
Faster Reinforcement Learning After Pretraining

Deep Networks to Predict State Dynamics

Charles W. Anderson∗, Minwoo Lee† and Daniel L. Elliott‡

Department of Computer Science

Colorado State University

Fort Collins, Colorado 80523-1873

Email: ∗anderson@cs.colostate.edu, †lemin@cs.colostate.edu, ‡dane@cs.colostate.edu

Abstract—Deep learning algorithms have recently appeared
that pre-train hidden layers of neural networks in unsupervised
ways, leading to state-of-the-art performance on large classifica-
tion problems. These methods can also pre-train networks used
for reinforcement learning. However, this ignores the additional
information that exists in a reinforcement learning paradigm via
the ongoing sequence of state, action, new state tuples. This paper
demonstrates that learning a predictive model of state dynamics
can result in a pre-trained hidden layer structure that reduces
the time needed to solve reinforcement learning problems.

I. INTRODUCTION

Multilayered artificial neural networks are receiving much
attention lately as key components in the newly-labeled field
of “deep learning” research. When applied to large data sets,
such as images, videos, and speech, straightforward algorithms
for training deep networks often result in state-of-the-art
classification performance. As pointed out by Mnih, et al. [1],
[2], reinforcement learning differs from the supervised learning
methods commonly used to fine-time deep networks. Rein-
forcement learning problems require learning from evaluations
of a learning agent’s behavior, or reinforcements, rather than
from correct, known outputs from a training set of data.

Mnih, et al., go on to identify key issues that must be ad-
dressed to develop deep learning approaches to reinforcement
learning (RL). These issues stem from the fact that as a RL
agent learns, its behavior changes which forces the world in
which the RL agent is performing to enter new states. The
interactions between the RL agent and its world result in an
evolving set of novel experiences, a situation much different
from the supervised learning framework with a fixed set of
training data. Other issues are due to reinforcement value often
being delayed and sparse in time.

All of these issues result in the perception that algorithms
for solving RL problems are inefficient, requiring a large num-
ber of interactions to find approximately optimal policies—
functions that map sensed world states into actions. A common
approach to solving RL problems involves the learning of
a value function that predicts the expected sum of future
reinforcements from sensed world states and actions taken.

Numerous lines of research have been directed at decreas-
ing the number of interactions required to solve RL problems.
Best results for many RL problems can only be achieved if
the value function is designed for continuously-valued states
and actions, for which convergence proofs have just begun to
appear in the literature [3], [4]. On the practical side, current

algorithms for solving RL problems using continuous function
approximators are still very slow, requiring a large number of
samples of states and actions to learn successful policies.

An obvious way to reduce the number of samples needed
is to use a model of the world to generate additional samples
that approximate those that could be obtained from the real
world. This is the approach taken by Sutton in his DYNA
algorithm [5]. Models may also be used to evaluate multiple
future action sequences by applying them to the model, as in
Deisenroth and Rasmussen’s PILCO algorithm [6].

Another use of a learned model is introduced with the
approach described here. It can easily be combined with the
model-based approaches just mentioned, but we do not do
so here. Instead, our focus is on transferring the state-action
representation that develops from learning the model to the
process of learning the Q function to predict reinforcements.
The model’s representation is used to initialize the Q function’s
representation, the hypothesis being that the model’s represen-
tation contains features similar to those required to predict
reinforcements. To the extent that this is true for a given RL
problem, a reduction in the number of required samples will
be obtained. This transfer of representation can also be thought
of as a way to pre-train the Q function using states observed
from actions applied using any policy, even a random one.
This pre-training takes place before any information related to
the RL problems goals are presented, i.e., the reinforcement
signals.

It is well accepted that prediction allows animals to antic-
ipate advantageous and disastrous outcomes of their actions.
Such prediction is well-studied in the animal learning literature
as characterized by instrumental and classical conditioning
paradigms, upon which the reinforcement learning field is
based. Here we investigate a more subtle utility of a predictive
model—a detailed representation of the world that provides a
framework for estimating future reinforcements.

In this paper, neural networks are used as Q function
approximators, or Q networks. The hidden layers of the neural
networks comprise the representation that is transferred from
the state dynamics prediction problem to the reinforcement
learning problem. In Section II, neural networks as approxi-
mations of the Q function are reviewed. Recent contributions in
deep learning for reinforcement learning are also summarized.
In Section III our approach to pre-training the Q network is
described. Experiments and results of this approach applied to
several dynamic control tasks are summarized in Section IV.

II. Q NETWORKS

Neural networks have been used as continuous Q function
approximators since the 1980’s [7], [8], [9], [10]. These works
and many that followed use stochastic gradient descent to
optimize the Q network’s approximation to the expected sum
of future reinforcements, and so were rather inefficient in terms
of the number of samples needed. More efficient methods
for training neural networks in supervised learning problems
developed around approximations to second-order gradients.
One way to take advantage of such methods in the RL
framework is to combine sequences of samples into batches
from which second order and conjugate gradient information
can be obtained. An example is the Neural Fitted-Q approach
of Riedmiller [11]. Lange and Riedmiller [12] combined this
approach with new ideas from the deep learning community
for pre-training the hidden layers of a neural network. The
hidden layers of a neural network were trained to form auto-
encoders first. Then these layers were used as the initialization
of a Q network.

Lange and Riedmiller’s approach, and the approach pre-
sented in this paper, demonstrate that for multilayered neural
networks, transferring the representation can be as simple as
replacing the output layer. Lange and Riedmiller’s optimize the
reproduction of the input by forcing information flow through
hidden layers of fewer units than input components, a form of
nonlinear dimensionality reduction akin to the early work of
Kramer [13]. The resulting lower dimensional representation
is likely to reduce the number of samples required to solve a
subsequent RL problem. Without such pre-training, the lower
dimensional representation would have to be learned while the
RL problem is being solved, requiring many more samples.

Our approach will also develop a nonlinear dimensionality
reduction if the network structure includes hidden layers of
fewer units than input dimensions. However, there is a funda-
mental difference between Lange and Riedmiller’s approach
and our approach in the optimization being performed during
pre-training. Instead of reconstructing the input in auto-encoder
fashion, our approach is to model the dynamics of the world
and the effects on it of the agent’s actions. It is expected that
features that capture aspects of the world’s dynamics will be
very useful for predicting future reinforcement, leading to a
reduction in required samples beyond that obtained with auto-
encoder pre-training.

III. PRE-TRAINING OF HIDDEN UNITS

The neural network structure used here is shown in Fig-
ure 1. The hidden units of the neural network form adaptive
representations which the output units combine to approximate
the desired function. The figure shows the usual Q func-
tion output, but it also shows additional outputs representing
changes in state s. A single neural network can be trained to
predict state changes and to predict the sum of future reinforce-
ments, i.e., the Q function, as shown in Figure 1. Details of
the computations implicit in this figure are presented later. The
hypothesis explored in this paper is that a representation in the
hidden units that is useful in predicting state changes will also
be helpful in predicting the sum of future reinforcements. The
usual practice of using neural networks to learn Q functions is
to provide just the single Q output. For cases when non-zero

Fig. 1. Neural network for learning state prediction and Q function

reinforcements are rare, as is the case in many episodic tasks,
like games, the error feedback from state change prediction
will add a tremendous amount of guidance in learning a good
representation.

“State” and st are used here to refer to all observable
measurements of the system with which a reinforcement
learning agent interacts. It is not meant that the complete
state of the system is being observed. In practice it is usually
impossible to fully measure the state of the RL agent’s world.
“State” will continue to be used to refer to observables in
this paper. Also, unobservable state means the dynamics of
the observed variables are stochastic in nature. The algorithms
used here for modeling of state dynamics and of future
reinforcements minimize expected values and can therefore
deal with some degree of randomness in observable variables
and reinforcement.

To pre-train the neural network, samples of state, st, action,
at, and next state, st+1 are collected. Each sample of st and
at form an input vector to the network. The correct output,
or target value, for this input vector is st+1 − st. Just the
next state, st+1, could also be used as the target value, but
state from one time step to the next are often very similar,
so the neural network is driven to learn an identity map and
more training is required to learn the small variations needed to
accurately predict next state. The input and target output values
are combined into matrices and Møller’s Scaled Conjugate
Gradient (SCG) algorithm [14] is used to minimize the mean
squared error in the output of the neural network. SCG is a
conjugate gradient method that replaces the typical line-search
step by an approximate second-order minimization. During this
pre-training stage, no knowledge is used of the objective of the
reinforcement learning problem, and the Q value output of the
neural network is ignored.

After pre-training, steps similar to Riedmiller’s Neural-
Fitted Q algorithm are taken. minibatches of st, at, reinforce-
ment, rt+1, st+1, and at+1 are collected. Actions a are selected
using the ǫ-greedy algorithm. Møller’s SCG algorithm is again
applied to train output Q to approximate the sum of future
reinforcement and the state change outputs are ignored. The
SARSA algorithm [15] is followed to form the error being
minimized as summarized below.

Let the Q value output by the network as determined by
inputs st and at be Q(st, at). We wish this function to form
the approximation

Q(st, at) ≈ E[

∞
∑

k=0

γkrt+k+1],

where 0 < γ ≤ 1 is the discount factor. Actions are chosen
using an ǫ-greedy strategy given by policy π(st),

π(st) =

{

argmax
a∈A

Q(st, a) with probability 1− ǫ,

z ∼ U(A) with probability ǫ,

where z is a uniformly-distributed random variable drawn from
the set of valid actions A.

If each minibatch consists of 1000 samples collected from
time t1 through time t1000, then the SARSA error to be
minimized for each minibatch is

Et+1 =

t1000
∑

t=t1

(rt+1 + γQ(st+1, at+1)−Q(st, at))
2

The gradient of this error for a minibatch of 1000
(st, at, rt+1, st+1, at+1) tuples with respect to the weights of
the neural network drives the error minimization performed by
Møller’s SCG algorithm.

It is important to not overfit the Q function to each
minibatch of samples. Each minibatch is a sample that is
limited to the particular sequence of world states experienced.
Therefore, the SCG algorithm is applied for a small number
of iterations for each minibatch. For the experiments reported
here, it is applied for 20 iterations only. Experience-replay was
found to reduce the total number of samples for the reported
experiments. This was performed by calculating new Q values
for the minibatch samples and retraining with SCG for another
20 iterations. Experience-replay was repeated 10 times for each
minibatch.

Experiments were run to compare the effect of pre-training.
Results on the RL problems are compared after pre-training
using several different numbers of pre-training samples, in-
cluding zero.

IV. EXPERIMENTS

Two simple dynamic systems were used to investigate the
advantage of pre-training. The first system is a simple mass, or
cart, on a one-dimensional track. The second is a benchmark
cart and pole system for which the pole is to be balanced. We
used a unique simulation that includes cart collisions with the
ends of the track.

A. Cart

Consider a mass, or cart, that can be pushed left or right as
it moves along a horizontal track with walls at positions 1 and
10 and that has a region of increased friction from position 2
to 4, illustrated in Figure 2. A reinforcement learning problem
is defined by requiring a sequence of pushes that cause the
cart to remain close to a given position. Let the state of the
cart at time t be st = (xt, ẋt)

T and the push at time t be
at ∈ {−1, 0, 1}, which will be referred to as the action. The
evolution of the state can be simulated using Euler’s method
by

[

xt+1

ẋt+1

]

=

[

xt

ẋt

]

+∆

[

ẋt

2at − µtẋt

]

Fig. 2. Dynamic cart on a one-dimensional track with increased friction from
position 2 to 4.

where ∆ = 0.1, and µt is the coefficient of friction given by

µt =

{

1.0 if 2 < xt < 4,

0.2 otherwise.

Inelastic collisions with walls is simulated by bounding x by
1 and 10 and setting ẋ = 0. Let gt be the goal position, from
1 to 10. The reinforcement value at time t is

rt =

{

1 if |xt − gt| < 2,

0 otherwise.

To make this task more challenging, five additional state
variables are used that are simply drawn from a uniform
distribution from 0 to 1. During pre-training, changes in these
variables are included in optimizing the state-change model.
Other ways of making this simple task more challenging are
to add hills to the track and to change the effect of actions in
certain states [16].

The structure of the Q network for this experiment is eight
inputs, 20 hidden units in a single hidden layer, and eight
outputs, or 8-20-8. The eight inputs include the two state
variables, position and velocity, the five random-variables, and
the action. The eight outputs are predicted changes in the two
state variables, predicted changes in the five random variables,
and the Q value. All units also receive a constant 1 bias input.
The hidden units use the symmetric tanh activation function
and the output units are linear. Since the SCG algorithm
determines step size, learning rates are not needed.

To generate samples for pre-training, the cart is initialized
to a random position with zero velocity and a random goal
position. Actions are selected randomly. Every 100 samples
the goal is changed to a new random value.

After pre-training, the state change outputs are ignored
and training of the Q output is performed. Again, the cart
is initialized to a random position with zero velocity and a
random goal position. An action is chosen with the ǫ-greedy
algorithm and applied to the cart and the next state and
reinforcement is observed. This repeated for 1000 steps, with
the goal changing to a new random value every 100 steps.
The minibatch of 1000 steps is used to update the Q network
while ignoring the state change outputs. This is repeated for
100 such minibatches. The value of ǫ is set to the constant 0.1
while training and the value of γ is set to 0.9.

To evaluate the effect of pre-training the neural network
to minimize predicted state changes, the above procedure was
run for different numbers of pre-training samples. This was
repeated 30 times for each number of pre-training samples.
During each run, performance is measured by the mean of
all reinforcements and the mean of the last 20 of the 200
repetitions. Figure 3 shows the two performance measures
versus the number of pre-training samples. Recall that rein-
forcement is zero until within 2 of the goal, at which time the

0 1000 2000 3000 4000

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

Number of Samples for State Change Prediction

M
ea

n
of

 R
ei

nf
or

ce
m

en
t

Mean of R Last 10% of Batches

Mean of R Over All Batches

Fig. 3. Advantage of pre-training state change prediction, shown by mean
of reinforcement achieved for an increasing number of samples used during
pre-training.

0 2 4 6 8 10

−
3

−
1

0
1

2
3

4

x

x⋅

Fig. 4. Successful control by trained neural network shown by state evolution
from multiple initial values, marked by filled circles. Goal is position 8.

reinforcement is 1. So, a mean of 0.7 means the goal region is
reached quickly. This figure shows that with no pre-training,
the goal is rarely reached. Performance steadily improves with
more pre-training samples, with the most rapid rise being from
0 to 1000 pre-training samples. The similarity in the mean
of all reinforcement and of the last 10% shows that good
performance is achieved early in each run. Good performance
is confirmed by starting the system in multiple initial states and
observing the evolution of the state under the control of the
trained neural network using the ǫ-greedy policy with ǫ = 0.
This is shown in Figure 4 with the goal set at position 8.

B. Cart-Pole Swing Up

Adding a pole to the cart that swings in two dimensions
results in the benchmark pole-balancing problem, first studied
in the reinforcement learning field by Barto, et al. [17]. This
benchmark problem is modified here in two ways. First,
the dynamic system is simulated using pybox2d, a python
package based on the box2d library. This allows realistic

Fig. 5. Cart-Pole Swing Up Task.

collisions with the ends of the track. The second difference
is that the full swing-up problem is presented, rather than the
limited angle range near upright that was used in the original
benchmark problem. Other published results for pole-balancing
problems allow the full angle range, but many incorporate a
model of the dynamics that is not used here. Figure 5 shows
the cart and pole on the track.

The state of this system is four-dimensional: the cart
position, xt, its velocity, ẋt, the pole angle, θt, and its angular

velocity, θ̇t. When the pole is straight up, θt = 0 ◦, and when
it swings down it approaches negative or positive 180 ◦. The
reinforcement function for this problem is defined in terms of
the angle:

rt =

1 if |θt| < 45 ◦,

−1 if |θt| > 135 ◦,

0 otherwise.

The dynamics of the system are simulated at a sampling rate
of 30 Hz and a new action is applied by the RL agent at a 15
Hz rate.

For this experiment, neural networks have five inputs, one
to five hidden layers of 20 units each, and five outputs. The
inputs are the four state variables and the action. The outputs
are predictions of the changes in the four state variables and
Q value.

To collect pre-training samples, the cart-pole was started in
the center of the track with the pole hanging down. Random
actions were applied and resulting states collected. The SCG
algorithm was run for 1000 iterations to minimize the squared
error in the predicted state change. After pre-training, the cart-
pole was again started in the center with the pole hanging
down. The ǫ-greedy policy was used to choose actions, with
ǫ constant at a value of 0.1. 100 minibatches of 1000 samples
were collected, with SCG applied for each minibatch for 20
iterations, repeated for 10 repetitions of experience-replay.

At the conclusion of training the Q network for 100 mini-
batches, a final testing stage was conducted. The cart-pole was
initialized to fifteen different starting states, at three different
positions along the track, from -2 to 2 meters, and five different
angles, from −180 ◦ to 180 ◦, and the Q network was allowed
to control the system using ǫ = 0 for 2000 steps. The mean
of the reinforcement values over these 15 × 2000 = 30000
steps, or about 33.3 simulated minutes, was calculated to test
the final performance of the trained Q network.

For each network size and number of pretraining steps,
the experiment was repeated 100 times. Results shown in
Figure 6 are the means of reinforcement received during testing

0 1000 2000 3000 4000 5000
Number of Samples Used for Pre-training

−0.2

0.0

0.2

0.4

0.6

M
e
a
n
 T

e
st

 R
e
in

fo
rc

e
m

e
n
t

5-20-20-20-20-20-1

5-20-20-20-20-1
5-20-20-20-1

5-20-20-1

5-20-1

Fig. 6. The benefit of pretraining is clear for networks with more than one
hidden layer, but pretraining appears to hinder learning in networks with a
single hidden layer. 90% confidence intervals, 200 reps, 1000 steps/rep, 1000
SCG pre, 10 SCG rl, 0.2 gamma,, 10 replays

averaged over these 100 runs with 90% confidence intervals.
During the final evaluation the pole is initialized at zero
degrees, pointing up, for only three of the fifteen initial states,
so a mean reinforcement of 1 cannot be obtained. The best
result is about 0.6 for the 5-20-20-20-1 network pretrained
with 1000 samples, equivalent to about 67 simulated seconds.
The largest improvement is seen in comparing no pretraining
(0 samples) with pretraining of 1000 samples. For networks
with two, three or four hidden layers the improvement was
from a mean reinforcement of about 0.3 to 0.6. Pretraining
helped the smallest network, 5-20-1, but overall this network
performed worse than the larger networks. For the larger net-
works, it appears that pretraining with more samples degrades
performance.

Figure 7 shows the behavior of the cart-pole system and the
greedy actions selected during one of the test phases for a 5-
20-20-1 network pretrained with 1000 samples. In this phase,
the cart is started near the left side and the pole is started in
the up position (0 ◦). Actions are selected that push the cart
towards the center of the track and, after several swings of the
pole through the bottom, the pole is swung up to its balanced
position where it remains.

Figure 8 shows the reinforcement values received by a 5-
20-20-20-1 Q network during training, averaged over mini-
batches of 1000 samples and averaged over 50 runs. With
pretraining of 2000 samples, the final mean reinforcement
value is almost 0.6, while without pretraining it reaches about
0.3. When reinforcement surpasses zero the pole is near the
balancing position more often than it is near the bottom po-
sition. With pretraining this occurs after about 24.4 simulated
minutes (24.4 ≈ 22 minibatches ×1000 samples/minibatch ÷
15 samples/second ÷60 seconds/minute). Without pretraining
zero reinforcement is not surpassed until about 67 simulated

0 100 200 300 400 500 600
−2.5

0.0

2.5

Po
si

ti
o
n
 o

n
 T

ra
ck

0 100 200 300 400 500 600
−180

−90

0

90

180

A
n
g
le

 o
f

Po
le

0 100 200 300 400 500 600

−1.0

−0.5

0.0

0.5

1.0

R
e
in

fo
rc

e
m

e
n
t

0 100 200 300 400 500 600
Samples (total of 40 seconds)

−1.0

−0.5

0.0

0.5

1.0

A
ct

io
n

Fig. 7. One of the test runs, started at x = −2 and θ = 0, with ǫ = 0.
Positive action (fourth graph) is first applied, which directs cart towards center
of track (first graph), but pushes pole to swing through the bottom (second
graph). Then, actions are chosen that swing the pole back and forth through
the bottom five times until it is successfully swung up to 0 degrees where it
remains balanced for the remainder of the test session. The cart is brought back
to the center of the track where it remains. Reinforcement received (fourth
graph) are negative when the pole swings through the bottom and positive
when the pole is near the top.

minutes (67 ≈ 60 minibatches × 1000 samples/minibatch ÷
15 samples/second ÷ 60 seconds/minute).

V. DISCUSSION

In a realistic setting, one should consider the additional
samples required for pretraining in the total training time.
The following simple experiment examines this for a simple
Markov Decision Problem (MDP) with two states, State 0 and
State 1, and two actions, Action 0 and Action 1. Action 1
results in a change in state and Action 0 does not. Therefore,
the next state function is the exclusive-or function of the
state and action inputs. The exclusive-or was one of the early
functions used to test learning in two-layer neural networks.
The reinforcements for this MDP are 1 for being in State 1
and 0 for being in State 0.

The total number of samples of states, actions and re-
inforcements was fixed. Only the fraction of them used for
pretraining was varied; using 0.2 of the samples for pretraining
left only 0.8 of the samples for doing reinforcement learning to
solve the reinforcement optimization problem. Figure 9 shows
the results as the mean reinforcement received during training
and the mean reinforcement received in the last few trials is
plotted. The experiment was repeated 100 times. At the left end
of the graph, for 0 samples used for pretraining, all samples
were used for reinforcement learning and achieved an average
reinforcement of about 0.5. Recall that the reinforcement
values were 0 and 1, so the maximum value is 1. Performance

0 20 40 60 80 100
Minibatches of 1000 Training Samples

−1.0

−0.8

−0.6

−0.4

−0.2

0.0

0.2

0.4

0.6

M
e
a
n
 R

e
in

fo
rc

e
m

e
n
t

E
a
ch

 M
in

ib
a
tc

h

After Pretraining with 2000 Samples

No Pretraining

Fig. 8. Mean reinforcement value during Q training for the cart-pole swing
up task, with and without pretraining.

0.0 0.2 0.4 0.6 0.8 1.0
Fraction of Samples Used for Pre-Training

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Re
in

fo
rc

em
en

t R
ec

ei
ve

d
(0

 to
 1

)

mean r
final r

Fig. 9. Exclusive-or MDP: Best performance is achieved when only 0.7 of
the samples are used for Q learning and the remaining 0.3 samples are used
for pretraining.

peaks at about 0.3 of the samples used for pretraining and 0.7
used for reinforcement learning. Performance then decreases
as more of the samples are used for pretraining and fewer for
reinforcement learning. This result shows that for this problem,
with a fixed number of sample interactions, a neural network
RL agent can achieve better performance by using some of the
samples for pretraining to predict state dynamics before using
the remaining samples to solve the RL problem.

VI. CONCLUSION

The recent success of deep learning in a number of clas-
sification problems suggests that deep learning might increase
the efficiency of reinforcement learning algorithms. A few
publications have appeared showing how pretraining early
layers of a neural network in the unsupervised way that is
typical in the deep learning community, can lead to benefits

for reinforcement learning [1], [2].

This paper demonstrates a different approach to pretraining
for reinforcement learning. A neural network is first trained
to predict changes in state variables, based on current state
and actions. The output layer of this trained network is then
replaced by a layer with a single output unit to predict future
reinforcements, or a Q value.

Experiments with simple dynamic systems, including the
swing-up problem for the cart-pole system, show that pretrain-
ing in this way does reduce the number of samples required
for reinforcement learning.

Since the pretraining phase results in a predictive model
of the system to be controlled, it would be a simple matter to
use it to generate hypothetical samples as in Sutton’s DYNA
framework [5]. It is possible that reductions in the number of
real samples required resulting from the two uses of the learned
model—to generate hypothetical samples and to provide initial
hidden layers—will be additive.

The advantage afforded by pretraining to predict state
change should increase as the complexity of the dynamics and
size of the state and action spaces grow. To test this, we are
currently testing our approach on the problem of controlling
a simulated, multi-segment octopus arm. The difficulty lies
in the large number of continuously-valued state and action
variables. This is one of the RL benchmark problems [18],
but in simplified form in which the allowed actions are from
a small discrete set. It is hypothesized that with pretraining
a practical solution of the full octopus arm problem will be
achieved.

A second paradigm to be investigated is the simultaneous
learning of predictions of state change and future reinforce-
ment. For tasks in which reinforcement values are rare, many
steps occur without any information about how to adjust
network weights. However, each step does provide new state
information with which adjustments can be made to the
network. The degree to which features are useful to both state
and reinforcement prediction, the advantage of learning both
will be evident.

REFERENCES

[1] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou,
D. Wierstra, and M. Riedmiller, “Playing atari with deep reinforcement
learning,” in NIPS Deep Learning Workshop, 2013.

[2] V. Mnih, K. Kavukcuoglu1, D. Silver, A. Rusu, J. Veness, M. Bellemare,
A. Graves, M. Riedmiller, A. Fidjeland, G. Ostrovski, S. Petersen,
C. Beattie, A. Sadik, I. Antonoglou, H. King, D. Kumaran, D. Wierstra,
S. Legg, and D. Hassabis, “Human-level control through deep reinforce-
ment learning,” Nature, vol. 518, no. 7540, pp. 529–532, February 2015.

[3] H. R. Maei, C. Szepesvari, S. Bhatnagar, D. P. adn D. Silver, and
R. Sutton, “Convergent temporal-difference learning with arbitrary
smooth function approximation,” in Advances in Neural Information

Processing Systems, vol. 22. Vancouver, B.C., Canada: MIT Press,
December 2009.

[4] M. Lee and C. Anderson, “Convergent reinforcement learning control
with neural networks and continuous action search,” in Proceedings of

IEEE Symposium on Adaptive Dynamic Programming and Reinforce-

ment Learning, Orlando, FL USA, December 2014.

[5] R. S. Sutton, “Dyna, an integrated architecture for learning, planning,
and reacting,” SIGART Bull., vol. 2, no. 4, pp. 160–163, Jul. 1991.
[Online]. Available: http://doi.acm.org/10.1145/122344.122377

[6] M. P. Deisenroth and C. E. Rasmussen, “PILCO: A model-based
and data-efficient approach to policy search,” in Proceedings of the

International Conference on Machine Learning (ICML 2011), 2011.

[7] C. W. Anderson, “Learning and problem solving with multilayered
connectionist systems,” Ph.D. dissertation, University of Massachusetts,
Amherst, MA, 1986.

[8] ——, “Strategy learning with multilayer connectionist representations,”
GTE Laboratories, Waltham, MA, Tech. Rep. TR87-509.3, 1987, re-
vision of article that was published in Proceedings of the Fourth
International Workshop on Machine Learning, pp. 103–114, June, 1987.

[9] ——, “Tower of hanoi with connectionist networks: Learning new fea-
tures,” in Proceedings of the Sixth International Workshop on Machine

Learning, 1989.

[10] G. Tesauro, “Td-gammon, a self-teaching backgammon program,
achieves master-level play,” Neural computation, vol. 6, no. 2, pp. 215–
219, 1994.

[11] M. Riedmiller, “Neural fitted q iteration—first experiences with a data
efficient neural reinforcement learning method,” in Machine Learning:

ECML 2005, ser. Lecture Notes in Artificial Intelligence, J. Gama,
R. Camacho, P. Brazdil, A. Jorge, and L. Torgo, Eds., no. 3720.
Sringer-Verlag, 2005, pp. 317–328.

[12] S. Lange and M. Riedmiller, “Deep auto-encoder neural networks
in reinforcement learning,” in Proceedings of the International Joint

Conference on Neural Networks (IJCNN 2010), Barcelona, Spain, 2010.

[13] M. A. Kramer, “Nonlinear principal component analysis using autoas-
sociative neural networks,” AIChE Journal, vol. 37, p. 233243, 1991.

[14] M. F. Møller, “A scaled conjugate gradient algorithm for fast supervised
learning,” Neural Networks, vol. 6, pp. 525–533, 1993.

[15] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction.
The MIT Press, 1998.

[16] D. Elliott and C. Anderson, “Using supervised training signals of
observable state dynamics to speed-up and improve reinforcement
learning,” in 2014 IEEE Symposium on Adaptive Dynamic Programming

and Reinforcement Learning (ADPRL), Orlando, FL USA, December
2014.

[17] A. G. Barto, R. S. Sutton, and C. W. Anderson, “Neuronlike elements
that can solve difficult learning control problems,” IEEE Transactions

on Systems, Man, and Cybernetics, vol. 13, pp. 835–846, 1983, reprinted
in J. A. Anderson and E. Rosenfeld, Neurocomputing: Foundations of

Research, MIT Press, Cambridge, MA, 1988.

[18] http://www.rl-competition.org/.

