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ABSTRACT OF THESIS

MODELING OBSERVED DEVELOPMENTAL CHANGES INFLUENCING HIPPOCAMPAL
CA1 AND CA3 EPILEPTIFORM BURST CHARACTERISTICS

Kainate induced epileptiform bursting recorded in witro within the CAl, CA3, and Dentate
Gyrus hippocampal regions of the Sprague-Dawley rat has been linked to synaptic reorganization
and axonal sprouting [22, 17, 20, 21, 16, 20, 29]. Recently, Shao and Dudek [19] observed that syn-
chronized population bursting characteristics in the CA1 and CA3 regions of the Sprague-Dawley
rat change during the course of development. These changes constitute a decline in seizure suscep-
tibility in the CA3 and CA1 regions as maturation progresses from juvenile to adult. In addition,
Shao and Dudek observed that CA1l juvenile burst characteristics resemble bursting observed in
the CA3 adult. Changes in population burst characteristics, driven by neural development in the
CA1 and CA3 regions, strongly support the synaptic mechanism of epileptiform bursting [7] in the
kainate model.

In this research, biologically-realistic computer models are used to simulate developmental
changes observed by Shao and Dudek [19] in population burst characteristics between the nor-
mal juvenile and adult rat CA1 and CA3 regions under GABAergic antagonist. To recreate this
developmental transformation, ranges of excitatory and inhibitory interconnections within network
models comprised of 100 pyramidal cells and 9 putative interneurons are explored. Based on mod-
eling results, CA1 development from juvenile to adult may be described by a reduction of recurrent
connectivity from approximately six to two connections per pyramidal cell. Similarly, CA3 develop-
ment is well-described by a recurrent connectivity reduction from approximately 30 to 20 connections

per pyramidal cell.
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Department of Computer Science
Colorado State University

Fort Collins, Colorado 80523
Fall 2003
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Chapter 1

Introduction

Epilepsy, by definition, is the propensity to have seizures. The neuronal firing patterns leading to
epileptic symptoms, seizures, are called epileptiform bursting. Epileptiform bursts take the form of
large-scale, network-synchronized signals. Epileptogenesis is a broad term used to describe structural
and physiological abnormalities in the nervous system resulting in chronic epilepsy [7, 6].

It is widely accepted that epileptiform discharges in the brain are rooted in increased excitatory
neural connections coupled with or in lieu of increased neural network inhibition. Research attempt-
ing to identify the underlying aetiology has made substantial progress. Rather than narrow potential
fundamentals, however, this research has generated numerous plausible models of both epileptiform
generation and mechanisms of epilepsy. Epileptogenesis taxonomy roughly divides models into two
categories, synaptic and non-synaptic. Synaptic models are further divided into excitatory and in-
hibitory models. Non-synaptic models divide into those relying on gap junction effects, field effects,
and changes in the ionic properties of the extracellular space. Additionally, three competing models
of epileptiform generation have been proposed: recurrent connectivity signaling, intrinsic signaling
and spread, and emergent signaling from distributed networks [7].

The synaptic mechanism of epilepsy proposes that epileptogenesis is caused by abnormal struc-
tural changes in the synaptic connections of neural structures not typically exhibiting epileptiform
bursting. Newly formed connections have the ability to unbalance and override the inhibitory-
induced equilibrium of the network structure. It has been proposed that this imbalance is an im-
portant element of mossy fiber sprouting induced epileptiform bursting. Motivation for this model
is substantial. Abnormal synaptic connectivity may be attributed to regrowth in the wake of neural
tissue death as a result of traumatic injury, surgical procedure, and repeated exposure to convulsant
agents [7]. Neuronal death in the hippocampus, induced by trauma injuries, has been linked to
epileptogenesis [7]. Further, surgical procedures have been shown to both induce and ameliorate
epileptiform bursting in neural tissue [7]. It is thought that surgical trauma of neural tissue may
respectively induce new connectivity or sever previously hyper-excitable network structures.

The kainate-model, the artificial inducement of status epilepticus and epileptogenesis in a
Sprague-Dawley rat via subcutaneous injection of kainic acid, is a highly successful animal model
used in the study of the synaptic mechanism of epilepsy [17]. Kainic acid injection elicits a three-part
response in the rat subject: 1) short-term status epilepticus, 2) variable length latent period, and
3) onset of epileptogenensis. In vitro slice experiments performed on hippocampal tissue removed
from kainate treated rats has facilitated study of the role neural structure and behavior in epilep-
togenesis. Kainate-model epileptiform bursts recorded in vitro within the CA1l, CA3, and dentate
gyrus hippocampal regions of the Sprague-Dawley rat have been linked to synaptic reorganization
and axonal sprouting [22, 17, 20, 21, 16, 20, 29].

Recently, Shao and Dudek [19] observed that population burst characteristics in the CAl and
CAZ3 regions change during development in ways that oppose the onset of epileptogenesis. Changes
in bursting during development may be characterized by a decline in seizure susceptibility in the
CA3 and CA1 regions as maturation progresses from juvenile to adult. In addition, Shao and Dudek
observed that CAl juvenile burst characteristics resemble bursting observed in the CA3 adult [19].



This evidence suggests that synaptic reorganization may occur during rat hippocampal development
and is a fundamental component of epileptiform bursting differences observed between the juvenile
and adult hippocampi [19]. Developmental synaptic reorganization may also serve as a corollary
between changes in normal rat population burst changes and those induced by the kainate-model.

The research presented in this paper models, via computer simulation, developmental changes
observed by Shao and Dudek [19] in population burst characteristics from the normal juvenile to
the adult rat CA1 and CA3 regions under GABAergic antagonist. Suppression of GABAergic in-
hibition (i.e. fast GABA4 blockade via bicuculline) is generally necessary to unmask excitatory
glutamatergic pathways during hippocampal slice experimentation [17]. To recreate this develop-
mental transformation, ranges of excitatory and inhibitory interconnections within network models
comprised of 100 pyramidal cells and 9 putative interneurons are explored. Membrane potential
recordings and network-firing activity plots best matching in vitro recordings [19] are presented
along with corresponding connectivity densities.

The construction of a recurrent connectivity model of normal Sprague-Dawley Rat CA1 develop-
ment is novel. This model lends substantial support to the proposed role of synaptic reorganization
in population bursting of normal CA1 and CA3 regions. A synaptic model of rat hippocampal devel-
opment and related burst characteristics supports an explanation of epileptiform bursting induced
by the kainate model via a similar mechanism. This work establishes a base for further research in
the role of synaptic reorganization in dentate gyrus epileptiform bursting.

The remainder of this paper is organized as follows. Chapter 2 presents related work and back-
ground material. Experimental methodology is defined in Chapter 3. Results of validation experi-
ments are presented in Chapter 4. CA1 and CA3 burst results are presented in Chapter 5. Discussion
of the results and future work can be found in Chapters 6 and 7, respectively. A brief overview of
the GENESIS [4] language is provided in Appendix A. Introduction to fundamental neuroscience
topics and computational neuroscience principles are provided in Appendices B and C, respectively.



Chapter 2

Background

Evidence from electrophysiological recordings of kainate-treated rats [22, 17, 20, 21], pilocarpine-
induced status epilepticus rats, and human, surgical, temporal-lobe epilepsy patients suggest that
CA1 and CA3 pyramidal cells, as well as dentate granule cells, undergo axonal sprouting and synap-
tic reorganization in response to neuronal death [16, 20]. Electrophysiological evidence for synaptic
reorganization is substantial. Increased synchronous population-burst characteristics are observed
when ~y-aminobutyric acid-A (GABA 4) mediated inhibition is blocked via bicuculline [16, 20]. Un-
der bicuculline GABA, disinhibition, the nature of synchronous population bursting within the
kainate model for CA1, CA3, and dentate granule cells is characterized by a greater number and
duration of bursts as well as an all-or-none bursting in response to afferent stimulation [16, 17, 20,
21]. All-or-none bursting phenomena observed in kainate-treated CA1 and CA3 regions are robust
against superthreshold stimulation in contrast with graded bursting at integer multiples of threshold
stimulation in control [20].

Rats treated with kainic-acid display hippocampal neuronal death, particularly in the CA1,
CA3, and dentate regions [1, 3, 5]. Nissl staining has shown significant, temporally progressive
death of CA1 pyramidal cells and putative inhibitory interneurons in response to kainate treatment.
This cell death has been correlated with increased synchronous population bursting [21]. Digital
reconstruction of CAl pyramidal cells at intervals after kainate treatment have shown significant
increases in axon length and branching. Timm stain intensity in the inner molecular layer, evidence
of axonal sprouting, has been correlated with increased excitatory post-synaptic potential (EPSP)
amplitude and frequency in kainate-treated dentate granule cells [29]. Granule cell axons of kainate-
treated rats have been shown to be longer compared to control [5].

The evidence presented above supports a hypothetical model of epileptogenesis in which chronic,
spontaneous electrographic epileptiform bursting is induced by the kainate-treated rat model. It
is proposed that kainic acid injection immediately induces status epilepticus through suppression
of inhibitory interneurons (either via neural death or another mechanism). Long-term recovery
of inhibition introduces a latent period, a period characterized by low probability of spontaneous
epileptiform bursting. During the latent period, slow-acting anatomical changes in the CA1, CA3 and
dentate gyrus, thought to include axonal sprouting and excitatory synaptic reorganization, occur.
While not directly observed, the synchronized population bursting exhibited by kainate-treated
rat CAl, CA3, and dentate granule cells contain characteristics of increased recurrent excitatory
connectivity that are supported via detailed CA3 and dentate granule cell model simulations [28,
18, 14] as well as CA3 statistical models [24, 23, 2].

Recent data reported by Shao and Dudek [19] suggest that, during development, synaptic reor-
ganization occurs in the male, Sprague-Dawley rat CA1 region. Electrographic recordings of CA1
pyramidal cells under GABAergic antagonist suggest that the normal juvenile rat CA1 region dis-
plays synchronized population bursts with characteristics similar to the normal adult rat CA3. This
behavior is characterized by all-or-none bursting in response to increasing levels of afferent stimula-
tion with decreasing latency. Synchronized population bursts in the normal rat CA1 diminish as rat
development reaches maturation and the all-or-none bursting property is replaced by a graded burst



response. A parallel trend is observed in the CA3 region. The probability of observing all-or-none
bursting in the CA3 decreases as development progresses. In addition, the intensity and duration
of bursts is significantly more pronounced in the juvenile CA3 as compared to the adult CA3. This
evidence strongly suggests that recurrent excitatory connectivity in the CA1 and CA3 regions plays
a fundamental role in population burst characteristics.



Chapter 3

Methods

Traub’s [28] CAl and CA3 pyramidal cell models are used as the basis for neurons modeled in this
research. The GENESIS environment will serve as the primary simulation platform. Adaptations
of Traub’s models for use in GENESIS are based on the models of Beeman [4]. Traub’s original
parameters and kinetic forms were followed as closely as possible. All units and derivations have been
transformed to conform to SI units. All derivations and kinetic equations have been re-reported here
to avoid confusion due to the numerical disruption that units conversion has on kinetic equations, as
well as the differences in the canonical GENESIS format for model derivations with respect to original
Traub derivations. Model specifications, as they are incorporated into the GENESIS environment,
are presented below. Deviations from the Traub parameters and derived equations are noted when
necessary in order to facilitate complete validation of this work.

In this section, each of the three neural models, CA1, CA3, and PIN will be described in detail.
Mathematical descriptions of the compartment models making up these neurons, including synaptic
connection models, channel models, and ionic concentration shell models will also be detailed as will
all underlying membrane parameter and channel density assumptions.

3.1 CA1 and CA3 Neural Models

CA1 and CA3 models are comprised of 19 compartments. Compartments 1-8 are basilar dendritic
compartments, compartment 9 is the soma, and compartments 10-19 are the apical dendritic com-
partments. All compartments are modeled as cylinders having the following specific membrane
properties: Cayr = 0.003 F/m?, R4 = 1.0 Ohm - m, and Ry = 0.1 Ohm - m?. Apical compartments
have length 120 x 1076 m and diameter 5.78 x 107% m. Length and diameter of the soma are
125 x 1079 m and 8.46 x 10~® m, respectively. Basilar dendrite length and diameter parameters are
110 x 10~% m and 4.84 x 108 m, respectively. Compartment anatomical and membrane parameters
are identical for both CA1 and CA3 models.

The derivative of the discretized membrane potential with respect to time, ddV;, was computed
as a Taylor series approximation to the cable model with sealed-end boundary conditions:

@_Vifl_vi_i_vz#l_vi_'_ Vi
dt Ra;_, R, R,

Ch;

+ Iionici + Iinjecti (31)

where V; is the membrane potential of compartment 4, lipnic; is the current contribution of active-
gated channels and synaptic channels within compartment 4, and Iy, ject; represents external current
injected to compartment ¢. In accordance with canonical GENESIS format, membrane potential dif-
fusion between compartments is approximated using axial resistance, R,, rather than conductance
as used by Traub [28]. Also, the ionic leak conductance reported by Traub [28] as 0.1 m.S/cm? has
been reformed as ionic leak resistance in terms of the membrane resistance, Ry, as is the standard
form for the GENESIS environment. To eliminate spontaneous action potentials, membrane resis-
tance was reduced to 0.5 Ohm - m? and 0.7 Ohm - m? for the CA3 and CA1 models, respectively.
Rest potential, E,..4, for both CA1 and CA3 models was —0.060 Volts.



| Specific Channel Conductance Densities S/m? |

Comp | Name | gna | 9gca | 9k(DR) | gxAHP | gKkC | KA
1 Basal, 0.0 0.0 0.0 0.0 0.0 0.0
2 Basal, 0.0 50.0 0.0 8.0 0.0 0.0
3 Basals 0.0 50.0 0.0 8.0 0.0 0.0
4 Basaly 0.0 120.0 0.0 8.0 0.0 0.0
5 Basals 0.0 120.0 0.0 8.0 0.0 0.0
6 Basalg | 200.0 | 120.0 200.0 8.0 0.0 0.0
7 Basaly 0.0 50.0 0.0 8.0 0.0 0.0
8 Basalg 150.0 | 80.0 50.0 8.0 0.0 0.0
9 Soma 300.0 | 40.0 150.0 8.0 5.0 | 50.0
10 Apicalyy | 150.0 | 80.0 50.0 8.0 0.0 0.0
11 Apicalyq 0.0 50.0 0.0 8.0 0.0 0.0
12 Apicalis | 20.0 | 170.0 200.0 8.0 0.0 0.0
13 Apicalys 0.0 170.0 0.0 8.0 0.0 0.0
14 Apicalyy 0.0 170.0 0.0 8.0 0.0 0.0
15 Apicalys 0.0 100.0 0.0 8.0 0.0 0.0
16 Apicalig 0.0 100.0 0.0 8.0 0.0 0.0
17 Apicaly7 0.0 50.0 0.0 8.0 0.0 0.0
18 Apicalig 0.0 50.0 0.0 8.0 0.0 0.0
19 Apicalig 0.0 0.0 0.0 0.0 0.0 0.0

Table 3.1: CA3 voltage-gated ion channel conductance densities in ST units.

3.1.1 Channel Models

The membrane current flow, lionic;, in compartment ¢ due to actively-gated and synaptic-gated
channels is modeled by:

Iionici = gNaim?hi(ENa - V;) + gCai sgri(ECa - %) +
9xpr:"i(Ex — Vi) + gra,aibi(Ex — Vi) + gxanp qi(Ex — Vi) +
gKCCizi(EK - ‘/;) + Isynaptic,- (32)

Six channel models determine the actively-gated ionic influences of the compartment: Na, Ca,
KDR, KAHP, KA, and KC. En,, Ec,, and Ex represent the reversal potentials of Nat, Ca?t,
and K7 ionic species, which are fixed at values 0.055, 0.080, and —0.075 Volts, respectively. Isynaptic;
represents the sum of current contributions of synaptic-gated ion channels for compartment ¢ as
given in Equation 3.3. Definitions of Iaprpa, and Inppa, are provided in Equations 3.27 and
3.29, respectively. Definitions of IGABAAi and IGABABi are provided in Equations 3.32 and 3.34,
respectively.

Isynapticc = Tampa; + INmpa; + IgaBa,, + IcaBag, (3.3)

It should be noted that genqn quantities represent absolute conductances (S). Conversion from
specific to absolute conductance was achieved using equation Equation 3.4, where d; and [; represent
the diameter and length of compartment ¢, respectively. Specific conductances for all channels over
all compartments are given by Tables 3.1 and 3.2 for the CA3 and CA1 models, respectively.

gchani = gchaniﬂ'dili (34)

3.1.2 Gate Models

Channel gating kinetics, as depicted in Equation 3.5 are linear. As is standard form, forward, a,
and backward, 3, gate variables are functions of ¢, where 9 represents either V; or xcq,; depending



| Specific Channel Conductance Densities S/m? |

Comp | Name | gna | 9goa | 9x(DR) | 9xAHP | grC | 9K A
1 Basal, 0.0 0.0 0.0 0.0 0.0 0.0
2 Basals 0.0 50.0 0.0 8.0 50.0 0.0
3 Basals 0.0 50.0 0.0 8.0 50.0 0.0
4 Basaly 0.0 70.0 0.0 8.0 50.0 0.0
5 Basalsg 0.0 70.0 0.0 8.0 50.0 0.0
6 Basalg | 200.0 | 120.0 200.0 8.0 100.0 | 0.0
7 Basal 0.0 50.0 50.0 8.0 50.0 0.0
8 Basalg 150.0 | 80.0 100.0 8.0 200.0 | 0.0

9 Soma | 300.0 | 40.0 250.0 8.0 100.0 | 50.0
10 Apicalio | 150.0 | 80.0 100.0 8.0 200.0 | 0.0
11 Apicaly; | 0.0 50.0 50.0 8.0 50.0 | 0.0
12 Apicaly | 20.0 | 170.0 | 200.0 8.0 150.0 | 0.0
13 Apicaly3 | 0.0 70.0 0.0 8.0 50.0 | 0.0
14 Apicaly4 | 0.0 70.0 0.0 8.0 50.0 | 0.0
15 Apicalis | 0.0 70.0 0.0 8.0 50.0 | 0.0
16 Apicalig | 0.0 50.0 0.0 8.0 50.0 | 0.0
17 Apicali7 | 0.0 50.0 0.0 8.0 50.0 | 0.0
18 Apicalig | 0.0 50.0 0.0 8.0 50.0 | 0.0
19 Apicalig | 0.0 0.0 0.0 0.0 0.0 0.0

Table 3.2: CA1 voltage-gated ion channel conductance densities in SI units.

on the nature of the channel gated—yxcq,; denotes concentration of Ca** ions within compartment
i. Equations 3.6-3.25 present o and § gate variable equations for both activation and inactivation
gates of the channels specified in Equation 2. The equations are given in GENESIS standard form
using ST units but are based on equations originally presented by Traub [28].

ar - om ()1 = pi) — Bpi(¥i)pi (3.5)
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Cayi + 2000 exp (Lreert00065=Vi) - if V; < F,.,y + 0.050
Casis if V; > Epest + 0.050

XCa,i/250a if XCayi < 250.0
1.0, if xca,i > 250.0

1.0

(3.10)

(3.11)

(3.12)
(3.13)

(3.14)

(3.15)

(3.16)

(3.17)

(3.18)

(3.19)

(3.20)
(3.21)

(3.22)
(3.23)

(3.24)
(3.25)



3.1.3 Shell Models

In both CA1 and CA3 neural models, compartments 2—18 contain shell models that approximate
Ca*t concentration within proximity to the compartment membrane surface such that these concen-
trations affect concentration-gated ion channels. Shells are omitted from compartments 1 and 19 as
Ca**-dependent channel conductances are absent [28]. Due to largely unknown intracellular Ca®*
kinetics (i.e., axial and radial diffusion rates), shell concentrations should be viewed as model ab-
stractions to approximate gross [Ca®*] response to potential changes effected in the compartments.
Equation 3.26 depicts the Ca®* shell concentration kinetic approximation.

dXca,i XCa,i
= ¢Ca,iIC’a,,i + ot
dt TCa,i

(3.26)

The value of calcium decay, Tcq,i; was fixed to be 0.01333 sec [4]. The scaling factors used
to convert Ca?* current into intracellular concentrations are as follows [4]: ¢ca, = 7.769 x 102
i =2,y T; Pcai = 34.53 x 1012 i = 8; dca,i = 17.402 x 1012, i = 9; dca i = 26.404 x 1012, i = 10;
and ¢cq,; = 5.941 x 10'?, 4 = 11,...,18. It should be noted that the units of these conversions are
arbitrary in that the radial width implied for the shells is undetermined.

3.1.4 Synaptic Models

As given by Traub [28], fast and slow acting, excitatory synaptic ionic influences are present. The
QUIS synaptic alpha model proposed by Traub has been replaced by a dual-exponential AMPA
model. Equation 3.28 depicts the temporal kinetics of the AMPA model. Rise and decay time
constants were fit to conform to the 2 ms constraints given by Traub [28]. Reversal potential of the
AMPA synapse, Eanpa, is set to 0.0 Volts. Values Taprpa, and Tappa, are 2 x 1073 sec [14].

gampa;,(Eampa —Vi), i =3,15 (3.27)

gAMPA (e—t/TAMPAl _ e—t/TAMPAQ) (3.28)
TAMPA; — TAMPA,

Tanmpa,

gAMPA; =

The slow excitatory NMDA model proposed by Traub [28], in GENESIS form, is described by
Equations 3.29-3.31. This synapse is voltage dependent and limited by M g?*. The model’s temporal
form has been fit to a rise and decay time of 100 ms [28]. NMDA reversal potential, Exypa, is
0.0 Volts. Values TNyppa, and TN amrpa, are 100 x 1073 and 80 x 1072 sec, respectively [14].

Invpa; = 9nmpa,(Enmpa— Vi), fori=15 (3.29)
JNMDA = gnMDA (e_t/TNMDAl — e_t/TNMDA2> STy (3.30)
TNMDA; — TNMDA, g

1
TM_g = (331)

]_ + n . [Mg2+] . e—‘/i’)’

The values of gappa and gnvypa are scaling factors for the maximal synaptic conductance
(Siemens). Time, t (sec), denotes simulation time passed since activation of the synaptic receptor.
In accordance with Traub [28], an excitatory postsynaptic potential (EPSP) for a single action
potential is defined as activation of the fast AMPA synaptic receptors located in compartments 3
and 15 as well as the slow NMDA receptor located in compartment 15. Action potentials originate
within the soma compartment exclusively. The threshold for action potential is 0.0 Volts. Axonal
propagation velocity is defined as 1.0 m/sec [13].

Putative interneurons provide inhibition to pyramidal cells through both fast, GABA,4, and
slow, GABAg, inhibitory synaptic connections. Kinetics for the GABA 4 model are defined by
Equations 3.32 and 3.33. Egapa, was —0.068 Volts. Values 7gapa,, and 7gapa,, are 2 x 1073
and 1 x 1073 sec, respectively. GABApg kinetics are defined by Equations 3.34 and 3.35. Egapa,
is —0.088 Volts. Values 7gapay, and 7aapag, are 100 x 1073 and 67 x 1072 sec, respectively [14].



| PIN specific conductance densities (S/m?) and dimensions (m) |

Comp | Name JNa gca | 9x(DR) | 9kc | gk a | length | diam
Soma | 1000.0 | 10.0 | 1350.0 | 200.0 | 5.0 20.0 15.0

SD6 250.0 | 10.0 | 250.0 80.0 | 5.0 50.0 1.88
SD7B | 500.0 | 10.0 | 500.0 40.0 | 0.0 50.0 1.88
SD7A | 500.0 | 10.0 | 500.0 40.0 | 0.0 50.0 1.20
SD8B | 250.0 | 10.0 250.0 40.0 0.0 50.0 1.88
SD8A | 250.0 | 10.0 | 250.0 40.0 | 0.0 50.0 1.20

O U x| W N =

Table 3.3: Putative Interneuron voltage-gated ion channel conductance densities in SI units.

Time, t, is defined as above.

IgaBas, = 9caBas, (Ecapa, — Vi), for i=8,10 (3.32)

JGABA,, = IGAB AL (eft/TGAB"Al - eft/TGABAAZ) (3.33)
‘ TGABAs, — TGABA,,

IgaBas, = JcaBay,(EGgapay —Vi), i =10 (3.34)

9GABAp, = Jolnte, (e_t/TGABABl - e_t/TGABABZ) (3.35)

TGABABl - TGABAB2

Values of ggapa and t are defined earlier. An inhibitory postsynaptic potential (IPSP) coinciding
with a single action potential is defined as activation of GABA,4 synaptic receptors located in
compartments Basalg and Apicalig as well as a GABAp synaptic receptor in compartment Apicalig.
The close proximity of inhibitory receptors to the soma is intended to maximize inhibitory effect on
burst generation in the soma. Inhibitory receptor placement also symmetrically opposes, in terms
of fast and slow activation time, the excitatory synaptic inputs of the dendritic tree [26].

3.2 Putative Interneuron Model

To facilitate inhibitory synaptic signaling, a putative interneuron (PIN) model was developed. The
six compartment PIN model is intended to mimic the function of a 45 compartment interneuron
model proposed by Traub, et al. [27]. The PIN model contained six compartments defining a
single dendritic branch and soma of the original model, such that original electronic lengths were
maintained [27]. For all compartments, Ry = 5.0 Qm?, Ra = 2.0 Qm and Cy = 0.0075 F/m?2.
Rest potential, s, for all compartments is —0.060 Volts. These values closely follow original
model parameters [27]. All compartments are modeled as cylinders. Compartment dimensions are
defined by values in Table 3.3.

Like the CA1 and CA3 models, membrane current of PIN compartments were calculated by
Equation 3.1. However, K AH P channels are not incorporated into the PIN model. Specific channel
conductance densities are presented in Table 3.3. Calcium concentration shell models follow those
of CA1 and CA3, given by Equation 3.26. For all compartments, ¢cg,; is 5.941 X 10'2 and 7¢,,; is
0.333 [27].

The kinetics of all channels were identical to those used in the CA1l and CA3 neural models
as defined by Equations 3.6-3.25. An EPSP in the PIN model was defined as the simultaneous
activation of both AMPA and NM DA glutamatergic receptors located at compartment named
SD8A'. Recurrent inhibition of interneurons is not included in the model due to the lack of sufficient
biological data. AMPA and NM DA currents in the PIN model are defined analogous to pyramidal
cells by Equations 3.27 and 3.29, respectively.

LPIN neuron nomenclature is defined to coincide with the original convention defined by Traub, et al. [27]
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3.3 Neural Model Validation Experiments

Validation experiments were performed on both the Traub CA1 and CA3 models as well as the PIN
model. Validation experiments are necessary to ensure that implementations of the neural models in
GENESIS do not contain coding or unit conversion errors. Second, these validation experiments are
used to ensure that modifications to the original model specifications did not significantly change
gross firing behaviors originally observed by Traub [28]. The preservation of firing characteristics
will be detailed in Section 4.

The CA1 model was simulated under the following five stimulus conditions: 3.0 nA4, 5 ms depolar-
izing step applied to the Soma compartment, 0.25 nA tonic depolarization applied to compartment
Apicaly3, 0.25 nA tonic depolarization applied to the Soma compartment, 0.30 tonic depolariza-
tion applied to compartment Apical g, and 1.25 nA tonic depolarization applied to compartment
Apicalig. All depolarizing stimuli were applied 25 ms after the start of the simulation. Data for step
depolarization simulations was collected at 0.05 ms time intervals for 300 ms. Data for tonic depo-
larization were collected at 0.05 ms time intervals for 3.0 s. Membrane potential was simultaneously
recorded from the Soma, Apicalis, and Apical;g compartments, respectively.

Nine experimental configurations were used for CA3 model validation: 3.0 nA, 5 ms depolarizing
step applied to the Soma, successive 3.0 nA depolarizing and 3.0 nA hyperpolarizing 5 ms steps
applied to the Soma compartment, tonic depolarizations applied to the Soma compartment over
the range of [0.1,0.5] nA at intervals of 0.1 nA, 1.5 nA tonic depolarization applied to compartment
Apicalig, and 3.0 nA, 5 ms depolarizing step applied to the Soma compartment under neural-wide
Ca channel blockade. Application of stimulus and data collection methods were identical to those
of the CA1 model.

The PIN model was validated under tonic depolarizations over the range [0.01,0.03] nA at inter-
vals of 0.01 nA as well as 3.5 nA. All depolarizing stimuli were applied to the Soma compartment.
Stimuli delay times and data collection procedures were identical to those of the CA1 validation
experiments.

3.4 Network Bursting Experiments

First, normal juvenile and adult rat CA1 population bursting under GABA 4 antagonist was studied.
The experimental network is comprised of a 10 x 10 grid of CA1 pyramidal cells and a 3 x 3 grid
of PIN interneurons. The main axes of all neurons are aligned along the x-axis. Spatial separation
of CA1 neurons is 200£40 pm in both the x and y-axis. Spatial separation of PIN interneurons is
450 pum in both the x and y-axis. The PIN neural grid is centered on the CA1 neural grid. Three
connectivity types are defined: CA1l recurrent connectivity ratios (PP), CAl onto PIN excitatory
synaptic connectivity ratios (PI), and interneuron onto CA1 inhibitory synaptic connectivity ratios
(IP). A connectivity ratio is defined as the number of connections assigned within the simulation
divided by the total unique connections possible in the network. All connections are randomly
assigned by uniform distribution without regard to spatial constraints.

All experiments incorporate a stimulus profile. Network stimulus is achieved by a single 3.0 nA,
5 ms step depolarization to the Soma compartments of n target pyramidal cells. Target pyramidal
cells are located at array indices 52-562. Each experimental configuration is identical except for
differences in connectivity ratios and the number of externally stimulated cells, n. PI is constant
at 0.10 for all experiments. The set of PP values includes 0.01 as well as the range [0.02,0.12] at
intervals of 0.02. IP varies over the range [0.05, 0.40] at intervals of 0.05. The number of stimulated
pyramidal cells, n, varies over 1,3,4, and 5 for all connectivity ratio permutations.

Second, normal juvenile and adult rat CA3 population bursting under GABA 4 antagonist was
studied. The experimental network is comprised of a 10 x 10 grid of CA3 pyramidal cells and a
3 x 3 grid of PIN interneurons. Anatomical constraints and stimulus profiles are identical to the

2Cell indices are defined according to convention of the GENESIS createmap command [4]
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CA1 network experiments described above. Ranges of connectivity ratios differed from that of CA1
to reflect results reported in vitro and via similar CA3 experiments [28, 26, 27]. PI was held fixed
at 0.10. The set of PP values includes 0.08 and the range [0.10,0.35] at intervals of 0.05. I P varies
over the range [0.20,0.40] at intervals of 0.05.

For all experimental configurations, the following recordings were made. Times denoting occur-
rence of action potentials were recorded for all pyramidal cells in the network. Resolution of this
recording was 0.05 ms. Membrane potential for pyramidal cells receiving external stimulus were
sampled at intervals of 0.05 ms.

3.5 Analysis of Bursting Characteristics

No formal mathematical description of bursting has been defined in the literature. However, record-
ings of the experimental network models were intended to visually resemble electrographic data of
synchronous population bursting recorded in witro [19, 22, 17, 20, 21]. An approximate metric,
used in the analysis of these models, was devised by visual inspection of in vitro recordings [19].
This metric defined bursting as a significant proportion of network neurons firing approximately
together one or more times. It is proposed that the proportion of the population involved in a burst,
burst frequency, and burst duration are dependent on recurrent connectivity density, mean axonal
propagation delay, and neuron kinetics. As is current convention in neural modeling experiments,
comparison of simulation results with the results of Shao and Dudek [19] was made visually. This
direct visual inspection of cell recordings was supplemented by network-firing activity plots describ-
ing the temporal location of all action potentials over all pyramidal cells in the network. While
suitable for gross approximations, this method is undesirable in general. The need for automated
classification techniques will be described in Chapter 7.
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Chapter 4

Validation Results

Understanding the components comprising a biologically-realistic neural network simulation is essen-
tial in understanding the network’s ability to describe behavior observed in vitro. Underlying model
assumptions inherently bias the model behavior. Further, the complexity of biologically-realistic
neural models makes experimental errors or inaccuracies a common problem. To alleviate concern
over model accuracy, due especially to the reimplementation and modification of prior work [28],
rigorous validation benchmarking of the CA3, CA1, and PIN neural models is described below.

4.1 CA3 Pyramidal Cells

CA3 pyramidal cells are known to exhibit spontaneous bursting [25]. However, in the context of
modeling, spontaneous bursting can be problematic when attempting to understand model behav-
ior. Given original parameter values, the Traub CA3 model exhibits spontaneous bursting [28]. The
bursting in this model, however, is largely influenced by membrane resistance parameter. A large
value causes current to conduct between compartments rather than across the membrane itself.
Trapping current within the model when the simulation is at or near steady-state causes mem-
brane depolarization, spontaneous bursting, and resultant after-hyperpolarization (AHP) as shown
in Figure 4.1.

To ensure a stable network at equilibrium, the capacity of spontaneous bursting was removed from
the CA3 neuron model through an exhaustive parameter search of membrane resistance. This search
yielded 0.5 Qm? as the largest (biologically plausible) membrane resistance ensuring persistent neural
stability throughout a simulation run of 3.0 ms. At this level of membrane resistance, the CA3 model
will not generate an action potential until it is stimulated directly by externally applied current or
via EPSP. This stability facilitates study of the role of recurrent connectivity by permitting a direct
trace of action potentials as they propagate throughout the network. The reduction of membrane
resistance displayed no significant effects on neuron behavior when stimulated. A suite of external
stimulus experiments were applied to the modified model, attempting to mimic those performed by
Traub [28]. For the remainder of the discussion, the modified Traub model is referred to as the CA3
model.

To study compartment response to external stimulus, three stimuli scenarios were inflicted on
the model: 1) 3.0 nA, 5.0 ms depolarizing step current, injected at the soma, shown in Figure 4.2,
2) 3.0 nA, 5.0 ms depolarizing step current, injected at the soma, coupled with cell-wide blockade of
Calcium channels (goq,; = 0.0 S), shown in Figure 4.3, and 3) 3.0 nA, 5.0 ms depolarizing current
followed immediately by a —3.0 nA, 5.0 ms hyperpolarizing step current, shown in Figure 4.4. All
step injections were applied 0.025 sec after simulation start time.

The membrane potential recording of the Apical1g compartment in Figure 4.2 provides important
evidence as to the nature of dendritic influence on somatic membrane bursting. The massive, slow-
acting depolarization in the Apicalig compartment, labeled as a calcium-spike by Traub [28], clearly
propagates to the soma, as evidenced by the superimposed depolarization profile of the Apical;s
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Figure 4.1: Spontaneous bursting exhibited by the Traub CA3 pyramidal cell model without stim-
ulation.
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Figure 4.2: Burst response to single depolarizing step applied at the soma.
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Figure 4.3: Single spike and AHP response to single depolarizing step stimulation of CA3 model
under Calcium channel blockade.
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Figure 4.4: Single spike response to depolarizing-hyperpolarizing dual step stimulation applied at
the soma.
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Figure 4.5: Firing mode of CA3 pyramidal cell when 0.1 nA tonic depolarization was applied to the
soma.

compartment, which depicts combined membrane properties of these two compartments. This be-
havior can be strongly supported by the difference in gy, and gc, channel densities within these
compartments. The soma contains high densities of fast acting Na and K DR channels, enabling
fast depolarization and recovery behavior. In contrast, dendritic compartments contain relatively
high-densities of Ca channels. The interplay of the calcium (and calcium dependent) channels with
the calcium concentration shells drives long, powerful depolarizations in the dendrites. These depo-
larizations invariably excite the soma. This relationship is clearly illustrated when Ca channels are
blocked as in Figure 4.3. Without the presence of a dendritic calcium-spike, the soma is unable to
develop bursting.

A second, important property of the CA3 is depicted in Figure 4.4. Without a hyperpolarizing
step current immediately following the depolarizing step, we would expect to see behavior identical to
that of Figure 4.2. However, the immediate hyperpolarization of the soma following depolarization
effectively stunts the development of bursting. This is an important property in predicting the
effectiveness of fast-acting GABA 4 inhibition on CA3 model bursting in a network simulation. A
very fast putative interneuron inhibitory feedback response to the initial somatic action potential
would subvert CA3 pyramidal cell bursting. This evidence matches well with the high-probability
of fast action-potential development in the putative neuron [26].

The CA3 pyramidal cell is also subject to modal firing—consistent firing frequency and depolar-
ization amplitude induced by external stimulation—under varying amounts of tonic depolarization
to the soma. Under low tonic depolarizations (< 0.4 nA), cell firing exhibits intermittent cell burst-
ing. For larger depolarizations, cell firing is characterized by single spikes with variable recovery
adaptation profiles. Figures 4.5-4.8 exhibit a range of these modes. Under the lowest tonic depo-
larization, 0.1 nA, CA3 pyramidal cells undergo brief bursts distributed at intervals greater than
2.0 sec, as is shown in Figure 4.5. Burst separation and intensity decrease as tonic depolarization
increases, which is depicted in Figures 4.6, 4.7, and 4.8, sequentially.

The presence of firing modes was originally observed and explained by Traub [28, 26] as a result
of the interplay of dendritic calcium-spikes and faster acting systems of channels such as Na and
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Figure 4.6: Firing mode of CA3 pyramidal cell when 0.2 nA tonic depolarization was applied to the
soma.

N —— Soma
g - --- Apical 13
-.---- Apical 16
i —— Stimulus
o
o -

0.

Membrane Potential (Volts)
-0.02

-0.04

-0.06

T T T T T T T
0.0 0.5 1.0 15 2.0 25 3.0

Time (sec)

Figure 4.7: Firing mode of CA3 pyramidal cell when 0.4 nA tonic depolarization was applied to the
soma.
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Figure 4.8: Firing mode of CA3 pyramidal cell when 0.5 nA tonic depolarization was applied to the
soma.

KDR. Tonic depolarizations propagate to the distal dendritic region and produce calcium currents
proportional to somatic depolarization. The size and frequency of calcium-spike development de-
termines the clustering of fast sodium spikes in the soma compartment. Tonic depolarization of
compartment Apicalig is shown in Figure 4.9. By inspection of the Apical;g compartment plot
of Figure 4.9, it is clear that large, low-frequency calcium-spikes dictate burst intensity and burst
separation in the soma.

4.2 CA1 Pyramidal Cells

Unlike the CA3 pyramidal cell model, the CA1 pyramidal cell model does not contain disproportion-
ately large C'a conductance densities in the apical dendrite. The result of these density differences is
significantly less pronounced bursting propensity in the presence of external stimulation. However,
in its original configuration, the Traub CA1l pyramidal cell model does exhibit spontaneous firing
in the absence of external stimuli. This intrinsic firing property was removed from the model by
reducing membrane resistance to 0.7 Q - m2. At this resistance level, the model is on the verge of
bursting but remains close to rest potential over a reasonably long time-frame (> 300 ms). Given
a single depolarizing input step current of 3.0 nA for 5.0 msec to the soma compartment, the CA1
pyramidal cell fires a single action potential as shown in Figure 4.10.

As with the CA3 pyramidal cell, the CA1 cell model exhibits some degree of modal firing based on
tonic depolarization. As was shown by Traub [28], CA1 model firing modes are highly dependent on
the location of stimulation. A 0.25 nA tonic depolarization to the soma and Apical;3 compartments
produces repetitive firing (< 60 Hz) with adaptation as shown in Figures 4.11 and 4.12, respectively.
Larger tonic depolarizations (1.25 nA) to the distal dendrite induce repetitive firing interleaved with
calcium-spike bursts as depicted in Figure 4.14. Unlike results originally reported by Traub [28], the
modified CA1 pyramidal cell (Rys = 0.7 Q - m?) generates a full calcium-spike somatic burst when
tonic depolarization of the Apical;g compartment reaches 0.3 nA, as shown in Figure 4.13. This
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Figure 4.9: Firing mode of CA3 pyramidal cell when 0.5 nA tonic depolarization was applied to
compartment Apicalig.
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Figure 4.10: CA1l pyramidal cell model response to single depolarizing step current of 3.0 nA for
5.0 msec to the soma compartment.
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Figure 4.11: CA1 pyramidal cell model response under 0.25 nA tonic depolarization to the Soma
compartment.

difference is largely attributed to the lower membrane resistance.

From these few simple experiments we have a rich perspective of how a network of recurrently
connected CA1 pyramidal cells will behave with respect to CA3. While not predisposed to somatic
burst generation, under large tonic depolarization CA1 neurons can and do burst intermittently. CA1
pyramidal cells also display a small degree of modal firing, but the range of modes is more narrow than
CA3. However, the nature of the most extreme CA1 bursting intermixed with repetitive firing could
easily be reproduced by the superposition of two CA3 pyramidal cells under tonic depolarization
of roughly 0.1 nA and 0.5 nA, respectively. Given the weak, slowly developing profile of NMDA
conductance during synaptic activation, it is possible to conceive a recurrent connectivity structure
in which two neighboring CA3 pyramidal cells have exactly this profile. Moreover, a fully connected
network would, as a whole, have many such superposition pairs. This analysis strongly supports the
possibility that CA1 and CA3 population bursting could achieve degrees of similarity at appropriate
levels of recurrent excitatory connectivity.

4.3 Putative Interneuron

The intended role of a putative interneuron is to distribute inhibition to CA1 and CA3 pyramidal
cell networks. Interneurons likely prevent or buffer bursting occurring in these networks, and the
accumulation of slow-developing GABAp inhibitory synaptic currents may play a crucial role in
collapsing CA1 and CA3 network bursts over time. Therefore, the PIN model of the putative
interneuron has several specific requirements. It must have fast, reliable firing on receipt of an
EPSP. It must recover quickly from an AHP to ensure sustained inhibitory capability, and it must
be robust against long-term build-up of slow-developing N M D A excitatory synaptic currents, which,
in a recurrent network of pyramidal cells, can have substantial additive effects.

The PIN model is inherently unstable. No reasonable variation of membrane parameters was
sufficient to eliminate the development of a fast Na spike and subsequent AHP approximately
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Figure 4.12: CA1 pyramidal cell model response to 0.25 nA tonic depolarization to compartment
Apicalyz.
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Figure 4.13: CA1 pyramidal cell model response to 0.30 nA tonic depolarization to compartment
Apicalyg.
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Figure 4.14: CA1 pyramidal cell model response to 1.25 nA tonic depolarization to compartment
Apicalqg.

10 msec after start of simulation. This is due, in large part, to the high density of Na channels
in dendrite compartment SD8A, a necessary component of the PIN model to ensure rapid and
successful transfer of an EPSP to the soma. However, the large AHP, a result of delayed rectifier
potassium conductance in the dendrite opposing sodium conductance, does not suppress repetitive
firing characteristics in the PIN model. Rather, the PIN model exhibits repetitive firing for a wide
range of tonic depolarizing currents. The frequency of these currents increases with the magnitude
of depolarizing current as shown in Figures 4.15-4.17.

One noticeable feature of PIN model repetitive firing is the decrease in action potential magni-
tude as frequency increases for large tonic depolarizations (> 1.0 nA). A tonic depolarization of
3.5 nA to the soma was found to be the largest depolarization in which PIN model action potentials
are super-threshold (> 0.0 Volts) as is shown in Figure 4.18. This threshold is relevant in that
slow-developing, excitatory NM DA synaptic currents could conceivably collapse network inhibi-
tion by driving PIN action potentials below threshold. It is proposed that pyramidal cell bursting
would continue indefinitely when excitatory synaptic currents induce a collapse of inhibition in this
manner. This evidence also reveals the reasoning behind Traub’s [28, 26] use of saturation limits
on NMDA conductance in network simulations and is invaluable in determining the influence of
NMDA conductances in full network simulations.
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Figure 4.15: Repetitive firing of PIN model at 0.01 nA tonic depolarization of soma compartment.
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Figure 4.16: Repetitive firing of PIN model at 0.02 nA tonic depolarization of soma compartment.
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Figure 4.17: Repetitive firing of PIN model at 0.03 nA tonic depolarization of soma compartment.
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Chapter 5

Experimental Results

Simulations of computer models described in Section 3 are intended to replicate results reported by
Shao and Dudek [19]. Due to the necessity of visual inspection in determining model validity, it is
imperative that intracellular and extracellular recordings of in vitro hippocampal slices of adult and
juvenile CA1 and CA3 regions are presented in combination with simulation results.

Figures 5.1-5.4 depict prototypical recordings used to describe developmental changes influencing
CA1 and CA3 population burst characteristics [19]'. In the remainder of this section, results of
simulations mimicking developmental changes will be addressed in detail.

5.1 CA3 Population Bursting Characteristics

The primary focus of this investigation was identification, via visual inspection and comparison,
parameter ranges for which the model successfully approximated adult and juvenile CA3 rat hip-
pocampal bursting as inferred from in vitro recordings shown in Figures 5.1 and 5.2. CA3 juvenile
bursting was best approximated when PP=0.30 and IP was in the range [0.20,0.25]. CA3 adult
bursting was best characterized by a CA3 network in which PP=0.20 and IP was in the range
[0.25,0.30]. In these configurations, the CA3 networks best depicted the two primary behaviors dis-
criminating #n vitro adult versus juvenile CA3 behavior—all-or-none bursting and burst duration.
The existence of all-or-none bursting, as characterized in Figure 5.5 is a characteristic of the CA3
pyramidal cell network under GABA 4 antagonist. In this figure, each point of the plot represents a

!Figures marked with { are reproduced with permission of Shao and Dudek [19].

EC

Figure 5.1: Intracellular (IC) and extracellular (EC) recordings of juvenile rat CA3 region in vitro.
Vertical arrow denotes the application time of external stimulus!.
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Figure 5.2: Intracellular (IC) and extracellular (EC) recordings of adult rat CA3 region in wvitro.
Vertical arrow denotes the application time of external stimulus?.
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Figure 5.3: Intracellular (IC) and extracellular (EC) recordings of juvenile rat CA1 region in vitro.

Vertical arrow denotes the application time of external stimulus. Horizontal arrows indicate relative
magnitude of external stimulus (i.e. large arrows denote more stimulus than smaller arrows)?.
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Figure 5.4: Extracellular (EC) recordings of adult rat CA1 region in vitro. Vertical arrow denotes
the application time of external stimulus. Horizontal arrows indicate relative magnitude of external
stimulus (i.e. large arrows denote more stimulus than smaller arrows)?.

single action potential. The y-axis represents each pyramidal cell in the network, plotted irrespective
of spatial position. The x-axis denotes time in the simulation.

While the amount and intensity of bursting differs between Figures 5.5(a) and 5.5(b), it is clear
that increased stimulation intensity, modeled by increasing the number of cells receiving external
stimulus, has little effect on the overall population burst characteristics. Discrimination between
Figures 5.5(a) and 5.5(b), adult and juvenile, respectively, is determined by the overall burst focus
and intensity. Burst focus is characterized by the time separating the beginning and end of a global
network burst, as indicated by the tightly focused vertical bands occurring in Figure 5.5(b) at
approximately 40, 80, and 110 ms. Less focused global burst bands are evident in Figure 5.5(a).

Also significant is the model’s ability to mimic changes in latent period due to increased stimu-
lation. As external stimulation increases, latent period decreases (i.e. left versus right within each
subfigure) while overall burst intensity and duration remains constant.

Figure 5.5 presents approximations of juvenile and adult CA3 network bursting in which both PP
and I P ratios differ. This presentation was made to provide sharp contrast between configurations as
well as graphically present the robustness of these developmental models over a number of parameter
configurations. Figure 5.6 also compares adult (Figure 5.9(a)) versus juvenile (Figure 5.9(c)), but
the comparison is made with inhibitory connectivity held fixed, TP = 0.25. The presentation
is manipulated to compare network-firing activity alongside a single cell recording of one of the
stimulated cells (CA3 cell index=552). Holding inhibition fixed enables a direct comparison of the
influence of excitatory recurrent connectivity on population bursts. Clearly, the gross characteristics
of Figure 5.5 are maintained.

The single cell recording creates a restricted view of population bursting. While the network-firing
activity plot is a more powerful measure of population bursting, this data is difficult or impossible
to record in wvitro. Rather, hippocampal bursting data is often presented as single cell membrane
potential recordings or localized extracellular EEG data. The computer model enables side-by-side
comparison of a powerful network burst measure with the more familiar in vitro sensory method.
The intent here is to use model data to understand biological recordings in a more meaningful way.

A striking dissimilarity in Figure 5.6 is the discontinuity between the single cell recording and
network-firing activity. Network-firing activity plots (left) of Figures 5.9(a) and 5.9(c) clearly show
marked differences in burst focus, intensity, and duration. However, the single cell recordings (right)

2Cell indexing follows convention of the GENESIS createmap command.
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(b) CA3 network, PP = 0.30, IP = 0.20, single cell stimulation (left), 3 stimulation cells (right)

Figure 5.5: Example of all-or-none bursting characteristics of CA3 pyramidal cell networks over
connectivity ratios identified as plausible bursting upper and lower bounds.
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do not differ substantially. The discontinuity found in these data representations may be described
by the probability of the recorded cell exhibiting network level effects. If, for instance, the index
of the cell recorded in Figure 5.9(c) were incremented by one, the righthand cell recording would
depict action potentials and AHPs up to and past the end of simulation. Therefore, we can use
network-firing activity data to approximate the probability of bursting through time. For instance,
in the adult representation, 21% of cells continue to fire at the end of simulation time (500 ms). In
contrast, 37% of pyramidal cells in the juvenile network continue to rhythmically fire at the end of
the same time period. In fact, the early phase of bursting is very similar between adult and juvenile
networks. The major discriminator characterizing network developmental stage is burst persistence.
Juvenile networks have a higher probability of bursting as simulation passes through a threshold
time of approximately 250 ms. Less significant differences, such as global burst focus, are only
visibly apparent before this threshold.

5.2 CA1 Population Burst Comparison

The CA1 region is known to contain substantially less pyramidal cell recurrent connectivity than
that of CA3. Dual-cell recording results [20] estimate mean CA1 recurrent connectivity to fall
below 2%. The inherent sparseness of connectivity makes comprehensive estimation of mean CA1l
recurrent connectivity prohibitive in vitro. Sparse connectivity is problematic due to the influence of
small cliques, which can induce bursting variance. Based on best visual inspection of network burst
characteristics in the model, CA1 pyramidal cell recurrent connectivity, PP, is estimated to exist on
the range 0.02-0.04, or approximately 10-20% of the connectivity observed for a similar sized CA3
network.

However, inhibitory connectivity, I P, plays a significant role in population burst behavior at
low recurrent connectivities. Repetitive simulation of the CA1 network over the predicted range of
recurrent connectivity produces population behavior that, via visual inspection, requires inhibitory
connectivity to fall in the range of 0.25-0.30.

Figure 5.7 depicts simulation results of CA1 network configurations when external stimulus is
applied to three neighboring pyramidal cells. Figures 5.7(a), 5.7(b), and 5.7(c) represent CA1 net-
works having PP connectivity ratios of 0.02, 0.04, and 0.06, respectively. Inhibitory connectivity
ratios, I P are 0.25 and 0.30 for lefthand and righthand plots, respectively. The intent of Figure 5.7
is to depict a potential transformation between CA1l adult and juvenile networks within the scope
of reasonable recurrent connectivities based on a visual comparison with in wvitro recordings shown
in Figures 5.3 and 5.4. Clearly, Figure 5.7(c) depicts bursting activity far higher than that which is
observed in vitro. Thus, recurrent connectivity must fall below a ratio, PP = 0.06. The differences
between PP = 0.02 and PP = 0.04 approximate behavior reported for CA1 networks in the respec-
tive adult and juvenile developmental stages as reported by Shao and Dudek [19]. Exact duplication
of in vitro data is difficult due to vast differences in membrane potential profiles of individual cells.

The sparseness of connectivity and the influence of inhibition connectivity are evident in Fig-
ure 5.7(a). Over multiple simulations (not shown), network-firing activity patterns vary. However,
burst intensity, focus, and persistence remained negligible over all redundant simulations. Network-
firing activity for recurrent connectivity levels below 0.02 is negligible. The prevailing behavior of
CA1 networks at connectivities below 0.06 may be characterized by the absence of synchronous pop-
ulation bursting. Some limited, localized bursting is evident when recurrent connectivity reaches
0.06. For recurrent connectivity greater than 0.06, population bursting emerges. This phenomena
will be revisited in the next section.

Having motivated the range of connectivity for the transformation between juvenile and adult
CA1 networks to fall between 0.02 and 0.04, analysis turned to the study of burst characteristics
in response to variable external stimulus. Figures 5.8 and 5.9 depict CA1l network firing for con-
nectivities of PP = 0.02 and PP = 0.04, respectively. Within each figure, the amount of external
stimulus increases from the top pair of plots to the bottom pair. Increasing external stimulus is
modeled by the number of pyramidal cells recruited in application of the externally applied step
current. Further, the left and right columns of these figures contrast the effects of graded bursting
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(b) CA3 juvenile network-firing activity and stimulated cell recordings.

Figure 5.6: Example of all-or-none bursting for CA3 adult and juvenile networks.
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Figure 5.7: Example transformation of adult to juvenile CA1 burst characteristics. IP = 0.25 (left)
IP =0.30 (right).
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in differing climates of inhibition. The left column of Figures 5.8 and 5.9 describes increasing ex-
ternal stimulus for networks in which /P = 0.25. In the right columns, IP was fixed to be 0.30.
Redundant simulations over identical parameters produced wide variance in the results. Bursting
activity generally increased as the number of stimulated neurons increased from one to three. As
the number of stimulated neurons increased from three to five, however, changes in burst activity
varied widely. No discrimination, based on a visual interpretation of bursting, could be discerned.

5.3 Contrasting the CA1 and CA3 regions via Modeling

A key benefit of computer modeling is the capability to simulate networks with neural connectivities
outside ranges observable in vitro. The normal rat CA3 hippocampal region is known to display
much greater excitability than the normal CA1 region under GABA 4 antagonist. However, it is
crucial to understand the role connectivity plays in this characterization. Results of validation
experiments on CA1 and CA3 neurons in Section 4 indicate that CA1 neural models are as likely
or more likely to fire action potentials at equivalent levels of tonic depolarization. Therefore, in the
presence of slow-developing EPSPs (NM D A) we would suspect CA1 networks to achieve significant
network bursting given a sufficient recurrent connectivity density. An interesting result then, would
be a direct comparison of CAl and CA3 networks composed with identical connectivity ratios.
When CA1 and CA3 networks are compared in identical climates, where the recurrent connectivity
artificially resides above the realistic CA1 connectivity upper bound and below the connectivity
lower bound of CA3, the underlying hyper-excitability of the CA1 region relative to CA3 emerges.
This striking realization is presented in Figure 5.10. In both CAl and CA3 networks, external
stimulus was applied to a single pyramidal cell. Connectivity ratios for both networks were defined
as follows: PP =0.08, PI = 0.10, and IP = 0.20.
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Figure 5.8: Graded population bursting of CA1 networks, PP = 0.02, PI = 0.10, IP = 0.25 (left)
IP =0.30 (right)
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Figure 5.9: Graded population bursting of CA1 networks, PP = 0.04, PI = 0.10. IP = 0.25 (left)
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Chapter 6

Discussion

I have presented approximate connectivity distributions that describe changes in network burst
properties observed to occur in the Sprague-Dawley rat CA1 and CA3 hippocampal regions at both
juvenile and adult developmental stages. These connectivity approximations were motivated by
computer simulations of small-scale CA1 and CA3 network models. Approximations and behavior
depicted, however, closely map to values and behavior recorded in witro [19]. The data used for
classification included action potential histograms and single cell membrane potential recordings
generated via computer model. Classification of behavior was performed by visual inspection of
resultant data and comparison of data across model configurations.

In addition to modeling developmental changes in the CA1 and CA3 reasons, the experiments
uncovered the dominance of CA1 bursting propensity over that of the CA3 region when connectivity
levels are held constant between regions. This result was both counterintuitive and enlightening.
The propensity of CA1 bursting at recurrent connectivity ratios greater than 0.08 may actually
influence the inherent sparse connectivity of these region.

While not reported in results, models of CA3 networks in which recurrent connectivity ratios
were greater than 0.30 produced substantially higher levels of global burst focus, intensity, and
persistence. These models may be significant evidence for the existence of the role of synaptic
reorganization and MFS in epileptiform bursting exhibited by the rat kainate-model.
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Chapter 7

Future Work

As mentioned in the previous section, a recurrent connectivity model of network bursting provides
substantial evidence to the MFS model of epileptiform bursting in the CA3 region. Additionally, this
model may extend to the dentate gyrus. Similar experimentation as described in this paper, with the
intent of studying epileptiform bursting rather than developmental changes, should be performed on
recurrent models of dentate gyrus granule cells. Combined with results reported herein, the MFS
model of epileptiform bursting would be substantial.

Scaling of the results for the small-scale models reported here is an important step in under-
standing robustness. Recurrent connectivity ratios defined herein were used to generate discrete
connectivity counts. These discrete counts may be applied to larger models. A primary concern in
scaling is the effect of axonal propagation delay. Larger networks clearly must incorporate biologi-
cally motivated connectivity distributions to reflect distance as a physical constraint of connectivity
observed in vitro. A probability of connectivity, linearly decreasing with distance is proposed as in
initial step in modeling local connectivity over a large network of (> 1000) pyramidal cells.

With regards to parameter estimation, the techniques and methods utilized in this research are
inadequate. Hand-tuning of model parameters and visual inspection of simulation data are inherently
tedious, error-prone, and subjective. Modern artificial intelligence methods should be applied to the
entire procedure of model construction, parameter optimization, data mining, and data analysis.
However, as stated previously, no mathematically well-defined definition of network bursting exists.
An immediate step beyond the current research is the determination of a mathematically well-defined
network burst metric. Given a reliable metric, classification of simulation results could be achieved.
Given a reliable classification capability vast machine learning resources and techniques would then
become available to build, simulate, and study biologically realistic neural models. Automation of
the process will leverage computational power, and enhance the speed and accuracy of modeling
research.
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Appendix A

GENESIS Overview

GENESIS (GEnereal NEural SImulation System) is an object-oriented scripting environment de-
signed specifically for the simulation of neural models. Script code is parsed and converted into
compiled C++ objects making the execution of GENESIS scripts very fast. High-level language
features of GENESIS enable quick development time. This section is a brief overview of how a
GENESIS simulation is created as well as a listing of key GENESIS object features used in this
research.

Script object are stored in a directory hierarchy very similar to the Linux operating system.
Directories in GENESIS are termed elements. Top-level objects reside in the / element. A top-level
object’s name is used in a directory path format to access lower-level objects. The element path
/soma/Ca is an example of an access path, where the soma object exists at the top-level and the
Ca object resides within that object. The canonical GENESIS script begins by defining a set of
prototype elements that exist outside the simulation hierarchy in a separate element path denoted
/library. Objects are created by a script titled protodefs.g and stored in /library. Once
prototype objects are created, scripts of any name with the *.g suffix create copies of the prototype
objects in some meaningful way. Simulation objects are connected together via messages, using the
addmsg <source> <dest> <msg type> <msg field> paradigm.

Copies of objects are changed to build specific object constructs by calling the setfield
<object> <param> <value> command. The <object> field denotes the path from top-level where
the object resides, the <param> field is a specific private quantity contained within the object, and
the <value> field is the location at which a user-defined quantity, intent to become the <param>
field’s value, is positioned.

Once a suitable set of objects have been created, initialized, and connected in some meaningful
way the reset and step <numsteps> must be called. The reset command allows built-in GENESIS
error-checking features to determine if the simulation code in syntactically, and to some extent,
electrotonically correct. The step command tells the GENESIS environment how many simulation
time steps to advance—it is up to the developer to infer what a timestep means by the type of units
used to initialize objects. Three important points should be remembered when programming in the
GENESIS script language. First, scoping is dynamic. Second, all object copies are deep copies.
Third, message passing arguments are compiled down to pointers in C++ code, thus, message
passing is extremely fast during execution.

A.1 Object Reference

A complete specification of the GENESIS language is available online at
WwwwW.genesis-sim.org/GENESIS and an excellent tutorial is available [4]. The following sec-
tion is a small description of object types and common commands used in this research.

1. Ca_conc: Calcium concentration shell object.

2. create: GENESIS script constructor call
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. readcell: Constructor call used to build an entire neural compartment model based on a *.p
configuration file.

. setclock: Sets the simulation clock. GENESIS allows for up to 16 unique simulation clocks
to be used.

. setfield: Accessor method call of a GENESIS object.

. symcompartment: Cylindrical compartment object that stores anatomical shape and passive
membrane properties. Cylinders are linked end-to-end and may contain shell and channel
object links to simulate realistic neural membrane patches.

. synchan: Synaptic channel object.
. tabchannel: Gated ion channel object based on a predefined look-up table.

. createmap: Constructor call used to generate an abstract array container of GENESIS objects.
This array object is generally used for anatomically grouping neurons.
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Appendix B

Neuroscience Principles

The neuron is the backbone of information processing in the brain. However, by itself a single neu-
ron has limited processing capability. The brain contains uncountable variations of neural networks,
systems of interconnected neurons, to satisfy a wide range of processing needs. To understand how
neural networks serve as information processors, however, one must understand the anatomical and
physiological architecture of a simple neuron first. Only then can the role of complex interconnec-
tivity be understood as a cohesive functional unit.

B.1 The Neuron

From an information processing perspective, the purpose of the neuron is to receive, process, and
retransmit signals. Signals, in this context, are disruptions in the membrane potential of the neuron.
A neuron, for reasons to be discussed later, maintains an electrical potential across its membrane
of approximately —60 to —70 mV. Because the equilibrium potential is negative, the neuron is
said to be hyperpolarized with reference to the extracellular space. Signals generally take the form
of depolarization, positive change, of the membrane potential. Depolarizing changes propagate
across the neural membrane such that a depolarization at a dendritic branch will propagate to the
axon hillock. Membrane depolarizations have a second property, they are additive. For example,
a depolarization of 15 mV occurring adjacent to a depolarization of 20 mV causes the locations
between to have a depolarization of some linear combination of these values, greater than either
value individually (> 20). Neural anatomy is configured to take advantage of membrane potential
changes to convey and process information. A generalized neuron is depicted in Figure B.1 to aide
in the discussion of anatomical functionality.

At a high-level, neural anatomy may be decomposed into five sections: the dendritic tree, the
soma, the axon hillock, the axon proper, and axonal branches. Functionally, however, the neuron has
three sections: reception and integration, decision, and retransmission. Information is received in the
dendritic tree via synaptic connections. Details of the synapse will be provided later, but initially,
we can think of synaptic connections as physical locations where inbound signals are collected by
the neuron. All signals propagate to the axon hillock where their effects are summed. If the
summed depolarizations, via the additive property, achieve a fixed threshold depolarization, an
action potential occurs. An action potential is defined as an all-or-none, massive depolarization of
the neural membrane. The axon and axonal branches serve the purpose of transmitting the action
potential over long distances and to many different locations. To aide understanding, a graphic
depicting a generalized neuron in provided in Figure B.1.

With this high-level description in place, the underlying information processing functionality of
the neuron is available for study. The highly complex branching structure of the dendritic tree serves
to collect numerous incoming signals from many different neurons. Due to passive propagation and
additive properties of the membrane depolarizations occurring at synaptic connections, the dendritic
tree can be viewed as a giant antennae that collects signals. As signals propagate down the branch
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Figure B.1: Generalized depiction of a neuron.

structure they are summed at intersections. The entire dendritic tree, may be referred to as the
signal collection component.

As signals propagate down the dendritic tree, they eventually reach a single terminus, the axon
hillock. All signals are summed at this location. Therefore, the axon hillock may be viewed as
the signal integration component. However, the axon hillock does not just passively sum incident
signals. This section of the neural membrane contains a high density of voltage-gated ion channels.
These channels have the effect of magnifying membrane depolarizations should the passive sum of
the depolarization achieve some value above a fixed threshold value, which varies from neuron to
neuron. In a very basic way, the combined effects of the voltage-gated ion channels in the axon
hillock form a binary switch. When summed membrane depolarization is below some value, the
switch remains off, and passive propagation continues through the axon hillock and down the axon.
However, if the summed depolarization reaching the axon hillock achieves a value greater than (i.e.
less negative than) the threshold, the the switch is turned on. Turning on the switch is equivalent
to generating an action potential, a massive depolarization, of approximately 100 mV .

The axon and axonal branches have the duty of transmitting action potentials to various locations
in a neural network. The axon, via its natural myelin sheath insulation, is capable of transmitting
action potentials over large distances, quickly, and with little loss of potential. Some axons can be
as long a one meter and achieve signal transmission velocities of 1 m/s. Axonal branches may carry
the action potential to several thousand other neurons.

B.2 The Synapse

The synapse is the location of transfer between neurons. Formally, the synapse is empty space sepa-
rating the axonal terminal of the presynaptic neuron with the dendrite of the postsynaptic terminal.
Unlike signal propagation within a neuron, signal transmission between neurons occurs via chemical
signaling. At a high-level, the process is comprised of discrete, sequential steps. First, an action
potential must propagate to the axonal terminal of the presynaptic neuron. The depolarization of
the membrane caused by the action potential causes vesicles containing neurotransmitters to bind to
the membrane of the presynpatic axonal terminal. These vesicles then rupture, releasing neurotrans-
mitter into the empty space separating the presynaptic and postsynaptic neurons, properly called
the synaptic cleft. Neurotransmitters diffuse across the synaptic cleft and bind to neurotransmitter
specific receptors located on the dendritic membrane of the postsynaptic neuron. These receptors in
turn cause ion-channels to open, allowing diffusion of ions across the postsynaptic neural membrane,
depolarizing the membrane. Propagation of the signal then proceeds passively as described previ-
ously. Neurotransmitter is absorbed by surrounding support cells, specifically astrocytes. Vesicles
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are filled and repaired in the neuron nucleus. Slow transport processes are responsible for moving
vesicles containing neurotransmitter from the nucleus to the axonal branches as well as returning
ruptured vesicles for repair and refilling.

The type of neurotransmitter released by the presynaptic neuron governs the function of the
synaptic connection. Synaptic connections are classified in two ways, excitatory and inhibitory.
Excitatory synapses cause depolarization of the postsynaptic neuron. Inhibitory synapses hyper-
polarize the postsynpatic neuron, or secondarily, block the function of nearby excitatory synapses.
The type of neurotransmitter and the functionality of the postsynaptic receptor govern this classi-
fication. While hundreds of neurotransmitters have been discovered, the four most significant types
are defined below:

e AMPA (alpha-amino-3-hydrozyl-5-methyl-isozazole-4-proprionate), fast excitatory
e NMDA (N-methyl-D-aspartate), slow excitatory

e GABA A (gamma-aminobutyric acid, A-type), fast inhibitory

¢ GABAg (gamma-aminobutyric acid, B-type), slow inhibitory

The fast and slow specifications above concern the rate at which depolarization or hyperpolariza-
tion is induced in the postsynaptic neuron. Fast synapses may cause potential change in 1 — 3 ms.
Slow synapses may effect potential changes over 20 — 40 ms. Speed of influence and excitatory or
inhibitory behavior differ widely among known neurotransmitters. For greater detail readers are
directed to Kandel, Scwhartz, and Jessell [13].

B.3 Neural Networks

The process of signal collection, integration, and retransmission within a single neuron has been
shown to be equivalent to a non-linear function. A collection of neurons, given certain assumptions,
can then be shown to be mathematically equivalent to a linear combination of non-linear functions.
Theoretically, any function may be approximated via a linear combination of non-linear functions,
given enough non-linear functional elements exist.

While the exact role of the entire brain has not been determined, the functionality of subsections
has been determined experimentally. Details of these analysis are beyond the scope of this paper.
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Appendix C

Neural Modeling Principles

C.1 Membrane Potential

Neurons convey information via electrical and chemical signals. Neural membrane potential is the
mechanism by which this signal information is conveyed. As discussed previously, an overly simpli-
fied neuron is a lipid-bilayer compartment of intra-cellular fluid, cytoplasm, bathed in extracellular
fluid. Both intra-cellular and extracellular fluid types contain concentrations of various ions, par-
ticles carrying net positive charge (cations) and net negative charge (anions). For the purpose of
explanation, we will propose that these fluid contain significant concentrations of only two ionic
species, potassium and sodium. The extracellular fluid contains a relatively greater concentration
of sodium ions, Na*, and the cytoplasm contains a relatively greater concentration of potassium,
KT, ions. Both fluid types contain mixtures of these two ionic species.

This system, a barrier separating solutions of differing concentrations of ionic species, is the
definition of a battery. We know intuitively that batteries are sources of electrical potential and
current. Given this perspective, we may define membrane properties by means of electromagnetic.
Ohms Law is the relationship governing these basic relationships and is defined by the following
equation.

V=IR (C.1)

where V' denotes potential (Volts), I denotes current (Amps), and R denotes resistance (Ohms).
Potential is directly proportional to current and resistance. Thus, potential may be thought of
as the driving force of current. Current is the movement of charged particles through a circuit.
Resistance represents the opposition of current in a circuit.

It is well known that all neural membranes possess a multitude of ion-selective channels that
facilitate the diffusion of ions across the membrane barrier. Unique channel types vary by the
thousands if not millions. However, for simplicity we consider only passive, non-gated channels
selective to one of the two species available, Na* or K. These channels allow electro-chemical
forces to drive ionic transfer across the barrier via diffusion. The existence of ionic flow across the
membrane defines what is called ionic current, I;,,. As with electrical circuits, ionic current and
membrane potential behave according to Ohms Law.

With Ohms Law behind us, we can now investigate well-understood theory to explain the rela-
tionship between ionic concentrations, membrane potential, and ionic current. However, we must
abstract further for clarity. Consider temporarily that the neural membrane is impermeable to Nat.
This is equivalent to stating that the membrane’s resistance to Na™ ion diffusion is infinitely large,
which by Ohms law would make Na™ potential equal to zero. Therefore, only K7 ions may transfer
across the membrane and the electro-chemical potential across the membrane, at equilibrium, may
be described by the Nernst Equation:

RT _ [K*],

Ex = 1
K= 77 " K,

(C.2)
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where R is the ideal gas constant, T is temperature, F' is the Faraday constant, and Z is the
effective valence of K+. Thus, if we consider equilibrium conditions to have constant temperature
then % is constant and equilibrium depends only on the natural logarithm of the quotient of K+
ionic concentration outside and inside the membrane, respectively. Further, when extracellular and
intra-cellular KT concentrations are equal, it is obvious that Ex =0 mV.

Detailed experimental measurements have determined Ex = —75 mV. This result demands one
further explanation. Neurons normally carry net negative charge within the cell and net positive
charge externally. Canonically, notation describing membrane potential as positive or negative
assumes that negative potential indicates excess intra-cellular negative charge, although it should
be obvious that the opposite convention would also be appropriate.

For completeness, the Nernst Equation describing potential generated by separation of extracel-
lular and intra-cellular Na™ ions given that the membrane is impermeable to K ions, follows:

RT . [Nat],

ENa = ﬁln [Na+]l

(C.3)

En, has been determined experimentally to be approximately +55 mV. Again, note the relative
nature of this number, indicating that a significant net positive charge exists extracellularly. The
realistic neural membrane is more complex. A normal neuron contains passive channels permeable
to both KT and Na%t ions. Fortunately, equilibrium potential for the influence of multi-species,
non-gated channels is well-understood and described by the Goldman Equation as follows:

_ ﬂ pK[K+]o +pNa[Na+]o

Vi n
™ F 7 pk[K*)i + pna[Nat);

(C.4)

where px and pn, are membrane permeabilities to K+ and Nat ions, respectively. These values may
be thought of as the relative densities of open-gated, ion specific channels present in the membrane
for each ionic species. Thus, the Goldman Equation can be thought of as a more generalized version
of the Nernst Equation. In fact, if the permeability of one species is set to zero, then the Goldman
Equation reduces to the Nernst equation for the remaining species.

A question should arise in your mind at this point. Both the Nernst Equation and Goldman
Equation describe the equilibrium potential achieved when concentrations of ionic species are main-
tained on opposite sides of the membrane. However, we also state that non-gated channels exist that
allow diffusion of ionic species across the barrier. If this is the case, then any equilibrium condition
cannot be maintained as ions flow from high concentration to low concentration. This diffusion
of ions down the concentration gradient will drive the membrane potential to 0 mV. How is this
possible?

Thankfully, the answer is well understood. All neurons contain a metabolic process called the
Nat — KT pump. The Nat — Kt pump functions to maintain net negative charge in the intra-
cellular space. This is achieved by a chemical process in which 3 Na* ions are transported out of
the neuron and 2 K ions are transported into the neuron with the hydrolysis of AT P [13] as the
result. Thus, equilibrium concentrations in the extracellular and intra-cellular space are maintained.
The imbalance of Nat to Kt transfer during the Nat — KT pump cycle has an additional effect.
The unequal 3-2 transfer of cations across the membrane forces additional K7 ions to diffuse across
the membrane into the neuron, forming an net ionic current at equilibrium. The current is often
called leak.

Experimental measurements have shown that neural membranes in which only non-gated Na*
and KT channels account for ionic diffusion have an equilibrium membrane potential,V;,, of approx-
imately —60 to —70 mV. Canonically, the membrane potential in this configuration is defined as
the resting potential denoted, E,.s;. Given this very negative membrane potential it should be clear
from the Goldman Equation that the permeability of K channels dominates that of Na™ channels
when at resting equilibrium.

Another important topic of discussion, one that will be raised many times later in this paper,
is the understanding of how the rest potentials relate to ionic current. The En,, Ex, and E,.s
potentials may be thought of as theoretical batteries driving ionic currents in and out of the neuron
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as stated by Ohms Law. At steady-state, E,.s acts as the combined driving force of ionic current,
which as was discussed, is dominated by relatively high passive K+ diffusion across the membrane
(high K7 ion permeability). F,.q is slightly depolarized from Ex due to the effects of membrane
permeability of Nat ions as described by the Goldman Equation.

C.2 Passive Membrane Properties

The brain’s purpose is to generate, disseminate, and process signals. We define a signal to be a
unit of information. In the case of biological neurons, the physical manifestations of the signal
are magnitude and rate of change of membrane potential. In the previous section we learned how
membrane potential is defined at steady-state, physiologically based, and how Ohms Law determines
the relationships between potential, current, and resistance. This section developed understanding
of how the magnitude of membrane potential is determined. The rate of change of potential, with
respect to time or space, requires further investigation.

Before we move onto these topics, however, we must discuss another electromagnetic concept
that is critically important in neural function, capacitance. Capacitance is the ability to store and
release charge. Capacitance relates to potential by the following equations:

V=Q/C

AV =AQ/C

where C is capacitance, V is potential, A V is change in potential, Q is charge, and A Q is the
change in charge stored on the capacitor. To understand the role of capacitance in membrane
potential rate of change, let us assume that the membrane is a capacitor in addition to being a
resistor as described in the previous section. Given this, the charge carried by membrane current,
I,,,, must be decomposed into two pieces, ionic current, I;, and capacitive current, I., related by the
following equation:

ILn=1+1,

The ionic current, as described previously, is defined by the net ionic diffusion across the membrane
and behaves as described by Ohms Law. Capacitive current, however, has the property of adding
and removing charge stored on the membrane itself. An outward capacitive current would then be
described by the addition of cations to the intra-cellular surface of the membrane and removal of
an equal number of cations from the extracellular surface. This is analogous to storage of current
that flows in the opposite direction. The remainder of the section describes how the membrane’s
capacitive properties influence potential rates of change through both time and space.

C.2.1 Membrane Potential Temporal Rate of Change

The equation governing the rate of change of membrane potential with respect to time is given
below:

AV (t) = I,R(1 —e~t/7)

where ¢ denotes time and 7 denotes the membrane time constant, a dimensionless quantity defined
as the time required for the membrane potential to reach 63% of the value induced by a disruption
of membrane current. An obvious observation follows. Given a command current, a step of current
applied externally to the membrane, the membrane potential response behaves as a bounded non-
linear function of time governed by the membrane time constant. Related time signatures exist
within the ionic and capacitive components of the membrane current as shown in Figure C.1.

The lower plot of Figure C.1 depicts a step of command current as well as the ionic, I;, and
capacitive, I., components with respect to time. The superposition of I; and I. comprises the total
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Figure C.1: Membrane potential temporal response to current perturbation.

current, I,,,. This behavior is intuitive by the equation of membrane current provided above. More
subtle, and important, is the behavior of membrane potential with respect to time as is given in
the upper plot of Figure C.1. Membrane potential change with respect to time (plot ¢) is non-
linear as is shown by plot ¢. Figure C.1 is important, however, in that it shows how the non-linear
nature of potential change arrives from the interplay of resistive and capacitive properties of the
membrane. Given the command current of the lower plot, line a depicts potential change behavior
if the membrane contained only resistive properties. In this case the potential change would be
instantaneous and maintain a constant value throughout application of the command current. Line
b depicts change if the membrane were purely capacitive. Capacitive potential response is linear,
and potential increases as the capacitor is charge. Once command current is released, the upper
plot of Figure C.1 depicts how potential non-linearly returns to the initial level. The lower plot
reveals how stored capacitor charge is released in the absence of command current. A negative
current, symmetrical to the capacitive current during application of command current, is released.
This current is exactly opposed by the ionic current, creating a net zero membrane current. The
two plots of Figure C.1 fully specify the temporal nature of potential rate of change, showing how
both resistive and capacitive properties of a neural membrane influence this change.

C.2.2 Membrane Potential Change through Space

A passive neuron behaves much like a wire cable used to transfer electricity. Ohms Law states that
potential induces current. In our discussion, potential across the neural membrane induces ionic and
capacitive current across the membrane, where membrane resistance, R,,, dissipates ionic current.
When viewed as a cable, however, axial transfer of potential also occurs. That is, the potential
at any point along the cable effects the potential at locations differentially proximal and distal to
some fixed reference point. The relationship between potential, current, and resistance therefore
applies spatially. Axial resistance, R,, describes the dissipation of current induced by a potential as
it propagates down the cable. As a property of conservation, current flows in the direction of least
resistance. Therefore, a current applied to a point along the cable has two potential avenues of flow,
ionic current across the membrane or propagation down the cable length. The following equation

48



100% 4

AV,

A
R/

)

37%

y

0%

v

Distance (x)

Figure C.2: Membrane potential decay with respect to spatial location.

describes potential as a function of distance.
AV (2) = AV,e /A

where V, denotes the potential change at some point, z,, x is the distance from the location of
command voltage, and A is the length constant, defined by the following relationship:

Rm
R,

where )\ is equivalent to the distance from the point of current application where AV has decreased
by 63%. A spatial description of potential change with respect to distance can be seen in Figure C.2.

Given these relationships governing the spatio-temporal rates of change of membrane potential,
we have a clear view of passive neural membrane behavior. Passive neural behavior is most com-
monly seen in the dendritic branches of the neuron where voltage-gated ion channels are sparse or
nonexistent.

A=

C.3 Active Membrane Properties

We have limited our discussion to a simple neuron having only non-gated, ion selective membrane
channels. Of course, this simple neuron is insufficient for describing the complex membrane potential
changes of a normal neuron. Hodgkin and Huxley [12, 10, 9, 11] first explained the role of voltage-
gated ion channels in neural membrane potential changes. The now legendary experiment, performed
on the axon of the giant squid, mathematically elucidated the behavior of Na* and K selective
voltage-gated channels.

Hodgkin and Huxley noted the complex, non-linear path of membrane current when a command
voltage was applied to the giant squid axon. A plot of this classical behavior is depicted in Figure C.3
(Na unblocked). Given a command voltage step, the current necessary to maintain membrane
potential spikes quickly followed by a brief period of stability. This stable period then decays non-
linearly before again recovering non-linearly. Hodgkin and Huxley knew a priori that Na™ and
KT ions were the dominant ionic species involved in the electro-chemical potential of the neural
membrane, and they believed that the complex signature observed was actually the superposition
of the Nat and K™ ionic current signatures. To validate this hypothesis, they prepared the axon
in an extracellular solution absent Nat ions. They then tested this preparation under a command
voltage step identical to that of the normal neuron. Their resulting injection current trace, shown
in Figure C.3 (Na blocked), was that of the behavior of the KT ions alone. Subtraction of this plot
from the normal neuron plot provided the NaT ion current trace which is shown in Figure C.4.
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Decomposition of Na™ and K+ ionic contributions to the membrane current trace was only
the initial experimental step. Hodgkin and Huxley performed similar experiments over a wide
range of command voltages. Studying the differences in the current signatures, they were able to
develop the functional relationship between voltage-gated ionic channel permeability and voltage. A
mathematical model based on these findings, widely called the Hodgkin-Huxley model, is described
below.

As we have already discussed, an ion channel is an opening in the neural membrane that permits
diffusion of ionic species across the membrane barrier. Channels permit ionic passage in either
direction. Channels are also selective to particular ionic species, meaning that a channel permitting
Na™* diffusion across the membrane will not permit KT diffusion. Non-gated ion channels freely
allow passage of ionic species. More formally, non-gated ion channels have constant conductance.
Tonic currents passing through these channels directly obey Ohms Law.

Voltage-gated ion channels behave much differently. The conductivity of these channels is a
function of membrane potential. As the name would imply, the conductivity of these channel types
is gated. Another way to think of this is that the channel itself is door that swings open freely. The
gates act as a system of locks keeping the door closed to ionic passage.

Each gate has a probability, a value on the range [0, 1], of being unlocked, which is referred to
as the permissive state. A particular channel’s conductivity may depend on many identical gates
and any number of gate types. Formally, conductance is related to these permissive states by the
following equation:

Gchan = gchan Hp

(2

where p is the probability of a gate being in its permissive state, Gcpqn is the absolute channel
conductance per unit membrane area, and gepqr is the maximal channel conductance possible if all
gates were in the permissive state. The product of the probabilities of a permissive state for all
gates governing the channel comprises the fraction of maximal conductance possible, thus defining
the absolute conductance. We will see that the probability of the permissive state for a gate is
a function of voltage. However, first we should introduce practical notation. The vast majority
of voltage-gated ion channels are gated by at most three unique gate types. Thus, the previous
equation may be rewritten as:

— T1, T2, T
Gchan = gchanp11p22p33

where Gcpan and genan are defined as previous, p;, ¢ = 1,2,3 are the unique gate types, and z;,j =
1,2, 3, represent the number of gates of each gate type involved in channel gating, respectively.

The rate of change of gate permissiveness with respect to time obeys first order kinetics. This is
described mathematically as:

% = ap, (1 = pi) — Bp:pi

where a denotes the activation, or opening, of the gate, and 8 denotes the inactivation, or closing,
of the gate. Both variables, a and 3, are functions of membrane potential. Before moving on, it
is important to understand this equation exactly. Given some probability of permissiveness, the
rate of change of permissiveness with respect to time is increased by the activation rate times the
probability of the gate being closed minus the inactivation rate times the probability of the gate
being open. The probability of gate permissiveness is always on the range [0,1]. Any product of
a value on this range to any power will always be on the range [0,1]. Therefore, even though gate
permissiveness may change with respect to time, the channel conductance, as defined above will
always vary over the range [0, Genan]-

Finally, we must specify functional descriptions of the variables a and 8 with respect to membrane
potential. Through careful experimentation, these functions have been approximated for a wide
range of voltage-gated channel types. The most commonly encountered channels have gate variables
well-approximated by a common function form [4]:
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C + exp (Z£2)

Given that we have rates of change equations defined for the permissiveness of our gates to ionic
diffusion, a question should enter your mind. These gates must have absolute values when solving
for channel conductance. Yet we only have equations for rates of change. How do we solve for the
values themselves? While the proper answer to this question must wait for a discussion of numerical
integration methods, we can solve for gate permissiveness under equilibrium conditions. Given any
membrane potential over the range defined for a and 3, the steady state value of the gate permis-
siveness can be determined. This is achieved by setting the derivative of the gate permissiveness
equal to zero and solving for the activation and inactivation values at some membrane potential,
usually termed, V;,;;. Simple algebraic manipulation of the equation of rate of change yields the
following equation:

—_ %
Pss ap + /Bp
where pg; is the steady state permissiveness of gate, p at some voltage, V, and «;, and Bp are the
activation and inactivation values of gate p at V.

Thus, given any initial membrane potential value, V;,;;, we assume the neuron is not disturbed
and achieves equilibrium. Each gate variable permissiveness at this potential may be determined
and used as an initial state value of the neuron. With the inclusion of voltage-gated ion channels,
we have achieved a formal specification of a biologically-motivated neural membrane.

For illustration, Figure C.5 depicts mathematically modeled behavior of Nat and K+ chan-
nel activation and inactivation gates for hippocampal CA3 pyramidal cells originally modeled by
Traub [28]. In this diagram, the m and h gates govern the Na™ channel conductance and the n
gate controls the K+ channel conductance. The left-hand plot depicts the rate of change of the
gate activation and inactivation variables with respect to membrane potential. Rates of change are
measure in ms. The most important point of this figure is to understand that gate variable rates of
change are highly non-linear and vary widely. The interplay of these functions produce the complex
behavior of the neuron. The right-hand plot depicts the steady state permissiveness of the gates
for a range of membrane potentials. As was explained above, these values must vary over the range
[0,1]. The steady state plot of gate permissiveness is very powerful in determining the range of
membrane potential over which the voltage-gated ion channels governed by these gates will play a
role in neural decision functionality.

The importance of the understanding of voltage-gated ion channels in neural modeling cannot be
understated. The complex interactions of the gate activation and inactivation equations are the most
important influence in membrane potential change of an active neuron during simulation. Inherent
understanding of the mathematical premises on which changes take place is crucial to successful
modeling.

C.4 The Compartment Model

Now that we have developed the appropriate neurological theory to understand the mechanisms
by which neurons maintain membrane potential, as well as how neural membranes respond to the
introduction of external currents and potentials both temporally and spatially, we are ready to
introduce a formal mathematical neural model on which realistic neural behavior may be simulated.

Canonically, the neural equivalent circuit, or compartment model, is used to formally diagram
a section of neural membrane. The compartment model circuit incorporating all of the biological
features discussed in previous sections is diagrammed in Figure C.6.

This circuit diagram represents a single neural compartment. The variables gk, gn, represent
variable conductances of voltage-gated ion channels. The constant conductance gjeqr is defined as
above. R, represents axial resistance. C, is membrane capacitance. Ex and Ep, represent the
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Figure C.5: Voltage dependent behavior of (left) gate activation and inactivation variable rates of
change and (right) steady state permissiveness.
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Figure C.6: Schematic of a generalized compartment model.

reversal potentials (equilibrium potentials) of KT and Na™ non-gated ion channels, respectively.
Iinject represents externally applicable current sources such as would be used in current and voltage
clamp experiments. V) and V! variables are provided to illustrate the possible presence of many
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Figure C.7: Graphical representation of a complex neural membrane equivalent circuit.

such compartments. This point raises a major issue in neural modeling. Abstraction of a biological
neuron to a computational model requires compartmentalization of the neuron. The number of com-
partments used determines the accuracy of the model. The mapping of a realistic neural membrane
to a compartment model abstraction is illustrated in Figure C.7

While a neuron may be roughly approximated by one compartment, it is often advantageous to
utilize many compartments connected in serial. The increase in accuracy of a multi-compartment
model, however, is often complicated by the absence of realistic neural data to estimate model
parameters. This is no small problem. In fact, collection of realistic data for use in parameter
approximation is the single most difficult problem in neural modeling. Many of the parameters
required to fully specify a computational model are unavailable. Often, parameters from similar
or dissimilar neural types are the only data available. Estimation of parameters that are unknown
has been labeled the “black art” of computational neuroscience. Knowing when to substitute data
taken from dissimilar sources, as well as developing an intuitive feel for good approximate parameter
values should be considered an important skill learned with experience. However, the incorporation
of numerical analysis and machine learning techniques for optimizing model parameters given criteria
of appropriate behavior should minimize the longevity of this art. Computational tools should, given
a set of criteria and bounds on reasonable parameter values, be able to solve for a finite set of optimal
model parameters.

Another important principle that should be highlighted here is the importance of units. Once a
theoretical model is applied, units become a critical issue. The values supplied as parameters must
be mutually consistent with all other values. The two most common sets of units used for neural
modeling are base SI (system international) units and biological units, where biological units are a
canonical subset of SI units such that model parameters have values close to single or double digits.
The use of base SI units often forces parameter specification to be very large or very small such as
15 x 1076 m and so on. When incorporating units taken from many different sources, make sure the
units are consistent, whatever system used.

In addition, the nature of the compartment model should be discussed. We have only described
the compartment model as an approximation of neural membrane, but not really what this means.
A neuron was previously related to a wire cable. For the purpose of this discussion, we consider
a single compartment to model some “segment” of a real neuron. This length takes the form of
a cylindrical geometry in most cases (a sphere is often used to approximate the soma). Given
this, it should be known that the parameter values specified for the compartment model to this
point have not incorporated spatial extent. Conductances are defined in Siemens. Resistances
have been defined in Ohms. When specifying parameters for a computational compartment model,
representing a real neuron, these parameters must be specified in terms relative to length, area, and
volume. For example, axial resistance is the quantity Ohms/meter. Channel conductances are given
in Siemens/meter?, and so on. To scale these parameters appropriately, the neural modeler must
decide how large a neural section the compartment represents and then assign appropriate units to
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this geometry.

C.5 Synaptic Connectivity

The complex physiology of the synapse was discussed in Section B. Fortunately, abstraction of
synaptic behavior is rather well-defined when incorporated into models at the compartment level.
Almost all synaptic channels have variable conductance that are functions of time. An exception
is the case of the NMDA channel which is voltage dependent through the use of an Mg?t ion
intermediary. In general, though, the synapse may be modeled by the following equation:

Isyn = gsyn(t) (Vm - Esyn)

Iy, is the synaptic current contribution to ionic current, g,y is the time-dependent synaptic
conductance and FEj,, is the reversal potential of the synaptic channel. Other variables are defined
as previous. Note, the reversal of the V}, and E,y, terms as compared to voltage-gated ion channels.
This term reversal has important ramifications for the intrinsic value of E,y, for each synaptic
channel modeled as will be described below.

While seemingly complex, the majority of synaptic channels may be simply described by two
function of time, the alpha function and the dual-exponential function. The alpha function is defined
by following equation:

t, q_
gsyn = gmaw;(el t/T)

T is the time constant and g,,,, represents the maximum possible conductance of the synapse.
Given this description, the notion of fast and slow behavior is evident. A large value of 7 will yield a
slow acting synaptic connection. In addition, the g,,,, term will be large for a powerful connection
and small for a weak connection. These relationships are depicted in Figure C.8.

The inhibitory or excitatory nature of a synapse is not primarily determined by either the g4z
or 7 term. Rather, the value and sign of the Ej,,, term has greatest influence on the synaptic
connections hyperpolarizing or depolarizing influence.

When necessary to describe more complex behavior, the dual-exponential function is used, having
the following form [4]:

Gyn(t) = Agmaz (e—t/n _ e—t/Tz) > T
T — T2
where A is a normalizing constant and 71 and 75 represent the rising and falling time constants,
respectively. An AMPA synaptic connection is well-modeled by the dual-exponential function.
Typical values for this connection might be as follows: gme, = 4.8 x 107°S, Ey,,, = 0.0V,71 =
1.0ms,andr2 = 1.0ms.

C.5.1 NMDA: A voltage gated synapse

Unfortunately, not all synaptic connections commonly used in neural models are as simple as the
alpha and dual-exponential functions. NMDA, a common slow, excitatory synaptic connection
is one such exception. NMDA conductance is time, voltage, and concentration dependent rather
than simply time dependent. The concentration dependence of NMDA is mediated by magnesium,
[M g**], that varies among differing neural types.

Traub [28] described NMDA behavior for a CA3 hippocampal pyramidal cell using the following
formulation.

INMDA = Jligand X J[Mg2+],V,,

t _
Jligand = gmaz;(el t/T)
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Figure C.8: Synaptic channel conductance behavior for the alpha function approximation when (left)
Imae 18 varied (7 = 2.0) and when (right) 7 is varied (gmaz = 1.0).

1

This example underlines the robustness and complexity of nature that must be captured in
mathematical models.

IMg>+],Vm =

C.6 Solving the Discrete Compartment Model

Given the basic mathematical theory of the separate influences on neural compartment potential,
we are now ready to assemble the complete mathematical compartment representation. We begin by
discussing compartment model parameters as they are often cited in research, as specific units. C'; is
specific membrane capacitance, having SI units of F/m?. Ry, is specific membrane resistance having
SI units of Ohm * m2. Ry, is specific axial resistance having units of Ohm * m. Specific quantities
are often reported in neural modeling so that they can be studied independent of compartment
dimensions, quantities that are often varied.

With specific parameters defined, it is now necessary to convert these quantities into their abso-
lute equivalents. Equations C.5, C.6, and C.7 detail these conversions for a cylindrical compartment.

Cp = dIC (C.5)
— RM

R, = Tdi (C.6)
__4lRa

R, = e (C.7)

From these absolute units we may redefine the description of passive cable properties representing
time 7, and space, A, constants of the cable as follows.
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As proposed by Mascagni [15] the differential equation describing a passive cable compartment
is given by:

Substitution of the A and 7 factors yields

R,12 62V oV
Ra 6—2—Rmcm—t—V—0

0

Simple algebraic manipulation yields:

L) A St A U4

On st =R 52 R,

The factor ‘3527‘2/ may then be discretized by the method of lines [15], which assumes that all com-
partments are of similar geometry and maintain equivalent axial resistance between compartments.

Vi P Via—22i+Vin Vi

™idt T R, (Az;)? R,

Obviously, [ = Az, therefore we may reduce the equation further:

av; Vi1 =2Vi+Vipn Vi

Cms g = R., Rom,

However, for compartment models in which compartment geometry and size differs, a more robust
discrete approximation of the cable model may be derived:

de’_Vz’—l—WJr_WH—Vz’ Vi

"™dt R, R, R,

i

The derivation is that which is most commonly used in neural modeling. The % resistance

based term may be replaced by the more conventional term representing passive membrane con-
ductance per unit area, g, often called the leak conductance, greqr;- It should be noted that if
you incorporate membrane resistance based current into your calculations you cannot, realistically,
introduce membrane conductance based current influences. These terms are the same and therefore

represent a preference in notation. It should also be noted that the RV" term is derived for a theoret-

ically based compartment having a rest potential of OmV. As was discussed previously, imbalance
of ions maintained by metabolic processes generates a non-zero rest potential for a neuron, which is
labeled, Fyesi- Thus, in a neural model in which E,..g is non-zero, this passive conductance term is

canonically described as (E’%‘LV) yielding the generalized passive compartment model:
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C d‘/ti_‘/vifl_vé+‘/vi+1_vvi_(ETest_Vi)
Mg T Rays R., Rom:

Adding terms for voltage-gated ion channels and externally applied current yields the overall,
generalized compartment equation for potential change with respect to time, Equation C.8.

dV; Vvif - V; V; - ‘/z Eres - W — —
= ! + as - ( ! ) + Z Gchan; (Echan - W) + Z 9syn; (Esyn - ‘/z)(cs)

Cm: g1 Ra._, R., R

chan syn

C.6.1 Numerical Integration

With a spatially discrete mathematical description in hand, the remaining question of modeling
becomes one of change with respect to time. As was stated previously, the information of a neuron
is not merely membrane potential, but rather how this potential changes with time. Thus, a neural
model must accurately simulate membrane potential change given the above equation. To perform
this simulation, we must integrate the term ddV; for each compartment with respect to time. The
numerical integration process used in a neural model comprises the bulk of the computational process.
Primarily, there are three numerical integration techniques used to solve the equation described
above: Forward Euler, Backward Euler, and Crank-Nicolson. The first two teclhniques are simply
opposite approximation techniques. When the term ddvt" is discretized to %{Vin, the Forward
Euler method requires that all voltage terms on the righthand side be described at time n, which is

known

C | _ L v + it1 = Vi" (Erest = V") +
i At R, , R, Ry
Z gCha"i (EChlln - szn) + ngym (Esyn - V;n) + Iinject
chan syn

This type of numerical integration is termed an explicit method, meaning only one unknown
variable need be solved, that of VZ-"“. The Backward Euler method is simply the opposite case. All
voltage terms on the righthand side are defined for the future time step.

C ‘/;'n+1 - ‘/;n — V;Tr’l_l _ ‘/;'n+1 + VZL}—_’l_l - ‘/;n+1 _ (Erest - V;'n—i_l) +
At Rai_, R, R,
Z gchani (Echan - V;'n—i_l) + ngynz (Esyn - ‘/;n+1) + Iinject
chan syn

The Backward Euler method is an implicit method, as there exists more than one unknown
variable to solve given one equation. Solution of an implicit method requires solving all equations for
W simultaneously. It should be clear that for N compartments, there will exist N equations
having 3 unknowns per compartment. This system of linear equations (SLE) forms a tridiagonal
matrix which will be discussed in the next section. A second implicit method is the Crank-Nicolson
Method which is merely the average of the Forward and Backward Euler methods. The discrete
potential derivative form is as follows:
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V'TH_I sZh .Vzn—ll - ‘/;n + i?i-l - ‘/zn . (Erest - V;n)

Cm- 4 i —
A R Ra, R
Z gchani (Echan - V;n) + Z gsyni (Esyn - V;n) + Iinject)/2 +
chan syn
(V;’i—il_l B ‘/in+1 Vtgjl_l ‘/;n+1 _ (Erest - V;'n—i_l) +
Rai—l Rai Rm
Z gchani (Echan - V;'TH_I) + ngyni (Esyn - VZH_I) + Iinject)/2
chan syn

The Forward Euler method, while fastest, is inherently unstable for all but the most prohibitively
small time steps, At. The Backward Euler method is slow, but inherently stable for all size timesteps
At. The Crank-Nicolson method is stable, but generally not as slow as the Backward Euler method
due to its mathematical properties. The details of this stability are beyond the scope of this paper
and readers are referred to Mascagni [15] for further information.

Defining these numerical integration formats, however, is not the final step. Rearrangement
of terms is still necessary to place the equations in a suitable form for computational solution.
A derivation of the tri-diagonal SLE follows for the Backward Euler method. Derivation of the
Crank-Nicolson is similar and left as an exercise.

Given the initial Backward Euler form:

o Vz'n_H _ Vzn _ Vzn:',l-l _ Vin—H N sz,:il-l Vin-i-l _ (Erest _ V;H_H) N
i At R, , R,, R,
Z gchan,- (Echan - V;'n—i_l) + Z gsyni (ES?J" - Vvin—H)
chan syn

n+l _ y/n+l n+1 n+1 n+1
Cmi n+l _ Vvifl V; V;+1 ‘/z (Erest - sz )

At R, , Ry, R,
2 gchan-(Echan - V‘n+1) - ng n(ES n V'n+1) - C : V" + I’" ect
— i [ g ynq Yy [ At J

Cm1 Vn+1 1/171—11—1 + ‘/in+1 _ V;T—{L——il_l + V;'n—i_l + Erest _ VYZ'TH_I _ Z g A E n +
At ? Ra,-_1 Rai_1 Ra,- Ra,- Rmi Rm,- = chan; chan
_ _ _ Con,
D Gehans Vi =D Geyn Bagn + D Gayn V") = TV + Tinecr
chan syn syn
Vit (G, 1 1
@i—1 ai—1 a; chamn syn
Vn+1 E
s = m1 V" + Z gchan1 chan + Z gsynl syn rest + Iinject
Ra" chan syn Rm’

At
Ei =

Chm;

i
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‘/;1—'1—1 T a = Erest
Ej Ra, = sz +é&; Z gchan,-Echan + z gsyniEsyn - R—m + Iinject

chan syn

E’I"ES
Vi =€ (Z Jehan; Echan + ngyni Esyn - Rm,-t + I’inject)

chan syn

Ay €i & €i = g n+l1 —V"Tlrl =Vr
Byl R el ol et D Gehan: + € Y Goyni | Vi — R, 7
chan syn

€q

0, = _ C9

L, Rai—l ( )

Oc; = 1+ & + i - i +&; Z Gchan; + €: ngyn- (C]-O)

’ Rai_1 Rai Rmi ' l
chan syn

€j

Op;, = -— c.1

R,i Ra,- ( )

0LV + 0V + OrVI! = Vi + (C.12)

Equations C.9 through C.12, for compartments i = 1,..., N form a system of linear equations
which must be solved simultaneously. However, to correctly solve these systems, an additional
problem arises. The Gepan terms are functions of membrane potential, not simply constants. If we
utilize the permissiveness rate of change equation with a and 8 emphasized as functions of potential:

B (V)0 =) = BNy

Then we may formulate the Backward Euler integration method for this equation as: equation
with a and 8 emphasized as functions of potential:

dp;
d—I; = ay, (Vi) —ps) — Bpi (Vi)pi
P -y
H P = a1 -p) = B (e

Algebraic manipulation will yield the following equation:

et DR Aty (1)
' 1+ Atfe, (V) + By, (V)]
Obviously, Equation C.13 has two unknowns, that of potential and permissiveness at a future

timestep. Thus, both the future potential and permissiveness must be solved iteratively by the
following algorithm:

(C.13)

1. Compute temporary, Vz-"Jrl value using current p}® value.
2. Compute temporary, p ™' value using temporary V;"*! value

3. Tterate steps 1 and 2 until the values of Vi"Jrl and pz’-bJrl converge (ie. step change is below
some relative error value)
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C.6.2 Boundary Conditions

The sealed end boundary condition, typically used in solving the types of linear systems described
above, requires that no current escape out either end of the cable. This condition can be ap-
proximated by assuming the axial resistance at the end compartments approaches infinity. For
compartment 1, this causes the O ; coefficient to be zero. For compartment N, this causes the
Ogr,~ coeflicient to be zero and the ©¢ n coefficient to be described as follows:

€q €q _ _
®C,N =1+ - +¢&; Z 9chan; +é&; ngynl
Roioy R,

chan syn

C.6.3 Solving Tridiagonal Matrices

For a neuron having N linearly-connected compartments, the implicit Backward Euler method gen-
erates a system of linear equations (SLE) to be solved, having a unique form called a tridiagonal
matrix. A five compartment neuron SLE is depicted in Equation C.14 representing the Backward
Euler numerical integration derivation described above.

©ci Ory 0 0 0 vt v o0

Or2 ©c2 Ogr2 0 0 vyt vy Y2
0 ©Or3 O¢s Ors 0 Vet = v [+] » (C.14)
0 0 ©Ors4 Oca Opra Vit %4 4
0 0 0 (")L,F) (")075 VE’""'1 v Ys

The reason the tridiagonal matrix occurs in compartment modeling arises from the method-of-
lines approximation to the second spatial derivative of potential in the cable model. Each compart-
ment potential depends on its own potential as wells as the left and right neighboring compartments’
potentials. The vector of constants arises from the BE derivation incorporating non-voltage depen-
dent terms that are added to the current, known potential. Once in this form, any numerical stable
SLE solver may be used. LU Decomposition (Gaussian elimination) is recommended [8, 15].

C.6.4 Concentration Shells

Another common compartment model abstraction is that of the concentration shell, or shell. A
shell is a cylindrical volume, having a radial thickness that is measured from the compartment’s
membrane. This shell acts as a way to abstract the storage and transfer of ions whose concentrations
are largely effected by diffusion across the membrane surface. A shell containing ionic species, S, of
compartment ¢ is defined as a concentration, xs,;, an ionic conversion rate, ¢g ;, and a concentration
decay rate, 75,;. The units of xs; are moles/m?. The units of ¢s,; are moles/(m3A and the units
of 7g; are sec. The kinetics of concentration are described by Equation C.15:

dy e )
_’;f = psils; — X34 (C.15)
T8S,i

where I ; is the ionic current of species, S, in compartment, i. Discretizing this equation using
the Backward Euler method gives the following derivation:
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(C.16)

Given the derived Backward Euler update, Equation C.16, solutions of xs,; for all species, S,
and all compartments, i, must be addressed at each time step. Moreover, if channels are gated on
value of xs,; then it must be updated during convergence of compartment potential over a timestep.

C.7 Units Conversion Tables

Relevant SI Units
Quantity | Name | Symbol | Units | Base Units
Capacitance Farads F C/V | m2kg=1s°Q?
Charge Coulombs Q Axs Q
Conductance | Siemens S O | m2kg~1sQ?
Current Amperes A Q/s Q/s
Length Meters m m m
Potential Volts vV vV m2kgs—2Q 1
Resistance Ohms Q S | m2kgls 1Q 2
Time Seconds s s s
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