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1. Introduction

Based on the tropical cyclone (TC) forecasting literature, 
hurricane  intensity  prediction  is  one  of  the  most 
challenging  tasks.  To  date,  the  problem  has  been 
addressed  through  statistical  models  (SHIFOPR, 
ST5D),  statistical-dynamical  models  (SHIPS)  and 
primitive equation numerical models (GFDL), predicting 
the intensity changes for up to five days. For the first 
two  kinds  of  models,  both  multiple  linear  regression 
(MLR) and non-linear regression in the form of neural 
networks  (NNs),  have  been  applied  with  promising 
results (DeMaria et al. 2005, Castro 2004, Knaff et al. 
2004, Baik and Hwang 2000, Baik and Hwang 1998).

On the  other  hand,  the  procedures  for  feature 
selection and for reporting the predictive performance of 
the  derived  models  have  not  been  investigated  to  a 
great extent, in the sense that (1) they widely vary, so 
comparisons between models  are made in an ad-hoc 
basis; (2) the derived models have an inherent selection 
bias, i.e. allowance to peek in the test set during feature 
selection,  prohibiting  good  generalization  behavior 
(Ambroise  and  McLachlan  2002);  and  (3)  they  are 
unstable  in  terms  of  performance  and  understanding 
(Guyon and Elisseeff 2003). For example, it is often the 
case  that  at  certain  seasons  the  models  perform 
extremely well and in others quite unsatisfactory,  while 
there is a constant update in the set of features used, 
lowering the interpretability of the models.

Having the above in mind, the goal of this paper 
is  twofold:  (a)  to  build  robust  models;  and  (b)  build 
models  that  are  explicitly  or  implicitly  interpretable, 
delivering  additional  knowledge  about  the  problem. 
Robustness in this context can be defined as a property 
of  a  model  that  is  performing  efficiently,  is  able  to 
generalize well and is parsimonious – a characteristic of 
models that generalize well – based on what Ockham's 
razor  principle  implies:  complexity  (in  our  case  extra 
features)  must  pay  for  itself  by  giving  a  significant 
improvement  in  the  error  rate  during  the  training 
procedure  (Cristianini  and  Shawe-Taylor  2000).  This 
principle is quantified in section 3.

Recently  developed  rule  based  regression 
schemes are also a focus of the work presented here. 
They are applied to the dataset in order to identify more 
elaborate  structure  behind  the  intensity  predictions. 
MLR  and  NNs  fail  to  provide  the  human expert  with 
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interpretable  results  regarding  possible  multiple 
interdependencies  of  the  inputs  and  the  output.  In 
contrast, rule based methods are not only competitive 
with respect to prediction performance, but also support 
the capability of discovering multiple correlations in the 
dataset in an easy to read and validate manner. This 
could  potentially  aid  the  analytical  formulation  of  the 
problem.

2. Data and Predictors

The present  work is based on the predictors used to 
derive  the  Statistical  Hurricane   Intensity  Prediction 
Scheme or SHIPS from now on  (DeMaria et al. 2005). 
A total of 37 variables were used to predict the intensity 
changes  measured  as  maximum  sustained  1-minute 
surface winds. The variables can be found in Table A.1. 
They  include  climatology,  persistence  and  synoptic 
parameters. The SHIPS model is based on the ``perfect 
prog''  approach,  meaning its predictors are calculated 
based  on  the  ``best-track''  data,  prepared  (post-
processed)  by  the  National  Hurricane  Center  (NHC). 
Since the focus is on using alternative methodologies 
and on measuring the accuracy of the derived models, 
rather  than  estimating  their  operational  skills,  the 
“perfect  prog”  model  is  well  suited.  Some  of  the 
predictors  are  denoted  as  static  (S)  i.e.  they  are 
evaluated only at time t=0 and the same value is used 
for each time interval, while others as time dependent 
(T), which are averaged along the storm track from t=0 
to the forecast interval. The reader is referred to Table 
A.1.  for  a categorization of  the predictors as static or 
time-dependent. The training set was be the full set of 
SHIPS predictors (Table A.1) for the periods of 1982 to 
2003. The 2004 season was used as a test set. When a 
validation set was need, a partition from the training set 
was cut, avoiding peeking on the test set. 

3. Model Development

3.1. Learning Curves

This section describes the procedure used in this study 
to produce robust models for predicting accurately the 
intensification of TCs. The methods are presented in the 
order applied to the dataset, since their outcomes guide 
the next steps.

The  first  method  applied  was  that  of  learning 
curves (LCs), plots graphing the performance measure 
of an learning algorithm, y-axis, versus the number of 



training  examples,  x-axis  (Russel  and  Norving  2003). 
With LCs one is able to (1) detect if there is a pattern 
governing  the  data  that  can  be  learned;  (2)  decide 
whether the data are sufficient to build robust models; 
(3) identify the number of folds (k) for performing a k-
fold cross-validation procedure; and (4) learn something 
about the noise laying on the data.

In  Figures  1  and  2  the  learning  curves  for 
forecasts  at  6  and  120 hours  ahead  respectively  are 
presented.  The  particular  LCs  were  produced  using 
MLR on  all  the  predictors.  Also,  for  each  one of  the 
percentages,  10  evaluations  with  random  selections 
from the original dataset were made in order to caclulate 
the standard errors (se) as well. The first observation is 
that the data are sufficient for building robust models, 
since there is no significant improvement over the mean 
of the root mean square error (RMSE) of the predicted 
versus the actual  intensity  changes as more samples 
are being added. Moreover, the decrease of the mean 
and variance of the RMSE suggests that there is pattern 
to  be  learned.  After  examining  all  the  20  LCs  (from 
predicting intensity changes 6 hours ahead to predicting 
120 hours  ahead,  every  6  hours)  for  several  random 
runs,  a  good  value  for  k  was  found  to  be  3 
(corresponding to 66-33% split  for  training and testing 
for  each of the three validations).  Finally, it  is evident 
that as one moves to predictions further ahead in the 
future (for example 6 hours vs. 120 hours), the noise in 
the data increases, making predictions less accurate.

Figure 1. Learning curve for predictions 6 hours ahead .  
The  vertical  line  denotes  the  percentage  of  samples 
needed to get an RMSE 1se below the minimum.

3.2. Model Assessment

Knowing a good number of folds (k=3), we continue with 
evaluating model  assessment  methods for  the SHIPS 
dataset.  With  model  assessment  methods,  we  would 
like to estimate the test (or generalization) error (GE) as 
accurately  as possible.  Based on that  metric,  we can 
select the best model giving the lowest estimated GE, 

without peeking the test set and biasing our selection. 
Several  model  assessment  methods  have  been 
evaluated: training error, 5 3-fold cross-validation (CV) 
procedures,  each  one  with  a  new  random  selection, 
their  average,  leave-one-season-out  (LOSO)  jacknife 
procedure,  leave-one-hurricane-out  (LOHO)  jacknife 
procedure  and  .632+  bootstrap  method  (B.632+) 
repeated 5 times (Tibshirani et al 2002). The methods 
were applied to the training set to provide the predicted 
generalization error.  Their performance was evaluated 
based  on  their  accuracy  to  predict  the  actual 
generalization error, provided by the dataset using the 
formula:

                   P=∣predictedGE−actualGE∣
actualGE %            (1)

Figure  2.  Learning  curve  for  predictions  120  hours 
ahead .

All  the above techniques were evaluated using 
MLR and a simple NN (10 hidden sigmoid neurons with 
weight  decay  and  linear  output)  on  the  whole  set  of 
features and on the 2003 SHIPS features (DeMaria et 
al. 2005). Their performance as an average in all the 20 
datasets is reported in Table 1. LOSO outperforms any 
other available method for all the four combinations of 
variables  and  models,  predicting  more  accurately  the 
GE. One possible cause of this behavior is that all TCs 
within  a  specific  season  have  a  particular 
connection/correlation with each other. Another way to 
put it is that every season is unique and the hurricanes 
within  a  season  have  some particular  characteristics. 
For  all  the  other  methods  except  LOSO,  these 
characteristics, in the form of samples, are included in 
the training set and modeled by the particular learning 
algorithm. This leads to over-fitting, i.e. underestimating 
the  GE.  On  the  other  hand  LOSO  provides  better 
estimates and thus is chosen as the preferred model 
assessment method.



3.3. Feature Selection

Five  feature  selection  (FS)  methods  were  used: 
backward  elimination  (B)  (Guyon ans  Elisseeff  2003), 
forward  selection  (F)  (Guyon  and  Elisseeff  2003), 
genetic  algorithm  (G)  (Vinterbo  and  Ohno-Machado 
1999), Neural Networks (N) (Leray and Gallinari 1999) 
and Lasso (L) (Hastie et al 2001). Each one of them is 
compared against the SHIPS 2003 model both in terms 
of  the  LOSO  error  estimate  and  the  2004  season 
intensity  deviation errors.  The  2003 SHIPS predictors 
can be found in Table A.1. marked  as column S. From 
the  seven  methods,  the  best  were  used  to  select 
additional  non-linear  features  that  exist  in  the  SHIPS 
model and have shown promising improvements.

Table  1.  The  estimation  performance,  P,  of  model  
assessment algorithms. LOSO (in boldface characters) 
outperforms any other method.

Variables Full set SHIPS 2003

Methods MLR (%) NN (%) MLR (%) NN (%)

Train 22.83 52.46 8.08 33.72

CV1 21.5 30.63 7.38 16.69

CV2 21.58 30.22 7.37 16.17

CV3 21.62 29.81 7.42 16.19

CV4 21.59 29.83 7.39 15.53

CV5 21.54 29.66 7.47 16.64

CV avg 21.57 30.03 7.39 16.25

LOSO 14.63 10.98 6.84 8.34

LOHO 21.43 14.68 12.89 12.64

B.632+ 22.24 38.25 7.69 22.38

As  mentioned  earlier  the  Ockham's  razor 
principle  is  applied.  For  picking  a  particular  set  of 
features, we selected the one that is the smallest and 
which has the maximum LOSO error, 1 standard error 
above the minimum LOSO error (Hastie et al 2001). The 
intuition behind the 1 standard error threshold is that the 
models  should  not  be  more  complicated  unless  their 
performance  decreases  (in  our  case  the  RMSE 
increases)  by  at  least  1  standard  error  from  the 
minimum.  Figure  3  displays  this  rule  for  backward 
elimination . The method is applied for the B, F, L and N 
methods.  The  F  and  B  methods  are  adding  and 
removing variables based on the F-statistic, while the N 
method is based on a heuristic that exploits the weights 
and the network structure of  the NN. The GA tries to 
optimize the function:

                        F=RMSEρ u−n
u                          (2)

where u is the total  number of variables and n is the 
number  of  variables  selected  (Vinterbo  and  Ohno-
Machado  1999).  The  factor   determines  the  rewardρ  
towards parsimonious models (second term) versus the 
reward towards better  performance (first  term).  In  our 
case we chose  to be 1 standard error, matching ourρ  
previous discussion.

Since there are 20 datasets and it  is often the 
case  that  different  features  are  selected  for  different 
datasets: (a) the final number of selected features was 
chosen  to  be  the  average  number  kept  from  the  20 
different sets; and (b) the features retained are the ones 
selected more often until the limit in (a) is reached.

Figure  3.  The  1  se  rule  displayed  for  backward  
elimination  selection  procedure.  In  this  particular  
experiment  (12  hours  ahead),  only  one  feature  is  
selected.

 Table  2  presents  the  performance  of  the  FS 
techniques as an average over  all  20 datasets,  while 
Table A.1 has the features selected by each one of the 
techniques.  For  the  best  method  (genetic  algorithm), 
non-linear features were added and the technique was 
re-applied  (named  as  GN1,  GN2).  The  performance 
measure overall is based on both the actual GE and the 
difference  between  the  actual  GE  and  the  estimated 
one:

        O=actualGE∣predictedGE−actualGE∣
actualGE          (3) 

From the  FS  techniques  the  genetic  algorithm 
procedure  outperformed  all  the  other  techniques. 
Especially, the set derived from GN1 is not only the best 
with respect to LOSO error, but also has the minimum 
number of features from the best performing methods. 
From Table A.1 one can see that VMAX, INCV, POT, 
SHRD,  Z850  and  LSHR  are  selected  by  at  least  5 



procedures, while SHIPS uses non-linear combinations 
of the three most selected features. SHIPS outperforms 
all other methods for the 2004 test set (and of course 
overall), but it is quite possible that the particular season 
was appropriate for the SHIPS predictors. Training and 
testing for more seasons will be performed later in the 
study. The main conclusion drawned by this section is 
the  fact  that  there  is  a  small  set  of  features  that  is 
required to obtain good error rates. Additionally, the fact 
that genetic algorithmic procedures found better subsets 
can be attributed  to their capability of making a better 
search  in  the  space  of  features,  identifying  possible 
reduntant  variables  that  help  each  other  and  finding 
variables useless by themselves, but usefull with other 
combinations  (Guyon  and  Elisseeeff  2003).  On  the 
contrary  backward  and  forward  elimination  are  brute 
force  approaches,  removing  less  important  variables 
without establishing evidence that even with the help of 
others, their contribution is minimal.

Table 2. Ranking the feature selection methods based 
on their mean RMSE performance on all 20 datasets.  
The asterisks  denote models with non-linear features,  
while the number in the parenthesis present the number  
of the linear features.

Methods LOSO 2004 Overall Selected

Full 17.85 21.00 24.13 37

F 18.02 19.8 21.57 13

B 18.76 20.23 21.7 4

Lasso 23.82 24.68 26.29 4

G 17.41 19.13 20.86 12

GN 1* 16.80 19.17 21.33 10 (8)

GN 2* 16.85 19.76 22.66 19 (13)

N 19.19 21.1 23.02 7

SHIPS* 17.41 17.62 18.65 16 (13)

3.4. Performance Comparisons

In this section we will compare the 2003 SHIPS model 
against the best linear and non-linear methods: the two 
sets derived from the GA FS techniques with non-linear 
features,  two  non-linear  methods,  NNs  and  Support 
Vector Machines (SVMs), and two rule-based methods, 
rule  ensembles  derived  with  the  RuleFit  framework 
(Friedman  and  Popescu  2005)  and  rules  based  on 
association  rules  derived  with  the  RBA  framework 
(Ozgur et al. 2004). Based on a sensitivity analysis the 
best SVM kernel found was polynomial of degree 3. The 
set of input variables for NNs and SVMs was the set of 
linear  features  found  from  the  initial  GA  procedure, 
since  they  are  capable  of  producing  necessary  non-
linearities by themselves.

Table 3 Ranking the feature selection methods based 
on their mean RMSE performance on all 20 datasets.
Hour SHIPS GN1 GN2 RF RBA NN SVM

6 5.38 5.43  5.43 5.33 5.99  5.39 5.48

12 8.38 8.58  8.55 8.26 9.83 8.23 8.55

18 10.70 11.06 11.04 10.85 13.46 10.68 11.57

24 12.64 13.16 13.10 12.84 16.08 12.59 14.29

30 14.14 14.89 14.82 14.06 19.87 14.47 16.18

36 15.43 16.37 16.31 15.09 20.04 15.91 17.86

42 16.57 17.45 17.46 17.02 21.77 17.39 19.05

48 17.6 18.37 18.55 17.55 24.2 18.84 19.94

54 18.69 19.44 19.74 19.32 27.34 19.98 20.49

60 19.56 20.43 20.87 18.22 27.7 21.18 20.87

66 20.2 21.45 21.92 20.06 26.04 22.09 21.76

72 20.81 22.37 22.81 21.25 31.54 23.16 21.98

78 21.29 23.06 23.59 22.06 30.85 24.23 21.67

84 21.66 23.62 24.28 21.32 31.17 24.95 21.3

90 21.79 23.99 24.91 21.21 31.11 25.44 21.62

96 21.88 24.31 25.45 22.41 31.71 25.91 22.03

102 21.73 24.57 25.97 21.14 34.47 26.12 21.9

108 21.56 24.82 26.36 23.88 30.84 27.23 21.04

114 21.27 24.97 26.73 22.33 30.26 25.48 20.84

120 21.12 25.14 27.31 19.19 31.00 26.00 21.32

Mean 17.62 19.17 19.76 17.66 24.76 19.76 18.49

SHIPS has the best mean skills in the 2004 data, 
with RuleFit following very close. SVMs outperform NNs 
and  provide  a  promising  candidate  for  non-linear 
regression, in that they are easier to analyze and train. 
We  should  mention  though  that  there  was  not  a 
extensive  experimentation  regarding  the  NN structure 
and  its  parameters,  since  our  interest  was  on  how 
models  perform  on  a  standard  basis.  RBA  was  not 
efficient  for  this  specific  dataset,  and  even  though 
results have shown that it  can be competent  in other 
datasets  (Ozgur et al. 2005) further improvements are 
needed. RuleFit (RF) was the model with the maximum 
number of best performances (10 out of 20). One should 
also put into perspective the fact that the measurements 
of the wind speed deviation have an error of -/+ 5 knots. 



Thus in retrospect, all the models except RBA can be 
considered  equivalent  with  respect  to  estimating 
intensity deviation.

Other observations that can be made is the fact 
that the NN performed poorly when the prediction period 
increased.  This is probably  due to the fact  that  noise 
increases as forecasts are made further  ahead.  Thus 
the NN overfits and is unable to generalize well, even 
though techniques like early stopping and weight decay 
were used. Up to the first day NNs are the best model. 
This  conclusion  is  a  new  drawback  for  NNs,  since 
previous  studies  considered  forecasts  up  to  3  days 
ahead, instead of 5. For RuleFit one can say that the 
combination of linear and non-linear aspects in a model 
can greatly  help the performance.  On the other hand 
SHIPS after 12 years of development is still one of the 
best models available. An example of rules discovered 
by RuleFit and RBA can be found in Appendix B.

We  also  considerd  incremental  training  and 
testing for the periods 2001 to 2004 (training from 1982 
to 2000 and testing for 2001, then training from 1982 to 
2001  and testing  for  2002  etc.).  This  could   help  us 
identify  the  stability  of  each  model  over  several 
seasons.  Table 4 summarizes  the findings.  RuleFit  is 
the best method with SHIPS and GA1 following close. It 
is also evident that as we go from linear to non-linear 
models  variability  increases,  especially  due  to  the 
predictions  after  3  days  (case  of  SVMs  and  GN2). 
Taking  into  account  Ockhams razor  principle  and the 
error in the measurement of the wind speed the GN1 
model seems like a very good alternative candidate for 
SHIPS.  Moreover  the  interpretability  and  efficiency  of 
RuleFit is also another promising candidate.

3.5. Interpretation

In  this  section  we  will  focus  on  the  interpretational 
capabilities of RuleFit. RuleFit as a framework provides 
the opportunity to translate the derived rules into easily 
read diagrams, displaying the importance of each input 
variable  and its iteraction effects  with other  variables. 
This  comes  in  addition  to  studying  the  rules  in  their 
original format.

The first goal was to estimate the input variable 
importance.  More  important  variables  make  more 
significant  contributions  (absolute  value  of  the 
coefficient of the standardized predictor or rule) to the 
output and have bigger variance, capturing a wide range 
of possible input values. Usually, a variable varying over 
a small range can be considered as additive noise, not 
contributing to the variations of the output. Figure 4 has 
the average importance over the 20 datasets for all the 
37 predictors. It is interesting that the  6 most selected 
predictors (VMAX, INCV, POT, SHRD, Z850 and LSHR) 
along with SHRG have the highest importance rate. The 
figure  additionally  indicates  that  all  the  variables  are 
potential  contributors  (none  seems  to  be  completely 
irrelevant), but as mentioned earlier as we move further 
ahead, predictions are more erroneous, making models 
with less important variables more succeptible to noise 
and overfitting. RuleFit rule interpretation is also easy. 
For example the rules from predictions 6 hours ahead:

Table 4. Mean RMSE skills  using incremental training 
and testing from 2001 to 2004.

Hours SHIPS GN1 GN2 RuleFit SVM

6 4.63 4.68 4.65 4.57  4.82

12 7.56 7.77  7.75 7.33  8.17

18  9.65 9.99 10.04 9.52 10.80

24 11.27 11.76 11.85 11.43 13.17

30 12.67 13.37 13.54 12.81 15.09

36 14.05 14.88 15.15 14.32 17.37

42 15.2 16.13 16.59 15.65 19.1

48 16.35 17.29 17.93 16.59 20.55

54 17.49 18.39 19.18 18.15 21.68

60 18.59 19.44 20.42 19.4 22.9

66 19.67 20.45 21.61 20.31 24.12

72 20.75 21.32 22.64 21.28 24.65

78 21.61 21.86 23.34 22.84 25.51

84 22.51 22.53 24.17 21.75 26.05

90  23.28 23.04 24.80 23.67  26.7

96 23.81 23.34 25.20 23.55 27.21

102 24.09 23.47 25.49 22.14 28.19

108 24.29 23.54 25.69 23.32 29.23

114 24.44 23.70 26.07 23.72 30.32

120 24.77 23.96 26.54 24.13 31.76

Mean 17.83 18.05 19.13 17.82 21.37

Mean Std 2.86 2.73 4.37 2.62 4.61

if (-0.5 <= INCV <= +Inf) and (40.51 <= POT <=  +Inf) 
then increase intensity change by 0.674

and 
    if (-Inf <= INCV <= 2) and (-Inf <= POT <=  99.6)

then decrease intensity change by 0.4695
suggest that a large maximum potential intensity, when 
there was an increase in wind speed during the last six 
hours,  leads  to  an  increase  in  wind  speed  (positive 
coefficient),  while  smaller  potential  intensity,  with 
negative or very  small  wind speed deviation over  the 
previous 6 hours, implies that the hurricane will abate. 
Another interesting observation is how INCV dissapears 

for later predictions for both RuleFit and RBA. This is an 



extra advantage of rule based methods being capable of 
performing feature selection, while training.

Figure  4.  Variable  importance  based  on  the  rules 
derived by RuleFit for all 20 datasets.

Both RuleFit and RBA frameworks improve upon 
previously  used rule-based methods in  the context  of 
hurricane intensity forecasting (Tang et al 2005) mainly 
because both  boundaries  in  the antecedents  and  the 
output are quantified, rather than being qualitative with a 
prespecified number of levels. Finally, rule importance 
can be considered as another form of feature selection.

The  most  important  aspect  of  the  RuleFit 
framework  with  respect  to  MLR,  Nns  or  SVMs  is 
providing  both through rules  and interaction diagrams 
interdependecies  between  one  or  two  variables  with 
other predictors in the set. Interaction effects are based 
on  the  fact  that  the  final  function  maping  the  linear 
predictors  and  the  rules  into  intensity  changes,  is 
exhibiting  interaction  between two varialbes,  x  and  y, 
when the difference in its values for different values of x 
depends on the value of y. Some examples of the most 
often  seen  two  variable  interactions  can  be  found  in 
Figures  5,  6  and  7.  Interactions  with  three  variables 
were not important, if any.

Different  iteractions  were  found  for  different 
datasets.  Further  investigation  could  contribute  in  the 
analytical  formulation of  the problem. In our case, we 
used  the  most  common  and  major  interactions  of 
variables X and Y to create features in the form X x Y 
and build a hand-picked model using MRL, in an effort 
of  incorporating knowledge to aid the efficiency.

The 7 most important predictors,  as mentioned 
earlier  were  selected,  along  with  LAT  that  showed 
interaction  effects  with  VMAX.  Also  POT  squared 
(POT2) was included because it was selected by both 
SHIPS and GN2. The other features were: POT x INCV, 
VMAX x LAT, VMAX x SHRD, VMAX x LSHR, VMAX x 
SHRG, POT x Z850 for a total of 14 features, 8 of them 
linear.  Among  them  VMAX  x  SHRD  an  important 
interaction of the SHIPS set of independent variables. 

The model's LOSO RMSE was 17.43, while its test 2004 
RMSE was  17.36 and its  overal  18.19,  making it  the 
best  model.  Furthermore,  incremental  training  and 
testing was performed, giving a mean of  16.82 and a 
mean standard deviation of 1.97 making it also the most 
stable model. Its performance was better among other 
models especially in the periods after 72 hours.

Figure 5. Interaction of INCV with VMAX and POT (12 
hours ahead).

Figure  6.  Interaction  of  POT  with  Z850  (54  hours  
ahead).

4. Conclusions

The  intensity  prediction  task  is  still  a  challenging 
problem. For the statistical-dynamical representation of 
the  problem:  (a)  all  the  variables  exhibit  certain 
interactions effects making the goal of selecting a good 
dataset increasingly difficult;  and (b) even though it  is 
possible to decrease the RMSE error to be equal to the 
reporting intensity deviation error for 6 hours ahead, it 



remains  elusive  for  predictions  further  ahead.  On the 
other  hand,  it  is  possible  to  identify  certain  important 
predictor combinations that perform adequatelly.

Figure 7. Interaction of VMAX with SHRD, LON, Z850 
and LSHR, among others (120 hours ahead).

Having the above in mind, in this paper we tried 
to explore new approaches in order to find and create 
better  subsets  of  features.  Addtionally,  through 
interpretable  models,  we  tried  to  exploit  the  inferred 
knowledge to  enhance the  performance.  To a certain 
extent  this  was possible.  Models  with  fewer  variables 
gave  the  same  performance  as  SHIPS,  interactions 
between inputs  helped  increase  the performance and 
combinations  of  linear  and  non-linear  modelling  were 
proved to be quite succesful  through MLR or RuleFit, 
outperforming  standard  non-linear  models.  On  the 
contrary, further improvements can only succeed if the 
noise  decreases  as  we  predict  further  ahead.  It  is 
possible  that  more  advanced  variable  modelling  and 
preprocessing  techniques  are  need,  than  simply 
averaging the values along the track. If noise decreases 
then non-linear methods can be also used, having as an 
advantage their inherent mechanimsms for discovering 
non-linearities  and  interactions  between  the  features, 
rather  than  explicitly  defining  them.  Infrared  satellite 
data, containing information about the storm itself, have 
shown potential for improving the forecasts, but they are 
not available for the entire data sample, and so were not 
included in this study.
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Appendix A 

Table A.1. The initial set of features used and the sets of features selected by each of the algorithms .

Predictors S or T F B G GN1 GN2 N L S

1 Initial maximum wind - VMAX S ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔

2 Max wind change during the past 6h – INCV or PER S ✔ ✔ ✔ ✔ ✔ ✔ ✔

3 Storm latitude - LAT S ✔ ✔

4 Storm longitude - LON S

5 Climatological sea surface temperature - CSST S

6 Zonal component of storm motion - SPDX S ✔ ✔ ✔ ✔

7 Meridional component of storm motion - SPDY S

8 Pressure level of storm steering - PSLV S ✔

9 200-hPa divergence - D200 S ✔

10 1000-hPa divergence - Z000 S

11 Gaussian function of (Julian day - peak value)  - GDAY S ✔ ✔

12 Max potential intensity - current intensity - POT T ✔ ✔ ✔ ✔ ✔ ✔ ✔

13 Distance to land mass - DTL T

14 Climatological depth of 20 C isotherm - D20C T ✔ ✔

15 Same as above for 26 C - D26C T

16 Climatological ocean heat content - HCON T

17 Reynolds SST - RSST T ✔

18 200-hPa zonal wind - U200 T ✔ ✔

19 1000-hPa relative humidity- R000 T ✔

20 200-hPa temperature - T200 T ✔ ✔ ✔ ✔

21 1000-hPa temperature - T000 T ✔

22 1000-hPa t (surface equivalent potential temperature) - E000 T ✔ ✔

23 Average t for positive differences - EPOS T ✔

24 Average t for negative differences - ENEG T



Predictors S or T F B G GN1 GN2 N L S

25 20 (parcel t compared with the saturated t of the envir.) - EPSS T

26 21(parcel t compared with the saturated t of the envir.) - ENSS T ✔

27 850-700-hPa relative humidity - RHLO T

28 700-500-hPa relative humidity - RHMD T

29 500-300-hPa relative humidity - RHHI T ✔

30 850-200-hPa shear magnitude - SHRD T ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔

31 Heading of the above shear vector - SHTD T ✔ ✔

32 850-500-hPa shear magnitude - SHRS T ✔

33 Heading of the above shear vector - SHTS T ✔

34 Generalized 850-200-hPa shear magnitude - SHRG T ✔ ✔

35 850-hPa vorticity - Z850 T ✔ ✔ ✔ ✔ ✔

36 Relative eddy momentum flux convergence - REFC T

37 Vertical shear times sine of storm latitude - LSHR T ✔ ✔ ✔ ✔ ✔

GN1 non-linear features: SHRD2, SHRD x Z850

GN2 non-linear features: INCV2, E0003, 1/SHRD, 1/SHRG, T0003, POT2

SHIPS non-linear features: VMAX x INCV, VMAX x SHRD, POT2



Appendix B 

This appendix contains the 10 most important derived rules from the RuleFit and RBA frameworks for predicting the 
intensification of TCs for 6 and 120 hours ahead.

B1. 6 hours

RuleFit:

Rule   1: 0.303 * INCV

Rule   2: if (-0.5 <= INCV <= +Inf) and (40.51 <= POT <=  +Inf) 

then increase intensity change by 0.674

Rule   3: if (-3 <= INCV <= +Inf) and (-Inf <= SHRG <=  25.67) 

then increase intensity change by 0.4923

Rule   4:   -0.00322 * E000

Rule   5: if (-Inf <= INCV <= 2) and (-Inf <= POT <=  99.64) 

then decrease intensity change by 0.4695

Rule   6: if (-Inf <= ENSS <= 19) and (-Inf <= SHRD <= 9.475) and (-Inf <= POT <=  111.7) 

then increase intensity change by 0.646

Rule   7: if (-7.25 <= REFC <= +Inf) and (29.9 <= POT <=  +Inf) 

then increase intensity change by 0.6681

Rule   8: if (-0.225 <= U200 <= +Inf) and (-Inf <= T200 <= -55.2) and (-Inf <= ENSS <=  41.25) 

then increase intensity change by 0.7075

Rule   9: if (-1.5 <= INCV <= 3) and (-Inf <= POT <=  100.1) 

then increase intensity change by 0.3703

Rule  10: if (-Inf <= VMAX <= 92.5) and (-Inf <= INVC <= -2.5) and (-Inf <= SPDY <=  0.4439) 

then increase intensity change by 0.5261 

RBA:

if VMAX='(-inf-30.5]' and T200='(-inf--51.625]'  => increase by 1.1587

if VMAX='(-inf-30.5]'  =>  increase by 1.1869

if INCV='(-0.5-0.5]' and T200='(-inf--51.625]' and SHRD='(-inf-18.925]'  =>  increase by 1.117

if INCV='(-0.5-0.5]' and T200='(-inf--51.625]' and SPDX='(-inf--0.970603]'  =>  increase by 0.8974

if INCV='(-0.5-0.5]' and SHRD='(-inf-18.925]'  => increase by 1.035

if INCV='(-0.5-0.5]' and SPDX='(-inf--0.970603]'  =>  increase by 0.7985

if INCV='(-0.5-0.5]' and LAT='(15.85-34.75]' T200='(-inf--51.625]'  =>  increase by 0.7169

if INCV='(-0.5-0.5]' and T200='(-inf--51.625]'  =>  increase by 0.6783

if INCV='(-0.5-0.5]'  =>  increase by 0.5926

if SPDX='(-inf--0.970603]' and POT='(102.968402-inf)'  =>  increase by 1.7557



B2. 120 hours

RuleFit:

Rule   1:  0.2532 * POT

Rule   2: if (42.5 <= VMAX <= +Inf) and (80.45 <= EPOS <= 150.6) and (13.25 <= SHRD <=  38.49) 

then decrease intensity change by 6.239

Rule   3: if (-Inf <= VMAX <= 69) and (7.857 <= Z850 <=  +Inf) 

then increase intensity change by 5.797

Rule   4: if (-0.4143<= U200 <= +Inf) and (-Inf <= EPSS <= 74.71) and (-Inf <= ENSS <=  14.07) 

then decrease intensity change by 6.194

Rule   5: if (2.578 <= LSHR <= +Inf) and (-Inf <= POT <=  72.64) 

then decrease intensity change by 5.630

Rule   6: if (-Inf <= VMAX <= 77.5) and (103.1 <= EPOS <= +Inf) and (-Inf <= SHRG <=  23.05) 

then increase intensity change by 5.381

Rule   7: if (-Inf <= EPOS <= 152.4) and (-Inf <= RHHI <= 45.31) and (20.88 <= SHRG <=  +Inf) 

then decrease intensity change by 6.465

Rule   8: if (-Inf <= T200 <= -51.81) and (-Inf <= SHRG <=  16.78) 

then increase intensity change by 7.401

Rule   9: if (-Inf <= VMAX <= 87.5) and (14.12 <= ENSS <= +Inf) and (0.4048 <= REFC <=  +Inf) 

and (-Inf <= Z000 <=  83.5) and (3.662 <= LSHR <=  +Inf) 

then decrease intensity change by 5.159

Rule  10: if (-Inf <= VMAX <= 87.5) and (3499 <= E000 <= +Inf) and (146.5 <= SHTS <=  +Inf) 

and (-1.405 <= REFC <=  +Inf) 

then decrease intensity change by 5.641

RBA:

if POT='(30.594633-72.991362]'  => increase by -10.1508

if VMAX='(-inf-41.5]' and SHRD='(14.330952-inf)' and SHRG='(16.802381-inf)'  => increase by 19.2896

if VMAX='(-inf-41.5]' and SHRD='(14.330952-inf)'  => increase by 19.3589

if LAT='(17.25-inf)' and POT='(72.991362-inf)'  => increase by 19.1011

if VMAX='(-inf-41.5]' and SHRG='(16.802381-inf)' and LSHR='(3.887604-inf)'  => increase by 19.9903

if VMAX='(41.5-72.5]' and LSHR='(3.887604-inf)'  => increase by 1.7391

if  SHRD='(14.330952-inf)'  and SHRG='(16.802381-inf)'  and POT='(72.991362-inf)'  and LSHR='(3.887604-inf)'   => 
increase by 14.5526

if VMAX='(-inf-41.5]' and SHRG='(16.802381-inf)'  => increase by 22.7259

if SHRD='(14.330952-inf)' and SHRG='(16.802381-inf)' and POT='(72.991362-inf)'  => increase by 15.4955

if SHRG='(16.802381-inf)' and POT='(72.991362-inf)' and LSHR='(3.887604-inf)'  => increase by 16.0543
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