnostic purposes since the IC
engine was developed.  Cylinder pressure
and volume data can be used to calculate
engine torque, indicated mean effective
pressure (IMEP), indicated efficiency, bulk
temperature, burn rate and heat release.
Statistical analysis of the same data can
provide  informat ion  about  combust ion
variability.  Recently, more attention has
been given to the use of cylinder pressure
for real-time engine control [Pes89, KSS88,
AP87, GP89, HA86].

Pressure-based engine control techniques
require that information be extracted from

cylinder pressure data.   Examples of
pressure based engine control include:

• The location of peak pressure can be
monitored to set the optimal spark
timing [AP87, Pes89] for power or fuel
economy .

• A/F ratio can be estimated from
pressure data [GP89].   This could
conceivably be used for feedback fuel
con t ro l .

• Indicated mean effective pressure
(IMEP) can be calculated from the
pressure data and maximized using a
h i l l - c l imb ing  o r  g r ad i en t  de scen t
technique [DL51, Kal58, Bla62, Flo64,
KPF89, SW90] to achieve maximum
t o r q u e .

Pressure-based engine control has not been
practical for two reasons.  The piezoelectric
pressure  sensors  cur ren t ly  used  a re
expensive, fragile,  temperature sensit ive
and  requ i re  a  c lose -coup led  charge
amplifier to produce a high level signal.
From a s ignal  process ing s tandpoint ,
calculation of anything more than peak
pressure has been too slow for use in real
time control.

Recent developments in sensor technology
offer some hope on the hardware side of the
problem.  A compact piezoelectric sensor
with a charge amplifier and temperature
compensation built in has been developed
[AP87, Pes89]  although, there are no
immediate plans to commercial ize the
sensor.  Piezoelectric washers which are
installed between the spark plug and
cylinder head have been shown to provide



qualitative pressure data at relatively low
cost and are reportedly in use in at least one
production vehicle for  knock sensing.
Within the last few years, there have been
advancements in the development of low
cost fiber optic pressure sensors which are
suitable for engine work, and could be
mass-produced at low cost.

In many ways,  hardware developments
appear to be outpacing developments in the
area of  s ignal  processing.   Notable
exceptions include the adaptation of digital
s ignal  processors  (DSP) for  real- t ime
calculation of IMEP from pressure data.  An
investigation was therefore undertaken to
assess new signal processing techniques for
use in pressure-based engine control.

2 . The Role of Neural Networks

It is our premise that advanced signal
processing techniques being developed in
other fields may be adaptable for pressure-
based engine control.  As a first step in this
investigation, a study was conducted to
determine the potential of neural networks
to  discern informat ion f rom cyl inder
pressure data.  Rapid advancements in the
development of neural network ICs suggest
the possibility that they could be cost-
effective in selected engine applications in
the near future.

The specific focus of this study was to
demonstrate the ability of neural networks
to extract ignition timing from a cylinder
pressure wave form.  It is understood that
there are easier ways to determine ignition
timing.  However, this study represents a

first step in the development of neural
networks which can recognize ignit ion
timing, fuel/air ratio, and other parameters.
The eventual goal of the project is to
correlate engine data (cylinder pressure
d a t a ,  m a n i f o l d  p r e s s u r e ,  e n g i n e
temperature, engine speed) with engine
emissions, and use this information in a
neural network based engine controller.

3 . Cylinder Pressure Data

Cylinder pressure data for the pattern
recognition experiment was obtained from
SuperFlow Corporation.  The pressure traces

were generated on a 350 in.3  Chevrolet
engine at 4000 RPM.  The data was captured
with SuperFlow's Engine Cycle Analyzer
(ECA).  The original files contained cylinder
pressure (measured in "bar") at  crank

angles from 180o  before top dead center

(BTDC) to 180o after top dead center (ATDC).
Each file contained 720 data points at 0.5
degree crank angle spacing.  Data was taken

at various different spark timings from 5o

to 35o  BTDC in 5o  increments.  In addition,

data was taken at a spark timing of 22o BTDC
to provide a test case for the pattern
recognition experiments.  The engine speed,
air/fuel ratio, and throttle setting were all
held constant throughout the data collection
period.  Thirty independent sets of data for
each spark timing were taken over a period
of approximately 45 seconds.  The total
elapsed time to collect all the data, changing
only the spark timing between sets of data,
was 27 minutes.



FIGURE 1 -- Cylinder Pressure Data
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FIGURE 2 -- Condensed Cylinder Pressure Data
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The cylinder pressure data away from the
top dead center region was nearly identical
for all variations of spark timing (see
Figure 1).  Therefore, the cylinder pressure
data was condensed from the original 720
data points to just 37 data points, all within

± 4 0 o of top dead center (see Figure 2).
Crank  ang le  r e so lu t ion  was  va r i ed
throughout this region, with the smallest

resolution (1o) from TDC to 20o  ATDC.  All
files from each set of spark timing data
were condensed in exact ly the same
m a n n e r .

4 . N e u r a l  N e t w o r k  P a t t e r n

R e c o g n i t i o n

Standard back-propagation neural network
architectures were chosen to perform the
pattern recognition task on the spark
timing data.  Different network configura-
t ions  and  d i f fe ren t  combina t ions  of
training and testing data were used in the
experiments.  The experiments were run on
a 33Mhz 80486 computer.  A commercial
software package was used in the ex-
periments, "BrainMaker 2.1" from Cali-

fornia Scientific Software. BrainMaker has
a spreadsheet type of user interface for
manipulating the data.  The condensed
cylinder pressure data files (37 points in
each file) were used as inputs to the neural
network.  The only output of the neural
network was the spark timing value for that
particular input data file.  A single hidden
layer consisting of 4, 8, 16, or 37 neurons
was used in each of the various experiments
(see Figure 3).  BrainMaker inserts an addi-
tional "threshold neuron" in both the input
and hidden layers of the network.  This
neuron does not have any inputs and its
output activation level  is  always the
maximum value of the neuron transfer
function.  The "weight" connecting the
threshold neuron to each neuron in the
following layer is trained using back-
propagation just like every other weight in
the network.  This provides a convenient
method of assigning different activation
thresholds to each neuron in the hidden
and output layers of the network.
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FIGURE 3 -- Neural Network Architecture
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An input layer neuron normalizes each data
point to a value between 0 and 1 using the
minimum and maximum value for each
individual point listed in the training data
set.  Thus, input neurons for cylinder
pressure data points with low variance can
still produce the same activation level for
small  input  changes as  neurons that
encounter large pressure variations at that
particular crank angle location.  Likewise,
the output neuron activation level  is
converted from a value between 0 and 1 to a
meaningful spark timing output using the
minimum and maximum values in the train-
ing data set.  Both these normalization
procedures use a linear scaling factor and
an offset parameter.

The hidden neurons receive a signed
weighted sum of the inputs, which is then
passed through a sigmoid transfer function
to produce an activation level between 0 and
1 (see Figure 3).  The output neuron uses an
identical process to calculate its activation
level except that it receives inputs from the
hidden layer instead of the input layer.  The
output  neuron also uses the sigmoid
transfer function (clamped between 0 and

1) before its activation level is converted to
spark timing.  Hence, the output can never
go below the minimum or above the
maximum spark timing value listed in the
training data set.  Consequently, spark

timing data at 5o  and at 35o  BTDC is more
difficult to train to the exact output value
because of  this  nonlinear  "squashing"
f u n c t i o n .

5 . Experimental  Setup

5.1          Experiment #1

Three different training and testing data
sets were used with each of the four hidden
layer  network configurat ions descr ibed
above.  In addition, two of the data sets were
used on networks with no hidden units.  In
the first set of experiments, five of the 30
cylinder pressure data files from each of
the seven spark timing values were selected
to train the networks (a total of 35 training
examples).  The networks did not train on

any of the data files at 22o  BTDC.  The
remaining 25 data files at each spark

timing, as well as all 30 data files at 22o

BTDC, were used to test the generalization
capabilities of the networks after they had
been trained (a total of 205 test patterns).
These networks were labeled 1.0 - 1.4.

5.2          Experiment #2

In the second set of experiments, the first 15
of the 30 cylinder pressure data files from
each of the seven spark timing values were
selected to train the networks (a total of 105
training examples).  The networks did not

train on any of the data files at 22o  BTDC.
The last 15 data files for each spark timing,

as well as all 30 data files at 22o  BTDC, were
used to test the networks (a total of 135 test
patterns).  These networks were labeled 2.1 -
2.4.

5.3          Experiment #3

In the third set of experiments, moving
a v e r a g e s  w e r e  c a l c u l a t e d  o n  f i v e
consecutive data files for each of the 37 cor-
responding crank angle locations.  Thus,
data points in files numbered 1-5, 2-6, 3-7,
and so on were averaged on a point by point
basis, producing 37 "smoothed" inputs to the
network for training and testing.  Since
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Correct

1.0* 0 n o 5 1000 35,000 .01 .1 .5 205 174 3 1 84.9%

1.1 4 n o 5 482 16,870 .01 .1 1.0 205 146 5 9 71.2%

1.2 8 n o 5 688 24,080 .01 .1 1.0 205 139 6 6 67.8%

1.3 1 6 n o 5 460 16,100 .01 .1 1.0 205 163 4 2 79.5%

1.4 3 7 n o 5 290 10,150 .01 .1 1.0 205 156 4 9 76.1%

2.1 4 n o 1 5 4052 425,460 .01 .1 .5 135 9 9 3 6 73.3%

2.2 8 n o 1 5 1644 172,620 .01 .1 .5 135 103 3 2 76.3%

2.3 1 6 n o 1 5 536 56,280 .01 .1 .5 135 116 1 9 85.9%

2.4 3 7 n o 1 5 814 85,470 .01 .1 .5 135 109 2 6 80.7%

3.0* 0 y e s 5 208 7280 .02 .1 .5 173 155 1 4 91.7%

3.1 4 y e s 5 311 10,885 .02 .05 1.0 173 153 2 0 88.4%

3.2 8 y e s 5 288 10,080 .02 .05 1.0 173 157 1 6 90.8%

3.3 1 6 y e s 5 344 12,040 .02 .05 1.0 173 171 2 98.8%

3.4 3 7 y e s 5 154 5,390 .02 .05 1.0 173 145 2 8 83.8%

TABLE 1 -- Network Training and Testing Results

* not run with BrainMaker software

five data files were needed to produce a
single moving average data file, only 26 sets
of input data could be obtained from the
original 30 data files for each spark timing
(the first four data files did not have a
moving average data file associated with
them).  Of the 26 moving average data files,
five were selected from each of the seven
spark timing values to train the networks (a
total of 35 training examples).   The
networks did not train on any of the data

files at 22o BTDC.  The remaining 21 moving
average data files for each spark timing, as

well as all 26 data files at 22o  BTDC, were
used to test the networks (a total of 173 test
patterns).  These networks were labeled 3.0 -
3.4.

5.4          Method

During each "epoch", the entire set of
training examples was presented to the
network; back-propagation learning took
place af ter  the presentat ion of  each
training example.  An element of "luck" was
involved in the actual training time and test
results for any experiment because the
in i t ia l  ne twork  weights  were  chosen
randomly.  Only the best case results are
shown in Table 1.  A testing tolerance of
10% was used throughout the experiments to
determine the number of correct  test
patterns.   The training tolerance was
chosen experimentally based on both the

number  of  correct  tes t  pat terns  and
whether the network would converge to a
solution in a reasonable period of time.  The
noise parameter was chosen in a similar
manner.  The back-propagation Learning
Rate was adjusted downward if the network
n e a r l y  c o n v e r g e d  b u t  t h e n  b e g a n
oscillating close to a final solution for a
prolonged period of time.

In other  neural  network appl icat ions,
researchers have discovered that adding
noise to the inputs of the network as it
trains can lead to better generalization
capabilities on untrained data.  The same
conclus ion was  reached dur ing these
experiments.   Guassian noise with a
standard deviation of 1% of the input data
point was added to the inputs during
network training in experiments 1 and 2.
In experiment 3, the noise level was raised
to 2% because the networks training on
moving average data could tolerate more
n o i s e  w i t h o u t  e n c o u n t e r i n g  t h e
convergence problems at high noise levels
discovered in the first two experiments.

6 . R e s u l t s

Table 1 summarizes the training and testing
results for each network configuration and
training data set.  These are preliminary



5
10

15

20

25 SPK5

SPK10

SPK15
SPK20

SPK22
SPK25

SPK30
SPK35

0

5

10

15

20

25

30

35

FIGURE 4 -- Network Output on Training Data with Moving
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FIGURE 5 -- Network Output on Testing Data with Moving Averages

results and have not been averaged over
different initial weight values for each
network.  Tests of statistical significance are
required for valid comparisons.

Training time was generally longer for
networks with  fewer  hidden neurons.
Additionally,  these experiments indicate
that the moving average was an important
input data transformation, allowing the
networks to train more quickly and produce
more accurate results on the test patterns.

The moving average networks were capable
of training with a much tighter training
tolerance and a higher level of input noise.
However, the moving average network 3.3
(98.8% correct on the moving average test
patterns) correctly classified only 80% of
the non-moving average test patterns from
the first set of experiments.  Moreover, the
non-moving average network 1.3 improved
from 79.5% correct on non-moving average
data to 87% correct on the moving average
data.  Likewise, the non-moving average
network 2.3 improved from 85.9% correct on
non-moving average data to 91.9% correct
on the moving average data.  Therefore, one
may conclude that moving averages were
important because they reduced cycle to
cycle variations in cylinder pressure versus
crank angle, permitting the networks to
correctly predict spark timing on untrained
patterns.  Moving averages also allowed the
networks to train more quickly while
producing results on non-moving average
data comparable with networks that were
trained using non-moving average data.

The output of network 3.3 on its 35 moving
average  t ra in ing  examples  i s  shown
graphically in Figure 4 (training tolerance
was 5%).  Figure 5 shows the output of the
same network on the 173 moving average
test patterns.  Table 2 lists the average
output and standard deviation on the test
patterns for all networks with 16 hidden
n e u r o n s .

7 . C o n c l u s i o n

Overall, the experimental results are very
encouraging.  They indicate that cylinder
pressure versus crank angle data can be fed
directly into a properly trained neural net-
work producing a close approximation to
actual spark timing.  Results in Table 1 for
the first set of experiments show that
hidden units did not reliably increase the
classification accuracy.  This is probably
due to over-fitting -- the training data was
so accurately modeled that generalization to
testing data is worse.  The good performance
of the network with no hidden units shows
that a linear combination of the pressure
data is sufficient to achieve roughly 90%
a c c u r a c y .   T h e  m o v i n g  a v e r a g e
transformation reduces the chance that
over-fitting will occur during training.



N e t w o r k

1 . 3

N e t w o r k

2 . 3

N e t w o r k

3 . 3

A v g StDev A v g StDev A v g StDev

S P K 5 6.85 0.37 6.67 0.56 6.13 0.28

S P K 1 0 9.38 2.06 10.20 1.63 10.40 1.12

S P K 1 5 14.96 2.11 15.77 1.39 15.02 0.64

S P K 2 0 19.32 3.25 19.76 2.35 18.86 1.36

S P K 2 2 24.88 2.98 24.75 2.38 20.58 1.13

S P K 2 5 26.25 2.29 24.59 1.57 24.77 1.29

S P K 3 0 31.60 1.63 31.13 0.98 29.92 0.86

S P K 3 5 32.76 0.36 32.63 0.74 34.07 0.14

TABLE 2 -- Average Network Output &

Standard Deviation on Test Patterns

for Networks with 16 Hidden Neurons

8 . Future Direct ions

8.1          Ana lys i s

The prel iminary resul ts  reported here
demonstrate the feasibility of learning the
mapping between pressure  and crank
angle.  The next step is to analyze the data
more thoroughly.  As a first step, we have
performed linear regression analysis of the
data by removing all hidden units and
slightly modifying the training algorithm.
The  magni tudes  o f  the  coef f i c i en t s
developed for the linear model suggest that
sample points surrounding the maximum
pressure samples are most informative.
Such results may lead to further reductions
in data without sacrificing performance.

We will also analyze the weights acquired
by the hidden units.  Statistical methods,
such as clustering of weight vectors and
tests of independence of hidden unit output
values, will be used to identify which
transformations extract the most relevant
information from the pressure data.

8.2          Constructive Learning Algorithms

Recent studies have shown that learning
algorithms that incrementally increase the
complexity of the approximating function
can learn much faster than error back-
propagation in some cases.  Such methods
begin with a linear approximation and
develop nonlinearities to remove residual
errors.  The progression is stopped once the
improvement in error  is  below some
criterion.  Limiting the complexity of the

approximating function results in better
generalization to untrained data.

Cascade Correlation [FL90] is a constructive
method that performs well for highly-
nonlinear mappings.  Sanger,  et  al . 's ,
[ S S M 9 2 ]  m e t h o d  c o n s t r u c t s  s p a r s e
polynomials by estimating the utility of
including each input term in a higher-
order  term of  the  polynomial ,  then
adjusting the coefficients.  This method is
able to discern the relevant inputs and
learn approximations that do not depend on
irrelevant inputs.   We will  test both
procedures on the pressure data.
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