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Abstract

SARSA (Sutton, 1996) is applied to a simulated, tra�c-light control problem (Thorpe, 1997)

and its performance is compared with several, �xed control strategies. The performance of SARSA

with four di�erent representations of the current state of tra�c is analyzed using two reinforcement

schemes. Training on one intersection is compared to, and is as e�ective as training on all inter-

sections in the environment. SARSA is shown to be better than �xed-duration light timing and

four-way stops for minimizing total tra�c travel time, individual vehicle travel times, and vehicle

wait times. Comparisons of performance using a constant reinforcement function versus a variable

reinforcement function dependent on the number of vehicles at an intersection showed that the

variable reinforcement resulted in slightly improved performance for some cases.

1. Introduction

A variety of tra�c control strategies are being studied in real tra�c networks and in simulation.

The Denver Regional Council of Governments works with the Colorado Department of Transportation

and citizens to identify and modify problem intersections (Garnaas, 1996). Computers are used to

monitor the tra�c ows for critical intersections throughout the Denver region. The computers have the

capability to change tra�c light timing remotely but are only used to collect data for tra�c analysis.

Recently a major tra�c artery was re-timed from 90 seconds in the heavy tra�c ow direction to 100

seconds. This resulted in an 87% reduction in times stopped at lights. Stockholm, Sweden, uses remote

television cameras to monitor high tra�c ow areas (Olsson, 1996). The tra�c conditions are directly

observed and speed limits and tra�c light timing can be slowly adjusted remotely. Vehicles can also

be rerouted remotely to reduce congestion. Neural networks that use tra�c density approximations to
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indicate ideal vehicle speed within sections of a lane of tra�c have been simulated, achieving good results

(Ho and Ioannou, 1996). This method does not try to control tra�c lights and requires sampling along

a section of highway where there are no on-ramps or o�-ramps.

Current tra�c controllers in wide use are very primitive and require frequent manual adjustments

to keep tra�c owing smoothly. In this article, it is shown that reinforcement learning with complete

knowledge of vehicle locations approaches the best tra�c light performance that can possibly be achieved

for the limited tra�c simulation used.

Section 2 provides an overview of reinforcement learning and in Section 3, the tra�c simulation

and several conventional tra�c light controllers are described. The application of SARSA to the tra�c

light control problem is described in Section 4. The results are summarized in Section 5, and Section 6

presents conclusions.
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2. Reinforcement Learning

Reinforcement learning is a form of learning typically used for controlling processes. It has been

applied to balancing an inverted pole (Anderson, 1988), optimizing elevator performance (Crites and

Barto, 1996), determining the actions required to rock an under-powered vehicle out of a valley (Sutton,

1996), playing backgammon (Tesauro, 1995) and many others. The TD-Gammon backgammon program

has been so successful that experts are learning new strategies from it.

Reinforcement learning techniques di�er from supervised learning, such as error back-propagation

in neural networks (Rumelhart, 1986), because neural networks require a teacher to provide answers or

desired output values for a set of inputs. The errors or di�erences between the output of the learning

agent and desired values are used to modify the network weights. After su�cient training the neural

network will be able to predict the output for a set of inputs with varying accuracy. For control problems

the correct actions for a given situation or state may not be known and neural networks by themselves

might not solve the problem since there may not be any examples to learn from.
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Figure 1: Reinforcement learning agent relationship to the process being controlled.

Reinforcement learning can discover the optimum actions by interacting with its environment as

shown in Figure 1. By taking an action, a

t

, at time, t, the agent interacts with the world producing a

new state, s

t+1

, and receiving a reward, r

t+1

, as a result. The agent uses the reward to modify the policy

it will use for choosing future actions. Learning in this way allows the agent to adapt to the environment

it is controlling. If the dynamics of the system being controlled changes over time, for example increasing

friction in a robots arm, the reinforcement learning agent will be able to adjust to the new environment

and continue to function properly. This direct interaction with its environment allows the learning agent
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to develop an optimal control strategy without requiring a model of the process it is controlling.

Reinforcement learning procedures have been shown to converge for absorbing Markov processes,

meaning that the learning agent can see the state of the environment, the next state is only dependent

on the current state, and that all sequences eventually terminate (Sutton, 1988).
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Figure 2: Evolution of state values during reinforcement learning for a simple problem.

The mechanics of reinforcement learning can be illustrated with a simple grid problem as shown in

Figure 2. The grid represents the physical layout of a room split into 16 squares. The goal is to reach

the upper right corner of the grid as quickly as possible. By taking one step in any vertical or horizontal

direction, the occupant moves with certainty to the next grid in the direction they are moving. To

begin the learning process the value of each grid or state is set to zero. After learning has proceeded

substantially, the state values can be used to choose which direction to proceed, by selecting the next

state with the highest possible value.

The state values can be updated using iterative policy evaluation which uses the following update

equation:

V

0

(s

t

) = r

t+1

+ V (s

t+1

) (1)

This says that the value of the current state is the value of the next state plus the reward received during

the state transition. The value of the goal state is not updated. A common reward scheme to minimize

the time required to reach the goal is: r

t+1

= �1. By applying this equation to all states from left

to right for the �rst three columns of the grid and then bottom to top for the last column, the results

of the �rst iterative policy evaluation update are shown in Figure 2. After several iterations the �nal
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state values are found and represent the negative number of steps to the goal when choosing the optimal

action. If the update occurred in a di�erent order, the values might be more negative and would not be

optimal. This is corrected by de�ning the optimal state value, V

�

(s) as:

V

�

(s

t

) = max

a

t

Efr

t+1

+ V

�

(s

t+1

)js

t

2 S; a

t

2 A(s)g: (2)

This says the optimal value for a valid state is the maximum of the next expected state values plus

reward from the available actions.

For more complex problems, the resultant state of an action might not be known ahead of time and

it is more practical to base decisions on the results of actions. This is done by storing the values of

action results within each state. When an action is chosen from a given state, the value for the action is

updated upon receiving reinforcement from the environment. Choosing the action to implement is then

a simple look up in the current state space. The value of a state action pair is denoted: Q(s; a). The

optimal state value is then de�ned as:

V

�

(s) = max

a

Q

�

(s; a); (3)

and the optimal state-action value, Q

�

(s; a) is:

Q
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2 A(s)g: (4)

The method used for the tra�c controller is SARSA with eligibility traces (Sing and Sutton, 1996).

SARSA is similar to equation (4), except that the \maxQ

�

" term is replaced by the Q value for the actual

action, a

t+1

, taken at step, t+ 1. SARSA is an abbreviation for State-Action, Reward-State-Action as

implied in equation (4). Temporarily ignoring the eligibility traces the update rule is:

Q
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t
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t+1

+Q(s

t+1

; a

t+1

) (5)

or

Q

0
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; a
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) = Q(s

t

; a

t

) + �Q(s

t

; a

t

): (6)

The delta represents the di�erence in values between the current state-action and the sum of the next

state-action and reward. This is referred to as the Temporal Di�erence error (TDerr) between the
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state-action pairs. The TDerr is given as:

TDerr = �fr

t+1

+Q(s

t+1

; a

t+1

)�Q(s

t

; a

t

)g; (7)

where � is the learning rate which varies from 0 to 1. Reducing the learning rate allows the values to

develop more smoothly over time during the learning process. The update rule then becomes:

Q

0

(s

t

; a

t

) = Q(s

t

; a

t

) + TDerr: (8)
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Figure 3: Update Progression without Eligibility Traces

With � = 1, the update process from a given state to the goal is shown in Figure 3. Note: that only

the action values of interest are shown in the Figure. Initially all action values are zero. The initial state

is chosen randomly (the base of the arrow). The best action is chosen using an epsilon-soft policy to

allow for exploration, meaning that a fraction (based on the value of epsilon, where 0 � epsilon � 1) of

the actions are chosen randomly amongst all the available actions regardless of their value. The action

is taken and the reward and new state are observed (the point of the arrow). The next action is then

chosen so the TDerr can be computed. In the initial update the TDerr is �1. The update is then applied

giving the initial update results in Figure 3. The chosen action is implemented during the next time

step and the process is repeated until the goal is reached concluding the current trial. A new starting

state is chosen randomly and updating occurs for the next trial. Trials are repeated to su�ciently train

the agent.

Eligibility traces are used to speed up the learning process by tracking the states that have been

visited during a trial and adding a portion of the TDerr to each state-action pair visited. This also
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aids the credit assignment problem, determining how much credit or blame to assign to state-action

pairs for the resulting success or failure of the trial. An eligibility trace value is associated with each

state-action pair. The eligibility traces are cleared to zero at the beginning of each trial and multiplied

by an eligibility decay rate � between each step in a trial. Values for � range from 0 to 1. The eligibility

trace for the state being updated is assigned a value of 1. All state-action pairs are then incremented

by the product of the TDerr and the eligibility trace value associated with the state-action pair. This

method is referred to as TD(�). When � is zero, all eligibility is assigned to the previous state and zero

to all other states.
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Figure 4: Update Progression using Eligibility Traces

The advantages of SARSA using TD(�) eligibility traces are shown in Figure 4. Both � and � are

set to 1 in this example. The TDerr is again �1 and the initial update gives the same result without

eligibility traces. Subsequent steps not only update the current state-action pair but also the state-actions

that have already been visited during the trial. The TDerr calculated for the current state-action pair

transition is used for all of the updates along the trace for the current step. This helps speed up the

learning process considerably.
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3. Tra�c Simulator and Control Strategies

The tra�c simulator, as described by (Thorpe, 1997), uses one-second, discrete time steps for the

tra�c-light controller and the simulation of vehicle movement. The simulator is very realistic: the

physics of motion of the traveling vehicles are closely approximated, vehicles maintain safe following

distances, vehicles are stopped at red lights, and vehicles yield right-of-way, as appropriate, before

entering intersections. From a green light the controller must cycle through a yellow phase for two

seconds and an all-red phase for 1 second before switching the right-of-way. The only exception to the

last rule is for the all-green strategy described below. The simulation takes place in a 4 x 4 grid of

east-west and north-south two-lane streets (one lane in each travel direction). The simulated distance

between streets is 440 feet apart. The speed limits on each lane vary from 20 to 40 miles per hour and

vehicles do not exceed these limits.

Cars are inserted in the network with their starting and destination intersections chosen randomly

before the simulation is started. The routes are chosen using an Iterative Deepening A* algorithm.

The route for each vehicle may require more than one turn because the route selection heuristic is the

travel time through a lane, which is calculated by dividing the lane length by the lane speed limit.

This heuristic will drastically under-estimate the travel times when the tra�c simulator is congested

using high volume tra�c loads. By using the same random seed for all testing, vehicles follow the same

routes. This ensures that the testing results between the reference and experimental implementations

are directly comparable.

Four �xed, control strategies were used to compare the SARSA results against. The all-green strategy

sets all lights in all directions to green. Vehicles do not stop at intersections to avoid other tra�c; they

are allowed to travel through each other in the virtual simulator. Therefore, the all-green strategy is not

physically realizable, but it does provide a baseline of best-possible performance to which other strategies

can be compared. The four-way stop strategy is based on standard four-way stop signs: vehicles must

come to a complete stop and right-of-way is passed to vehicles in a circular manner. The �xed-duration

strategy cycles through green, yellow and red lights at prede�ned intervals. This is the normal type of

tra�c control used today. The duration can be varied but is usually based on time of day and must be
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preset manually. The greatest-volume strategy sets to green the tra�c lights in the east-west or north-

south lanes depending on which direction contains the most vehicles. The lights in the other direction

are set to red (after cycling through the required light phases).

For each strategy, tests were performed using 100, 500 and 1,000 vehicles. The environment is

lightly loaded with 100 vehicles, starts to congest around 500 vehicles and is very congested with 1,000

vehicles. The metrics for 100, 500 and 1000 vehicles were summed to provide a combination metric.

The combination metric is then searched to �nd the best performance when considering all three tra�c

loads. The simulation starts without any vehicles in the environment. The routes for all vehicles are

calculated and the vehicles are queued at the block where they will enter the simulation. When the

simulation begins, vehicles enter the block 100 feet from the beginning of the block when there are no

other vehicles approaching in the �rst 100 feet of that block. This means that for the �rst block, vehicles

will only travel 340 feet to the next intersection in a block that is 440 feet long. For an average vehicle

1

travelling at 40mph, this provides a minimum margin of safety when considering an emergency braking

deceleration rate of 14 ft/sec

2

and fast acceleration rate of 4 ft/sec

2

. At the beginning of the simulation,

all cars at the front of the block queues will be able to enter the simulation. The next cars in the queues

will have to wait a few seconds for the car in front of them to move forward before entering the street.

As the simulation progresses, some cars will have to wait for approaching tra�c to pass before they can

enter the street.

About 96 days of cpu time using 166MHz Pentium PCs were required to generate the results reported

here. The work was distributed over eight PCs. Some PCs ran the simulations 24 hours/day and some

ran the simulations only at night. This allowed the simulations to complete in about 3 weeks time.

1

Acceleration and deceleration were timed for a Honda Civic and a Toyota 4Runner.
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4. Tra�c Light Control with SARSA

The SARSA (Sutton, 1996) algorithm was applied to the tra�c light control problem using replace

traces (Singh and Sutton, 1996) and greedy action selection. If the greedy action is not unique, one is

chosen randomly. For most representations, the tra�c controller is trained using experience at a single

intersection with the four lanes of tra�c leading into it. There are no other intersections present in

the simulation during this type of training. A lane, relative to an intersection, is the block-long (440

foot) stretch of road approaching the intersection. The number of vehicles placed in the north-south and

east-west lanes varies between zero and 50 and is chosen systematically. The vehicles' destinations are

chosen randomly. After the vehicles are added to each lane, the vehicles' positions and speeds within

each lane are randomly determined to the degree that all vehicles �t within their lane and are properly

spaced to prevent collisions. In this way, a large variety of initial states are visited.

SARSA was implemented using a discrete state-action space to represent the states and actions.

Unique Q values were associated with each discrete state-action. The current state is characterized for

SARSA by the number and positions of vehicles in the north, south, east, and west lanes approaching

the intersection and by the elapsed time since the last light cycle change. The action for a given state

sets the color of the north-south tra�c lights to red or green, and indirectly sets the color of the east-west

lights, which are always set to the opposite color of the north-south lights (after cycling through the

required light phases). These features were quantized and combined in four ways and the performance

with the four resulting state representations was compared.

The �rst representation, called the vehicle count representation, is formed by summing the number

of vehicles in the two north-south lanes and the vehicles in the two east-west lanes. These two sums

are quantized into 10 partitions with values of 0, 1{5, 6{10, 11{15, : : :, 36{40, and 41+. The pairs of

partitions of the two sums represent 100 possible two-dimensional states. When combined with the two

actions, the state-action space consists of 200 discrete states.

The second representation, called the �xed-distance representation, retains an indication of the rela-

tive distance of vehicles from the intersection. The intersection's lanes are divided into 110-foot intervals,

forming four partitions on each of the four lanes. The presence or absence of vehicles in each partition
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is determined and recorded by setting an \occupied" bit for each partition. The occupied bits for the

�rst 110-foot partition of the north or south lanes are combined with a Boolean \or" operation, as are

the north and south occupied bits for the other three corresponding partition pairs. This same process

forms the representation of vehicles in the east-west lanes. Thus, the input to the learning agent with

this representation is a 256-component vector with a single nonzero component. When combined with

a binary value indicating the color of the north-south lights, the state-action space is represented by a

512-component binary vector with a single nonzero component.

The third representation, called the variable-distance representation, partitions each lane like the

�xed-distance representation, but the divisions are at unequal distances from the intersection. Partition

boundaries are at 50, 110, 220 and 440 feet from the intersection, making four partitions. The input to

the learning agent and the state-action space with this representation consists of 256 and 512 components

respectively, just like the �xed-distance representation.

The fourth representation, called the count/duration representation is similar to the count repre-

sentation and adds the current north-south light color to the state representation and minimum light

duration in seconds to the action representation. Eight counting partitions for the number of vehicles

in the north-south and east west lanes were quantized for values of 0, 1{9, 10{19, 20{29, 30{34, 35{39,

40{44, and 45+. Eight light duration partitions were quantized for values of 0-4, 5{9, 10{14, 15{19,

20{24, 25{29, 30{39, and 40+ seconds. The input to the learning agent with this representation consists

of a 128 component vector with one nonzero component (8 (north-south count) x 8 (east-west count) x 2

(current north-south color (0=red, 1=green and the east-west color is set to the opposite color))). The

action space is represented by a 16-component vector with one nonzero component (8 (minimum light

duration) x 2 (new light color)). The state-action space is represented by a 2048-component vector with

one nonzero component.

For the �rst three representations, testing on one intersection was found to be as e�ective as training

on any one corner, edge or middle intersection in a 4 x 4 network and more e�ective than training all

intersections individually with their own values and eligibility traces in a 4 x 4 network. When training

the fourth representation, the count/duration representation, on a single intersection with a maximum
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of 50 cars per direction, the simulation does not run long enough to bene�t from the longer light times

and the controller performance is reduced. This representation was trained with 100, 500 and 800

vehicle loads using the full 4 x 4 tra�c network. During training, each intersection had its own set of

eligibility traces while a set of common state-action values was shared by all intersections. While the

count/duration representation is not trained using the same method as the �rst three representations,

the testing results can be used to compare the representations since training on a full network does not

bene�t the �rst three representations.

Table 1: SARSA Update Methods

Actual Interpreted

Light Light

time Colors Colors Update Update Only

t N-S E-W N-S E-W Every State De�ned States

1 G R G R q(1; G) = r + q(2; G) q(1; G) = r + q(2; G)

2 G R G R q(2; G) = r + q(3; R) q(2; G) = r + q(3; R)

3 Y R R G q(3; R) = r + q(4; R) no update

4 Y R R G q(4; R) = r + q(5; R) no update

5 R R R G q(5; R) = r + q(6; R) no update

6 R G R G q(6; R) = r + q(7; R) q(6; R) = r + q(7; R)

7 R G R G q(7; R) = r + q(8; R) q(7; R) = r + q(8; R)

8 R Y R G q(8; R) = r + q(9; R) no update

9 R Y R G q(9; R) = r + q(10; R) no update

10 R R R G q(10; R) = r + q(11; G) no update

11 G R G R q(11; G) = r + q(12; G) q(11; G) = r + q(12; R)

12 G R G R q(12; G) = r + q(13; a

13

) q(12; G) = r + q(13; a

13

)

When the lights cycle through the yellow/red and all/red phases the state of the environment is unde�ned.

Two di�erent update methods were used to handle unde�ned states. The update formulas are of the

form: q(s

t

; a

t

) = r

t+1

+ q(s

t+1

; a

t+1

). The �rst method calculates updates during every time step even

when the state is unde�ned. When updates are performed during every time step, the north-south

light color is interpreted as being red, and the east-west light color is interpreted as being green during

unde�ned states. The second method calculates updates only when the current state is de�ned.

If the current state is free of vehicles, no learning takes place since the intersection is in a goal

state. When the lights cycle through a yellow or all-red phase, the environment state is not de�ned.

Learning should only occur during de�ned states where one travel direction has a green light and the

other direction has a red light. Two methods were used to handle updating action values when the

simulator is in an unde�ned state. These methods are illustrated in Table 1. When SARSA updates

are calculated at every time step, each state-action pair is updated based on the interpreted light color

of the N-S (north-south) direction. If the north-south light color is not green, the north-south light
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color is interpreted as being red. The questionable aspect of this is that the yellow/red and all-red

states are always interpreted as the E-W (east-west) direction being green. This should be changed so

that the direction that was green most recently is interpreted as being green during the yellow/red and

all-red states. When SARSA updates are calculated only during valid de�ned states, not all state-action

pairs are updated. For example at time, t

2

, the state-action pair q(2; G) is updated using the q(3; R)

state-action value. But at time, t

3

, no update occurs and the q(3; R) state-action value is not updated

during this sequence. State-action, q(3; R), will have to wait to be updated during another sequence of

state-action sequences. Updating at every time step results in better performance for the �xed-distance,

variable-distance and count representations. For the count/duration representation, better results were

produced when updates were performed only during de�ned states. The results reported later in this

paper are based on the update method that produces the best results for each representation.

Four performance measures were calculated for all tested strategies: the total number of simulation

steps required for all vehicles to reach their destinations (the �nal goal state); average vehicle travel time;

the total number of stops made by all vehicles; and the average vehicle wait time (how many seconds

a vehicle has zero velocity). Tests were performed by duplicating the current state of the SARSA

controller, trained on one intersection, at every intersection of a tra�c network with 4 x 4 intersections.

The performance measures were calculated on this test network after every 10 or 20 learning trials.

The test suite used to obtain the results in the next section consisted of 90 runs for each representation.

Each run had a �xed learning rate, �, and eligibility trace decay rate, �. The values for � ranged from 0.1

to 0.9 and � ranged from 0.0 to 0.9. Values equal to 1.0 for � or � caused oating point overows. After

some experimentation, the number of training trials per run was chosen to be 4,000. A trial consisted

of inserting cars into the network and running the simulation until all cars reached their destination.

Trials were limited to 1,200 time steps for 100 and 500 car tests and 2,400 time steps for 1,000 car

tests. After 10 to 20 training trials, three tests were run consisting of 100, 500 and 1,000 cars. The

combined metric was formed by summing the results of the 100, 500 and 1,000 car tests at each testing

trial during a run. For example, if the number of stops for testing trial 20 is 200, 1100 and 3000 for 100,

500 and 1,000 cars respectively, the combined metric is 4300 stops at trial 20. This process is repeated
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to calculate the other three combined metrics. The weighted average of the combined metric is then

calculated and searched to �nd the best performance when considering all three tra�c loads. The Q

values were initialized to zero before the start of each run. Training and testing used about 2 days of

wall clock time on a 166MHz Pentium processor for the �rst three representations and about 90 days

for the count/duration representation.

Two types of reinforcements were tested for each representation. The �rst method used a reinforce-

ment of �1 for each discrete time step. The second method used a reinforcement that varied from �5

to �1 depending on sensor activations as follows. There are four sensors near an intersection, one in

each lane, that are able to detect moving or stopped tra�c. A sensor that is activated in a lane with a

green light will detect moving tra�c and a sensor that is activated in a lane with a red light will detect

stopped tra�c. The reinforcement is initially �3. If one of the lane sensors corresponding to a green

light (travelling tra�c) is activated one or more times during the previous second, the reinforcement is

incremented by 1 to reward the controller for moving tra�c through the intersection. If both green light

sensors are activated, the reinforcement is incremented by 2. If a lane sensor corresponding to a red light

(stopped tra�c) has been activated during the previous second, the reinforcement is decremented by 1

to punish the controller for stopping tra�c. If both red light sensors are activated, the reinforcement

is decremented by 2. This should help the controller learn faster that stopping tra�c in one direction

while there is no tra�c in the other direction is not a good choice. If there is an equal amount of tra�c

moving and waiting at an intersection, a neutral reward of �3 is assigned. No discount was used, since

the trials are �nite in length.

The two reinforcement schemes are compared in Figure 5 for three SARSA representations by plotting

the number of simulation steps to reach the �nal goal versus trials using � = 0:3 and � = 0:1. The

results from the �xed-distance representation are similar to the variable-distance representation results

and are not included. The varying reinforcements improve the performance and reduce the variation in

the results for the �xed-distance and variable-distance representations, while the reverse holds for the

count/duration representation. There is no signi�cant di�erence for the count representation. For the

primitive representations, varying the reinforcement helps to evaluate the actions more precisely and to
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Figure 5: The e�ect of two reinforcement systems are compared for three SARSA representations based

on the total number of steps for 100 cars to reach their destinations. A varying reinforcement based on

the environment, r = f(E) = �3 + green-sensor hits � red-sensor hits, dramatically reduces the varia-

tion in the primitive variable-distance representation and has little e�ect on the count representation.

The results for the �xed-distance representation are similar to the variable-distance representation. A

constant reinforcement of �1 is the best for the count/duration representation.
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reduce the variation during training considerably. For the remaining comparisons, varying reinforcements

are used for the primitive representations and a constant reinforcement is used for the count/duration

representation.

Figure 5 also reveals two apparent problems. First, it appears that no learning takes place or occurs

during the �rst 20 to 40 trials. Second, with the large performance variation between neighboring test

points, how can the performance of di�erent representations and learning parameters be fairly charac-

terized? Using the minimum-valued test point would reect better performance than might actually be

achievable under varying tra�c loads. A learning trial is characterized by �nding the minimum-valued

test point in a trial based on the weighted average of the test points. The weighted average for the kth

test point is calculated as follows:
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P

n
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i

n
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k � n+ 1� i > 0; k + j <= m

where w is the weighted average of the kth point, y is the actual value of point, k is the index of the

point being averaged, m is the index of the last test point and n is the number of points on each side of

the test point being weighted with the test point.

Figure 6 shows the weighted average along with the original reward comparisons from Figure 5. The

weighted average for a point was determined by averaging it with 30 neighboring points. The e�ect of

the two reinforcement systems and the extent of the variation for the di�erent representations is easier

to see. The variable-distance representation using varying rewards does not exhibit much variation but

is pretty at and does not appear to be learning. Learning may be occurring for the count/duratation

representation with a constant reinforcement of �1 and for both of the count representations.

A 31 test point average (n = 15) is used for all of the SARSA representation performance comparisons.

Figures 7 and 8 compare the learning progress for the SARSA representations tested in a 4 x 4 network

with 100 cars, 500 cars, 1000 cars and combined loads with � = 0:1 and � = 0:4. The weighted average

is labeled, \31 Test Point Average", in the �gures. The �gures also include the performance for each

representation selecting actions randomly, the all-green strategy and the best �xed-duration strategy for

each tra�c load. The \31 Test Point Average" shows the learning progress more clearly. Learning is
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Figure 6: The results from Figure 5 are shown with the weighted average of the total number of steps

for 100 cars to reach their destination superimposed. The weighted average for a point was determined

by averaging 30 neighboring points with the point. The e�ect of the two reinforcement systems and the

extent of the variation for the di�erent representations is easier to see. Learning may be occurring for

both count representations and the count/duratation representation with a constant reinforcement of

�1.
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more evident in the 500 car, 1000 car and combined runs. The count and count/duration representation

show the most consistent learning progress followed by the �xed-distance representation. The variable-

distance representation experiences large oscillations in performance about every 1000 trials with the

�nal trials being worse than the initial trials for the 1000 car and combined runs. Only a few of the

representations perform better than the �xed-duration representation. These learning parameters were

selected because they illustrate the learning progress more clearly than other learning parameters. Other

learning parameters do not perform as well as selecting actions randomly and other learning parameters

will be shown to perform better than the �xed-duration strategy.
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Figure 7: Comparison of learning progress for the SARSA representations tested in a 4 x 4 test network

is shown with 100 and 500 cars. The "31 Test Point Average" helps show the learning tendency of each

representation. Learning is more apparent in the 500 car load. The SARSA reinforcement is r = �1 for

the count/duration representation and r = f(E) for the count representation.
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Figure 8: Comparison of learning progress for the SARSA representations tested in a 4 x 4 test network

is shown with 1000 cars and combined runs. Learning is easily seen except for the variable-distance

representation which experiences large oscillations every 1000 tests. The SARSA reinforcement is r = �1

for the count/duration representation and r = f(E) for the count representation.
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5. Results

The �xed-duration strategy was tested by varying the green light duration for varying loads. Figure 9

shows the number of steps required to clear the simulator of all vehicles versus the green light timing.

Table 2 summarizes the best, �xed-light timing for all metrics.

To reduce the total number of steps for all cars to reach their destination, the optimum green light

duration occurs at 17 seconds for 100 cars and increases to 61 seconds for 500 cars and 112 seconds for

1,000 cars. Di�erent �xed-light timing ranges are needed to generate the best performance for the other

metrics. This shows that a simple �xed-duration strategy will not work for varying tra�c loads. The

best �xed-duration value for each load is shown in subsequent comparison graphs.
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Figure 9: A comparison of �xed-duration light timing settings in a 4x4 test network shows that di�erent

timings provide optimal performance at di�erent tra�c loads.

For the 100, 200 and 500 car loads it is clear that after a certain green-light duration, the total number

of steps required to complete the simulation increases linearly as the green light duration increases. An

interesting \quantum" like phenomena may be occurring in the 750 and 1000 car tra�c loads. Consider

the 750 car load. At about 65 seconds through 75 seconds green light duration, the total number of

steps increases mostly linearly. At about the 78 second timing mark, there is a sudden drop in the total

number of steps. These valleys may be occurring due to the tra�c lights synchronizing well with the

tra�c ow. These \quantum" like jumps may also be present in the lighter tra�c loads but are not as

obvious.
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Figure 10: Comparison of SARSA representations using the best weighted average of total steps for all

cars to reach their destination versus eligibility trace decay � in a 4 x 4 test network. The best value for

� is used for each � and SARSA representation combination. The SARSA reinforcement is �1 for the

count/duration representation and variable for all other SARSA representations.

Avg Travel Avg Wait

Car Total Total Time per Time per

Count Steps Stops Car Car

100 17 secs 45 secs 47 secs 7 secs

500 61 secs 117 secs 55 secs 17 secs

1000 112 secs 128 secs 93 secs 18 secs

Combined 60 secs 128 secs 53 secs 12 secs

Table 2: Best Fixed-Duration Settings for each Metric and Tra�c Load

The performance of the SARSA algorithm was tested with the four representations described above.

For each representation, the best values of � and � were selected by searching for the best weighted

average of the metric under test. Figure 10 shows the best weighted average of total steps for all cars to

reach their destination versus �. The control strategies in best to worst order are:

1. SARSA count/duration representation;

2. SARSA count representation;

3. SARSA �xed-distance representation;

4. SARSA variable-distance representation.
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Since there would be less variation in the location of vehicles at high tra�c loads, it was expected the

�xed-distance and variable-distance representations would perform better under light loads. However,

the variable-distance representation performs better for medium loads and poorly overall. The perfor-

mance di�erence between the variable-distance and �xed-distance representations shows that knowing

vehicle locations more precisely as the vehicles get closer to the controlling intersection, reduces, rather

than increases, the controller performance. The count representation performed at a relatively moderate

level, except for light loads when it was the best. The count/duration representation performed best

under all except light loads. The best overall � occurred at 0.5 or 0.6.
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Figure 11: Strategy comparison using best weighted average of total steps for all cars to reach their

destination versus learning rate � in a 4 x 4 network. There is not as much variation between � values

as compared to � values in Figure 10. The best value for � is used and varies for each � within each

SARSA representation.

Figure 11 shows the best weighted average of total steps for all cars to reach their destination versus

� for all strategies. Some of the strategies are not shown on the graphs so that the di�erences between

the remaining strategies are easier to observe. When a strategy has not been graphed, its performance

is included on the graph as a label. All SARSA representation are included on all graphs. The control

strategies in best-to-worst order for the total number of steps for all cars to reach their destination under



24

heavy tra�c loads (1000 cars) was found to be:

1. all green lights;

2. SARSA count/duration representation;

3. four-way stop;

4. 112 second �xed-duration;

5. SARSA count representation;

6. SARSA �xed-distance representation;

7. SARSA variable-distance representation;

8. greatest-volume strategy.

For the primitive SARSA representations, as � was increased, the performance generally decreased.

For the count/duration representation, the best � started at 0.1 for light loads and increased to 0.7 for

higher loads. The best values for � to reduce the total simulation steps range from 0.5 through 0.9.
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Figure 12: Strategy comparison using the best weighted average of travel time/car for cars to reach their

destination in a 4 x 4 network. The best value for � is used and varies for each � within each SARSA

representation.

Figure 12 compares the weighted average of travel time per vehicle versus � for all strategies. The

control strategies in best-to-worst order for the average of travel time per vehicle under heavy tra�c

loads (1000 cars) was found to be:
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1. all green lights;

2. SARSA count/duration representation;

3. 93 second �xed-duration;

4. four-way stop;

5. SARSA count representation;

6. SARSA �xed-distance representation;

7. SARSA variable-distance representation;

8. greatest-volume strategy.

There is only a 16-second variation for the best results for all of the SARSA representations under

heavy load. Any SARSA representation would be acceptable for reducing the average travel time/car

since the di�erences in performance would probably not be noticed by the average individual. The

greatest-volume strategy performs better than the �xed-distance representation for medium loads. Timed

lights, four-way stops and the greatest-volume strategies performed better as the tra�c loads increased.

The greatest-volume strategy performed better than the �xed-distance representation under light and

medium loads and better than the variable-distance strategy under light loads. The count/duration rep-

resentation was consistently the best strategy for all tra�c loads. The average travel time/car increased

as � was increased for all SARSA representations except for the count/duration at heavy and combined

loads. The best � for the count/duration representation at heavy and combined loads was 0.7 and 0.6

respectively.

Figure 13 shows that the control strategies in best-to-worst order for the weighted average of total

stops per vehicle under heavy tra�c loads (1000 cars) are:

1. all green lights;

2. 128 second �xed-duration;

3. SARSA count/duration representation;

4. SARSA count representation;

5. SARSA variable-distance representation;

6. SARSA �xed-distance representation;

7. greatest-volume strategy;

8. four-way stop.
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Figure 13: Strategy comparison using the best weighted average of total stops for all vehicles en route

to their destination in a 4 x 4 network. The best value for � is used and varies for each � within each

SARSA representation.

As expected, the four-way stop experienced more stops than any other strategy. It was thought

that the varying reinforcement for the three primitive SARSA representations which receive higher

reinforcements for moving tra�c along and experience greater punishment for stopped tra�c would result

in fewer stops, but this did not happen. The �xed-duration timing strategy performed better than the

SARSA representations as the tra�c loads increased. This shows that the SARSA representations and

reinforcements are not optimized to reduce the number of stops a vehicle makes. However, there is only

about a di�erence of 0.5 stops per car between the �xed-duration strategies and SARSA representations

which would not be noticed by the average driver. The total number of stops increased as � was increased

for all SARSA representations except for the count/duration at medium, heavy and combined loads. The

best � for the count/duration representation at medium, heavy and combined loads was 0.2, 0.9 and 0.9

respectively.

Figure 14 shows that the control strategies in best-to-worst order for the average wait time per vehicle

under heavy tra�c loads (1000 cars) are:

1. all green lights;
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Figure 14: Strategy comparison using the best weighted average of wait time/car en route to their

destination in a 4 x 4 network. The best value for � is used and varies for each � within each SARSA

representation.

2. four-way stop;

3. SARSA �xed-distance representation;

4. SARSA count representation;

5. 18 second �xed-duration;

6. SARSA variable-distance representation;

7. SARSA count/duration representation;

8. greatest-volume strategy.

For this metric, the relative order of performance for the SARSA representations has changed dras-

tically compared to the other metrics. Here, the �xed-distance representation performs the best overall.

The count/duration representation, instead of consistently being the best representation, is always the

worst. The �xed-distance and variable-distance representations, which for the previous metrics were the

worst, are among the best especially as the tra�c loads increase. It could be that the varying reinforce-

ment schemes are helping reduce the average wait time except that tests with the reinforcement schemes

reversed show the same ordering of control strategy performance for the high and combined loads and

similar ordering for the low and medium loads. The four-way strategy which performed average to worst
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for the other three metrics is better than all of the other strategies except for the all-green strategy. The

four-way stop strategy was able to reduce the amount of time that vehicles were completely stopped

by continually moving tra�c slowly through the environment. The average wait time/car increased as

� was increased for all SARSA representations except for the count/duration at heavy and combined

loads. The best � for the count/duration representation at heavy and combined loads was 0.7 and 0.6

respectively.

Figure 15 and Figure 16 compares the performance for di�erent � and � values for the four SARSA

representations for combined tra�c loads. The variable-distance, �xed-distance and count representa-

tions perform best with small � and the count/duration representation performs best at � = 0:7. The

value of � is not as critical in any representation. The variable-distance, �xed-distance and count rep-

resentations generally form smoother surfaces than the count/duration representation. This may be an

indication that the count/duration representation which is more complex than the other representations

may not have reached their optimal values and could bene�t from more training.

Figure 17 shows the average green light duration versus �. The order of the strategies from shortest

to longest average green light duration was:

1. SARSA �xed-distance representation;

2. SARSA variable-distance representation;

3. SARSA count representation;

4. greatest-volume strategy.

5. SARSA count/duration representation;

For the �xed-distance and the variable-distance representations, the green light duration increased

slightly as the tra�c load increased. This was expected but it was thought the increases would have

been larger than 1 to 5 seconds between loads. For the count and count/duration representations, the

green light duration increased from light to medium tra�c loads and decreased slightly from medium to

heavy tra�c loads. For all except the count/duration representation, the green light duration appears

to be independent of �. For the count/duration representation, the green light duration increases as �

increases. This may be another indication that the count/duration representation might bene�t from

further training. Since the larger � values have longer green light durations, further training with the
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smaller learning parameters might bring the green light duration up to the same levels as the larger

� values. The green light duration for the count, �xed-distance and variable-distance are all within 5

seconds of each other. The count/duration green light duration is 15 to 17 seconds longer than the

other SARSA representations. The longer green light times for the count/duration representation help

to make it the best representation for reducing the total simulation time, average travel time and total

vehicle stops.

Figure 18 shows the percentage of state-action spaces visited during training. The count represen-

tation visited 99% of the state-action pairs (all except the two goal state-action pairs) in about 900

trials. The variable-distance and �xed-distance representation graphs are very similar in shape but

scale di�erently. The variable-distance representation consistently visited about 50% more state-action

pairs than the �xed-distance representation. The variable-distance and �xed-distance representations

visited about 75% and 52% of the state-space, respectively, after 3200 trials. When training on one

intersection, the cars will crowd forward towards the intersection when waiting for a red light to turn

green. Since the variable-distance representation has more partitions closer to the intersection, it can

visit more states than the �xed-distance representation using the same training method. The systematic

selection of the number of vehicles used during training is visible at the 1000, 2000 and 3000 trial marks.

The count/duration representation fell between the variable-distance and �xed-distance representations

visiting about 58% of the state-action space at the end of the run.

To see if arti�cial o�-line training on one intersection is a good idea, �ve other on-line training methods

based on the count representation with � = 0:1 and � = 0:4 were tested. Two tests were performed

with training occurring on all 16 intersections in a 4x4 network: one with each intersection having its

own eligibility traces and action values; and another with each intersection having its own eligibility

traces but sharing action values. Three more learning tests were performed on the full environment

but learning only occurred on a corner intersection, non-corner edge intersection or an interior/center

intersection.

The best weighted average results from each training method are shown in Figure 19. As expected,

the learning strategies in best-to-worst order are:
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1. learning on all intersections in a 4x4 network with all intersections sharing and updating the same

state-action values;

2. arti�cial learning on one intersection;

3. learning on a center intersection in a 4x4 network;

4. learning on all intersections in a 4x4 network with each intersection having its own state-action

values;

5. learning on an edge intersection in a 4x4 network;

6. learning on a corner intersection in a 4x4 network.

The performance of the training method seems to be directly related to the amount of tra�c each

method experiences. The more tra�c that the training method receives, the better the performance from

that training method. The corner training would be the worst since a corner would not be expected to

receive as much tra�c as the interior intersections and would perform poorly when interior intersections

used a corner policy. Training on an edge intersection performed better than corner training since an

edge should experience more tra�c than a corner intersection. Training on an arti�cial intersection and

training on all intersections that share action values performed the best and very close to each other.

For light loads the training methods were nearly identical. Training becomes more critical as the load

increases.

The ability of the control policy to generalize is an important aspect of any controller. For this report

all testing was done with the same random seed. To see how well the controllers generalize, the best

policy and an average policy found during training were both tested using 100 other random seeds. The

variable-distance representation was used with � = 0:7 and � = 0:0. The results are shown in Figure 20.

The �rst data point uses the same random seed that was used for all other testing in this report. The

remaining data-points were tested using random seeds that were generated randomly.

While the best policy performed better than the average policy overall, there were several tests

where the average policy out-performed the best policy. Testing should include results based on 10 to

20 di�erent random seeds to measure the performance of the controller. This may or may not indicate

a problem with the control strategy. Using a random seed may not be the best method to train and test

the controller. Unusual tra�c densities might result that would not occur naturally. An appropriate

probability distribution should be determined and used for future testing and training.
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The best results based on weighted averages and the best learning parameters of all strategies are

summarized in Tables 3 and 4, respectively. The most noticeable observation from Table 3 is that SARSA

performs best when considering the total number of steps to goal, average wait and average travel time.

Since a negative reinforcement is used for each time step, the resulting control policy will try to reach

the goal as quickly as possible. As a result, all metrics, except the number of stops, are optimized as

much as possible. Table 4 shows the best parameters for each strategy. For the �xed-distance, variable-

distance and count representations, small values for � produce the best results for most metrics. For the

count/duration representation, the best values for � increase as the tra�c load increases. There is no

consistency concerning the best values for �. They vary widely within each representation, metric and

tra�c load.
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Figure 15: A comparison of the best weighted average for Total Steps and Average Travel Time per

vehicle in seconds versus � and � parameters for combined runs is shown for each SARSA representa-

tion. The variable-distance, �xed-distance and count representations perform best with small � and the

count/duration representation performs best at � = 0:7. The value of � is not as critical in any repre-

sentation. The SARSA reinforcement for the Count/Duration representation is r = �1 and r = f(E)

for the other representations.
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Figure 16: A comparison of the best weighted average for Total Stops and Average Wait Time per

vehicle in seconds versus � and � parameters for combined runs is shown for each SARSA representa-

tion. The variable-distance, �xed-distance and count representations perform best with small � and the

count/duration representation performs best at � = 0:7. The value of � is not as critical in any repre-

sentation. The SARSA reinforcement for the Count/Duration representation is r = �1 and r = f(E)

for the other representations.
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Figure 17: The average green light duration is shown for each SARSA representation versus �. The best

value for � is used and varies for each � within each SARSA representation.
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Figure 19: Learning strategy comparison using the SARSA count representation for 100, 500, 1000 and

combined runs, � = 0:1 and � = 0:4. The training methods that experience the most tra�c at the

intersections where learning occurs, perform the best.
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Table 3: Best SARSA Weighted Average Result Comparisons

Avg Travel Avg Wait

Car Total Total Time per Time per

Strategy Count Steps Stops Car (secs) Car (secs)

Random 100 229 179 80 17

Greatest-Volume 100 199 134 64 11

Variable-Distance 100 185 121 68 10

Four-Way Stop 100 185 321 80 6

Fixed-Duration 100 176 92 68 11

Fixed-Distance 100 174 132 69 10

Count/Duration 100 152 76 59 11

Count Cars 100 149 92 60 9

All-Green 100 99 0 37 0

Random 500 761 2490 230 89

Greatest-Volume 500 645 1813 176 62

Fixed-Distance 500 577 1458 177 69

Four-Way Stop 500 540 2758 169 19

Variable-Distance 500 525 1200 161 62

Count Cars 500 506 1070 157 62

Fixed-Duration 500 501 746 155 68

Count/Duration 500 466 783 149 70

All-Green 500 229 6 39 0

Random 1000 1918 5584 382 179

Greatest-Volume 1000 1640 5127 384 224

Variable-Distance 1000 1217 2412 244 124

Fixed-Distance 1000 1176 2464 240 112

Count Cars 1000 1131 2452 239 121

Fixed-Duration 1000 1097 1823 236 123

Four-Way Stop 1000 1083 6645 237 25

Count/Duration 1000 982 2023 228 136

All-Green 1000 370 9 40 0

Random Combined 2908 8523 692 285

Greatest-Volume Combined 2484 7074 624 297

Variable-Distance Combined 2043 3790 492 208

Fixed-Distance Combined 1941 4256 495 194

Fixed-Duration Combined 1917 2709 477 210

Count Cars Combined 1863 3746 469 205

Four-Way Stop Combined 1808 9724 486 49

Count/Duration Combined 1728 2939 458 239

All-Green Combined 698 15 116 0
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Table 4: Best Performance Parameters

Avg Travel Avg Wait

Car Total Total Time per Time per

Strategy Count Steps Stops Car Car

SARSA

Fixed-

Distance (�/�) (�/�) (�/�) (�/�)

100 .1/.0 .4/.1 .1-.4/.0,.1,.3-.6 .1/.5

500 .1/.8 .2/.0 .4/.1 .1,.2/.4,.6

1000 .1/.5 .1/.2 .1/.8 .1/.8

Combined .1/.5 .1/.2 .1/.8 .1/.8

SARSA

Variable-

Distance (�/�) (�/�) (�/�) (�/�)

100 .1,.5/.0,.4 .2/.5 .1-.3/.0,.5.7,.8 .3/.4-.7

500 .1/.5 .4/.9 .2/.3 .1,.2/.3,.4

1000 .1/.6 .1/.1 .1/.6 .1/.6

Combined .1/.6 .1/.2 .1/.3 .1/.6

SARSA

Count (�/�) (�/�) (�/�) (�/�)

100 .1,.2,.5/.0-.4,.7 .1-.4/.0-.4 .1-.4/.1-.4,.7,.8 .0-.4/.0-.4

500 .1/.2 .4/.1 .1/.2 .1/.8

1000 .1/.4 .5/.0 .4,.6/.0,.1 .6/.0

Combined .3/.0 .1/.0 .4/.1 .2/.3

SARSA

Count/

Duration (�/�) (�/�) (�/�) (�/�)

100 .1/.1,.5 .1/.1 .1-.4/.0-.5 .1-.5/any

500 .3,.4/.1,.2 .2/.9 .1/.2 .1,.2/.0,.2

1000 .7/.5 .9/.3 .7/.5 .7/.5

Combined .7/.5 .9/.3 .6/.8 .6/.8
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6. Conclusions and Future Work

For all tra�c loads, SARSA learned control strategies using the count/duration representation that

were better than all of the �xed strategies (except all-green) for minimizing the total tra�c travel time

and individual vehicle travel times. The SARSA �xed-distance and variable-distance representations

were the most e�ective in reducing average vehicle wait time. The �xed-duration strategy was the best

strategy for reducing the total number of vehicle stops. Since the average driver would not typically

notice the di�erence in performance between any of the strategies for controlling average wait time and

total number of vehicles stops, the best overall state representation for SARSA is the count/duration

representation. Finding a good representation is critical to the success of the SARSA strategy. The �xed-

distance, variable-distance and count representations did not take into account the current light color

and were not able to achieve long green light durations which appear to improve the performance of the

controller. The count/duration representation did account for the current tra�c light color and achieved

longer green lights by specifying a minimum green light duration. The drawback of the count/duration

representation is that it takes about 40 times as long to train as the other representations.

The greatest-volume strategy was not very e�ective, probably because it is very sensitive to tra�c

uctuations and may ip-op between light colors excessively. This could cause tra�c delays at times

when the tra�c volumes in the north-south and east-west lanes are nearly equal. Under these circum-

stances, when one or two cars travel through an intersection, there will be more cars in the stopped lanes

and the controller will switch the right-of-way to the stopped lanes. Before giving the stopped lanes

the right-of-way, the lights must cycle through the yellow and all-red phases �rst. Then, after a few

cars travel through the intersection, the controller may switch the lights again. If the lights regularly

ip-op, the lights may be yellow or all-red more often than giving either direction a green light. The

count and count/duration representations do not have this problem, even though they are similar to

the greatest-volume strategy, because partitioning the vehicle counts dampens the e�ect of tra�c uc-

tuations. The minimum green-light duration of the count/duration representation helps to reduce the

e�ects of uctuating vehicle counts even more.

Two di�erent reinforcement schemes were tested. For the �xed-distance and variable-distance rep-
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resentations, using varying reinforcements helped to reduce the performance variation during learning

and slightly improved performance, but not as much as was hoped. Varying reinforcements had almost

no e�ect on the count representation and drastically reduced the performance of the count/duration

representation.

For most of the tests performed where the SARSA representations performed better than the best

�xed-duration strategy, the performance advantage was not that great. The constant intersection spacing

of 440 feet may have helped the �xed-duration strategy. It has been stated (Oglesby 1975) that e�cient

synchronized tra�c ow between two directions of tra�c using �xed-duration timing is only possible

if the spacing between intersections is approximately constant. Constant intersection spacing does not

occur often in real life. If the intersection spacing had been varied in the simulation, the SARSA

representations should have performed better than the �xed-duration strategy results that are reported

here.

The methods studied here, while they worked very well in this simulation, would probably not work

well if actually implemented. Real-world tra�c controllers do not have complete knowledge of vehicle

locations and do not terminate nicely as the simulator does. Reinforcement learning techniques applied

in other areas could be tested. Auto tra�c is somewhat similar to network tra�c and data packets

owing through networks and reinforcement learning techniques for network data ow could be applied

to tra�c light controllers to see how they perform. The main di�erence is that data packets can continue

to ow at varying rates, but are not required to physically stop as automobiles must to avoid collisions.

The tra�c control problem is similar to elevator dispatching (Crites and Barto, 1996). The arrival of

vehicles at an intersection and the direction of travel are stochastic in nature. The elevator controller

could be modi�ed for the tra�c control problem and, if successful, would be an implementation that

could be re�ned and implemented in real tra�c.

Since tra�c ows continuously throughout the day, discounted reinforcements should be implemented

so the controller can continue to learn while directing tra�c over much longer simulations. The stochastic

nature of the tra�c ow needs to be considered by removing the knowledge of vehicle locations from

the learning agent. Input from sensors that are installed at intersections could be used to predict
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lane densities and vehicle locations. A connectionist representation utilizing sensor information from

neighboring intersections, speed limits and lengths of lanes connecting the intersection and incorporating

delays may out-perform the hard-coded representations tested here. A neural network can learn how best

to partition the state-action space for optimal performance. A linear programming problem could be

set up to estimate the number of vehicles in lanes by reducing the error of several simultaneous equations

that account for vehicle turns and realizing that the number of vehicles entering an intersection must

also exit the intersection.
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