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Abstract

Learning and Problem Solving

with Multilayer Connectionist Systems

September 1986

Charles William Anderson

B.S., University of Nebraska

M.S., University of Massachusetts

Ph.D., University of Massachusetts

Directed by: Professor Andrew G. Barto

The difficulties of learning in multilayered networks of computational units has limited the use
of connectionist systems in complex domains. This dissertation elucidates the issues of learning
in a network’s hidden units, and reviews methods for addressing these issues that have been
developed through the years. Issues of learning in hidden units are shown to be analogous to
learning issues for multilayer systems employing symbolic representations.

Comparisons of a number of algorithms for learning in hidden units are made by applying them
in a consistent manner to several tasks. Recently developed algorithms, including Rumelhart, et
al.’s, error back-propagation algorithm and Barto, et al.’s, reinforcement-learning algorithms,
learn the solutions to the tasks much more successfully than methods of the past. A novel
algorithm is examined that combines aspects of reinforcement learning and a data-directed search
for useful weights, and is shown to out perform reinforcement-learning algorithms.

A connectionist framework for the learning of strategies is described which combines the error
back-propagation algorithm for learning in hidden units with Sutton’s AHC algorithm to learn
evaluation functions and with a reinforcement-learning algorithm to learn search heuristics. The
generality of this hybrid system is demonstrated through successful applications to a numerical,
pole-balancing task and to the Tower of Hanoi puzzle. Features developed by the hidden units in
solving these tasks are analyzed. Comparisons with other approaches to each task are made.
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Chapter 1

Introduction

Connectionist systems embody a framework for decision-making based on an active form of knowl-
edge representation. They are composed of simple computational units interconnected by path-
ways that transmit numerically-valued signals rather than complicated symbolic messages. The
connectionist framework stems both from psychological theories of how the brain represents as-
sociations among concepts and from the modeling of neural networks. Current methods and
applications of connectionist systems constitute a paradigm at a level between symbolic and neu-
ral representations. Although connectionist and symbolic representations are not on the same
level, they are subject to analogous problems concerning the development of a representation.
Representation development is the process whereby modifications are made to a representation by
the addition, removal, or alteration of the representation’s components, whether these components
are symbolic terms or numerically-valued features.

Interest in connectionist systems has grown in recent years for several reasons. The inher-
ent parallelism of connectionist systems can result in fast decision-making. Also, the use of
connectionist systems as models of cognitive processes has met with some success. For example,
Rumelhart and McClelland’s (1986) connectionist system models the verb-tense learning behavior
of children, a behavior often presented as an argument for the symbolic representation of explicit
rules. A third reason for the growing interest in connectionist systems is the recent progress
towards a solution to the problem of learning in multilayer connectionist systems, overcoming an
obstacle that has been a major criticism of the connectionist paradigm supported by Minsky and
Papert’s (1969) analysis of the limitations of the perceptron (Rosenblatt, 1962).

The issues of learning in connectionist systems, however, are far from resolved. The work
reported in this dissertation addresses three pressing learning issues:

1. relationships among various approaches to learning in multilayer connectionist systems,

2. the structural credit-assignment problem (defined below), and

3. learning in cases in which the desired output of the system is unknown.

The relationships among learning algorithms for multilayer connectionist systems are elucidated
by reviewing them within a framework based on a categorization of methods for structurally
assigning credit. Numerical learning algorithms not originally presented as connectionist learning
algorithms are also discussed within this framework. Such a consistent review is much needed in
a field where researchers come from diverse backgrounds, as is the case for connectionist learning
research.

Some of the better-known learning algorithms for multilayer connectionist systems are studied
by applying them to the multiplexer learning task (described in Chapters II and IV). In comparing
the performances of different algorithms, consideration was given to details such as consistency
in the training procedure, optimization of the algorithms’ parameters, measures both for the
performance level during learning and at the conclusion of a learning run, and statistical confidence

9



Figure 1.1: A Linear Threshold Unit

intervals for all data. Such careful comparisons rarely appear in the literature but are necessary
for drawing significant conclusions.

The third issue listed above is discussed in terms of reinforcement-learning methods, as de-
scribed later in this chapter. To date, research with reinforcement-learning methods has focused
on single-layer learning systems (Barto and Anandan, 1985; Barto, Sutton, and Anderson, 1983;
Barto, Sutton, and Brouwer, 1981; Barto and Sutton, 1981), though their potential use for learn-
ing in multilayer connectionist systems has been demonstrated in several small examples (An-
derson, 1982; Barto, 1985; Barto, Anandan, and Anderson, 1986; Barto and Anderson, 1985;
Barto, Anderson, and Sutton, 1982). In this thesis, reinforcement-learning methods are combined
with a learning algorithm for multilayer systems to develop an example of a multilayer connec-
tionist system for the learning of problem-solving strategies. This system is demonstrated on a
pole-balancing control task and on a Tower of Hanoi puzzle.

1.1 Connectionist Systems

Connectionist systems generally consist of a collection of computational units, sometimes de-
scribed as neuron-like in their input-output behavior. Each unit receives a number of input
signals, or input components, whose numerical values constitute the unit’s input vector, and the
unit applies an output function to its input to generate output values. Networks of units are
constructed by connecting the output of some units to the input of other, or the same, units. A
network is said to interact with an environment by receiving a vector of numerical values from
the environment and producing an output vector that acts upon the environment. Thus a unit’s
input components can originate either from the network’s environment or from the output of
another unit; a unit’s output can be passed on to another unit or it can become a component of
the network’s output.

A unit’s output function is parameterized by a vector of numerical weights, one weight for
every input component. For a given network structure, it is the values of these weights that
determines the input-output behavior of the network. A learning algorithm1 for a connectionist
system is a method for updating the values of the system’s weights based on the performance of
the system. For reviews of current connectionist research see Feldman and Ballard (1982), Hinton
and Anderson (1981), McClelland and Rumelhart (1986), and Rumelhart and McClelland (1986).

The output functions performed by the units are usually one of a small set of functions. The
most common function is the linear threshold function used by the pioneers of adaptive networks
(e.g., Farley and Clark, 1954; McCulloch and Pitts, 1943; Rosenblatt, 1962; Widrow, 1962). A
unit implementing this function is sketched in Figure 1.1, where x1, x2, . . . , xn are the components
of the unit’s n-dimensional input vector, w1, w2, . . . , wn are the unit’s weights, and y, the unit’s

1“Algorithm” is not used here in the strictest sense of Knuth’s (1973) definition: finiteness is not assumed.

Knuth suggests that such procedures be called “computational methods”, but for brevity we will use “algorithm.”

Also, by using the label “learning algorithm” we do not imply the existence of a proof of convergence to a desirable

outcome.
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Figure 1.2: Discrimination of a Linear Threshold Unit

output, is defined as

y =

 1, if
n∑
i=1

xi wi > 0;

0, otherwise.

The threshold of this unit is zero, but it can be considered to be parameterized if one of the input
components is constant (so that the value of the corresponding weight becomes the negative of
the threshold2). Such a unit can discriminate (i.e., produce different output values for) sets of
input patterns that are linearly-separable (can be separated by an n−1 dimensional surface). For
example, a unit receiving two input components discriminates input vectors by a line, as shown
in Figure 1.2.

Other related output functions include the following (most are discussed further in later chap-
ters). Hinton and Sejnowski (1983) and Barto, et al. (e.g., Barto, 1985; Barto, Sutton, 1981a;
Barto, Sutton, and Brouwer, 1981), add noise to the weighted sum of a unit’s inputs, effectively
giving the unit a noisy threshold. The unit chooses one of the possible output values (0 and 1)
with a probability determined by the unit’s weights and input vector. Rumelhart, Hinton, and
William’s (1986) semilinear unit employs a “smoothed” version of the linear threshold function
that is a continuous, differentiable function.

Another type of function is that of a prototype unit (Reilly, Cooper, and Elbaum, 1982), or
template-matching unit (Uhr and Vossler, 1961), which produces the largest output values for
input vectors with components that are identical to their corresponding weight values. Smaller
output values are generated as the input vector becomes less similar to the weight vector. The
weight vector forms a prototype for the concept encoded by the unit. A linear unit can be viewed
as a prototype unit when its input components have values 0 or 1.

Many network architectures have been used for interconnecting units. We focus on networks
having no cycles, i.e., no recurrent connections. Units only participate once in the computation
of the system’s output for a given input. The dynamical behavior of recurrently-connected net-
works complicates learning issues, but some approaches to learning are applicable to special cases
(Ackley, Hinton, and Sejnowski, 1985; Rumelhart, Hinton, and Williams, 1986).

Figure 1.3a shows what is meant by the layers of a learning system in terms of an adaptation of
the general model of learning systems described by Dietterich (Cohen and Feigenbaum, 1982, Ch.
14). A two-layer system is shown in which both layers receive input from the environment, and
the last layer, or output layer, generates the output of the system which affects the environment.
The outputs of the first layer become additional input components to the second, or output, layer,
thus forming new features that extend the input representation utilized by the output layer.

A two-layer connectionist network is drawn in Figure 1.3b. The correspondences between
Dietterich’s model and the connectionist model are as follows: the performance element of a layer
is the set of output functions for the units of that layer; the knowledge base is the set of weight
values; and the learning element is the scheme for updating the weight values. We will assume that
the critic uses some performance standard to assign errors to the output layer or a scalar evaluation

2Using a constant input is a standard technique for implementing a variable threshold. See Nilsson (1965) for

further details.
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Figure 1.3: Model of a Two-Layer Learning System
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when errors cannot be determined. This formulation excludes unsupervised learning methods
which do not depend on the network’s output and its relation to the goal of the task. This thesis
focuses on tasks for which the learning of a solution requires the closed-loop interaction between
system and environment that is absent from unsupervised learning methods (see Barto and Sutton,
1981b, for further discussion on categories of learning), although unsupervised learning methods
do have important uses in connectionist systems, e.g., for dimensionality reduction of the input
(Rumelhart and Zipser, 1985).

The first layer in Figure 1.3b is called the hidden layer and its units are called hidden units
(Hinton and Sejnowski, 1983) to stress the fact that the critic is usually assumed to be able to
evaluate the behavior of the output layer but generally knows nothing of the desired behavior
of the first layer. For some tasks, multilayer systems can be defined for which the critic is able
to instruct every layer during learning, but our interests are in learning methods for multilayer
systems that can be applied to tasks for which such a critic does not exist.

A single-layer system can be severely limited in the type of mapping from input to output
that it can implement. If linear threshold units are used, only those mappings that satisfy the
linear-separability condition are possible. When the input representation and desired mapping
do not satisfy the linear-separability condition, a hidden layer, or layers, can be added to learn
new features that result in a new representation with which the necessary linear discriminations
can be made.

The term “feature” is used to refer to the output function of a hidden unit. The outputs of
hidden units can also be called the terms of the last layer’s input representation since they become
terms in the equation for the response of an output unit. However, “terms” is often used to refer
to expressions in a symbol-based language, and “new terms” has acquired special significance
through discussions of the problem of new terms in AI. While many similarities exist between
the new term problem and the problem of learning new features (see Chapter II), “features”
to some elicits a numerical perspective in accord with the numerical nature of computations in
connectionist systems.

In at least one way, the use of “features” is misleading. Features are often considered as
representing some part of a real or abstract entity that is intelligible to a human, i.e., its physical
meaning and relationship to other features is easily grasped (e.g., a color or a shape). This is
not always true of the output functions learned by a hidden unit (see, for example, the results of
Chapter VII). It is more appropriate to consider hidden units to be learning intermediate-level
concepts between the input-level features and the output-level decisions (using terminology from
Fu and Buchanan [1985]), with no requirement that intermediate-level concepts be meaningful to
humans. Sometimes, however, the features developed in a multilayer connectionist system will
simplify the arduous task of deciphering what the system has learned.

Alleviating the linear-separability constraint by learning new features in hidden units is more
desirable than using more-complex output functions in a single layer. This is true for two reasons.
First, unless the desired form of the output function can be determined a priori, the more-complex
output function might still be incapable of forming the needed discriminations and thus would
require additional layers to learn new features. The second reason is that the relatively simple
functions based on weighted sums of inputs lead to straightforward learning algorithms. As
mentioned in the next section, some learning algorithms adjust weights according to the gradient
of a performance criterion with respect to the weights, and the computation of such a gradient is
much simpler for weighted-sum output functions than for other nonlinear functions.

The particular structure of the network in Figure 1.3b is used throughout this thesis for the
following reason. With the network input vector passed through to all layers, the output layer can
quickly form simple functions of the system’s input before any learning occurs in other layers. If
these functions are not sufficient for generating the correct output, then more complex functions
can be constructed by the hidden units learning new features that correct the system’s output.
This structure might balance the tradeoff between the need for complex input-output mappings
and the need for rapid learning, though this has not been analyzed.

Another desirable aspect of multilayer structures is the transfer of learning that results from
hidden units learning new features. Transfer in connectionist systems occurs between similar
inputs, where similarity depends on the input representation and on the manner in which inputs
interact in the units’ output functions. New features change input similarities by changing the
representation of the input. The consideration of transfer resulting from new features is analogous
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to Fu and Buchanan’s (1985) attention to the generalization resulting from the learning of concepts
at intermediate levels.

1.2 Credit Assignment in Multilayer Systems

A credit-assignment problem arises when a sequence of decisions are made before an evaluation is
received. The problem is one of apportioning the final evaluation among the preceding decisions
(Minsky, 1963). This statement encompasses two aspects of the credit-assignment problem, called
the temporal and structural credit-assignment problems by Sutton (1984; Waterman [1970] also
distinguished these classes). The temporal problem arises when a learning system produces a
sequence of actions before an evaluation becomes available, such as the sequence of moves from
the start of a chess game to the final win, draw, or loss, i.e., it is very difficult to correctly
attribute credit or blame to the individual moves. Since many connectionist learning methods
assume the existence of a teacher that provides performance feedback for every output of the
system, the temporal credit-assignment problem is usually not addressed. Hampson (1983) and
Sutton (1984) present approaches to the temporal credit-assignment problem that fit into the
connectionist framework.

Once credit has been appropriately assigned to each decision in the sequence, the structural
credit-assignment problem must be addressed. Many parts of a learning system might play a
role in the decision that a particular move should be made in a chess game. The credit for that
particular move must be apportioned among those parts. Credit or blame must be distributed
throughout the structure of the learning system, in contrast to its distribution throughout the
temporal sequence of actions.

The difficulty of the structural credit-assignment problem has retarded the development of
multilayer learning systems. A change in one layer can enhance, reduce, cancel, or even reverse
the effects of a change in another layer. The difficulty of this problem is attested to by the
scarcity of multilayer learning systems reported in the literature. Smith, Mitchell, Chestek, and
Buchanan (1977) review a number of learning systems, and only cite Samuel’s (1959) and Uhr
and Vossler’s (1961) as examples of multilayer learning systems. These and other more recent
multilayer learning systems are reviewed in Chapter III.

Despite the difficulties, research on the structural credit assignment problem has continued,
and a number of approaches (depending on where distinctions are drawn) have been proposed.
In the review of Chapter III, we classify methods according to the following general approaches:

• gradient methods, exact and approximate;

• methods based on a minimal-change principle;

• methods based on the measurement of the worth of the function computed by a unit.

If the output functions of the units of a connectionist system are differentiable with respect to
the weights and a differentiable criterion can be defined as a function of the desired output and
actual output, then the derivative of the criterion function with respect to each weight can be
used to determine new weight values. This is the exact gradient method since the actual gradient
(or, often, a sample of it) is used to update the weights.3 Without differentiable output functions,
approximations to the gradient can be made. The minimal-change principle is applied by methods
that seek weight changes resulting in the smallest total change in weight magnitudes that remove
output errors. Another method for assigning credit is by a measure of worth, which is often a
function of the weights connecting hidden units to output units.

In the various methods, what constitutes credit varies. The terms credit and blame denote
a scalar measure of responsibility, but some methods for structural credit assignment, such as
the gradient methods, result in the assignment of errors to every weight. Methods that assign a

3Technically, an exact gradient method would not update the weights until all inputs have been presented and

the sample gradients corresponding to each input have been summed to obtain the true gradient. Here we refer

to methods that update weights after computing each sample gradient as exact gradient methods to distinguish

them from methods for which even a sample gradient cannot be computed but must be estimated.
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measure of worth to an entire unit are often used to generate new units, i.e., new weight vectors,
rather than to assign errors to weights. The method by which new units are generated can either
be data-directed, where the new weights are based on recent inputs, or model-directed, where the
weights of current units of high worth are used as hypotheses as to which weight values are useful.

Learning systems based on symbolic forms of knowledge representation use some of these
methods, such as minimal-change and worth, but often use other approaches to structural credit-
assignment that rely on explicit domain knowledge. For example, one way in which Waterman’s
(1970) poker-betting production system assigns credit is by means of a prespecified decision matrix
relating betting decisions and game-state variables.

In Chapter IV, some of the algorithms for the structural assignment of credit are compared
with respect to their performance on a single task, reported in Chapter IV. Included in the
comparative study is a novel algorithm that combines aspects of data-directed generation with
weight adjustments based on approximate gradients. The algorithm is motivated by the fact
that for gradient-based methods, little learning occurs in a hidden unit until the unit acquires
an influence on an output unit, indicated by an interconnection weight of a sufficiently large
magnitude. When the unit has little influence, the algorithm uses information about the system’s
performance to generate large jumps in weight values in the direction of input vectors for which
the system’s performance is poor. Thus a data-directed search is conducted for weights that
define new features that characterize input vectors to which the system responds incorrectly. It
is assumed that poor performance is a result of an insufficiently refined representation. Once a
unit has developed an influence on an output unit, it uses an approximate gradient technique to
refine the weights through minor adjustments.

1.3 Reinforcement Learning

One form of credit is a scalar evaluation, where more desirable actions yield higher evaluations
than less desirable actions. To maximize the probability of receiving high evaluations, a learning
system must generate alternative outputs and alter output probabilities based on the resulting
evaluations so as to increase the probability of receiving high evaluations. This type of search
has been called reinforcement learning, where the scalar evaluation is referred to as a reinforce-
ment. Reinforcement-learning techniques have been developed in a number of disciplines, such
as mathematical learning theory (Bush and Estes, 1959), learning automata theory (Narendra
and Thathachar, 1974), reinforcement-learning control (Fu, 1970; Mendel and McLaren, 1970),
and in early work with reinforcement learning in multilayer networks (Farley and Clark, 1954;
Minsky, 1954). Barto and colleagues combined ideas originating in work with models of neurons
as self-interested agents (Klopf, 1972, 1982), associative memories (Barto, Sutton, and Brouwer,
1981), animal learning theory (Sutton and Barto, 1981), learning automata (Barto and Anandan,
1985), and reinforcement-learning control (Barto, Sutton, and Anderson, 1985) to develop several
classes of reinforcement-learning algorithms.

Some approaches to reinforcement learning deal with probabilistic dependencies between a
system’s output and the reinforcement it receives, such as the dependencies present in a connec-
tionist system in which every unit receives the same reinforcement signal. The probabilities of
reinforcement values that are correlated with a unit’s output values would be much different for
units directly responsible for the reinforcement, whereas a hidden unit would observe little dif-
ference before it has acquired significant connection weights to output units. Initial experiments
with reinforcement learning algorithms in multilayer networks have been promising (Anderson,
1982; Barto, 1985; Barto and Anderson, 1985; Barto, Anderson, and Sutton, 1982). The review
of Chapter III includes reinforcement learning methods, and in Chapter IV several reinforcement
learning algorithms are included in the comparative study of learning algorithms for hidden units.

A difficult problem in reinforcement learning is the temporal credit-assignment problem de-
scribed above. Sutton (1984) defined and analyzed a method for dealing with delayed reinforce-
ment that he called the Adaptive Heuristic Critic (AHC) algorithm. This learning algorithm
results in a linear function that predicts for a given state of the learning system’s environment
(given as input to the system) a sum of future reinforcements. The AHC algorithm is a general-
ization of Samuel’s (1959) method for learning evaluation functions.

The utility of the AHC algorithm was demonstrated by using its output as the reinforcement
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for a reinforcement-learning unit that learned associations from the states of a dynamical system
to control actions (Barto, Sutton, and Anderson, 1983). The dynamical system involved a pole
hinged to a cart, and the learning system’s control actions were forces upon the cart. The learning
system consistently learned to maintain the pole’s balance. The goal of this task was expressed
solely through a reinforcement value of −1 whenever the pole fell past a designated angle from
vertical or the cart hit the end of its track, with zero-valued reinforcement all other times. (See
Chapter VI for further details.)

In Barto, et al.’s, paper, the AHC and the reinforcement-learning algorithm for the pole-
balancing task were each formulated as single connectionist units, using output functions based
on a weighted sum of their inputs. To overcome the restrictions caused by the linearity of the
units, the cart-pole system’s 4-dimensional state space was “decoded” into 162 discrete regions
(nonoverlapping 4-dimensional rectangles), and each state was represented by a 162-component
standard unit basis vector (all zeros with a one in the position corresponding to the region of the
state space in which the current state appears). Ballard (1984) calls this a value-unit encoding—
each component of the input represents a particular range of values for, in this case, each dimension
of the state. The result is a form of table look-up scheme with an entry in the table for every
region of the state space.

The need for the special representation afforded by the decoder is removed by adding hid-
den units and a hidden-unit learning algorithm to both the reinforcement-prediction and force-
generation parts of the controller. This is the subject of Chapter VI, in which results are presented
from experiments with one and two-layer networks directly receiving the real-valued cart-pole state
variables as input. It is shown how the development of new features by the two-layer networks
results in a solution to the balancing task, whereas the one-layer networks do not find a solution.
This connectionist system qualifies as a method for learning strategies for problem solving, as
described below.

1.4 Problem Solving

Cohen and Feigenbaum (1981) define problem solving as “the process of developing a sequence
of actions to achieve a goal.” Problem-solving tasks entail a search over possible states of the
problem to determine which state transitions and actions most directly lead to satisfaction of the
goal. Knowledge used to constrain this search is called heuristic knowledge, typically expressed
as heuristic rules relating particular states and recommendations for or against actions.

For a problem-solving system to improve its performance with practice it must learn appro-
priate search heuristics, a process referred to as strategy learning or strategy acquisition (see
Keller [1982] and Langley [1983] for surveys of approaches to strategy learning). Langley (1985)
lists three essential ingredients for a learning system to improve its search strategies. A learning
system must first generate behavior in order to observe relationships among states, actions, and
degrees of success in achieving the goal. Some initial search strategy must be employed to explore
the effects of various actions on different states. Degrees of success are indicated by the second
ingredient, a method for the assignment of credit or blame, which evaluates either individual ac-
tions, or sequences of actions. Only temporal credit assignment is explicitly considered; structural
credit assignment is part of the modification process. The third ingredient is the modification of
the search strategy, guided by the assigned credit or blame.

Each ingredient is characterized by several approaches, as indicated by the following outline:

• action generation (heuristically-guided search strategies)

– breadth-first search

– depth-first search

– best-first search

– probabilistic search

• temporal assignment of credit
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– complete solution paths

– heuristic rules

– evaluation functions, fixed or adaptive

• modification

– of action-selection process

– of evaluation function

Langley (1985) presents an adaptive production system for learning search strategies that features
breadth-first search with complete solution paths and heuristics for credit assignment. The system
was demonstrated by applying it to six puzzles, including the Tower of Hanoi puzzle.

The pole-balancing problem described in the previous section is a problem-solving task since a
sequence of actions is desired that avoids certain regions of the state space. Credit assignment is
performed by the adaptive evaluation function. The generation of actions is a probabilistic search
that evolves into a best-first search as the evaluation function develops. Modifications are made to
both the network that learns the evaluation function and to the force-generation network. Thus,
the connectionist solution to the pole-balancing task (Barto, et al., 1983) is an approach to the
learning of strategies, albeit with simpler representations than used in typical strategy learning
systems that represent knowledge symbolically.

To compare and contrast this connectionist approach with Langley’s approach, the connection-
ist system is applied to the Tower of Hanoi task, as described in Chapter VII. The representation
issue of learning new features is investigated by using a representation of the puzzle’s state that
requires the system to learn new features in order to learn the puzzle’s solution. Results show
that the solution of the task is successfully learned by a two-layer network but not by a one-layer
network. It is important to note that the goal of these experiments was not necessarily to demon-
strate better performance than other strategy learning methods, but to study the combination of
hidden-unit learning algorithms with reinforcement-learning algorithms to learn problem-solving
strategies.

1.5 Research Objective and Method

The objective of the research reported in this dissertation is to bring together two of the most
active research frontiers in connectionist learning—learning by hidden units and reinforcement
learning. The first frontier faces the structural credit-assignment problem of learning in multilayer
networks. Diverse approaches to this problem have been proposed over the years and have been
presented using terminologies having little in common with one another. Much excitement has
resulted from the success of recently-devised learning algorithms, but little effort is being expended
in relating recent and past methods. Therefore, a secondary objective of this research is to compile
a review of multilayer learning algorithms, presented in Chapter III. A framework of methods for
structural credit-assignment is used to relate the learning algorithms by their approach to the
structural credit-assignment problem. In addition to this review, recent algorithms as well as
some from the past are compared in performance on an abstract task.

The second frontier is the development of learning algorithms for cases in which desired outputs
are not known, as in problem-solving tasks. Reinforcement-learning techniques for connectionist
systems have been developed for such tasks. At the outset of this work, it was unclear how com-
patible the reinforcement-learning algorithms and algorithms for learning in multilayer networks
would be. Our goal was to shed some light on this issue by investigating one possible synthe-
sis of these algorithms and demonstrating the potential of the approach by applying it to two
strategy-learning tasks that, at least on the surface, seem to have considerably different natures.

In fulfilling these objectives, the following steps were taken:

1. issues were studied concerning the learning of new features, and comparisons were drawn
between the learning of features in connectionist representations and the learning of new
terms in symbolic representations;
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2. learning algorithms for multilayer systems were reviewed;

3. learning algorithms were compared in performance on a task formulated in such a manner
as to require new features;

4. a hidden-unit learning algorithm and a reinforcement learning algorithm were synthesized
to form a connectionist approach to strategy learning.

The comparison of learning algorithms is a subtle endeavor. The algorithms tested are gov-
erned by from one to six parameters, and fair comparisons must involve the optimization of these
parameters for each algorithm. In optimizing the parameters, the experimenter effectively be-
comes part of the learning loop, and the ease or difficulty with which good parameter values are
found partially determines the robustness of the algorithm. Aspects of the task must also be
varied, such as the sequence of inputs, to avoid biasing the results in favor of algorithms that only
work well for certain versions of the task. Another confounding factor is that some of the learning
algorithms are stochastic in nature, and must be compared with deterministic algorithms. Finally,
algorithms must be compared using more than one measure of performance; the final performance
level at the conclusion of an experiment does not reflect the cumulative performance and thus
the speed with which good performance is achieved. These issues add up to a need for a large
set of repeated experiments to obtain statistically significant results and fair comparisons. The
computation time required for such a schedule necessitated the limited number of tasks used in
this dissertation—a single task for the comparison of learning algorithms and two tasks for the
demonstration of the learning of strategies.

Conclusions are thus restricted to the particular tasks used in the experiments, but the orig-
inality of the approaches taken for the comparative study and for the learning of strategies by
connectionist systems makes these initial steps of interest to all who are curious about the capa-
bilities of connectionist systems. To extend the conclusions of this work, very important questions
regarding scaling problems must be addressed. Studies are needed on how the performance of
connectionist learning algorithms changes as the number of inputs and outputs and the number
of units increase and as tasks get more difficult.

1.6 Reader’s Guide

The chapters of this dissertation are divided roughly into those dealing with learning in multilayer
networks and those describing connectionist systems for strategy learning. Apart from these
chapters, Chapter II contains a discussion of the ways in which the learning of new features
can facilitate learning in connectionist systems. Simulations of learning in single-layer networks
illustrate potential advantages of learning new features. Details of the results are in Appendix A.
In addition, relationships between new features in connectionist representations and new terms
in symbolic representations are discussed.

The review of methods for learning in multilayer systems is presented in Chapter III. Attention
is limited to systems based on numerical representations. The last section of Chapter III contains
an outline (modeled after that used by Smith, Mitchell, Chestek, and Buchanan [1977]) of the
systems reviewed in the chapter. This can be skimmed independently of the rest of the chapter
for an understanding of how the learning systems are characterized in the review. Chapter IV
contains the results of the comparative study, including graphs of performance in the form of
superimposed learning curves for easy comparison. On first reading it is expedient to skim the
specifications of the algorithms.

Algorithms for the application of multilayer connectionist systems to the learning of strategies
are developed in Chapter V. The two tasks used to demonstrate strategy learning with connec-
tionist systems are the pole-balancing task and the Tower of Hanoi puzzle. Experiments with
these tasks are presented in Chapters VI and VII, respectively. Results are discussed in light of
the performance of symbolic strategy-learning methods on similar tasks.

Finally, in Chapter VIII, general conclusions are drawn and some implications of this research
are discussed. Directions for future research are also indicated.
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Chapter 2

New Features and the Facilitation
of Learning

A representation consists of a set of concepts and the means by which they are used to make
decisions. A concept is defined as a partition of the space of possible inputs to a learning system
(after Utgoff [1986]), whether the space is composed of discrete entities labeled with symbols
meaningful to a human, or is composed of continuous dimensions encoding numerical features.
The goal of inductive learning (a term encompassing the kinds of learning studied in this thesis)
is to search the space of possible concepts for a set of concepts that best satisfies some criterion
(Mitchell, 1982). A system that learns concepts from examples must find the concept among all
concepts expressible in the representation language that are consistent with the largest proportion
of training examples. A system that learns by discovery (guided, for example, by an evaluation
function) must find the set of concepts that results in the largest expected evaluation. For such
a learning process to be effective for large input spaces, bias must be introduced to constrain the
search (Utgoff, 1986). Utgoff outlines several kinds of bias and studies one—restrictions on the
space of possible concepts—in some detail. In this chapter we examine such restrictions in con-
nectionist representations and how they are dealt with by learning in hidden units. Relationships
to similar issues arising in learning with symbolic representations are discussed.

In the following discussion, terms, features, and concepts are considered to be equivalent on
an abstract level—instances of each specify partitions of a system’s input space. For the most
part, we follow tradition by referring to concepts represented symbolically as terms and concepts
represented numerically, as in connectionist systems, as features.

The effects of new features on learning are illustrated by means of several simulations involving
three learning tasks and single-layer connectionist learning systems. Learning performance is
observed for several different input representations to show the effects of inappropriate bias and
how it is shifted by adding new features that:

1. are required for the task’s solution, i.e., are missing from the initial input representation, or

2. are not required but that result in beneficial generalization, or transfer of learning among
input vectors.

The first illustration pertains to Case 1 and the other two to Case 2. The results of these
simulations demonstrate the potential gains in performance of a system capable of learning new
features. The simulations are presented in detail since much of the discussion is relevant to later
chapters.
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Figure 2.1: Adding a New Term to a Symbolic Representation

2.1 The Problem of Missing Features

Before presenting the simulations of connectionist learning systems, similarities between the issues
of new terms and new features are illustrated by describing the new term problem studied by
Utgoff (1986) in his work with the LEX system. Then an artificial situation is described in
which a connectionist system faces the same problem. The point of this example is the parallel
nature of the missing term and missing feature problem. It is important to note that not all
symbolic representations can be directly related to a connectionist form. The variants of the
missing term and the missing feature problems are, however, sufficiently analogous that learning
methods arising from both camps must deal with the same issues.

2.1.1 Missing Terms in LEX

The LEX system of Mitchell, Utgoff, and Banerji (1983) learns to perform symbolic integra-
tion through the development of concepts that classify expressions according to whether or not
particular operations have been found useful in simplifying a particular integral expression. A
generalization hierarchy, implicitly defined by a grammar that specifies how terms can be com-
bined, constrains the search for concepts by restricting generalizations and specializations to only
those resulting in concepts included in the hierarchy.

A small portion of the generalization hierarchy for trigonometric functions is shown in Fig-
ure 2.1a. During the course of learning, LEX discovered that the “integration-by-parts” operator
should be applied to certain expressions containing either the term sin or the term cos, but not
to expressions containing the term tan. However, the only available generalization of the sin and
cos terms is trig, which does not exclude the tan term. To make the required generalization, the
new term sin ∨ cos must be added and the generalization hierarchy altered as in Figure 2.1b.
Utgoff (1986) proposed the “least disjunction” method for automating this process.

This example is continued by recasting the problem as a difficulty faced by a connectionist
system. Let us assume that the system contains a linear threshold unit whose output is used by
subsequent units to decide when to apply the “integration-by-parts” operator, and this unit must
indicate either the presence (an above-zero output) or the absence (a below-zero output) of the
sin term or the cos term in an expression. Let us also assume that the trigonometric terms are
represented by two-component vectors as follows:

x1, x2 represents
(1, 1) sin
(2, 1) tan
(3, 1) cos
(∗, 1) trig

The symbol “∗” is a “don’t care” symbol. A linear threshold unit is only capable of linearly
splitting the two-dimensional space containing these vectors—the region in which the unit’s output
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Figure 2.2: Possible Concepts using Connectionist Representation

is above zero is separated by a line from the below-zero region. As shown in Figure 2.2, with
this representation the concepts trig, ¬trig, sin, cos, tan∨ cos, and sin∨ tan can be represented
by a single unit, but sin ∨ cos cannot. (Examples of weight values that result in these linear
separations are included in the figure.) Other value assignments for x1 and x2 exist for which
sin ∨ cos can be represented, but for any two-dimensional vector representation some concepts
cannot be expressed.

To solve this problem the representation must be augmented with an additional component.
This is achieved by adding a new unit, such as the unit in Figure 2.2c (or by adjusting the weights
of a unit already present to be similar to those of the unit in Figure 2.2c). The new unit’s output
becomes a new input component to the existing unit. This structure, shown in Figure 2.3, results
in the new representation:

x1, x2, x3 represents
(1, 1, 0) sin
(2, 1, 0) tan
(3, 1, 1) cos
(∗, 1, ∗) trig

A linear threshold unit separates this three-dimensional space with a plane, and due to the new
feature, x3, this plane can be placed such that sin and cos are in one region whereas tan is in
the other. Thus, the two-unit system with the weight values shown in Figure 2.3 represents the
concept sin ∨ cos.

In the remainder of this section a set of experiments is presented in which a single linear thresh-
old unit is applied to a learning task whose first formulation involves an input representation with
which the single unit cannot solve the task. Different input representations are tried, including
the addition of new features as functions of the original input components. A perceptron learning
algorithm (Rosenblatt, 1962) is used in the single unit to update its weights. Other learning
algorithms show similar differences in performance for the different input representations.
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Figure 2.3: Adding a New Feature to the Connectionist Representation
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2.1.2 The Multiplexer Task

One of the simplest examples of a problem having missing features is the two-input “exclusive-or”
task presented to a single linear threshold unit. The input vectors, x(i), and corresponding desired
outputs, dx(i) , are

x(1) =
(

0
0

)
, x(2) =

(
0
1

)
, x(3) =

(
1
0

)
, x(4) =

(
1
1

)
dx(1) = 0 , dx(2) = 1 , dx(3) = 1 , dx(4) = 0.

The vectors x(2) and x(3) cannot be separated from x(1) and x(4) by a single linear discriminant
function, and thus the exclusive-or function cannot be implemented by a single linear threshold
unit. Higher-dimensional exclusive-or functions are referred to as “parity” functions and are one
type of problem that Minsky and Papert (1969) used to discuss the limitations of the perceptron.

The task used for the following missing-feature illustrations is also used for the comparative
study of Chapter IV. The two-input exclusive-or task was not used for the following reason. A
system consisting of two layers with a single unit in each layer can implement the exclusive-or
function. A very simple random search applied to the weights of the single hidden unit performs
very well because the probability of randomly choosing a solution weight vector is relatively large.1
A more difficult task was desired to tax the random search and other methods that directly search
a network’s weight space.

A multiplexer function of four data bits and two address bits was chosen as the function to
be learned. The input vectors consist of two address bits and four data bits, plus a constant
component of value 0.5. To solve this task, a learning system must route to the system’s output
the binary value of the data bit that is addressed by the two address bits. Let us call the address
bits a1 and a2 and the data bits d1, d2, d3, and d4. A minimal logical expression for the multiplexer
function is

ā1ā2d1 ∨ ā1a2d2 ∨ a1ā2d3 ∨ a1a2 d4.

To prove that this task is not linearly-separable, and thus not solvable by a single-layer system
of linear threshold units, it suffices to show a subset of the input vectors whose members cannot
be associated with the desired outputs. Consider the input vectors and desired outputs below:

input vector desired output
(0,0,0,1,0,0,0.5) 0
(0,0,1,0,0,0,0.5) 1
(0,1,0,1,0,0,0.5) 1
(0,1,1,0,0,0,0.5) 0

The associations between By ignoring the constant input components and studying any two
remaining components, we see that the relationship between the components and the desired
output is an exclusive-or function. Thus, the multiplexer function cannot be implemented by a
single linear threshold unit. Ways in which a multilayer system might solve this task are discussed
below through examples of different, fixed representations of the input vectors.

One more reason for selecting the multiplexer function was our desire for a task that requires
more than one new feature, i.e., more than one hidden unit. Algorithms for which hidden units
learn similar features might perform satisfactorily when only one new feature is required, but
would fail when two or more are needed. The multiplexer task is sufficiently complex that more
than one new feature is needed. The results of our experiments with multilayer learning systems
and the multiplexer task suggest that a minimum of three hidden units are required, although
this has not been proved.

In the next two sections, the perceptron learning algorithm and two performance measures
are defined, after which the experiments and results are discussed.

1The probability of finding a solution is equal to the ratio of the combined volumes of the regions containing

solution weight vectors to the total volume of the weight space.
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2.1.3 The Perceptron Learning Algorithm

Let X be the set of all input vectors and x be a single input vector from that set. The output of
a linear threshold unit, for a given input vector x and weight vector w, is

yx =


1, if

∑
i

wi xi > 0;

0, otherwise.

Let the desired output for x be dx and let Xw be the subset of X containing all input vectors for
which the output, given w, is not the desired output, i.e.,

Xw = {x | yx 6= dx}.

The perceptron learning algorithm is a gradient-descent procedure that minimizes the perceptron
criterion function, J(w), where

J(w) =
∑
x∈Xw

|dx − yx|.

During training, the values of x, d, y, and w for each time step generate the sequences x[t], d[t], y[t],
and w[t]. Each time step consists of:

1. Specification of input x[t] and desired output d[t],

2. Calculation of y[t], using x[t] and w[t],

3. Calculation of new weight values, w[t+ 1].

The new value for the ith weight is calculated according to the following rule:

wi[t+ 1] = wi[t] + ρ (d[t]− y[t])xi[t],

where ρ is a positive real number that controls the magnitude of the weight change. This is
Rosenblatt’s “α-perceptron, error-corrective, quantized” learning algorithm (Rosenblatt, 1962),
and is an example of a fixed-increment error-correction procedure (Duda and Hart, 1973). The
convergence of this algorithm to a solution, when a solution exists, has been proven in several
ways (Minsky and Papert, 1969; Nilsson, 1965; Rosenblatt, 1962). The only conditions on the
proofs are that ρ > 0 and that every input vector x ∈ X occurs infinitely often.

2.1.4 Performance Measures

Repeated runs of a fixed number of steps were performed in the following experiments. Let the
number of runs be r, with each run starting with zero-valued weights and trained for s time steps.
Learning performance is measured by two quantities, µ and ν. The average number of cumulative
errors per run, µ, is defined as follows. Let the number of errors (number of output units with
incorrect output) for the tth time step of run k be ek[t], defined as:

ek[t] =
∑
j∈O
|dj [t]− yj [t]|, where O =

{ indices of
output units

}
,

and where yj [t] is the output of the jth unit at time step t and run k and dj [t] is that unit’s
desired output corresponding to input x[t]. Summing the number of errors over the s time steps
and r runs and multiplying by a scale factor of 1/r results in the following equation for µ:

µ =
1
r

r∑
k=1

s∑
t=1

ek[t].
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For a system of m output units, the value of µ ranges from 0 to s ·m, the maximum number of
errors in a single run. If no errors are made µ = 0, signifying perfect performance,2 and µ = s ·m
means every output was in error.

Note that µ is a cumulative measure of performance that depends on the errors at every time
step. A dramatic increase in performance toward the end of a run is not reflected in the value
of µ. A second performance measure is needed that depends only on the final performance level
achieved at the end of a run. This measure, called ν, is calculated as follows. The final weight
values at the end of a run are frozen while the entire set of n (n = 64 for the multiplexer task)
input vectors are presented one at a time. The system’s output for each input vector is compared
to the desired output and the errors tallied. For run k, the expected value, hk, over all input
vectors of the number of errors is given by:

hk =
1
n

∑
x∈X

∑
j∈O
|dxj − yxj |,

where dxj is the desired value of output component j for input x, and yxj is the actual output
given input x when the weight values at the end of run k are used to compute the output.
Since the multiplexer experiments involve a single output unit (||O||=1), this expression could
be simplified. The possibility of more than one output unit is included to make this definition
applicable to other experiments in this chapter. Summing the number of errors for r runs and
dividing by the number of runs results in

ν =
1
r

r∑
k=1

hk,

which ranges from 0 to m ·n, the number of output units times the number of input vectors. Since
ν depends only on the performance achieved at the end of each run, it indicates the reliability
with which a solution to the task was found. On the other hand, µ is a measure of the speed with
which the solution was found.

2.1.5 Original Representation

The four data bits, d1, d2, d3, d4, and the two address bits, a1, a2, and a constant input of 0.5
constitute the unit’s input vector. The single unit used in the experiments with the original
representation of the multiplexer task is shown in Figure 2.4.

2.1.6 An Ideal Representation

Since the classes of input vectors requiring the same output are not linearly-separable, a solution
does not exist for the single linear threshold unit. Now we can ask how the representation of
the input vectors might be changed to improve learning performance on this particular task. A
number of representations can be used, differing in the amount of information assumed known
about the task before learning takes place. If complete knowledge of the task is assumed, then
the representation

x(i)′ = dx(i)

would be ideal. (We use x(i)′ rather than x(i) to indicate the input vectors of a representation
other than the original representation.) In this case, the value of each x(i)′ is actually the value
of the corresponding desired output dx(i) . The unit must only learn to generate the value that is
provided as input, obviously an easy task.

Our interests, however, are with the performance of learning algorithms on tasks for which
the amount of a priori knowledge is a great deal less than that required for defining such ideal
representations. Even when parts of a task are sufficiently well-understood, tailoring an otherwise
fixed representation for those parts could be disastrous. For example, consider a problem for which

2Perfect performance can only be achieved if the weights at the start of every run happen to be correct.
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Figure 2.4: Multiplexer Task—Original Representation

each output of the system consists of two binary components. Assume there are five input vectors
and their desired outputs are

dx(1) =
(

0
0

)
, dx(2) =

(
1
1

)
, dx(3) =

(
0
1

)
, dx(4) =

(
1
1

)
, and dx(5) =

(
0
1

)
.

Let us say that the designer of a learning system (composed of a single linear threshold unit) is
aware of the value of the first component of the desired output for all input vectors, but knows
nothing of the second. The ideal representation, given this knowledge, is

x(1) = (0), x(2) = (1), x(3) = (0), x(4) = (1), and x(5) = (0),

where the input is exactly the first component of the desired output. However, with this rep-
resentation, the task of learning the second component is impossible. The input classes defined
by the second desired output component are {x(1)} and {x(2), x(3), x(4), x(5)} which cannot be
linearly-separated, i.e., a linear threshold unit cannot implement the mapping from each xi to the
second output component.

2.1.7 A Representation Resulting in No Generalization

In the above example, the transfer of learning from one input vector to another is extremely
helpful for learning the first output component, but it prevents learning of the second component.
A representation that avoids this problem arises from the extreme strategy of preventing all
generalization, i.e., no transfer between input vectors can occur. For linear units, this implies
that the input vectors be standard basis vectors. Using standard unit basis vectors, the input
representation for the multiplexer task becomes:

x(1)′ = (0, 0, 0, . . . , 0, 0, 1)T ,
x(2)′ = (0, 0, 0, . . . , 0, 1, 0)T ,
x(3)′ = (0, 0, 0, . . . , 1, 0, 0)T ,

...
x(63)′ = (0, 1, 0, . . . , 0, 0, 0)T ,
x(64)′ = (1, 0, 0, . . . , 0, 0, 0)T .
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Figure 2.5: Multiplexer Task—Basis-Vector Representation

Each input vector has 64 binary-valued components, all being 0 except one, resulting in the
structure shown in Figure 2.5. The input classes are certainly linearly-separable. In fact, any
mapping from the 64 input vectors to the two possible output values, 0 and 1, is implementable
by effectively filling in a table of 64 slots with the desired output values. But in removing all
generalizations, helpful transfer disappears, thus slowing the speed of learning over that possible
with the ideal representation and eliminating transfer to novel input vectors during performance.

2.1.8 New Features Added to Original Representation

The previous section showed a representation that guarantees the existence of a solution. In doing
so, the possibility of generalizing from one situation to another was removed. We would like a
new-feature algorithm—an algorithm for learning new features by modifying the weights in hidden
units—to similarly guarantee that a representation will be formed with which a solution to the
task exists, but to do so without removing beneficial generalizations. One approach to meeting
these goals is to always include the components of the original representation along with any new
features that are developed. New features add dimensions along which additional discriminations
can be made, overcoming misleading generalizations.

Recall that a minimal expression for the solution to the multiplexer task is

ā1ā2d1 ∨ ā1a2d2 ∨ a1ā2d3 ∨ a1a2 d4.

The most straightforward way to add features that a) make the solution of this task possible, and
b) can be formed by a single layer of hidden units, is to add features corresponding to the four
disjuncts in the above expression, i.e.,

feature1 = ā1ā2d1,
feature2 = ā1a2d2,
feature3 = a1ā2d3,
feature4 = a1a2d4,

resulting in the structure of Figure 2.6.

2.1.9 Results

Preliminary experiments with all three representations were run to determine the sensitivity of
the perceptron learning algorithm to the parameter ρ. These results, summarized in Appendix A,
show that the perceptron algorithm had little sensitivity to ρ. For each value of ρ, 30 runs of
50,000 time steps each were performed. Weights were set to zero at the start of every run. Input
vectors were chosen randomly, without replacement, for each step: every input vector is presented
once within the first 64 steps, a second time within the next 64 steps, and so on. This reduces the
solution time from that needed for a completely random presentation of input vectors. However,
we do randomize the order of presentation within each 64 step interval to remove any bias in the
results due to a particular order of presentation.
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Figure 2.6: Multiplexer Task—Original Representation Plus New Features

Representation ν µ
Original 23.9± 0.88 208± 2.3

Basis Vectors 0.0± 0.0 32.0± 0.0
New Features 0.0± 0.0 31.7± 1.2

Table 2.1: Performance of Single Unit on Multiplexer Task

Further experiments were performed with ρ = 1. For each representation, 100 runs of 500
steps each were performed, giving the results shown in Table 2.1. The 99% confidence intervals
are listed with each result to provide a quick check of statistical significance.3

With the original representation, the final performance level of the perceptron unit was ν =
23.9±0.88, indicating that an average of approximately 24 of the 64 input vectors were incorrectly
classified at the end of each run. When the basis vectors were used to represent the input, the
task was solved for all runs, indicated by ν = 0.0 ± 0.0. With the initial weight values of zero,
the output is correct for 32 of the 64 input vectors. No transfer occurs among input vectors
represented as standard basis vectors, so at least 32 errors will occur during a run as the output
is corrected for the 32 input vectors whose desired output is 1. No more than 32 corrections are
needed, as shown by µ = 32±0. The task was also reliably solved (ν = 0.0±0.0) with the original
representation plus the four additional features.

A better understanding of the relationships in learning performance for the different repre-
sentations is gained by superimposing the resulting learning curves of errors versus time steps, as
shown in Figure 2.7. The maximum number of errors per time step is one because there is only
one output unit. To generate the curves, the number of errors per step was averaged over the
100 runs. Additional averaging of the values for 5-step intervals was done to further smooth the
curves. With the original representation the error is never reduced to zero, since a single-unit solu-
tion to the multiplexer task does not exist. The learning curve does show that better-than-chance
(0.5 errors per time step) performance was achieved.

The learning curve corresponding to the basis-vector representation shows a dramatic jump
from 0.5 to 0 errors per time step. This is due to the fact that no generalization occurs between
input vectors. As soon as every input vector that requires the output 1 is presented at least once,
the error becomes zero.

The learning curve for the original representation plus the four new features initially decreases
faster than does the curve for the basis-vector representation, showing that the generalization
caused by the new features is beneficial in the early stages. However, a longer period of time is
required to completely reduce the error to zero, indicating that some misleading generalization
still occurs. The difference in the cumulative number of errors, µ, resulting from the use of the

3Given a sample’s standard deviation, s, and size, n, its 99% confidence interval was calculated as ±2.5758s/
√
n.
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Figure 2.7: Multiplexer Task—Learning Curves

new-feature representation and the basis-vector representation is not significant (31.7±1.2 versus
32.0± 0.0).

The following sections pertain to tasks that do not require new features but that can be solved
quicker if appropriate new features are learned. Experiments with connectionist systems and two
such tasks are presented, followed by a discussion of the similarities between the issues raised by
these tasks and those described by Fu and Buchanan (1985) for learning in production systems.

2.2 New Features That Add Beneficial Generalization

A useful new-feature algorithm should be able to overcome misleading generalization caused by
the absence of required features, but should also be able to add generalization where it might be
helpful. In effect, it should increase the similarity of input vectors that require similar output, so
that in the future the learning of new output values to these input vectors is facilitated.

This process can be viewed as a “lumping”, or clustering, of the input vectors. The potential of
this type of representation development has been well-recognized, and many measures of similarity
have been proposed with which to determine cluster membership. Such measures are often based
on a distance metric in the input space; input vectors separated by small distances are collectively
represented by a cluster label, reducing the dimensionality of the input. Another measure, used
by Fukushima (1973, 1980), is the closeness in time of the presentation of the input vectors.
He developed a character-recognition system with some degree of rotational and translational
invariance by presenting a character and its variants in sequence, excluding vectors derived from
any other characters. In contrast, Rendell (1985) has experimented with a more goal-directed
similarity measure. In learning an evaluation function, he clustered input vectors based on the
similarity of their outcome in terms of success or failure in game-playing situations.

Rendell’s use of the desired output to cluster input vectors can be adapted to learning by the
hidden units of a connectionist network. The hidden-unit learning algorithm must have access to
the system’s desired output, which can be obtained directly from the environment with which the
system is interacting or from the output layer of the system after it has solved the current task.
To illustrate the possible results of following this strategy, experiments were run with a single
layer of perceptron units and a task referred to below as the input-cluster task. Again, the input
representation is varied to show the usefulness of new features.
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Figure 2.8: Input-Cluster Task—Original Representation

2.2.1 The Input-Cluster Task

To highlight the effects of adding beneficial generalization, we used standard unit basis vectors
as the initial representation for this task so no generalization would be possible. The set of input
vectors consists of 16 standard unit basis vectors and the system’s output is a vector of four,
binary-valued components, rather than the single component of the multiplexer task. The desired
output vectors are defined as follows:

dx(1) , . . . , dx(5) =

 1
0
1
0

 , dx(6) , . . . , dx(11) =

 1
1
1
1

 , dx(12) , . . . , dx(16) =

 0
1
0
1

 ,

i.e., the members of the input class {x(1), . . . , x(5)} require output (1, 0, 1, 0)T , the members of
{x(6), . . . , x(11)} require output (1, 1, 1, 1)T , and the members of {x(12), . . . , x(16)} require output
(0, 1, 0, 1)T .

The members of an input class initially have no similarity, i.e., no generalization takes place.
A learning system would have an advantage if it developed features that indicate the class to
which the current input vector belongs, thus “lumping” the members of each class. To make this
advantage more obvious the task is divided into two phases. In Phase 1 only the first two output
units are trained, and in Phase 2 only the last two are trained, the objective being to show how
a process that forms new features during Phase 1 can facilitate learning during Phase 2.

2.2.2 Original Representation

For the first experiment the original representation was maintained throughout both phases. Any
new-feature algorithm that was not successful in finding a better representation for this task
should at least perform as well as the single-layer algorithms used in this experiment. A poorer
performance level would mean that the new-feature algorithm was a deterrent to learning with the
original representation. The structure of the network with the original representation is shown in
Figure 2.8. The units trained during each phase are marked.

2.2.3 New Features—Basis Vectors as Class Labels

To correctly generalize among the input vectors, features must be added that are common to
the members of an input class. There are many ways to do this, but we limited our attention to
vectors of binary-valued components because we assume that the new features are to be generated
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Figure 2.9: Input-Cluster Task—Basis Vectors as Class Labels

by hidden units whose outputs are binary-valued. One way to add features is simply to create
a feature for each input class with one value for all input vectors in the corresponding class and
the other value for all other input vectors. An example is a set of three-dimensional standard
unit basis vectors, each representing a particular input class as follows: class {x(1), . . . , x(5)} is
represented as (0, 0, 1), class {x(6), . . . , x(11)} as (0, 1, 0), and class {x(12) . . . , x(16)} as (1, 0, 0).
Adding these features to the original representation results in the structure shown in Figure 2.9.

The new features are not added until the completion of Phase 1 to simulate the development
of features during Phase 1. The new features are present throughout Phase 2. The difference in
the rates of learning for the two phases is due to the presence of the new features. It is possible
that an algorithm for learning new features would do better than the performance level shown in
this experiment by adding features early in Phase 1.

2.2.4 New Features—Class Labels with Generalization

Another possible encoding of the class labels is the set of two-dimensional vectors {(0, 1), (1, 1),
(1, 0)}, each vector representing one of the three input classes. These labels are actually the
desired output for the respective input classes. Now generalization will occur between input
classes. The system’s structure is shown in Figure 2.10.

2.2.5 Results

As was done for the multiplexer task, preliminary experiments were performed to compare per-
formance for various values of ρ. These experiments consisted of 50 runs of 200 time steps each,
100 steps per phase. Again, varying ρ had little effect on performance, as seen by the results sum-
marized in Appendix A. Using ρ = 1, an additional 50 runs were made for each representation,
resulting in the performance values shown in Table 2.2. Every run solved this task within 100
steps, so the values of ν were all equal to 0 and do not appear in the tables of Appendix A. The
cumulative error measure, µ, is decomposed into two values, µ1 and µ2, representing the number
of errors tallied during the first and second phases, respectively. The maximum possible number
of errors during a phase (the maximum value of µ) is

number of output units being trained · steps = 2 · 100
= 200.

On the average, a random output strategy would accumulate half the maximum number of errors,
or 100 errors, giving values of µ1 = µ2 = 100.

The first experiments involved the use of the original representation for both phases. Since
the representation of Phase 2 was identical to that of Phase 1, there was no significant difference
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Figure 2.10: Input-Cluster Task—Class Labels with Common Feature

Representation µ1 µ2

Original 22.0± 0.05 22.0± 0.00
Unique New Features 22.0± 0.05 4.0± 0.00

One Common New Feature 22.0± 0.05 3.0± 0.25

Table 2.2: Performance of Single-Layer System on Input-Cluster Task
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Figure 2.11: Input-Cluster Task—Learning Curves

in performance during the two phases. Adding new features at the start of Phase 2 that define
basis vectors for each input class results in the increase in performance, or decrease in the number
of errors, from Phase 1 to Phase 2 that we can expect from a successful new-feature algorithm.
The number of errors incurred during Phase 2 was 5 1

2 times less than that of Phase 1. When the
new features permit appropriate generalization to occur, as in the third set of experiments, the
number of errors in Phase 2 is reduced by a factor of 7 from that of Phase 1.

Learning curves for the perceptron algorithm applied to the input-cluster task are shown in
Figure 2.11, and are calculated in the same fashion as those for the multiplexer task. Phase 1
is identical for all experiments: even the random number generator controlling the sequence of
input vectors is the same, so the learning curves coincide throughout Phase 1. In Phase 2, the
input representation is altered. The first representation used is simply the original representation,
identical to the representation used during Phase 1. Not surprisingly, the learning curve in this
case differs little from Phase 1 to Phase 2. The addition of standard unit basis vectors for the
input classes results in a much-accelerated learning curve during Phase 2—the error is reduced
to zero much faster. The representation with additional features that are equal to the desired
output for each input vector results in a learning curve that is slightly better than that of the
basis-vector representation, showing the effects of the beneficial generalization due to the common
features of the class labels.

2.3 New Output Features—Correlations Among Output Com-
ponents

Representation development is typically discussed in terms of operations applied to the input
representation, as was done for the multiplexer task and the input-cluster task. Issues of new
terms and new features also arise from the viewpoint of a system’s output representation. One
issue involves sequences of outputs, and how the time of searching for the correct output can be
decreased by remembering sequences that proved useful in the past. The STRIPS (Fikes, Hart,
and Nilsson, 1972) and HACKER (Sussman, 1975) systems demonstrate the utility of storing
output sequences and treating the sequence as a composite, higher-level output. We do not focus
on this issue, but in the experiments of Chapter VII we observe the learning in a connectionist
system of short sequences of operators in a problem-solving task.
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The second issue does not involve a chain of outputs, but deals with the representation of an
individual output. Consider a connectionist network that has more than one output unit. The
task of each output unit is to learn the desired value for a component of the output vector. For
some tasks, the desired output vector is available for training the system. But when the desired
output vector is not known, the system must depend on a scalar evaluation to indicate how well
the output vector satisfies some criterion unknown to the system. As described in Chapter I,
this kind of task can be referred to as a reinforcement-learning task, with the evaluation serving
as a reinforcement value. Now the tasks faced by the output units are not independent; the
reinforcement received by a unit depends not only on its output but also on the output of the
other units. Output units in networks that are strictly layered have no knowledge of the behavior
of other output units, so the view of a single unit is of a noisy reinforcement signal.

Some reinforcement-learning methods that successfully handle noisy reinforcements are de-
scribed in Chapters III and IV. They are based on a probabilistic search over a unit’s possible
output values, with the probability of a particular output value determined by the unit’s weighted
sum of its inputs. In a single-layer system of reinforcement-learning units with no interconnections,
the output of one unit has no influence on the output of others. Because the searches performed
by the units before any learning takes place are independent, much time can be expended in a
search for a single desired output vector when the number of possible output vectors is large.
This search time can be significantly reduced by inducing correlations among the units’ output
values that result in a higher probability of generating one of the desired output vectors. The
following experiments show how hidden units can provide these correlations through their output
weights—weights connecting a unit’s output to the input of other units—effectively altering the
output representation of the network.

The potential gains from such methods of changing the hidden units’ output weights are il-
lustrated through the performance of a single-layer network of four reinforcement-learning units.
The experiments are again composed of two phases. In the second phase, the output represen-
tation is altered to simulate the addition of hidden units with output weights that restrict the
network’s output to the two desired output vectors. This task is called the output-vector task.
The reinforcement-learning algorithm used for these experiments is the AR−P algorithm, defined
by Barto and Anandan (1985) and also in Chapter III.

2.3.1 The Output-Vector Task

For each phase the input and the output vectors consist of four binary-valued components. In
Phase 1, they are

x(1) =

 1
0
0
0

 , x(2) =

 0
1
0
0

 ,

dx(1) =

 1
0
1
0

 , dx(2) =

 0
1
0
1

 .

The reinforcement signal provided to every unit on step t is labeled r[t]. It is a binary-valued
signal whose values are “success” and “failure”, and it depends probabilistically on the number
of output components that are correct on step t. The probability of r[t] being “success” is given
by

P{r[t] = “success”|x[t]; d[t]} = 1− 1
m
e[t],

where
e[t] =

∑
j∈O
|dj [t]− yj [t]|, where O =

{ indices of
output units

}
,

as defined earlier, and m = 4 is the number of output units. The probability of r[t] being a
“failure” signal is given by

P{r[t] = “failure”|x[t]; d[t]} = 1− P{r[t] = “success”|x[t]; d[t]} =
1
m
e[t].
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For Phase 2 the task was changed somewhat. Input vectors x(1) and x(2) are no longer
presented. Instead, the input vectors and desired output vectors shown below are used:

x(3) =

 0
0
1
0

 , x(4) =

 0
0
0
1

 ,

dx(3) = dx(1) , dx(4) = dx(2) .

The two desired output vectors for Phase 2, dx(3) and dx(4) , are identical to those of Phase 1, dx(1)

and dx(2) . The set of input vectors are standard unit basis vectors, so no generalization can occur
among them. In particular, no learning can be transferred from Phase 1 to Phase 2 on the basis
of common components of the input vectors because the components present in Phase 1 are never
present in Phase 2. Thus, any facilitation in Phase 2 can only be accounted for by changes in the
output representation.

2.3.2 Changes to Performance Measures

The use of units with probabilistic output functions necessitates a new definition for the perfor-
mance measure ν. (The cumulative error measure µ remains the same.) Let {ai}, i = 1, . . . , 2m
be the set of possible output vectors of the system, and let aij be the component of output vector
ai produced by output unit j. The value of output component aij is called incorrect for a given
input vector x if it is not equal to the component’s value in the output vector corresponding to the
highest probability of “success”. For our simulations, this value is given by dxj . The difference
between dxj and aij is the error in the value of aij . Although the AR−P algorithm assumes that
this error is not available and, therefore, does not use it in updating weight values, we define the
performance measures in terms of this error. The expected value over all input vectors of the
number of errors at the completion of run k is given by:

hk =
∑
x∈X

 2m∑
i=1

(
P{yx = ai|x;w}

∑
j∈O
|dxj − aij |

) ,

where P{yx = ai|x;w} is the probability of output vector ai given input vector x and the weight
vector w at the end of the run, and

∑
j∈O |dxj − aij | is the number of incorrect components of ai

for input x. As before, the number of errors is averaged over r runs to determine ν:

ν =
1
r

r∑
k=1

hk.

2.3.3 Original Representation

The first experiment was designed mainly as a control experiment. The output representation of
Phase 1 was maintained through Phase 2, to obtain the minimum performance level expected of a
new-feature algorithm. The structure of the network during both phases is shown in Figure 2.12.

2.3.4 New Features That Correlate Output Components

The second experiment involved a change in the output representation for Phase 2. Consider the
type of output representation that we might want from a new-feature algorithm operating during
Phase 1. With four output components there are 24, or 16, possible output vectors, only two of
which, dx(1) and dx(2) , reliably result in a “success” signal. A new-feature algorithm should alter
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Figure 2.12: Output-Vector Task—Original Representation

Figure 2.13: Output-Vector Task—Hidden Units That Correlate Output Units

the output representation to make dx(1) and dx(2) more probable than other output vectors, under
the assumption that they will again be useful for obtaining the “success” signal.

This can be realized by adding two new hidden units whose outputs force the four output units
to generate one or the other desired output vectors, resulting in the structure of Figure 2.13. A
new-feature algorithm capable of forming such units would have little effect in Phase 1, since the
task of Phase 1 must be practically solved before the statistics can be gathered that are necessary
to decide which output vectors are worthy of being represented. But in Phase 2, which requires
the same set of output vectors, this change would have a great impact. If the hidden units have
complete control over the output units, then the set of output vectors being searched is reduced
from 16 four-component vectors to a set of two two-component vectors.

To demonstrate this, we altered the output representation used during Phase 2 to one having
only two output components. The input vectors and desired output vectors for Phase 2 are

x(3) =

 0
0
1
0

 , x(4) =

 0
0
0
1
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Representation ν1 ν2 µ1 µ2

Original 0.04± 0.08 0.08± 0.11 220± 42 242± 41
New Features 0.02± 0.05 0.00± 0.00 201± 40 22± 5

Table 2.3: Performance of Single Layer System on Output-Vector Task

Figure 2.14: Learning Curves for the Output-Vector Task

dx(3)′ =
(

1
0

)
, dx(4)′ =

(
0
1

)
.

2.3.5 Results

Five values for each of the parameters, ρ and λ, of the AR−P algorithm were tried. For each of the
25 pairs of ρ and λ values, 100 runs were made of 2000 time steps each, with the first 1000 steps
being Phase 1 and the second 1000 steps being Phase 2. Performance was measured by calculating
the average number of errors at the end of each phase, given by ν1 and ν2, which are defined as
ν was earlier with the exception that each was calculated at the end of the corresponding phase
rather than only at the end of the run. Similarly, µ1 and µ2 are the average number of errors
received throughout each phase.

The results from various values of ρ and λ are included in Appendix A. Best performance
resulted when ρ = 50 and λ = 0.1, summarized in Table 2.3. Since there are two input vectors
per phase and four output units, the maximum value of νi is 8. Randomly selecting the value of
each output component would results in νi = 4. The tasks of each phase are reliably solved with
these parameter values.

To understand the speed with which the tasks are solved we must look at the values of µ1 and
µ2. Each phase is 1000 steps long, so the maximum value of µi is 4000, and µi would be 2000 for
a random output selection. The values of µi reflect that no facilitation occurs from Phase 1 to
Phase 2 with the original representation in both phases. However, the “simulated” development
of new features that select one or the other desired output vector results in a 9-fold decrease in
the number of errors accumulated during Phase 2 (µ2) as compared to Phase 1 (µ1).

Learning curves are shown in Figure 2.14. The learning curves of 100 runs are averaged into
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Figure 2.15: Multi-Level Reasoning Network (from Fu and Buchanan [1985])

intervals 10 steps in length. With the original representation used for both phases, there is no
difference in performance. With the new output representation in Phase 2, a large decrease in the
amount of time needed to reach a solution is seen during Phase 2. The difference in the Phase 1
learning curves is due only to the stochastic output function of the AR−P algorithm.

2.4 New Intermediate Concepts in Production Systems

The previous two sections illustrate two ways in which hidden units can facilitate learning in
connectionist systems: new features can be formed that have similar values for a set of input
vectors requiring the same output, and output units can be constrained to produce desirable
output vectors. Similar ideas have been proposed by Fu (1985; Fu and Buchanan 1985) for learning
intermediate concepts in multilayered production systems. Their work is briefly summarized in
this section, and the relationships between the learning of intermediate concepts in production
systems and the learning of new features in connectionist systems are discussed.

Fu and Buchanan describe the processing performed by a rule-based expert system by means
of a multi-level reasoning network, an example of which is shown in Figure 2.15. Observational
data define the low level nodes in this network, from which the knowledge base of rules ultimately
draws conclusions concerning high level concepts, such as diagnostic categories if the system is
performing a medical diagnostic task. In reasoning from low level to high level nodes, intermediate
concepts like generalized findings (observational data) and generalized disease classes might be
generated. Fu and Buchanan state the following advantages of a rule base that reasons through
multiple levels, as opposed to rules that directly relate observational data and high level concepts:

1. Reasoning proceeds in smaller steps.

2. Explanations of the reasoning process is more understandable.

3. Resulting generalization is useful when insufficient data is available.

Comparisons between the multi-level reasoning network implicitly defined by the rule base
and the explicit multilayer network of a connectionist system can be made by considering both
“concepts” and “features” as names for partitions of a system’s input space. In both systems,
processing spreads from the observational data to a final decision regarding the output of the
system, guided by the constraints imposed either by rules or by numerically-weighted connections.
Further comparisons are made below regarding learning.

Fu and Buchanan address the problem of learning intermediate level knowledge—intermediate
concepts and relationships among intermediate concepts and concepts on other levels—when
presented instances described only by low level data and high level concepts. They distinguish the
methods for learning the relationships when intermediate concepts already exist from methods
for learning new intermediate concepts. A similar distinction cannot always be made in the
learning methods for connectionist systems; the modification of features and the adjustment
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Figure 2.16: Naming Switchover Points

of their influence on other units are usually performed simultaneously by the same mechanism
operating on different weights.

Here we focus on the methods for learning new intermediate concepts, since this is most
relevant to the problem of learning new features in connectionist systems. Fu and Buchanan
describe two approaches to the learning of intermediate concepts, called the techniques of naming
taxonomy points and switchover points. Each is discussed in turn below.

2.4.1 Taxonomy Points

This method proceeds as follows. A taxonomy tree of the instances is constructed, according to
a similarity measure between classes of observational data for each high level concept. High level
concepts found to have similar conditions on the observations become linked through a taxonomy
point, which is given a name and becomes a new intermediate concept. The links between high
level concepts and new intermediate concepts drive the process of learning new rules relating these
new intermediate concepts with others.

The process of naming taxonomy points is akin to the method of inducing correlations among
the output units of a connectionist network as illustrated by the experiments with the output-
vector task. Viewing the values of the output units as high level decisions, the output vector for
every step is seen as a set of high level decisions. If the input conditions under which particular
output values of two or more output units are similar, then these output values will co-occur.
A learning algorithm designed to recognize these co-occurrences can adjust the output weights
of hidden units to give the units the ability to generate these patterns of output values. Such
hidden units become explicit analogs of Fu and Buchanan’s taxonomy points. Once they are
formed (or while they are being formed), other connection weights can be adjusted to learn
relationships between these hidden units and observational data, and other features. The end
results of this connectionist learning process and the naming of taxonomy points are very similar,
though the methods differ. In naming taxonomy points, the observational data in the set of
instances plays a key role in determining the similarity of high level concepts. In contrast, the
proposed connectionist method relies on the temporal co-occurrence of high level decisions to
indicate their similarity.

2.4.2 Switchover Points

A switchover point is formed by funneling the links from a set of low level nodes that directly
connect to identical high level nodes through a single new intermediate level node. This process is
illustrated in Figure 2.16. Fu and Buchanan point out that most of the intermediate concepts that
were formed in this way for a medical diagnostic task are medically meaningful because switchover
points only exist between low and high level nodes that have very regular relationships.
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A direct comparison of this situation to the input-cluster task can be made. The input-
cluster task involved classes of input vectors where the members of each class were associated
with identical output vectors. This is exactly the relationship shown in Figure 2.16. In the
connectionist system experiments, a new feature was created that had the value 1 for all input
vectors in a class, and the value 0 for all other input vectors. If this feature is learned by a hidden
unit, then the output of that unit can be linked to output units so as to generate the output
vector appropriate for that input class. Thus, the hidden unit plays the role of the switchover
point.

One aspect of Fu and Buchanan’s work sets it apart from Utgoff’s work in the same way
that the multiplexer task is different from the other two tasks of this chapter. This is the fact
that Utgoff devised ways of learning new terms that were necessary for his system to form a
solution, just as new features were necessary for the two-layer connectionist system applied to the
multiplexer task. On the other hand, Fu and Buchanan start with a solution to a task in terms of
rules directly relating low and high level concepts, and wish to transform this single-layer solution
to one having multiple levels of intermediate concepts in order to achieve better generalization
and to facilitate explanations. Similarly, the input-cluster and output-vector tasks are were to
illustrate how new features lead to better generalization for tasks that can be solved by a single-
layer system. It is also possible that new features, viewed as intermediate level concepts, will
prove useful in generating an explanation of the processing performed by a connectionist system
in determining which output vector to generate. Gallant (1985) has made some initial steps along
these lines.

2.5 Summary

The experiments of this chapter demonstrate several kinds of new features and how they facilitate
learning in connectionist systems. The benefits of learning missing features was illustrated by
means of the multiplexer task, which is used in Chapter IV to compare the abilities of several
learning algorithms to find missing features. The other two tasks do not appear again in this
thesis, although the issues they expose are no less important than the issue of missing terms. We
chose to study the issue of missing features and how they can be learned for the multiplexer task,
and for two strategy learning tasks. Similar treatments of the other ways in which new features
facilitate learning remain to be performed.

Before presenting further multiplexer experiments, past and recent approaches to learning in
the hidden units of connectionist systems are reviewed. A very important observation is that
most, if not all, learning methods for multilayer systems are motivated by the need to learn
missing features, and do not deal with learning features that are not needed but that do facilitate
learning. Such methods must continue to learn even after a task is solved in order to develop
additional features, or intermediate-level concepts, that might be useful for further learning in
the future.
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Chapter 3

Review of Learning Methods for
Hidden Units

This review assembles in a consistent form both early and recent work on learning in the hidden
units of connectionist systems. In addition, numerical methods not originally presented as being
used in connectionist systems but that can be cast as connectionist learning methods are included.
The goal of this review is to provide an opportunity to compare and contrast the various learning
methods and to indicate the types of tasks for which they are applicable. Some of the methods
reviewed here are compared by their ability to learn new features in the experiments of Chapter IV.

3.1 The Connectionist Learning Problem

Consider the three-layer connectionist network shown in Figure 3.1. Let us say that Unit i
calculates an output value by applying a function, yi, on a weighted sum of its input values. The
final output of the network, labeled Fw(x), is a composite of the output functions of every unit.
For the network shown, this composite function is

Fw(x) = y4

(
w1,4 y2

(
w1,2 y1(w1,1x1 + w2,1x2) + w2,2x2 + w3,2x3

)
+ w2,4 y3(w1,3x1 + w2,3x2 + w3,3x3)

)
.

Of course, for larger networks the complexity of this expression increases: additional layers result
in additional levels of nested applications of yi and additional units in a layer result in more yi’s
at one level of nesting. The output of a network is thus a complex function parameterized by
the vector of interconnection weights, w, represented by the subscript of Fw(x). The problem
of learning a particular mapping from input x to output Fw(x) is one of determining a set of
parameter values, w, that result in as close an approximation to the correct mapping as desired.

Methods of searching for good weight values vary in the amount of knowledge assumed about
the structure of the network and about the goal of the learning task. When such knowledge
is unknown, direct search methods (Gill, Murray, and Wright, 1981) must be applied that are
based only on comparisons of network performance resulting from the use of different weight
values. The entire weight space of the network is searched in an attempt to optimize the network’s
performance. Several direct search methods are reviewed below, after which ways of incorporating
structural and goal knowledge are discussed.
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Figure 3.1: A Connectionist Network

3.2 Direct Search

Each weight vector can be considered a point in the network’s weight space. The fundamental
ingredient of a direct search method is the choice of which point to try next. The decision can
be deterministic or random. A second distinction is the degree to which previously-tested points
bear on the decision.

The polytope algorithm (Gill, Murray, and Wright, 1981) is a deterministic procedure for
determining a new point based on the n best previously-tested points, where n is a parameter.
These points are considered as the vertices of a geometric figure—a polytope in n− 1 space. The
centroid is calculated by averaging the coordinates of the vertices, and the vector from the worst
point to the centroid is taken as a plausible direction of increasingly-good points. A new point is
generated by “reflecting” the worst of the n points through the centroid to the opposite side of
the polytope. Further calculations are performed depending on the outcome of testing the new
point. The polytope algorithm is defined in detail in Chapter IV.

The polytope algorithm is a “hill-climbing” method, in that it takes small steps in a direction
that is assumed to be towards points that result in better performance. Hill-climbing methods
can become stuck at local minima (or maxima, if trying to maximize a criterion), so they are
generally not recommended for optimization tasks having multimodal criteria, i.e., having local
minima (or maxima) in the criterion function.

A very straightforward approach which is not a hill-climbing search is to simply pick points
in the weight space at random, with every point having equal probability of being selected. The
point that results in the best performance is remembered. This unguided search (labeled by
Gilstrap, 1971) is not trapped at local minima, but would take an impractical amount of time to
find a minimum for large weight spaces.

A compromise between the unguided search and the deterministic hill-climbing search of the
polytope algorithm can be achieved in a number of ways. One way is to base the choice of new
points on a probability distribution, such as a Gaussian distribution, centered on the currently-
best point. New points tend to be on the same hill as the currently-best point, but there is a
nonzero probability that a point on a different hill will be sampled. The selection of the new
point can be given a bit more direction by restricting new points to lie within a region bounded
by a cone, with its axis parallel to the line joining the two best points and its vertex at one of the
points (Yudin, 1966; see Jarvis, 1975, for a review of both random and deterministic methods).
This is a guided random search.

Rastrigin (1963) analyzed a guided random search technique and showed that it converged
faster than gradient methods (described below) for systems having a large number of parameters.
Bekey and Masri (1983) provide results from the application of a guided random search to several
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identification tasks. However, the space of possible weight values is so large for all but trivial
networks of a small number units that a direct search of the network’s weight space is very slow
to converge upon a good set of weights. The results of Chapter IV show this to be true for a
two-layer, five-unit network to which an unguided random search, a guided random search, and
the polytope algorithm were applied.

To reduce the search time, knowledge of the network’s structure must be used to constrain the
search. Often this entails the formulation of a search at the unit level, i.e., a search for good units.
The weights of a unit are modified in a consistent fashion, so as to either increase or decrease
the output value of the unit for the given input. The introduction of structural knowledge to the
search for good weights gives rise to the issues of:

• the assignment of credit to the units and weights of a network, and

• the modification of weights based on assigned credit.

These issues are described below, and ways with which they have been addressed are reviewed.

3.3 Assignment of Credit

As discussed in Chapter I, the credit-assignment problem has several forms. The assignment of
credit to the units of a connectionist network is a form of structural credit assignment. “Credit”
is a broad term encompassing several kinds of information that can be presented to the units to
guide the adjusting of weights. The methods reviewed here assign credit in one of the following
forms:

1. the gradient of a criterion function with respect to a unit’s weights,

2. an estimate of the gradient,

3. an error based on a minimal change,

4. the worth, or usefulness, of a unit.

The first three forms of credit result in the assignment of errors to the weights, either by the
calculation or approximation of a gradient or by restricting changes to be of minimal size. For
these cases, credit not only indicates which weights should be adjusted but also how they should
be adjusted to increase the network’s performance. The fourth method does not include this
information—worth is only an evaluation, not an instruction as to how weights should be modified.
The following review of credit-assignment methods is organized according to the above list.

3.3.1 Exact Gradient Methods

A common optimization technique is to calculate the gradient of a criterion function with respect
to the parameters of the function to be optimized. Gradient-descent procedures can then be
applied to shift the parameter vector towards a local minimum in the criterion function. Gradient-
descent procedures perform poorly when the first and second derivatives of the criterion function
do not vary smoothly. For example, they do not constrain the search to be along the floor of a
ravine in the criterion function. Ways of dealing with this issue are described below.

Rumelhart, Hinton, Williams, 1986

If the criterion function to be minimized by a connectionist learning method is denoted J(w), then
a straightforward gradient-descent technique can be applied if J(w) is differentiable with respect
to each wi,j . Assuming that the criterion is a function of the network’s output, Fw(x), this
implies that each yi is differentiable with respect to Unit i’s weights. Rumelhart, et al., derived
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Figure 3.2: The Logistic Distribution

Figure 3.3: Back-Propagation of Gradient Information

a gradient-descent technique for updating the weights of a network by using the squared-error
criterion:

J(w) =
∑
x∈X

(dx − Fw(x))2

and the differentiable output function

yi =
1

1 + e−w
T x
,

where w and x are the weight vector and input vector for Unit i and wTx is the inner product
of these vectors. The shape of y is shown in Figure 3.2. It is a “smoothed” version of the stan-
dard linear threshold unit—when the value of wT x varies widely for different x, y approximates
the discontinuous response of the linear threshold unit. (This discontinuity prevents the use of
gradient techniques for linear threshold units.)

Rumelhart, et al., remove the centralized nature of gradient-descent techniques by casting the
gradient-descent expressions as weight-update rules that use information available locally to each
unit plus a quantity that is back-propagated from other units. Consider a Unit j whose output
is connected to a number of other units with indices in set K, as pictured in Figure 3.3. Let
the back-propagated value from Unit k to Unit j be the product δk wjk. The value of δj for any
Unit j is

δj =


(
dj − yj

)
yj

(
1− yj

)
, if j ∈ O;∑

k∈K

(
δk wjk

)
yj

(
1− yj

)
, otherwise,

where O is the set of indices for the output units, and dj is the desired output value for Output
Unit j. This quantity is used to update the weights of Unit j according to

∆wij = ρ δj xi,

before the unit back-propagates δjwij to Unit i. Since this algorithm is deterministic, a random
process is used to initialize the weights to small random values—otherwise the units in a hidden
layer would evolve identical weights.
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At least two modifications to this update rule have been proposed for dealing with the prob-
lem of searching ravines mentioned above. Rumelhart, et al., add a term that they refer to as
“momentum”, resulting in the following update rule:

∆wij [t+ 1] = ρ δj xi + ρm ∆wij [t],

where ρm, which is greater than zero, controls the amount of past weight changes that are added
to the current weight change. This has the effect of increasing the step size when the gradient does
not change sign, so a smaller value of ρ can be used to limit cross-ravine jumps. The momentum
of each weight is distinct, enabling large changes in some weights while maintaining small changes
in others. This has the desired effect for ravines that are oriented parallel to a dimension of weight
space, i.e., a change in the magnitude of weight changes constrain the search to weight values
near the floor of the ravine.

A second modification is to only use the sign of the weight wjk in the back-propagated quantity
from Unit k to Unit j. This has a normalizing effect of reducing the gradient with respect to units
with large output weights—weights connecting a unit’s output to the input of another unit—while
increasing the gradient with respect to units having small output weights (Sutton, 1985, 1986).

3.3.2 Approximate Gradient Methods

When differentiable output functions are not used, exact gradient methods cannot be applied.
Rosenblatt was one of the first to heuristically design a procedure for estimating the gradient of a
criterion with respect to the weights of hidden units. He called his method the back-propagating
error correction procedure (Rosenblatt, 1962). It is similar to Rumelhart’s algorithm in that an
error is back-propagated, but it differs by using a nonanalytic, probabilistic determination of
errors.

Rosenblatt, 1962

Rosenblatt’s procedure for two-layer networks is as follows. Referring to Figure 3.3, let K = O,
i.e., k is an index to an output unit. The error for an output unit is calculated as

δk = dk − yk,

where dk is the desired output of Unit k, and yk is its actual output. If δk = 0 for all k, then
no errors are back-propagated and no weight change is made. When δk 6= 0, the error that is
back-propagated from Unit k to Unit j, called δjk, is determined by one of the following cases:

• If yj = 1 and δk differs in sign from wjk, then δjk = −1 with probability p1.

• If yj = 0 and δk agrees in sign with wjk, then δjk = 1 with probability p2.

• If yj = 0 and δk differs in sign from wjk, or wjk = 0, then δjk = 1 with probability p3.

The hidden unit weights are modified by

∆wij = ρ sgn

(∑
k∈O

δjk

)
xi.

Rosenblatt proved a theorem stating that if a solution exists, it can be found by this procedure
in finite time with probability 1. His simulations show that the procedure is very sensitive to the
parameters, p1, p2, and p3; for some cases certain parameter values resulted in lower performance
than that achieved by a system with fixed hidden unit weights. He concluded that instabilities
are apt to arise due to changes in one layer before the other layer is able to converge on a good
set of weights. Instabilities can be reduced somewhat by adjusting the output-unit weights first,
and only back-propagating errors if the output-unit errors persist.
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Alder, 1975

A simpler way to assign errors was analyzed by Alder (1975), who developed a learning algorithm
for multilayer systems of perceptron-like units having a single output unit. Alder’s algorithm for
picking a unit to be modified proceeds as follows. If the output of the system is wrong, then
a unit is chosen randomly from the entire system (including the output unit) with a uniform
probability. The error assigned to the output unit is given to the randomly chosen unit and
Rosenblatt’s perceptron learning rule is applied to update its weights. If the output of the system
is correct, then no units are adjusted unless the previous output was wrong, in which case a unit
is chosen randomly from a set consisting of all units plus an element that signifies no change, and
the perceptron learning rule and the output unit’s error are applied as before. In other words, an
incorrect output followed by a correct output leads to the modification of a unit (chosen randomly)
in n/n+ 1 cases, where n is the number of units in the system.

Alder presented a variation of the perceptron convergence theorem for his algorithm, for which
he proved that the probability is zero that the system would not converge in some finite number of
steps. He points out, though, that this is a probabilistic convergence proof, and that the algorithm
is “less than efficient.” Convergence speed can be increased for certain network architectures by
restricting corrections to units that are wrong, but in general one cannot determine whether a
unit is wrong or right.

An alternative to constructing an ad hoc gradient estimate, as Rosenblatt did, or to directly
assigning the output error to hidden units, as Alder did, is to add noise to the output of the units
and accumulate statistics with which a gradient can be approximated. Descriptions of several
techniques for performing a stochastic search follow.

Ackley, Hinton, Sejnowski, 1985

By using units with stochastic output functions and symmetric connections between units, Ackley,
et al. (1985), derived an expression for updating each weight based only on information about the
pair of units associated with the weight.

A Boltzmann Machine, as they refer to their system (Hinton, Sejnowski, and Ackley, 1984),
consists of units whose outputs are either 1 or 0, determined probabilistically by the weighted
sum of their inputs, wTx, and by the following expression, known as the logistic function, for the
probability of a unit’s output being equal to 1:

P{y = 1} =
1

1 + e−
wT x
T

and P{y = 0} = 1− P{y = 1},

where T is a “temperature” parameter that scales the weighted sum, effectively controlling the
amount of noise in a unit’s output. Drawing from work in modeling the thermodynamics of
two-state particles (Binder, 1978) and on constraint satisfaction (Kirkpatrick, Gelatt, and Vecchi,
1983), Ackley, et al. showed how a process of “simulated annealing”—a gradual lowering of the
temperature T—can be used to search for output values that closely match the constraints imposed
by the interconnection weights. The process is repeated to obtain statistically significant estimates
of the probability of each output vector at low temperature values.

Visible units are units whose output can be observed or controlled by the trainer. It is the
probabilities of visible-unit output vectors that are to match the desired probabilities. Repetitions
of simulated annealing are performed in a “clamped” mode and an “unclamped” mode, referring
to whether or not the outputs of the visible units are fixed, i.e., clamped to the desired values.
Let P{Vα} be the probability of Vα, a vector of visible-unit output values at thermal equilibrium
arrived at by simulated annealing in clamped mode, and let P ′{Vα} be the probability of the
same vector in unclamped mode. A measure of discrepancy between the two is defined as

G =
∑
α

P{Vα} ln
P{Vα}
P ′{Vα}

.
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The partial derivative of G with respect to weight wij is

∂G

∂wij
= − 1

T
(pij − p′ij),

where pij is the average probability of the outputs of units i and j both being 1 when the visible
units are clamped, and p′ij is the probability when the visible units are unclamped. Using the
partial derivative of G in a gradient-descent rule for updating weight wij results in

∆wij = wij + ρ (pij − p′ij).

A variant of the above update rule was used by Ackley, et al., to deal with the difficulties
posed by ravines in the criterion function G. The (pij − p′ij) term was replaced by sgn(pij − p′ij),
using only the direction of the gradient and disregarding its magnitude.

The Boltzmann Machine learning algorithm relies on accurate estimates of output probabilities
at thermal equilibrium, requiring many time-consuming stochastic searches. Rather than waiting
for an accurate estimate of the gradient as in the Boltzmann Machine paradigm, information
from each step in a stochastic search can be applied to the update of the weights. In a sense,
the stochastic search is shifted to the weight space, allowing a quicker benefit to be gained by
the modification of output probabilities through weight adjustments on each training step. To
guide each weight adjustment, a signal must be available that evaluates the current weight values.
The error back-propagation schemes of Rumelhart, et al., and Rosenblatt do provide information
on each step, but are based on deterministic output functions. Without the assumptions of
differentiable output functions or of particular error-assignment heuristics, we need some way of
combining stochastic search with the evaluative information available on each step. Due to the
similarity of this approach to mathematical models of animal learning, the evaluation signals are
referred to as reinforcement signals, which increase the future probabilities of the animal’s actions
that lead to desirable outcomes.1

Minsky, 1954

Minsky investigated a type of reinforcement-learning in his Ph.D. thesis (Minsky, 1954), where
he described the SNARC (Stochastic Neural-Analog Reinforcement Calculator). The units of his
system are simple channels with single weights determining the probability of passing a pulse
through the channel. The probability is increased if the passing of a pulse is followed by a reward.
Minsky demonstrated his system in a maze-learning task.

Farley and Clark, 1954

Another approach to reinforcement learning was developed by Farley and Clark (1954), who
used output functions approximating the observed response of neurons: a noisy threshold was
employed to produce a probabilistic, binary output. Networks of units consist of randomly placed
connections and weight values. Weights are modified according to the simple rule of increasing a
weight if a) the unit preceding the weight in the network “fired”, b) the following unit’s output
increased, and c) the system’s evaluation increased. If the evaluation decreased, the weight is
decreased. The units are modified under a high degree of uncertainty—the probability of a
particular unit having a significant effect on the overall evaluation is very low for networks of
many units.

Barto, et al., 1981–present

Several types of reinforcement-learning algorithms similar to that of Farley and Clark have been
studied by Barto, et al. (Barto, 1985; Barto and Sutton, 1981a; Barto, Sutton, and Anderson,
1983; Barto, Sutton, and Brouwer, 1981; Sutton, 1984), by developing models of animal learning

1This is a simplified statement of the “Law of Effect” of animal learning theory (Thorndike, 1911).
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(Sutton and Barto, 1981) and Klopf’s (1972, 1982) theories of learning in neural networks. These
algorithms have been successfully applied to learning in small two-layer networks (Anderson, 1982;
Barto, 1985; Barto and Anderson, 1985; Barto, Anderson, and Sutton, 1982).

Recently, Barto and Anandan (1985) devised a new class of reinforcement-learning algorithms
that is an extension of the Linear Reward-Penalty (LR−P) algorithm from the learning automata
literature (Narendra and Thathachar, 1974). The LR−P algorithm learns probabilitities for select-
ing actions that maximize the probability of receiving a good reinforcement. Barto and Anandan’s
extension is the use of the weighted sum of a unit’s input to calculate the probability of producing
a binary-valued output, thus allowing different action probabilities to be learned for different in-
put vectors. Their algorithm is called the Associative Reward-Penalty (AR−P) algorithm, because
it can associate different output probabilities with each input.

The probability of the output of an AR−P unit being 1 can be given by the logistic function,
as in the Boltzmann Machine, though the AR−P algorithm is not restricted to this function. The
reinforcement signal is assumed to be binary-valued, being either a “reward” or “penalty” symbol
(a real-valued reinforcement version also exists). The meaning of these symbols is not important
to the functioning of the algorithm, except that the probability of reward must be greater than
the probability of penalty when the output of the network is the preferred value for a given input.
Weights are updated according to the following rule:

∆wij =

 ρ
(
yj − E{yj |w;x}

)
xi, if reward;

λ ρ
(

1− yj − E{yj |w;x}
)
xi, if penalty,

where E{yj |w;x} is the expected value of yj given Unit j’s current weights and input, and ρ > 0
and 0 < λ ≤ 1. Barto and Anandan proved that this algorithm will converge to solution weights
if they exist and if the input vectors are linearly independent. The AR−P algorithm has been
demonstrated in two-layer networks where a single reinforcement signal is provided to all units,
i.e., all units receive the same global evaluation signal rather than unique signals (Barto, 1985;
Barto and Anderson, 1985).

When λ = 0, this algorithm is called the Associative Reward-Inaction (AR−I, after the related
LR−I algorithm for learning automata) because weights are not changed upon receipt of penalty.
Williams (1986) shows that the AR−I algorithm with the logistic output function results in ex-
pected weight changes equal to the gradient of the expected value of the reinforcement signal.
The penalty term of the AR−P algorithm appears to push the search for good weights away from
local minima, though the effect of the penalty term is not fully understood.

3.3.3 Minimal Change

Gradient methods, whether exact or approximate, provide an expression for the assignment of
error to a unit and its weights. When gradients are not used, some other principle for the
assignment of errors must be applied. In this section the principle of minimal change is discussed,
whereby errors are assigned by considering the amount of change required to remove the errors.

Widrow, 1962

In his work with networks of “Adalines” (for adaptive, linear elements), Widrow developed the
following method for learning in two-layer networks. First, the weights of the output units are
examined to decide which set of hidden units can be altered to remove the output error. If several
such sets of hidden units exist, then the set with the fewest units is chosen, and if there is more
than one minimal set with the same number of units, the set requiring the least total change in
magnitude of the weights is selected. If no combination of changes in the hidden units would
remove the output unit error, then the output units are adapted and the hidden units are left
unchanged. Widrow referred to this procedure as a way of “load-sharing” the training among the
hidden units, in that “responsibility is assigned to the units that can most easily assume it.” Tests
with two-layer networks of only three hidden units and a single output unit were reported. The
difficulty of determining sets of hidden units whose adjustment can remove the errors increases
considerably with more output units and more layers.
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Stafford, 1963

Another way to select the units requiring the least amount of change was described by Stafford.
His method is applicable to systems of arbitrary structure, with the restriction of only one output
unit. Linear threshold units are used whose outputs are either +1 or −1, with the addition
of an unweighted “bias” input that has the same value for all units. Weights are restricted to
positive values in order to decrease the difficulty of determining the correct response for units
whose outputs are transformed by many layers before influencing the output unit. Thus, if the
output of the output unit is −1 and should be 1, the output of some hidden unit, or units, must
be changed from −1 to +1. The trick, as always, is to determine which units to alter.

Stafford’s solution is to manipulate the external bias signal as follows. Consider a particular
situation in which the system’s output should be +1, but is actually −1. For this case, the bias is
increased until the output changes to +1, and then the bias is slowly decreased until the output
reverts to −1. At this point, units whose output values have just changed from +1 to −1 change
their weights to make their output values +1 again. The output of the output unit is again
correct, and the bias continues to decrease. This process is repeated until the bias reaches zero
or becomes slightly negative. If the desired output is −1 rather than +1, the bias and weight
changes are reversed. Stafford claimed that his solution approximated three goals:

• units selected for changing should be those whose output would also be changed for a
minimum number of other possible situations,

• changes in the selected units should contribute significantly towards correcting the system’s
output, and

• a minimum number of units should be changed.

In subsequent work, Stafford (1965) developed a second method for which the restriction of
weights to positive values is dropped, requiring a more involved procedure for perturbing the
output of the units than provided by the single external bias value. A non-negative bias signal is
used and each unit randomly chooses the sign with which the bias is added to the unit’s weighted
sum. The bias’s magnitude starts at zero and is slowly increased while the units randomly vary
the signs of their biases. When the output of the network becomes correct, the current signs with
which the bias affects the units are frozen, and the magnitude of the bias is slowly decreased to
zero while Stafford’s first method is used to adapt the weights.

Another method for finding the units requiring the minimal amount of change to correct an
error is through the use of prototype units. A prototype unit generates the largest output value for
an input vector that matches the unit’s weight vector, which defines the prototype, and the unit
generates lower values as the input becomes increasingly different from the prototype. Typically,
the output is restricted to be nonnegative and thus becomes zero for inputs a certain distance (in
the input space) from the prototype.

Soklic, 1982

Soklic developed a model for decision making that was presented as a production system that can
be equivalently cast in terms of a two-layer connectionist system as follows. The weights of each
hidden unit determine a rectangular domain in the input space, with the edges of the domain
parallel to the coordinate axes of the space. The output function of a unit produces a constant,
nonzero value for inputs falling inside the unit’s domain and zero for all other inputs. The output
layer simply associates a classification with each hidden unit. Thus, the input space is divided
into possibly overlapping, rectangular domains of various sizes with a classification assigned to
each.

Of interest here is the method employed to alter the size and location of the domains. A very
small number of units must be considered for modification, since the only units of interest are
those with domains that encompass the current input. To begin each iteration of the training
phase, an input from the training set is presented and the system’s output is calculated. If the
output is not the correct classification, then a change is made in the weights of the hidden units
as follows.

49



First an attempt is made to correct the error by modifying hidden units to include the current
input in a domain associated with the correct classification. An existing domain is expanded to
include a new input if:

1. the domain is associated with the correct classification,

2. the increase in its volume (scaled according to the number of past inputs falling within the
domain) will not exceed a fixed amount, and

3. the increased domain will not overlap “too much”2 with other domains that are associated
with incorrect classifications.

When the above conditions are not met, a new domain, i.e., a new hidden unit, is added. If the
input is not “too close” to existing domains, the new domain is centered on the input and is given
sides of equal length. The initial width of a new domain increases with each additional domain.
If the input is “too close” to an existing domain, then the new domain, again centered on the
input, is given the shape of the closest domain, except for edges that exceed a certain length on
the assumption that domains in neighboring parts of the input space should be of similar shape.

Soklic applied his system to a medical diagnosis task and concluded that it performed slightly
better than the performance of three specialists and much better than three internists on a set of
82 cases.

Reilly, Cooper, and Elbaum, 1982

By defining units whose outputs are nonzero for rectangular domains, Soklic minimized the dif-
ficulty of determining which units could most easily be changed without disrupting the system’s
output for other inputs. Similarly, Reilly, et al., adopted a geometric view of the input space in
defining the domains of hidden units. However, rather than explicitly defining the units’ func-
tions to produce such domains, they employed linear threshold units and normalized the set of
possible input vectors. The weights of a hidden unit thus define a prototype: the output of a unit
is nonzero for a circular domain on the unit hypersphere defining the space of normalized input
vectors, and beyond the circular domain the unit’s output is zero. Associated with each hidden
unit is a size factor, which scales the prototype before the threshold is applied, thus determining
the size of the circular domain. The output layer associates the output of the hidden units with
a classification.

Reilly, et al., described two steps in which learning occurs. The first step arises when the
system does not classify the current input in the correct category. A new hidden unit is added
and its prototype is set equal to the current input. Its size factor is set to some initial value and
its output is associated with the correct classification. In addition, if the input is classified as a
member of an incorrect category, a second step is performed. The size factors of nonzero hidden
units that are associated with the incorrect category are reduced to the point where the outputs
of the units become zero. Note that the size of the domains only decreases, as opposed to the
increases and decreases in size that Soklic’s system performs.

Hampson, 1983

The normalization of input vectors allows linear threshold units to divide the input space into
circular domains of varying size. Another restriction on the input representation was proposed
by Hampson for similar purposes. His two-layer system was designed for inputs represented by
binary vectors. Linear threshold units were used whose outputs ranged from −1 to 1. The units
are said to perform classifications by prototypes, since each unit can be tuned to indicate the
presence or absence of a specific set of binary components.

One learning stage, called “goal-driven processing”, assumes that hidden units are responsible
for the errors in the output layer. During this stage, hidden units whose output is +1 when an
error occurs are “focused” by shifting their weight vectors toward the current input vector, and
their discrimination is increased by reducing their output values. Any areas of the input space

2The meaning of “too much” and “too close” are defined by Soklic.
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that are no longer represented by a +1 output of at least one hidden unit are expected to become
represented by new units through the “input-driven categorization” stage.

Hampson’s “input-driven categorization” process comes to represent input vectors through
a competition process among the hidden units (Rumelhart and Zipser, 1985, discuss a similar
approach). Let us denote the weighted sum of hidden unit j as sj and the maximum and minimum
values of the weighted sums over all hidden units as smax and smin, respectively. When an input
vector is presented for which no hidden unit responds with a nonzero value, all hidden units
are given a desired output value of 1 and the weights of hidden unit j are adjusted by amounts
proportional to (sj − smin)/(smax− smin). In this way, the unit that requires the smallest weight
changes will come to represent the unrepresented input vector.

3.3.4 Worth

The credit-assignment methods discussed so far deal with the assignment of errors to the units
of a network. The errors indicate how the weights of a unit should be modified. Opposed to
these error-correction techniques is the generate-and-test approach to the search for good units.
The generation of new units at a particular stage of the learning process can be based on current
hypotheses concerning which units, in terms of weight values, are useful for solving a task. To
evaluate a unit a measure of usefulness, or worth, must be devised.

Samuel, 1959

Though not described as a connectionist network, Samuel’s polynomial evaluation function for
the game of checkers can be viewed as a linear output unit, and the terms of the polynomial
considered as the output of the hidden units of a two-layer network. The coefficients of the
polynomial are analogous to the weights connecting the output of the hidden units to the output
unit. The coefficients of the polynomial, i.e., the weights of the output unit, are adjusted to reduce
the difference between the evaluation of the current board configuration and the evaluation of
other configurations encountered in a short look-ahead search.

A hidden unit is said to be of little worth in correcting the evaluation if it has developed
an output weight of low magnitude, in which case it is discarded. New units are generated by
selecting new features from a predefined list of features, chosen by Samuel as possibly being useful
for the game of checkers. New units are initially assigned output weights of zero. The feature list
includes combinational functions of two features.

Selfridge, 1959

For systems with more than one output unit, a way of collapsing a hidden unit’s multiple measures
of worth from each output unit must be used. A common measure is simply the sum of the
hidden unit’s output weights, as proposed by Selfridge for his Pandemonium system. The units
of Pandemonium’s hidden layer extract features with which the output units classify the input.
During the learning phase for the output units, the parameters of the hidden units are held
constant. Selfridge did not specify a particular method for training the output units, but suggested
using hill-climbing search methods for finding the best weights for the output units.3

Once this process converges on the best set of weights or reaches some stopping criterion,
modifications are made to the hidden units. First, units of low worth are discarded. New units
are generated as described in the following section.

Uhr and Vossler, 1963

Uhr and Vossler worked with pattern classification tasks using a system whose output layer
contained as many units as there were classes of input patterns. Uhr and Vossler’s solution to

3Selfridge discussed the pitfalls of using a hill-climbing search, such as converging on local minima or maxima

in the evaluation function. It was hoped, however, that the search through the parameter space of only one layer

would be more efficient than searching through the parameter space of the entire system.
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combining multiple measures of worth is to average all of the output weights for a hidden unit.
The removal of a hidden unit that is very helpful for one output unit but useless for every other
unit is a potential danger with this approach.

Klopf and Gose, 1969

Klopf and Gose compared three methods for measuring the worth of the hidden units of a two-
layer connectionist system that had one output unit. One method was the magnitude of a unit’s
output weight, as in Selfridge’s Pandemonium system. The product of the output weight and the
unit’s output value was the second measure, and the third was the absolute value of the cross
correlation between the hidden unit’s output and the system’s desired output. Their results show
that the product of the output weight and the output value produced better performance than
the output weight alone, and both were better than the cross correlation measure. The former
result was expected, since the true effect of a hidden unit on an output unit is determined both
by the output weight and the output value of the hidden unit.

Ivanhenko, 1971

The process of learning in a connectionist system can be described as one of approximating a
desired input-output mapping. This abstract view was taken by Ivanhenko as he developed his
Group Method of Data Handling (GMDH) algorithm (Ivanhenko, 1971; see Duffy and Franklin,
1975, for modifications and applications), although Ivanhenko did not present his method in a
connectionist framework. In connectionist terms, he showed how systems could be constructed to
approximate complex mappings using units of limited complexity, such as units that compute a
quadratic function of two input components. Complex mappings are realized by adding additional
layers, since each layer adds two degrees of complexity to the network’s mapping.

The GMDH algorithm assumes that a set of desired input-output pairs are available a priori,
which are divided into a training set and a testing set. The algorithm proceeds by developing
one layer at a time. For the first layer, the original input components are divided into disjoint
pairs and a unit created for each that computes a quadratic polynomial of the pair of input
components. A regression technique is used to determine the coefficients of the polynomials that
best approximate the desired mapping, defined by the input-output pairs in the training set. The
testing set is then used to calculate the mean-square error of each polynomial, or unit, and those
with an error above a specific threshold are discarded. (This is related to Klopf and Gose’s third
measure of worth, the correlation between a unit’s output and the desired output of the system.)
Now the outputs of the remaining units become the input components to the next layer and the
procedure is repeated to determine the polynomials and their coefficients for the units in the
second layer. The procedure ends when a certain degree of accuracy is achieved.

Ivanhenko’s algorithm is basically a search for sets of polynomials of minimal complexity that
approximate a given function. The search begins with quadratic functions and the complexity is
increased in small steps. A combinatorial explosion is avoided by evaluating the current set of
polynomials at each stage and only keeping those receiving good evaluations as potentially useful
terms in functions of higher complexity. Unpromising alternatives are removed at early stages,
thus implementing a kind of beam search (Barr and Feigenbaum, 1981).

Holland, 1975, 1986

Holland has developed the “bucket-brigade” algorithm for assigning credit among the rules of
a production system. Each rule maintains its own measure of worth, referred to by Holland as
its “strength”, and the bucket-brigade mechanism passes quantities of strength among the rules,
based on their activation.

Briefly, the bucket-brigade algorithm consists of the following steps. Upon activation a rule
decreases its strength by a certain amount (called a “tax”), which is distributed in equal fractions
(in the simplest version) to rules that played a role in activating the first rule. If a rule causes
an external action resulting in an evaluation, then this evaluation is added to the rule’s strength.
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Strengths are used in generating new rules by means of Holland’s “genetic algorithm”, described
in the next section. Rules of low strength are discarded.

3.4 Modification

The manner in which a unit’s weights are modified depends on the form of the credit. Three main
categories of modification methods can be distinguished by the form of credit involved:

• a fraction of the gradient, whether exact or approximate;

• the minimal change indicated by the assigned credit;

• a change in the parameters of the generation procedure for new units.

Each category is reviewed below. Less emphasis is placed on distinguishing the authors, since
methods of modifying weights are less varied than are the credit-assignment methods.

3.4.1 Fraction of Gradient

Gradient-descent procedures were presented in the previous section as methods for assigning
credit. When the assigned credit is a sample of a true or approximate gradient, the adjustment
to the weights is simply a fraction of the calculated gradient value. The fraction is typically a
parameter, called ρ in the update equations given in the previous section, whose optimal value
depends on the task and the network structure.

Methods for varying ρ have been considered as ways of speeding the convergence of the weights
when ravines and other difficulties are presented by the gradient. Saridis (1970) has shown how
values of ρ for each weight can be dynamically adapted to accelerate the convergence of gradient
descent and stochastic approximation methods. A similar approach was studied by Sutton (Barto
and Sutton, 1981b, Appendix C). The momentum term of Rumelhart, et al., discussed in the
previous section, has an effect similar to that of changing ρ, although the differences have not
been analyzed.

3.4.2 Minimal Change

Some systems that use the minimal change principle to assign errors adjust the weights in one step
to remove the errors. Reilly, et al., and Soklic viewed this modification process as the shrinking or
expanding of the units’ domains to remove the current situation from or include it in the domains.
The method of assigning errors used by Hampson is similar to what Reilly, et al., and Soklic used
for their prototype units. However, Hampson differed in how modifications are made to the units.
Rather than making an adjustment that was guaranteed to remove the error, he made relatively
small adjustments in the weights, relying on repeated adjustments to guide the placement and
size of the units’ domains.

Stafford used a centrally-controlled mechanism to identify errors in the units’ outputs. Once
the errors are identified, the weights are adjusted by an amount necessary to remove the errors.
Stafford’s approach is unique in that many iterations of error-assignment and modification might
be involved for the presentation of a single input.

Widrow assigned errors by looking for minimal changes, but, like Hampson, made relatively
small changes in the weights. His modification method was the same as that used in his Adaline
units:

∆wij = ρ (dj − wTx)xi,

where dj is the desired output assigned to hidden unit j as a member of a minimal set of hidden
units to be changed.
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3.4.3 Generate New Units

Some methods for learning in multilayer networks assume a fixed number of units and apply
learning algorithms to every unit on every step. Others assume an initial set of units that are
added to as experience is gained. This distinction is fuzzy—large modifications to a unit’s weights
can be considered as the generation of a new unit and the removal of an existing unit. In this
section, it is convenient to focus on the generation of new units.

Methods for generating units can be classified as either data-directed or model-directed,4 de-
pending on whether the current input and outcome, or the current set of weight values are used
to initialize the weights of the new unit.

Data-Directed Generation

Systems employing prototype units can encounter situations where the domains of the current set
of units have been shifted or shrunk to the extent that no unit responds to the current input. A
new unit must be generated if the system is to produce the desired output. Reilly, et al., initialize
the new unit such that its domain is centered on the current input and extends for some radius.
They decrease the initial radius as more units are added, reasoning that finer discriminations need
to be made as experience accumulates.

Soklic also adds units whose domains are centered on the current input, but the shape (rect-
angular dimensions) of a new unit’s initial domain is matched to the shape of nearby domains,
based on the assumption that the neighboring shape is optimal for the part of the input space
surrounding the current input.

In Uhr and Vossler’s pattern classification system, a hidden unit’s parameters define a binary
mask which is scanned across an image, and a unit’s output consists of the number of matches
and the average location of the matches. They tested several methods for generating new units,
one of which is data-directed. When the system’s classification is in error, a mask is extracted
from the image at a random position and generalized slightly by changing the parameters along
the borders between regions of 0’s and 1’s to “don’t-care” symbols, and replacing all remaining
0’s and 1’s with “don’t-care” symbols with a probability of 1/2.

Model-Directed Generation

Uhr and Vossler (1963) and Klopf and Gose (1969) tested a simple process for generating units:
units are formed by initializing their parameters to random values. This can be viewed as using
a trivial model, devoid of knowledge about the task. These authors state that this method is not
very efficient and that the generation process should be guided by past experience with a task.

Model-directed generation is intuitively an evolutionary process, with the premise that better
units can be found by making small changes to current units of high worth. New units are tested
and discarded if found to be of low worth. Selfridge (1959) followed this intuition in specifying the
generation process for Pandemonium. First he discards units of low worth. These are replaced
in two ways, called “mutated fission” and “conjugation”. Mutated fission consists of randomly
selecting one of the remaining hidden units and altering some of its weights, also at random. To
form a new unit by conjugation, two of the remaining units are randomly chosen and logically
combined by selecting one of ten non-trivial, logical functions and adding a unit that computes
this logical function on the output of the two chosen units.

The conjugation method was also used by Uhr and Vossler (1963) and Ivanhenko (1971). Uhr
and Vossler generated new units by randomly choosing two units and logically combining their
input masks. Ivanhenko generated a unit for every pairwise product of the outputs of current
units after discarding the units of low worth.

Holland has carried the evolutionary view even further with the development of his “genetic
algorithm”. The rules of his production system are represented as bit strings. To generate new
rules a set of three operations are applied to rules of high worth, indicated by a rule’s strength. The

4The labels data-directed and model-directed are adapted from similar uses in the machine learning literature

(Cohen and Feigenbaum, 1981).
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“mutation” operation is similar to Selfridge’s “mutated fission”: a high-worth rule is copied and
its bits are flipped with a low probability. The “crossover” operation is performed by randomly
choosing two rules of high worth, then randomly selecting a position in the rules’ bit strings and
interchanging the substrings following or preceding that position, resulting in four new rules. A
third operation is called “inversion”, which reorders the bits of a string.

The genetic algorithm generates rules based on the current hypotheses about which rules are
useful, and is therefore a model-directed approach. Multiple rules are generated on each step and
are tested through further experience with the task. The operation of the genetic algorithm has
been extensively analyzed (Holland, 1975) and has been applied in several domains (Gillies, 1985;
Goldberg, 1983; Smith, 1983).

3.5 Outline

We conclude this review with an outline of the multilayer learning methods described in this
chapter. The direct search methods are outlined first, then the remainder are grouped according
to their approach to the credit-assignment problem. The format of the outline is adapted from that
used by Smith, Mitchell, Chestek, and Buchanan (1977) for their review of single and multilayer
learning systems.

3.5.1 Direct Search

Direct Search

SYSTEM INPUT, OUTPUT: real-valued vector in, type of output irrelevant

STRUCTURE: multiple layers of units using parameterized, nonlinear functions;

unrestricted architecture

CRITIC OUTPUT: scalar evaluation

TIMING OF LEARNING: after a number of interactions with task environment, every

parameter is modified at once

ALL LAYERS

GENERATION: new parameter vector is generated from:

a) a uniform probability distribution (unguided random search)

b) a Gaussian (or similar) probability distribution centered on

the currently best parameter vector (guided random search)

c) some function of the previously best n parameter vectors and

their evaluations (deterministic search)

CREDIT ASSIGNMENT: the critic assigns a scalar evaluation to each parameter

vector

MODIFICATION: parameter vectors receiving high evaluations replace those of

low evaluation

3.5.2 Gradient Methods

Rumelhart, Hinton, and Williams

SYSTEM INPUT, OUTPUT: real-valued vector in, real-valued vector out
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STRUCTURE: multiple layers of units using real-valued, logistic function; unrestricted

architecture

CRITIC OUTPUT: desired outputs for output units

TIMING OF LEARNING: information must flow from output layer backwards through

hidden layers

OUTPUT LAYER:

CREDIT ASSIGNMENT: every unit is assigned an error by the critic

MODIFICATION: based on gradient

HIDDEN LAYERS:

CREDIT ASSIGNMENT: gradient recursively calculated from a unit’s output and the

weights connecting its output to other units and those units’ gradients

MODIFICATION: based on gradient

Rosenblatt

SYSTEM INPUT, OUTPUT: real-valued vector in, binary components out

STRUCTURE: multiple layers of linear threshold units, acyclic

CRITIC OUTPUT: desired output for output units

TIMING OF LEARNING: information must flow from output layer backwards through

hidden layers

OUTPUT LAYER:

CREDIT ASSIGNMENT: every unit is assigned an error by the critic

MODIFICATION: one of Rosenblatt’s weight update rule

HIDDEN LAYER:

CREDIT ASSIGNMENT: signed errors are assigned probabilistically based on error,

hidden layer’s output, and interconnecting weight; errors assigned with a low

probability even when output layer’s output is correct. A hidden unit’s

errors from every output unit are summed.

MODIFICATION: one of Rosenblatt’s weight update rule
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Alder

SYSTEM INPUT, OUTPUT: real-valued vector in, binary components out

STRUCTURE: multiple layers of linear threshold units, acyclic

CRITIC OUTPUT: desired output for output units

TIMING OF LEARNING: only a single unit is modified at each step

ALL LAYERS:

CREDIT ASSIGNMENT: a unit is picked at random

MODIFICATION: Rosenblatt’s perceptron weight update rule

Ackley, Hinton, Sejnowski

SYSTEM INPUT, OUTPUT: binary-valued vector in, binary-valued vector out

STRUCTURE: multiple layers of stochastic, linear threshold units; connections are

symmetric; otherwise unrestricted architecture

CRITIC OUTPUT: desired output for visible units

TIMING OF LEARNING: simultaneously modified

ALL LAYERS:

CREDIT ASSIGNMENT: gradient approximated by multi-step stochastic search in

‘‘free’’ and ‘‘clamped’’ modes

MODIFICATION: based on approximate gradient

Farley and Clark

SYSTEM INPUT, OUTPUT: real-valued vector in, binary-valued vector out

STRUCTURE: multiple layers of stochastic, linear threshold units (with dynamics

modeled after the neuron); unrestricted architecture

CRITIC OUTPUT: reinforcement

TIMING OF LEARNING: simultaneously

ALL LAYERS

CREDIT ASSIGNMENT: gradient is approximated by single-step stochastic search

MODIFICATION: based on approximate gradient

Barto, et al.

SYSTEM INPUT, OUTPUT: real-valued vector in, binary-valued vector out

STRUCTURE: multiple layers of stochastic, linear threshold units;

otherwise unrestricted architecture

CRITIC OUTPUT: reinforcement

TIMING OF LEARNING: simultaneously

ALL LAYERS:

CREDIT ASSIGNMENT: gradient is approximated by single-step stochastic search

MODIFICATION: based on approximate gradient
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3.5.3 Minimal Change

Widrow

SYSTEM INPUT, OUTPUT: real-valued vector in, binary components out

STRUCTURE: two layers of linear threshold units, strictly layered

CRITIC OUTPUT: desired output for output units

TIMING OF LEARNING: hidden layer modified first, then output layer if errors remain

HIDDEN LAYER:

CREDIT ASSIGNMENT: all units are examined to find the set of units that can be

minimally modified to reduce the output layer’s errors

MODIFICATION: Widrow’s Adaline weight update rule

OUTPUT LAYER:

CREDIT ASSIGNMENT: every unit is assigned an error by the critic

MODIFICATION: Widrow’s Adaline weight update rule

Stafford

SYSTEM INPUT, OUTPUT: real-valued vector in, binary components out

STRUCTURE: multiple layers of linear threshold units, single unit in output layer,

all weights but those in very first layer restricted to positive values,

acyclic architecture

CRITIC OUTPUT: desired output for output unit

TIMING OF LEARNING: determined by credit assignment procedure

ALL LAYERS:

CREDIT ASSIGNMENT: all units are manipulated by systematically changing their

output, assigning errors to units when their output and the output

unit’s output switch at the same time

MODIFICATION: weights changed to values necessary for unit’s output to switch

back to original value

Soklic

SYSTEM INPUT, OUTPUT: real-valued vector in, binary components out

STRUCTURE: hidden layer is of prototype units having rectangular domains, output

layer is of linear threshold units, weights have values of either 0 or 1

CRITIC OUTPUT: desired outputs for output units

TIMING OF LEARNING: hidden layer modified first, output layer only modified when new

hidden unit is added

HIDDEN LAYER:

CREDIT ASSIGNMENT: blame is assigned to units whose domains contain the situation

and that are connected to the wrong output units, credit is assigned to

units connected to correct output units and whose domains are close to

the situation

MODIFICATION: rectangular domains of bad units are reduced and shifted away from

situation, good units are shifted towards situation, new unit is added with
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domain centered on situation if no good units are close enough to situation

OUTPUT LAYER:

CREDIT ASSIGNMENT: every unit is assigned an error by the critic

MODIFICATION: when new hidden unit is added, weight of 1 is assigned to connection

between new unit and correct output unit, 0’s to other connections

Reilly, Cooper, and Elbaum

SYSTEM INPUT, OUTPUT: real-valued vector in, binary components out

STRUCTURE: hidden layer is of linear threshold units operated as prototype units

having circular domains by normalizing input vectors; output layer is of

linear threshold units, weights have values of either 0 or 1

CRITIC OUTPUT: desired outputs for output units

TIMING OF LEARNING: hidden layer modified first, output layer only modified when

a new hidden unit is added

HIDDEN LAYER:

CREDIT ASSIGNMENT: blame is assigned to units whose domains contain the situation

and that are connected to wrong output units, credit is assigned to

units connected to correct output units and whose domains are close to

the situation

MODIFICATION: circular domains of bad units are reduced, a new unit is added with

domain centered on situation if no good units are close enough to situation

OUTPUT LAYER:

CREDIT ASSIGNMENT: every unit is assigned an error by the critic

MODIFICATION: when new hidden unit added, weight of 1 is assigned to connection

between new unit and correct output unit, 0’s to other connections

Hampson

SYSTEM INPUT, OUTPUT: vector of binary numbers in, vector of binary numbers out

STRUCTURE: hidden layer is of linear threshold units operated as prototype units by

dealing only with binary input; output layer is of linear threshold units

CRITIC OUTPUT: desired outputs for output units

TIMING OF LEARNING: simultaneously

HIDDEN LAYER:

CREDIT ASSIGNMENT: blame is assigned to units whose domains contain the situation

and that are connected to wrong output units

MODIFICATION: domains of bad units are reduced, units also competitively tune

to each situation to ensure that all situations are contained in at

least one unit’s domain

OUTPUT LAYER:

CREDIT ASSIGNMENT: every unit is assigned an error by the critic

MODIFICATION: weights are strengthened based on probability of co-occurrence of

corresponding input and desired action of value 1, weights are reduced

by slowly decaying
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3.5.4 Worth

Samuel

SYSTEM INPUT, OUTPUT: real-valued vector in, real-valued number out

STRUCTURE: hidden layer is units of nonlinear functions; output layer is a single

linear unit; strictly layered architecture

CRITIC OUTPUT: desired output of output unit

TIMING OF LEARNING: output unit is modified for set number of interactions with the

task environment, before hidden layer is modified

OUTPUT LAYER:

CREDIT ASSIGNMENT: correlations between signs of input components and sign of

the output unit’s error

MODIFICATION: weight for input with largest correlation set to maximum value and

other weights set to proportional values, depending on the correlations

of their associated inputs

HIDDEN LAYER:

GENERATION: new units are taken from a predefined list of units that Samuel guessed

would be useful

CREDIT ASSIGNMENT: a unit is deemed as replaceable when its connection weight

to the last layer has been lower than all others for a set number of steps

MODIFICATION: replaceable units are placed at the bottom of the predefined list

of units

Selfridge

SYSTEM INPUT, OUTPUT: real-valued vector in, real-valued vector out

STRUCTURE: hidden layers are nonlinear, parameterized functions; output layer is of

linear units; strictly layered architecture

CRITIC OUTPUT: unspecified, must be able to derive a scalar evaluation from the

critic’s output

TIMING OF LEARNING: last layer is modified until optimized for given parameters

of hidden units, before hidden units are modified

HIDDEN LAYERS:

GENERATION: new units are generated by:

a) randomly altering the parameters of an existing unit (‘‘mutated fission’’),

b) combining the functions of two existing units

CREDIT ASSIGNMENT: sum of weights connecting a unit to the output units

MODIFICATION: existing units are not modified, units having low-magnitude weights

connecting them to the last layer are removed

Uhr and Vossler

SYSTEM INPUT, OUTPUT: binary-valued vector in, binary-valued vector out

STRUCTURE: hidden layer is of units producing several values, based on scanning the

unit’s binary-valued mask across the input image and looking for matches;
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output layer is of prototype units, whose parameters were compared to the output

of the hidden layer, with ‘‘amplifiers’’ associated with each component;

strictly layered architecture

CRITIC OUTPUT: desired output for output units

TIMING OF LEARNING: output layer is modified whenever in error, hidden layer is

modified when unit found to be of little use

OUTPUT LAYER:

CREDIT ASSIGNMENT: errors to each unit from critic

MODIFICATION: parameters updated based on their difference from output of

hidden layer

HIDDEN LAYER:

GENERATION: new units are either prespecified or generated by:

a) by randomly assigning binary values to the mask,

b) randomly extracting a part of the input image, or

c) logically combining two existing units

CREDIT ASSIGNMENT: a unit becomes replaceable when its corresponding amplifier

value, averaged over all output units, is low

MODIFICATION: replaceable units are removed

Klopf and Gose

SYSTEM INPUT, OUTPUT: real-valued vector in, real-valued vector out

STRUCTURE: hidden layer is of units using tabulated response functions, with one value

for each different input vector; output layer is of single linear unit; strictly

layered architecture

CRITIC OUTPUT: desired outputs for output units

TIMING OF LEARNING: output layer, then hidden layer

OUTPUT LAYER:

CREDIT ASSIGNMENT: errors to each unit from critic

MODIFICATION: optimal parameters directly calculated

HIDDEN LAYER:

GENERATION: new units are generated by randomly assigning output values to

every input vector

CREDIT ASSIGNMENT: tried several ways:

a) magnitude of output weight,

b) product of a unit’s output and its output weight, and

c) absolute value of cross correlation between unit’s output and the

desired output

MODIFICATION: units are not modified, number removed prespecified

Ivanhenko

SYSTEM INPUT, OUTPUT: real-valued vector in, real-valued number out

STRUCTURE: hidden layers are of units formed as products of two inputs; output layer

is of a single linear unit; strictly layered architecture

CRITIC OUTPUT: desired outputs for output units
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TIMING OF LEARNING: first hidden layer’s units generated, output unit is optimized,

second hidden layer is generated, output layer is optimized, etc.

OUTPUT LAYER:

CREDIT ASSIGNMENT: errors to the unit from critic

MODIFICATION: optimal parameters directly calculated

HIDDEN LAYERS:

GENERATION: new units are generated by forming products of every possible pairing

of components generated from the previous layer

CREDIT ASSIGNMENT: magnitude of weight connecting unit to output unit

MODIFICATION: units are not modified, units removed if result in small weight

connection to output unit

Holland

SYSTEM INPUT, OUTPUT: binary-valued vector in, binary-valued vector out

STRUCTURE: set of production rules, conditions are strings of 0, 1, and ‘‘don’t-care’’

symbols, actions are strings of 0 and 1; each rule has a numerical strength

CRITIC OUTPUT: scalar evaluation

TIMING OF LEARNING: rule base modified after set number of interactions with task

environment

ALL LAYERS:

GENERATION: new rules formed by genetic-algorithm (randomly choosing rules based

on their strengths and applying genetic operators to them, producing new

rules)

CREDIT ASSIGNMENT: a rule’s strength is altered when it activates another rule

through the bucket-brigade algorithm

MODIFICATION: rules of low strength are removed
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Chapter 4

Comparison of Methods for
Learning Missing Features

Experiments with the multiplexer task in Chapter II focused on the issue of developing new
features that are required for a task’s solution. It was shown that with the original representation
the task could not be solved by a single-layer network of linear threshold units. In this chapter,
eleven algorithms for learning new features through modifications to the weights of hidden units
are evaluated by how well they overcome the difficulties presented by the original representation.

The multiplexer task was defined in Chapter II, so the description here is brief. The input
vectors consist of two address bits and four data bits, plus a constant component of 0.5. The
desired output is given by a multiplexer function of the address and data bits. If we call the
address components a1 and a2 and the data components d1, d2, d3, and d4, the expression for the
multiplexer function is

ā1ā2d1 ∨ ā1a2d2 ∨ a1ā2d3 ∨ a1a2 d4.

There are a total of 26, or 64, input vectors.
The system used in the following experiments is an extension of the single-layer system applied

to this task in Chapter II. An additional layer was formed by adding four units, each receiving
input from the environment and generating a new input component to the output layer. This
structure is shown in Figure 4.1. By supplying the original input components to the output unit,
linear associations can be formed directly from the input to the network’s output, permitting some
of the input-output associations to be learned without the adjustment of hidden-unit weights.
Note that the system contains no cycles. The outputs of Units 1 through 4 are always calculated
before the output of Unit 5.

For the experiments to be described, the hidden-unit algorithm is the primary variable. The
learning algorithm for the output unit was the same for most experiments. The perceptron
algorithm (Rosenblatt, 1962) was used for the output unit since it is well-known and was found
in Chapter II to be relatively insensitive to the parameter ρ (so ρ would not have to be varied to
optimize performance). The application of Rumelhart, et al.’s error back-propagation algorithm
(Rumelhart, Hinton, and Williams, 1986) to the hidden units requires the use of a differentiable
output function in the output unit, so Rumelhart, et al.’s semilinear output function and learning
algorithm, described in Chapter III, were used in the output unit for the experiments with the
error back-propagation algorithm.

A step in the simulation of this system consists of the following. An input vector is selected
by choosing one randomly, without replacement, from the set of all input vectors. Upon receipt
of an input vector, the outputs of the hidden units are calculated, followed by the calculation of
the output of the output unit. The output of the system, equal to that of the output unit, is
subtracted from the desired output. This error controls the perceptron learning algorithm as it
is applied to the weights of the output unit, after which the particular learning algorithm being
tested in the hidden units is applied to the hidden units’ weights (though some algorithms, such
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Figure 4.1: Two-Layer Network for Multiplexer Experiments
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as the direct-search algorithms, do not change the weights of the hidden units on every step).
This completes one step in the simulation. Every input vector is presented once during the first
64 steps, and once again for every subsequent set of 64 steps, where the order of presentation is
determined randomly.

We now present the algorithms along with the experimental results. The direct-search algo-
rithms are presented first. These algorithms require no knowledge about the system other than
the number of hidden-unit weights and their range of values. Following the direct-search algo-
rithms, several error back-propagation algorithms are presented that involve the propagation of
the output unit’s error to the hidden units. Then some reinforcement-learning algorithms are
presented, which effectively give each hidden unit the responsibility of conducting a search of its
own weight space. A modification of one reinforcement-learning algorithm is considered that gen-
erates localized reinforcements to the hidden units by propagating information from the output
unit back to the hidden units. Finally, a mechanism is added that treats hidden units that have
not yet acquired a substantial influence on the output unit differently from those that do have
influence, to reduce the time needed to discover useful new features.

The behavior of each algorithm depends on several parameters. A comparative study should
guarantee that parameter values are used that are optimal for a given algorithm to ensure the
absence of bias in favor of one algorithm over another. However, the time required to simulate
the connectionist system used in these experiments prohibited a thorough optimization of the
parameter values. We were only able to test an average of six different values over a broad range
for each parameter, and when an algorithm depended on more than one parameter only one
parameter was varied at a time.

4.1 Direct-Search Algorithms

4.1.1 Unguided Random Search

The first algorithm considered is the simplest possible random search. It consists of randomly
choosing new values from a uniform probability density function for the weights of every hidden
unit in the system. The set of values is evaluated by letting the system interact with the environ-
ment for a number of steps, remembering the set of values receiving the best evaluation. When
considering such a search as an optimization method, one usually assumes the state of the pa-
rameterized system remains constant during its evaluation. Here we want to evaluate the current
values of the weights by measuring the degree to which the system can solve the task using the
given weight values, so the output unit continues to learn while the weights of the hidden units
are held constant. The weights of the output unit are set to zero whenever new values for the
hidden units’ weights are generated.

To describe this in more detail we must define some terms. Let wh be a vector of weight values
for the hidden units, wo be a weight vector for the output unit, yj [t] be the output of Unit j, and
let dj [t] be the desired output for Output Unit j (or the desired value of y5[t] in this case), where
t is the current time step. There are four hidden units, each receiving seven input components,
so wh contains 28 components. The single output unit receives seven input components plus four
from the output of the hidden units, giving wo 11 components. Let n be the number of steps over
which each vector of weight values is evaluated, and let w∗h and e∗ be the currently-best weight
vector and its evaluation, and w∗o be the vector of weights of the output unit that developed
during the evaluation of w∗h. With this notation we can now present the algorithm:

Unguided Random Search Algorithm

1. Generate a new weight vector to be used during the next n steps:

wh = random variable from uniform probability
density function over [−1, 1]28,

wo = 0.

65



2. Interact with the environment for n steps, producing the sequences yi[k], and dj [k], as
k = t, t + n, for all units i and all output units j ∈ O, allowing the output units to learn
after each step. Recall that O is the set of indices of the output units, so O = {5} for the
multiplexer task. All units use the linear threshold output function.

3. Evaluate the weight vector:

e =
t+n∑
k=t

∑
j∈O
|dj [k]− yj [k]| ,

t = t+ n.

If this is the first evaluation, then let w∗h = wh, w∗o = wo, and e∗ = e and repeat, starting
with Step 1. Otherwise, continue.

4. If the number of errors is lower than the previously-best evaluation, then the current weight
vector becomes the best vector:

if e < e∗

then w∗h = wh
w∗o = wo
e∗ = e.

5. Repeat, starting with Step 1, for a prespecified number of steps.

6. At the conclusion of the prespecified number of steps, assign the “best” weight vectors to
the hidden and output units, before calculating the final-step performance measure ν.1

The unguided random search was tested on the multiplexer task for several values of n. For
each value of n, the results from 10 runs of 300,000 steps each were collected. The final perfor-
mance level of a run, ν, is calculated by first substituting, for the final-step weight vector, the
weight vector determined as the best for that run. Then the number of possible input vectors for
which the network generated an incorrect output is tallied. As before, ν can range from 0 to 64,
and a purely random strategy of generating outputs would result in an average value of 32 for ν.

In addition to the performance level at the final step of each run, we determined the value of
the cumulative performance, µ, which for a single run is the sum of the number of errors made
on every step. For a nonlearning, random strategy, errors would occur on an average of half of
the steps, producing a value for µ of 150,000.

The results of the experiments are listed in Table 4.1, including the 99% confidence intervals
of ν and µ. The unguided random search performed better than a nonlearning, random strategy
for all values of n that were tried. The value of µ consistently declines as the parameter n
increases. Recall that after every n steps, a new weight vector is generated that does not depend on
previously-tested vectors, so there is no gradual improvement in performance as a run progresses.
However, since the output unit is learning throughout each n step period, larger values of n result
in better performance at the end of the n step period and better average performance over that
period, which explains the inverse relationship of µ and n.

The values of ν do not indicate any one value of n as being optimal. When n is 200 or less,
significantly higher values of ν are obtained than when n is 400 or greater. In fact, for n ≤ 200,
performance is not significantly different from that of a single layer, for which ν ≈ 24.

A learning curve for the unguided random search on the multiplexer task was obtained by
choosing the best value of n, which is 1600, and performing 30 runs of 300,000 steps each. This
resulted in performance measures of ν = 17.0±2.93 and µ = 115, 062±229 and the learning curve
in Figure 4.2 (appearing again in Figure 4.5 on page 86). Figure 4.2 includes learning curves for

1The performance measures µ and ν are defined in Chapter II.
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n ν µ
50 25.6± 2.78 140, 228± 263

100 22.7± 2.88 134, 397± 128
200 23.4± 3.80 127, 913± 237
400 18.0± 3.21 122, 209± 176
800 16.5± 2.66 117, 899± 342

1600 15.7± 3.22 115, 099± 324
3200 18.4± 5.23 112, 848± 462
6400 17.0± 4.29 112, 577± 803

12800 16.9± 3.96 111, 477± 1, 064
25600 17.7± 3.71 110, 654± 1, 535

Table 4.1: Unguided Random Search on the Multiplexer Task

Figure 4.2: Learning Curves of Direct-Search Algorithms on the Multiplexer Task

the other direct search algorithms described below. On this and all subsequent graphs, an initial
quick drop appears from 0.5 errors per step to approximately 0.37 or 0.38. This is caused by the
output unit learning as many correct responses as possible; a single unit given the input vectors
for the multiplexer task can learn the correct output for 40 of the 64 input vectors, resulting in
an average of 0.375 errors per step.

4.1.2 Guided Random Search

When an improvement in performance is desired during the learning process, as in cases where
a predefined finite training set of input vectors is not available, the unguided random search
cannot be used. The generation of weight vectors must be related to the currently-best vector in
a way that results in a level of performance that is better, on average, than that achieved for the
previously-tried vector.

There are many ways of making the generation of weight vectors dependent on the currently-
best vector (or on a series of best vectors). We studied two methods, the first being a guided
random search and the second the polytope method described in the next section. The guided ran-
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n ν µ
50 27.2± 3.76 138, 978± 898

100 24.1± 3.61 131, 957± 2, 102
200 18.4± 3.94 124, 089± 1, 345
400 13.8± 3.76 115, 390± 3, 271
800 13.3± 4.73 111, 205± 3, 851

1600 13.1± 4.21 106, 544± 3, 314
3200 12.5± 3.94 106, 818± 2, 524
6400 16.5± 4.48 108, 225± 2, 413

12800 17.6± 5.29 108, 620± 3, 615

τ = 2

τ ν µ
0.1 18.9± 4.91 106, 894± 6, 204
0.2 17.1± 2.53 109, 454± 4, 897
0.5 14.9± 4.13 105, 343± 6, 124
1.0 11.4± 3.58 102, 583± 6, 128
2.0 12.5± 3.94 106, 818± 2, 524
4.0 15.6± 2.83 108, 128± 2, 797
8.0 15.0± 4.06 108, 498± 3, 066

n = 3200

Table 4.2: Guided Random Search on the Multiplexer Task

dom search differs from the unguided random search only in the manner of generating new weight
vectors. Rather than generating weight vectors from a uniform probability density function, they
are chosen from a probability density function (defined below) centered on the currently-best
weight vector. This density function is symmetric about the currently-best vector and the prob-
ability of selecting vectors decreases as the Euclidean distance from the currently-best vector
increases. The algorithm is defined as follows.

Guided Random Search Algorithm

1. Generate a new weight vector to be used during the next n steps:

wh = random variable from probability density
function Ψ(w), given by:

Ψ(w) =
1

1 + e
|w − w∗h|

τ

with mean w∗h and “spread” τ (see below),

wo = 0.

Steps 2 through 5 are identical to those listed for the Unguided Random Search Algorithm.
(See page 65.)

This algorithm depends on two parameters: the number of steps between the generation of
weight vectors is given by n, and the “spread” of the logistic probability density function is given
by τ . The logistic function has been used to model the noise in distributed, dynamical systems
and the parameter τ is referred to as the “temperature” of the system (see Chapter III, page 46).

As stated earlier, the amount of computer time required to perform these experiments pre-
vented a systematic search for the optimal values of n and τ . However, we did perform two
unidimensional searches by holding τ constant with a value of 2 while varying n, then varying τ
while holding n constant with the value resulting in the best performance. For each parameter
setting, results were averaged over 10 runs with each run lasting 300,000 steps.

The results in Table 4.2 show that the value of n must be neither too low nor too high to
achieve good performance at the end of each run. However, unlike the results from the unguided
random search, the cumulative performance measure µ also has a U-shape as n increases, showing
evidence of a tradeoff between decreasing the error rate through learning in the output unit (large
n) and through optimizing the weights of the hidden units by making more trials (small n).

Performance as a function of τ also has a U-shape; there appears to be an optimal value of
τ in the range of 0.5 to 2. Note that as the value of τ increases, the logistic probability density
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function comes to approximate a uniform density function; the guided random search will behave
as the unguided random search for large values of τ . Performance being worse for larger values
of τ indicates that the multiplexer task presents the learning system with situations for which
following the gradient of the error function with respect to the system’s weights is advantageous.
The poor performance for low values of τ might be due to either:

• making weight changes whose magnitudes are smaller than those resulting from higher values
of τ , thus not converging upon a good set of weights as quickly, or

• becoming “stuck” at locally optimum weight vectors, whereas the higher values of τ produce
a higher probability of jumping out of locally optimum regions of the weight space.

The optimal value of τ would provide the right balance between these two effects.
This algorithm’s learning curve in Figure 4.2 is averaged over 30 runs of 300,000 steps each,

using n = 3200 and τ = 1. The resulting performance levels are ν = 13.1 ± 2.36 and µ =
103, 866± 3420.

4.1.3 Polytope Algorithm

Another method for directly searching the weight space is the Polytope Algorithm (Gill, Murray,
and Wright, 1981). This method is often called the “simplex” method, not to be confused with the
simplex method for linear programming. The polytope algorithm is a deterministic hillclimbing
method that maintains a list of m weight vectors, ordered according to their evaluations. The m
weight vectors are treated as vertices of a polytope in m− 1–dimensional space, and new vectors
are generated in a fashion designed to shift the polytope towards an optimum weight vector,
taking large steps when progress is being made in improving the evaluation and taking smaller
steps when it appears that the optimum has been approached. Since this is a deterministic hill-
climbing method it can become stuck at locally optimum points. We included it in our study as
an example of a reasonably sophisticated, deterministic, direct-search algorithm to complement
the random methods presented above.

Our application of the polytope algorithm to learning in the hidden units is implemented as
follows:

Polytope Algorithm

1. Generate m 28-dimensional weight vectors, wi, randomly:

wi = random variable from uniform probability
density function over [−1, 1]28, for i = 1, . . . ,m.

These define the vertices of a polytope in m− 1–dimensional space.

2. Evaluate each weight vector wi by fixing the hidden units’ weights to wi, setting the weights
of the output units to zero, and interacting with the environment while learning in the output
units, for t = (i−1)n, . . . , in. All units use the linear threshold output function. Afterwards,
the time step counter, t, is incremented:

wh = wi,
wo = 0,

ei =
in∑

k=(i−1)n+1

∑
j∈O
|dj [k]− yj [k]|,

t = in+ 1.

In practice, t is advanced by 1 after every system-environment interaction.
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3. Reorder ei and the corresponding wi, i = 1, . . . , n such that:

e1 ≤ e2 ≤ · · · ≤ em.

4. (Reflection Step) Find the centroid, c, of the m − 1 best weight vectors, reflect the worst
weight vector through the centroid to generate wr, set the output units’ weights to zero,
and evaluate wr, giving er:

c =
1

m− 1

m−1∑
i=1

wi,

wr = c+ ρr(c− wm),
wh = wr,
wo = 0,

er =
t+n∑
k=t

∑
j∈O
|dj [k]− yj [k]|,

t = t+ n.

Replace the worst weight vector, wm, with the reflected vector, wr, if wr is not better than
w1 and not worse than wm−1:

If e1 ≤ er ≤ em−1

then wm = wr
em = er.

If wm was replaced, repeat, starting with Step 4; otherwise continue to Step 5.

5. (Expansion Step) If the reflected weight vector is the new best vector, then the direction of
reflection was very successful and an attempt is made to expand the polytope by generating
we and evaluating it:

if er > e1, then skip to Step 6.

we = c+ ρe(wr − c),
wh = we,
wo = 0,

ee =
t+n∑
k=t

∑
j∈O
|dj [k]− yj [k]|,

t = t+ n.

Replace the worst vector with the better of the reflected and the expanded vectors:

wm =
{
we, if ee < er;
wr, otherwise,

em = min(ee, er).

Repeat, starting with Step 4.

6. (Contraction Step) This step is performed when the reflected vector is either the worst
(er ≥ em) or the second to the worst vector (er > em−1). The polytope is contracted by

70



generating wc in one of two ways:

wc =
{
w1 + ρc(wm − w1), if er ≥ em;
w1 + ρc(wr − w1), if em > er > em−1,

wh = wc,
wo = 0,

ec =
t+n∑
k=t

∑
j∈O
|dj [k]− yj [k]|,

t = t+ n.

If the contracted vector is better than both the reflected vector and the worst vector, then
it replaces the worst vector:

If ec < er and ec < em

then wm = wc
em = ec.

Otherwise, the polytope is shrunk in the direction of the best vector and the resulting weight
vectors are evaluated and reordered:

If ec > er or ec > em
then for i = 2, . . . ,m

wi =
(w1 + wi)

2
,

wh = wi,
wo = 0,

ei =
t+n∑
k=t

∑
j∈O
|dj [k]− yj [k]|,

t = t+ n,

Reorder wi, i = 1, . . . ,m.

Repeat, starting with Step 4.

7. After the prespecified number of time steps have elapsed, the best weight vector is assigned
to the weights of the system before calculating the final-step evaluation.

The polytope algorithm depends on the parameter m, the number of weight vectors maintained
as vertices of the polytope, and the parameter n, the number of steps over which each weight
vector is evaluated. Other parameters are ρr, ρe, and ρc, which determine the lengths of the
reflection, expansion, and contraction steps, respectively. Valid ranges for these parameters are
ρr > 0, ρe > 1, and 0 < ρc < 1. To reduce the number of experiments to a practical level, we did
not attempt to find optimal values for ρr, ρe, and ρc, but set ρr = 2, ρe = 2, and ρc = 0.2. We
did vary m and n, as shown in Table 4.3. The value of m was fixed at 20 while n varied, after
which n was fixed at 1600, which gave the best value of ν, while m was varied. The results are
again averages over 10 runs at 300,000 steps per run.

Table 4.3 suggests that the optimum value of n is between 400 and 3,200. The results are
even less conclusive about the optimum value of m; additional runs must be made to obtain
performance averages with less variance. The values n = 1600 and m = 10 were used in 30
runs of 300,000 steps to obtain the learning curve in Figure 4.2, resulting in ν = 14.2± 2.09 and
µ = 94, 977± 3079.
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n ν µ
200 20.8± 4.04 118, 780± 6, 537
400 17.8± 4.33 105, 624± 4, 442
800 13.0± 3.82 99, 575± 5, 319

1,600 12.6± 2.70 102, 449± 3, 654
3,200 14.2± 2.76 109, 711± 1, 460
6,400 15.7± 3.74 110, 860± 2, 058

12,800 19.0± 3.93 110, 866± 2, 488

m = 20

m ν µ
3 17.4± 2.78 100, 046± 6, 767
5 17.6± 4.51 96, 223± 4, 441

10 12.1± 1.97 94, 157± 4, 165
15 15.9± 6.15 102, 793± 4, 071
20 12.6± 2.70 102, 449± 3, 654
25 14.7± 4.24 107, 972± 2, 447

n = 1600

Table 4.3: Polytope Algorithm on the Multiplexer Task

None of the direct-search methods were able to solve the multiplexer task within the allotted
300,000 steps. The unguided random search shows no improvement over time, because the weight
vectors being tested are not dependent on previous search steps. Its final performance level
is slightly better than that of the single-layer system (ν = 17 versus ν = 24). The guided
random search does show improvement over time, though the slope of its learning curve becomes
approximately flat early in the runs. Averaged over the last 3,000 steps of every run, the number
of errors per step is approximately 0.35. The polytope algorithm performs better than both
random search methods, reaching an average over the last 3,000 steps of 0.28 errors per step.

4.2 Error Back-Propagation Algorithms

Next we discuss some error back-propagation algorithms for learning in hidden units, starting
with the algorithm due to Rosenblatt described in Chapter III.

4.2.1 Rosenblatt

Rosenblatt is well-known for his work with the perceptron-family of learning algorithms (Rosen-
blatt, 1962), but his error back-propagation algorithm has received little attention. Since this
was proposed early in the history of work on learning in multilayer systems and seemed to work
reasonably well for the experiments Rosenblatt performed, we wished to include it in our study.
Rosenblatt’s algorithm is a nondeterministic way to assign errors to hidden units based on the
errors of output units. The following is our specification of Rosenblatt’s algorithm:

Rosenblatt’s Back-propagation Algorithm

1. Initialize all weights to zero:
wh = 0,
wo = 0.

2. Receive input vector, calculate the output of all units using a linear threshold function, and
receive error signals for the output units.

3. Apply the perceptron learning algorithm to the output units.

4. Calculate the error, δjk, passed back from output unit k to hidden unit j (probabilistically
based on the output unit’s error, the weight connecting unit j to unit k, and the output of
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ρ ν µ
0.030 24.7± 3.54 121, 085± 238
0.060 23.6± 2.96 121, 286± 168
0.125 22.8± 3.11 121, 112± 156
0.250 22.0± 2.92 121, 129± 176
0.500 21.9± 2.83 121, 175± 278
1.000 24.0± 2.74 121, 161± 169
2.000 23.1± 3.18 121, 132± 134

Table 4.4: Rosenblatt’s Algorithm on the Multiplexer Task

unit j).

vk[t] = random variable from a uniform probability density
function over [0, 1], where k ∈ O takes the values of the
indices of the output units,

δjk[t] =



−1, if yj [t] = 1 and (dj [t]− yj [t])wjk[t] < 0 and vk[t] < p1;

+1, if yj [t] = 0 and (dj [t]− yj [t])wjk[t] > 0 and vk[t] < p2

or
if yj [t] = 0 and (dj [t]− yj [t])wjk[t] ≤ 0 and vk[t] < p3;

0, otherwise.

5. Apply the perceptron learning rule to each hidden unit j, using the sign of the sum of the
back-propagated errors from the output units as the error signals:

∆wij [t] = ρ sgn

(∑
k∈O

δjk[t]

)
xi[t].

6. Repeat, starting at Step 2, until the prespecified number of time steps has elapsed.

Rosenblatt’s algorithm depends on the parameter ρ, a factor determining the magnitude of
change for each weight, and the parameters p1, p2, and p3, which are probabilities affecting the
frequencies with which the back-propagated error signals take the values +1 and −1. Rosenblatt
performed a number of experiments and determined that the values p1 = 0.9, p2 = 0.3, and
p3 = 0.1 were reasonable values. Rather than attempting to optimize all four parameters, we
used these values for p1, p2, and p3 for all experiments, only varying the value of ρ.

The results are in Table 4.4. There are few significant differences for different values of ρ,
though values from 0.125 to 0.5 resulted in slightly lower values of ν. The values of ν and µ show
no improvement over a single-layer system. Indeed, the learning curve for Rosenblatt’s algorithm,
in Figure 4.3, shows no improvement over time and is always worse than the single-layer level.
The learning curve is averaged over 30 runs of 300,000 steps each, giving values of ν = 23.9±1.58
and µ = 121, 115 ± 92. To fairly judge the performance of Rosenblatt’s algorithm, additional
values of p1, p2, and p3 must be tested.

4.2.2 Rumelhart, Hinton, and Williams

Another approach to the back-propagation of errors was taken by Rumelhart, Hinton, and
Williams (1986). They used semilinear units, defined in Chapter III, for which the gradient
of an error function with respect to each weight can be derived. Rumelhart, et al.’s algorithm is
based on a recursive formulation of this gradient which is realized as a scheme of back-propagating
errors. Our specialization of this algorithm to our two-layer system is as follows:
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Figure 4.3: Learning Curve for Error-Correction Algorithms on the Multiplexer Task

Rumelhart’s Back-Propagation Algorithm

1. Randomly initialize all weights:

wh = random variable from uniform probability
density function over [−0.1, 0.1]28,

wo = random variable from uniform probability
density function over [−0.1, 0.1]11.

2. Receive input vector, calculate output of all units, and receive error signals for the output
units. All units use the semilinear output function:

yj [t] =
1

1 + e

−
6∑
i=0

wij [t]xi[t]

.

3. Calculate δk for each output unit k ∈ O:

δk[t] = (d′k[t]− yk[t]) yk[t] (1− yk[t]) ,

where d′k is a modified version of the desired output, defined as

d′k[t] =
{

0.9, if dk[t] = 1;
0.1, if dk[t] = 0.
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ρ ν µ
0.05 35188± 63 19.8± 0.84
0.10 31716± 1602 11.7± 3.30
0.25 14144± 1426 0.3± 0.55
0.50 6966± 1052 0.3± 0.39
1.00 4944± 1224 0.7± 0.39
2.00 3289± 935 0.2± 0.52
4.00 3294± 836 0.2± 0.52
8.00 13446± 4097 6.6± 2.93

16.00 32422± 5497 18.3± 3.12
ρm = 0

ρ ν µ
0.05 34976± 496 18.9± 1.97
0.10 33218± 1671 15.9± 4.57
0.25 26245± 7354 9.3± 7.79
0.50 11287± 2562 0.1± 0.26
1.00 3836± 869 0.2± 0.52
2.00 3267± 1229 1.0± 0.86
4.00 8905± 2213 3.5± 1.55

ρm = 0.5

ρ ν µ
0.05 6130± 349 0.1± 0.26
0.10 3207± 454 0.0± 0.00
0.25 1747± 480 0.0± 0.00
0.50 1492± 844 0.2± 0.52
1.00 5802± 2686 1.9± 1.86

ρm = 0.9

Table 4.5: Rumelhart, et al.’s Algorithm on the Multiplexer Task

4. Apply the learning rule to the weights of each output unit k:

∆wjk[t] = ρ δk[t]xj [t] + ρm ∆wjk[t− 1],

where xj [t] is an input component received by output unit k. Recall that the output units
receive the original input terms to the system plus the output of the hidden units.

5. Calculate δj for each hidden unit j:

δj [t] =

(∑
k∈O

δk[t]wjk[t]

)
yj [t] (1− yj [t]) .

6. Apply the learning rule to the weights of each hidden unit j:

∆wij [t] = ρ δj [t]xi[t] + ρm ∆wij [t− 1].

7. Repeat, starting with Step 2, until the prespecified number of time steps have elapsed.

By adding a fraction of the previous step’s weight change, it is hoped that the weight values
will be more likely to follow the slope of the error function at the bottom of steep valleys, by
canceling opposing steps up one side or the other. Rumelhart, et al., consider this additional term
as affecting the “momentum” of the trajectory of weight values, as described in Chapter III. The
algorithm has two parameters, the rate of change parameter ρ and the factor ρm that controls
the magnitude of the momentum term. Table 4.5 shows the values of ρ and ρm that were tested
and the results averaged over 10 runs of 100,000 steps each.

Note the modification of the desired output value in Step 3. Rather than values of 1 and 0,
values of 0.9 and 0.1 are used. Without this modification, weight values can grow in magnitude
to the point where truncation errors due to the particular computer implementation can cause
weight values to become frozen—the value of y(1 − y) in the weight update equation becomes
equal to zero.
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ρ ν µ
0.10 27759± 3438 7.2± 3.74
0.25 11594± 958 0.1± 0.26
0.50 5846± 1370 0.0± 0.00
1.00 3013± 573 0.1± 0.26
2.00 2336± 355 0.1± 0.26
4.00 4378± 1179 1.0± 0.86

ρm = 0
ρ ν µ

0.10 16447± 2504 1.6± 1.45
0.25 5427± 447 0.0± 0.00
0.50 2742± 369 0.0± 0.00
1.00 1536± 192 0.0± 0.00
2.00 2173± 767 0.1± 0.26
4.00 8524± 1175 3.6± 0.96

ρm = 0.5

ρ ν µ
0.05 5091± 538 0.0± 0.00
0.10 2411± 310 0.0± 0.00
0.25 1310± 404 0.0± 0.00
0.50 1353± 796 0.2± 0.00
1.00 2968± 1309 0.7± 0.77

ρm = 0.9

Table 4.6: Rumelhart, et al.’s Modified Algorithm on the Multiplexer Task

The output value of a semilinear unit is a real value between 0 and 1. To compare with the
other algorithms that use binary-valued, linear threshold units as the output unit, the output
of output unit k is set to 1 if yk ≥ 0.5 and is otherwise set to 0 while calculating µ and ν and
the learning curve. This is only done in measuring performance, so the behavior of the learning
algorithm is not altered.

From Table 4.5 we see that Rumelhart’s algorithm reliably solved the multiplexer task within
100,000 steps, for ρ = 0.1 and 0.25 and ρm = 0.9. For ρ = 0.25 only 1,747 errors were accumulated
over 100,000 steps (µ = 1, 747). Best performance (considering both ν and µ) resulted when
ρ = 0.25 and ρm = 0.9. These parameter values were used to generate the learning curve of
Figure 4.3, averaged over 30 runs of 300,000 steps each. The curve shows that extremely good
performance is achieved very early in the runs; as early as 6,000 steps the average number of
errors per step is below 0.06. The performance measures associated with this learning curve are
ν = 0.00± 0.00 and µ = 1, 962± 148.

The third curve in Figure 4.3 is from an experiment designed to test the modification to
Rumelhart, et al.’s algorithm proposed by Sutton (1985). He suggests that the sign of the weight
value appearing in the expression in Step 5 above is the important contribution of the weight, and
that the magnitude of it might hamper the algorithm’s progress, particularly when the magnitude
is very small. We tested this hypothesis by replacing wjk with the sign of wjk, resulting in a new
expression for δj [t]:

δj [t] =

(∑
k∈O

δk[t] sgn(wjk[t])

)
yj [t] (1− yj [t]).

As before, we varied ρ, with the results shown in Table 4.6 which are averaged over 10 runs of
100,000 steps each. The best value of ρ is still 0.25 and for ρm it is 0.9. The results averaged over
30 runs of 300,000 steps, using these parameter values, are ν = 0.00± 0.00 and µ = 1, 354± 575,
and the learning curve is shown in Figure 4.3. The modification appears to retard the algorithm’s
initial progress, but it still reliably solves the task, and results in a cumulative error measure,
µ, not significantly different from that of the unmodified Rumelhart algorithm. The modified
algorithm does appear to be more robust than Rumelhart, et al.’s unmodified algorithm; the task
is reliably solved (ν = 0.00) for a wider range of parameter values.
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4.3 Reinforcement Learning

Four reinforcement-learning algorithms were studied, two being variants of one of the others. As
reviewed in Chapter III, Barto, et al., have developed and studied several classes of reinforcement-
learning algorithms (Barto, 1985; Barto and Anandan, 1985; Barto and Sutton, 1981a; Sutton,
1984). Sutton (1984) empirically compared a number of these algorithms. For tasks most similar
to those faced by hidden units in the systems applied to the multiplexer task, Sutton found that
a particular algorithm, which we will call “associative search with reinforcement prediction”, or
AS-RP, performed better than others.

4.3.1 Associative Search with Reinforcement Prediction

The AS-RP algorithm employs an additional unit that adjusts its weights, v, so as to match as
closely as possible the value of the reinforcement received for each input vector. This provides
the hidden units with a “reference” signal to which the current reinforcement can be compared
to determine whether it is greater or less than the reinforcement usually received when given the
current input vector. This extra unit performs a prediction of the reinforcement when given an
input vector. The AS-RP algorithm is defined as follows:

Associative Search with Reinforcement Prediction (AS-RP)

1. Initialize all weights to zero:
wh = 0,
wo = 0,
v = 0.

2. Receive input vector, calculate output of all units, and receive error signals for the output
units. The output, yj , of hidden unit j is given by:

yj [t] =


1, if

6∑
i=0

wij [t]xi[t] + ηj [t] > 0;

0, otherwise,

where the ηj [t] are sequences of random variables with density function

f(s) =
1

1 + e−s
.

3. Apply the perceptron learning algorithm to the output units.

4. Calculate the global reinforcement signal for the hidden units:

r[t] = 1− 1
m

∑
j∈O
|dj [t]− yj [t]|,

where m is the number of output units. Since m = 1, r[t] ∈ {0, 1}.

5. Calculate the prediction of reinforcement, rp, as follows:

rp[t] =
n∑
i=1

vi[t]xi[t],

where n is the number of input components to the system and vi[t] is the predictor-unit’s
weight associated with input component xi[t].
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ρ ν µ
0.01 23.7± 3.56 121, 756± 131
0.04 11.6± 4.70 95, 602± 8, 825
0.16 2.8± 3.12 42, 149± 16, 354
0.64 4.6± 4.86 46, 453± 21, 080
1.28 12.1± 5.56 75, 454± 20, 789

ρp = 0.01

ρ ν µ
0.01 24.3± 3.51 121, 867± 224
0.04 10.2± 5.29 90, 639± 14, 970
0.16 5.7± 3.11 61, 708± 15, 251
0.64 9.3± 4.13 65, 222± 16, 051
1.28 5.4± 4.18 40, 169± 20, 829

ρp = 0.03
ρ ν µ

0.01 24.6± 2.78 121, 436± 270
0.04 13.7± 4.61 95, 407± 8, 819
0.16 3.5± 2.04 48, 320± 13, 120
0.64 4.7± 3.87 50, 817± 24, 206
1.28 13.2± 4.59 79, 975± 21, 263

ρp = 0.1

Table 4.7: Associative Search with Reinforcement Prediction on the Multiplexer Task

6. Apply the associative search rule to hidden unit j:

∆wij [t] = ρ (r[t]− rp[t]) (yj [t]− πj [t]) xi[t],

where
πj [t] = E {yj [t]|wj [t];x[t]} ,

which is the expected value of the output yj of unit j, given its current weight values and
input. Since yj ∈ {0, 1}, πj is the probability that yj = 1.

7. Update the predictor’s weights.

∆vi[t] = ρp (r[t]− rp[t])xi[t].

8. Repeat, starting with Step 2, until the prespecified number of time steps have elapsed.

Two parameters control this algorithm: the rate of change in modifying the hidden units’
weights is ρ, and the rate of change of the reinforcement predictor’s weights is ρp. Five values of
ρ were tried while ρp was set to one of three values. For each set of parameter values, 10 runs
were made of 300,000 steps each.

The results in Table 4.7 show that the AS-RP algorithm did not solve the multiplexer task,
but for ρ = 0.16 and ρp = 0.01 the value of ν was about 2.8, meaning that after 300,000 steps
an average of only 2.8 out of 64 input vectors resulted in an incorrect output. The performance
of the AS-RP algorithm over time is shown by its learning curve in Figure 4.4. The learning
curve is averaged over 30 runs using ρ = 0.16 and ρp = 0.01, and resulted in ν = 3.36 ± 1.98
and µ = 48, 754 ± 8, 662. Better performance might be realized by testing additional parameter
values.

Another possible way to improve this algorithm’s performance is to include the output of
the hidden units in the set of input components to the reinforcement-predictor unit. It may be
impossible for a single unit to implement an accurate mapping from input vectors to reinforcement
values, just as it is impossible for a single unit to implement a multiplexer function. This possibility
was not tested.

4.3.2 Associative Reward-Penalty

The second algorithm from the reinforcement-learning class that we studied is the Associative
Reward-Penalty, or AR−P, algorithm, defined by Barto and Anandan (1985; Barto, 1985). This
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Figure 4.4: Learning Curve for Reinforcement Learning Algorithms on the Multiplexer Task
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algorithm is an extension of the Linear Reward-Penalty algorithm from the learning automata
literature (Narendra and Thathachar, 1974). Learning automata probabilistically search their
output space and directly update their output probabilities as a function of the reinforcement
received. In order to be sensitive to different input vectors, a different set of output probabilities
must govern output selection for each input. Barto and Anandan’s extension is the use of a unit’s
weights and input to determine the unit’s output probabilities (as in the AS-RP algorithm). This
algorithm is discussed more fully in Chapter III.

Associative Reward-Penalty (AR−P) Algorithm

1. Initialize all weights to zero:
wh = 0,
wo = 0.

2. Receive input vector, calculate output of all units, and receive error signals for the output
units. Output functions are those used for the AS-RP algorithm

3. Apply the perceptron learning algorithm to the output units.

4. Calculate the global reinforcement signal for the hidden units.

r[t] = 1− 1
m

∑
j∈O
|dj [t]− yj [t]|

where m is the number of output units. For the multiplexer task, m = 1, so r[t] ∈ {0, 1},
but in general r[t] = [0, 1].

5. Apply the AR−P rule to each hidden unit j:

∆wij [t] = ρ r[t] (yj [t]− πj [t]) xi[t]
+ρ λ (1− r[t]) (1− yj [t]− πj [t]) xi[t],

where
πj [t] = E {yj [t] |wj [t];x[t]} ,

This equation for the change in weight values is written for continuous r in the range [0,1],
thus it is related to S-model learning automata (Narendra and Thathachar, 1974). Since
r ∈ {0, 1} for the multiplexer task, this equation could be expressed with two cases, for
r = 1 and r = 0, as was done in Chapter III. Barto and Anandan’s (1985) convergence
proof for the AR−P algorithm is only valid for r ∈ {0, 1}.

6. After the prespecified number of steps have elapsed the final-step performance measure ν is
calculated.

The AR−P algorithm depends on two parameters. The rate of weight change is controlled by
ρ and λ. If λ = 0, no change is made to the weight values when the “penalty” signal r[t] = 0 is
received, thus the algorithm is analogous to the reward-inaction scheme of learning automata. A
symmetric reward-penalty rule results when λ = 1. For further comparisons see Barto (1985).

Table 4.8 contains the results of the AR−P algorithm on the multiplexer task, averaged over
10 runs of 300,000 steps each. Of the parameter values tested, ρ = 1 and λ = 0.004 resulted in
the best performance, solving the task with a final number of errors over all input vectors of 0.02.

The learning curve in Figure 4.4 shows that the AR−P algorithm performed much better than
the AS-RP. Averaged over 30 runs of 300,000 steps each, and using ρ = 1 and λ = 0.004, the
AR−P algorithm resulted in ν = 0.01± 0.01 and µ = 15, 725± 3, 129. The value of 0.01± 0.01 for
ν indicates that the solution to the multiplexer task was reliably found.
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λ ν µ
0.001 0.52± 1.30 24, 960± 10, 347
0.002 0.33± 0.80 25, 234± 7, 486
0.004 0.02± 0.01 14, 493± 5, 557
0.008 0.01± 0.01 20, 046± 5, 918
0.016 18.80± 6.65 107, 729± 7, 101
0.032 23.00± 3.26 118, 806± 185

ρ = 1

ρ ν µ
0.1 1.30± 2.02 51, 109± 10, 157
0.2 0.08± 0.03 25, 377± 5, 479
0.4 1.80± 4.63 20, 301± 7, 050
0.8 0.71± 1.53 17, 320± 7, 553
1.0 0.02± 0.01 14, 493± 5, 557
1.6 0.01± 0.00 15, 167± 3, 908
3.2 11.60± 8.63 81, 798± 16, 013

λ = 0.004

Table 4.8: AR−P Algorithm on the Multiplexer Task

4.3.3 Local Reinforcement

The AS-RP and the AR−P algorithms function in a “global” reinforcement paradigm, where every
hidden unit is given the same numerical reinforcement signal. Every unit is searching for weight
values that maximize the same evaluation function. However, as hidden units in a multilayer
system, the application of these reinforcement-learning algorithms could be provided with more
information than the global reinforcement signal. We investigated one possible way of using this
information to construct a unique “local” reinforcement signal to each hidden unit. The approach
is similar to Rosenblatt’s back-propagation algorithm in its division into several cases according
to units’ outputs and weight values, but differs in that reinforcements are propagated rather than
errors.

AR−P with Local Reinforcement

Steps 1 through 3 are identical to those of the AR−P algorithm.

4. Let rjk[t] be a reinforcement based on the output value of output unit k and the weight
connecting hidden unit j to output unit k, defined as:

rjk[t] =



0.5, if wjk[t] = 0;
1, if wjk[t] 6= 0 and dk[t] = yk[t]

or
yj [t] = 1 and wjk[t](dk[t]− yk[t]) > 0;

or
yj [t] = 0 and wjk[t](dk[t]− yk[t]) < 0;

0, otherwise.

Calculate the local reinforcement signal for hidden unit j as:

rj =
∏
k∈O

rjk[t],

though, for this task O = {5}, so rj = rj,5.

5. Apply the AR−P rule to the hidden units, now using unique reinforcements for each:

∆wij [t] = ρ rj [t] (yj [t]− πj [t]) xi[t]
+λ ρ (1− rj [t]) (1− yj [t]− πj [t]) xi[t].

6. After the prespecified number of steps have elapsed the final-step performance measure ν is
calculated.
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λ ν µ
0.0 1.32± 2.24 16, 069± 10, 750
0.00001 3.07± 2.84 28, 822± 15, 678
0.0001 0.24± 0.52 12, 512± 4, 937
0.0002 1.07± 1.72 17, 830± 7, 706
0.0005 0.39± 0.55 10, 418± 1, 973
0.001 0.76± 0.87 14, 539± 1, 997
0.002 4.64± 5.51 21, 145± 2, 279
0.004 6.53± 4.69 34, 506± 1, 613
0.008 10.30± 3.18 64, 436± 1, 644

ρ = 1

ρ ν µ
0.01 23.72± 3.05 12, 2127± 116
0.25 2.84± 3.61 40, 581± 16, 852
0.50 0.55± 1.27 17, 109± 7, 221
0.75 1.31± 1.69 23, 290± 10, 555
1.00 0.24± 0.52 12, 512± 4, 937
1.25 1.44± 2.66 22, 467± 12, 298

λ = 0.0001

Table 4.9: AR−P with Local Reinforcement on the Multiplexer Task

The motivations for the cases in Step 4 are as follows. When a hidden unit has no influence on
the output unit, i.e., wjk = 0, then no preference in its output should be revealed. To accomplish
this, rjk is set to 0.5 regardless of the output of the hidden unit, the output unit, and the correct
output. The second case is composed of three situations. First, if the hidden unit does have a
nonzero output weight, i.e., wjk 6= 0, and the output unit generated a correct response, then the
hidden unit is “rewarded” by being assigned a reinforcement value of 1, increasing the probability
of the output value that it just produced. The second part rewards the hidden unit if its output
value is 1 and its output weight has the same sign as the output unit’s error. The third part
rewards the unit when its output value is 0 and its output weight differs in sign from the output
unit’s error.

This modification to the AR−P algorithm does not add any new parameters. We tried a
number of values for ρ and λ and averaged the results over 10 runs of 300,000 steps each. From
Table 4.9 we see that ρ = 0.5 and λ = 0.0001 resulted in the best value of ν, which was 0.55
errors over the 64 input vectors after 300,000 steps. The cumulative measure, µ, was lowest for
λ = 0.0005.

A learning curve for the AR−P with local reinforcement, again averaged over 30 runs of 300,000
steps each, is included in Figure 4.4. The values ρ = 0.6 and λ = 0.0001 were used for the
algorithm’s parameters. This modification to the AR−P algorithm performs slightly better that the
original AR−P algorithm before approximately the 20, 000th step, and thereafter its performance
is worse than that of the AR−P.

The local reinforcement addition seems to help during the early stages, but is a hindrance
throughout the remainder of a run. Perhaps this indicates that using the information about the
hidden units’ output weights and the output units’ errors is only beneficial while the hidden units
have minor effects on the output unit through output weights of small magnitudes. When output
weights are near zero, learning according to the AR−P algorithm is very slow, because there is very
little correlation between a hidden unit’s output and the global reinforcement signal. But as the
output weights increase in magnitude they acquire more of an influence on the global reinforcement
and can begin to optimize their weight values. A more complex task—one requiring more than a
single output unit—might demonstrate a greater potential for using local reinforcements.

4.3.4 Penalty Prediction

The plight of hidden units that have not yet acquired, or have lost, a substantial influence on the
output units is to learn very slowly if they are modifying their weights through efforts to increase
the reinforcement value. Is there some way to put such “unused” units to better use? We applied
a second extension of the AR−P algorithm to the multiplexer task to investigate this question.

This extension is based on the assumption that poor performance is caused by the lack of
an appropriate representation. Situations for which incorrect outputs are generated need to be
represented differently, perhaps with additional components, giving the output units more degrees
of freedom with which they can alter their outputs.
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To realize this idea we divide the learning algorithm for the hidden units into two parts, each
part coming into play at different stages. When a hidden unit has a substantial effect on the output
units, then the normal AR−P algorithm is followed. But when a hidden unit does not significantly
affect the output units, the hidden unit adjusts its weights in an attempt to match them to input
vectors that result in low reinforcement values, in effect becoming a “penalty predictor”. In this
way, new features are introduced that represent inputs for which the performance of the system
is low. This is related to the data-directed method of Reilly, Cooper, and Elbaum (1982), who
dedicate new hidden units whenever an error is encountered by their system.

The implementation of this strategy depends on a measure of the degree to which a hidden
unit has an influence on the output units. We simply used the magnitude of the hidden unit’s
output weight as an indication of influence, though, as Klopf and Gose (1969) showed, other
measures might lead to more accurate indicators of influence. The magnitude of a hidden unit’s
output weight is used as the dependent variable in a logistic function to produce a measure of
influence whose value ranges from 0 to 1. Some method of combining the measures from different
output weights must be employed when the network has more than one output unit. The AR−P
algorithm is modified as follows:

AR−P algorithm with Penalty Prediction

Steps 1 through 4 are identical to those of the AR−P algorithm.

5. Apply the AR−P algorithm with penalty prediction to the hidden units:

(a) Calculate the influence, αj , of hidden unit j on the output units:

αj [t] = 1

1 + e
wjk[t]− wα

τα

.

(b) Update the weights:

∆wij [t] = αj [t]
(
ρ r[t] (yj [t]− πj [t]) xi[t]
+λ ρ (1− r[t]) (1− yj [t]− πj [t]) xi[t]

)
+(1− αj [t]) ρα (1− r[t]− πj [t]) xi[t].

6. Identical to the AR−P algorithm.

The equation in Step 5b is composed of two main parts. The first part is the expression for
the AR−P algorithm. Its contribution to the update of weights varies inversely with that of the
novel, second part of the equation. The second part is only significant when αj is small, meaning
that Hidden Unit j has little influence on the output unit. It serves to push the weight vector
in the direction of the current input vector when r is small and it pushes the weight vector away
from the input vector when r is large.

In addition to the parameters ρ and λ of the AR−P algorithm, this modification depends on
the values of ρα, wα, and τα, which have their strongest effect when αj , the influence on the
output units, is small. The variable αj is a function of Unit j’s output weights, defined in such
a way as to scale its value between 0 and 1; αj = 1 when Unit j has a very strong influence on
an output unit, and αj = 0 when it has no influence. The scaling function for α is controlled by
the parameters wα and τα, and its form is that of the logistic function, where τα is the “spread”
of the function and wα is the value of its argument such that αj = 0.5 when wα = wjk[t]. For
example, if wα = 1.5 and τα = 0.1 and there is one output unit, then αj will have the following
values for the given values of Unit j’s output weight:

output weight (wjk) αj
0 0.000
±1 0.007
±2 0.993
±3 1.000
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ρα wα ν µ
0 0.5 7.30± 5.06 11, 246± 1, 965
1 0.5 23.50± 3.11 20, 009± 223
2 0.5 19.90± 6.85 18, 004± 2, 032
4 0.5 4.70± 5.51 10, 795± 3, 324
8 0.5 0.54± 1.21 4, 682± 1, 498

16 0.5 3.20± 3.06 6, 143± 2, 389
32 0.5 7.10± 5.29 7, 712± 2, 734
4 1.0 22.60± 3.35 19, 786± 325
8 1.0 6.20± 6.75 10, 142± 4, 136

16 1.0 0.37± 0.52 6, 779± 1, 626
32 1.0 3.80± 3.85 8, 253± 1, 723
4 1.5 14.70± 7.79 17, 297± 2, 781
8 1.5 4.20± 5.51 8, 301± 2, 403

16 1.5 0.26± 0.52 4, 761± 2, 225
32 1.5 5.20± 5.52 8, 140± 3, 714
4 2.0 25.00± 3.66 20, 209± 53
8 2.0 19.40± 6.28 19, 185± 1, 477

16 2.0 12.70± 6.68 14, 733± 4, 688
32 2.0 4.00± 3.84 10, 030± 3, 328
4 4.0 23.80± 1.32 20, 234± 55
8 4.0 22.10± 3.19 20, 252± 66

16 4.0 23.70± 3.12 20, 254± 66
32 4.0 23.00± 3.21 20, 240± 72

ρ = 1.0, λ = 0.004
τα = 0.1

τα ν µ
0.01 2.78± 2.66 7, 695± 2, 304
0.1 0.26± 0.52 4, 761± 2, 225
0.2 0.48± 1.05 8, 698± 3, 030
0.4 18.00± 5.89 18, 542± 2, 108
0.6 23.80± 2.90 20, 242± 100
0.8 23.20± 2.27 20, 340± 64
1.0 23.70± 2.13 20, 243± 74

ρ = 1.0, λ = 0.004
ρα = 0.1, wα = 1.5

Table 4.10: AR−P with Penalty Prediction on the Multiplexer Task

For the multiplexer task, the output unit learns under the perceptron learning algorithm with
a learning constant of ρ = 1. Therefore, the output unit’s weights, which are the output weights
of the hidden units, will always be integer-valued. For wα = 1.5 and τα = 0.1, the AR−P with
penalty prediction algorithm will approximate the original AR−P algorithm except when the value
of the output weight is 0, as it is initially, or 1.

Table 4.10 shows the results of testing this algorithm for various parameter values over 10 runs
of 50,000 steps each. Using the values ρ = 1 and λ = 0.004, which gave the best performance
for the original AR−P algorithm, we found that ρα = 16, wα = 1.5, and τα = 0.1 were the best
parameter values tested. Not reported here are further experiments in which ρ and λ are varied,
again finding ρ = 1 and λ = 0.004 to be the best of a small set of alternative values.

The best parameters were used to generate the learning curve in Figure 4.4, averaged over 30
runs of 300,000 steps each. The learning curve shows that this algorithm performed much better
than the original AR−P. The AR−P with penalty prediction resulted in performance measures of
ν = 0.08 ± 0.17 and µ = 7, 411 ± 1, 773. Roughly twice as many errors on average were made
during the runs of the AR−P algorithm (µ = 7, 411 versus µ = 15, 725).

The fact that large values of ρα result in better performance than small values suggests that
the advantage of the penalty prediction addition is due to the size of the large jumps in a hidden
unit’s weights when the unit has a small output weight, and not in the direction of the weight
change. This hypothesis was tested through further experiments, as follows.

The algorithm was modified in a way that preserved the size of the large weight changes while
removing the dependence on the reinforcement signal to direct the weight change. Instead, a
random signal guided the changes in weight values when the output weight is of low magnitude.
Thus, Step 5b of the AR−P with penalty prediction becomes

∆wij [t] = αj [t]
(

ρ r[t] (yj [t]− πj [t]) xi[t]
+λ ρ (1− r[t]) (1− yj [t]− πj [t]) xi[t]

)
+(1− αj [t]) ρα(sj [t]− πj [t]) xi[t],
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where the sj [t] are sequences of Bernoulli random variables (possible values are 0 and 1).
The learning curve for the AR−P with random prediction is shown in Figure 4.4. It’s perfor-

mance is worse than that of the AR−P with penalty-prediction algorithm, suggesting that there
is an advantage in predicting penalties. However, it performs better than the simple AR−P al-
gorithm. Thus, there is also an advantage to taking undirected, large steps in the search for
weight values for unused units. The increase in performance of the AR−P with penalty prediction
algorithm over the simple AR−P is probably due to both effects.

4.4 Summary

To facilitate the comparison of the learning algorithms’ performance on the multiplexer task, most
of the learning curves are superimposed in Figure 4.5. Recall that the errors per time step are
plotted by averaging over 30 runs and over bins of 3,000 step intervals. A non-learning, random
strategy of selecting outputs would result in an average of 0.5 errors per time step.

It is easily seen that the classes of algorithms in order of decreasing performance are

1. error back-propagation (excluding Rosenblatt’s algorithm),

2. reinforcement learning, and

3. direct search.

This ranking is supported by the values of the performance measures, shown in Table 4.11, where
the algorithms are ranked according to their resulting values of µ. There is no statistically-
significant difference between the values of µ for the two versions of Rumelhart’s algorithm.
However, the difference between these algorithms and the best reinforcement-learning algorithm,
the AR−P with penalty prediction, is significant.

Among the reinforcement-learning algorithms, some differences in µ are significant, while
others are not. In particular, the results of the AS-RP algorithm are significantly worse than all
other reinforcement-learning results. As discussed earlier, another version of the AS-RP algorithm
should be tested: the output of the hidden units should be included as input to the reinforcement
predictor, thus not restricting the reinforcement prediction to be a linear function of the input as
originally represented.

All other differences are significant. The direct search algorithms are significantly worse than
others, with the exception of Rosenblatt’s algorithm, and their relative ranking is also significant.

In Chapter II, one possible set of new features was proposed that could be formed by a single
layer of hidden units and would also provide for the existence of a solution to the multiplexer
task. Now we can ask what new terms actually developed during successful runs of multilayer
learning algorithms.

For a partial answer to this question, we analyzed two runs, one with Rumelhart, et al.’s
algorithm and the other with the AR−P with penalty prediction algorithm. Each run was inter-
rupted at three points to determine the features that the hidden units had acquired at various
stages. Figure 4.5 shows that a single run using Rumelhart’s algorithm is very likely to have
solved the multiplexer task by the 10, 000th step, so the run was analyzed after 2,000, 5,000, and
10,000 steps. The results of this analysis appear in Table 4.12. A unit’s state is specified by a
logical expression for the union of all input vectors for which the output of the unit is 1. For
example, Unit 1 on the 2, 000th step responds with output 1 for input vectors (0, 0, 0, 0, 0, 1)T
and (0, 0, 0, 1, 0, 1)T (disregarding the constant component of the input vectors). Labeling the
components of the input vectors as (a1, a2, d1, d2, d3, d4), for address lines a1, a2 and data lines
d1, d2, d3, d4. The expression for the union of these vectors is ā1ā2d̄1d̄3d4. Included with each
hidden unit expression is the approximate value of the unit’s output weight, indicating how it
affects the output value of the output unit.

In addition to the hidden-unit analysis, expressions were determined for the output unit, both
with and without the features generated by the hidden units. Let us start our discussion of
Table 4.12 with these expressions, by first studying the last row. At step 2,000, a relatively
complex expression developed for the output unit, but by step 10,000 the unit’s expression is
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Figure 4.5: Learning Curves for All Algorithms on the Multiplexer Task
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Algorithm ν µ parameters

Rumelhart 0.00± 0.00 1, 354± 575 ρ = 0.25, ρm = 0.9
sign of output weight

Rumelhart 0.00±0.00 1, 962± 148 ρ = 0.25, ρm = 0.9

AR−P with 0.08±0.17 7,411±1,773 ρ = 1, λ = 0.004,
penalty prediction ρα = 16, wα = 1.5, τα = 0.1

AR−P with 0.01±0.00 10,695±2,690 ρ = 1, λ = 0.004,
random prediction ρα = 16, wα = 1.5, τα = 0.1

AR−P 0.01±0.01 15,725±3,129 ρ = 1, λ = 0.004

AR−P with 0.65±1.08 20,467±6,923 ρ = 0.6, λ = 0.0001
local reinforcement

AS-RP 3.36±1.98 48,754±8,662 ρ = 0.16, ρp = 0.01

polytope 14.2±2.09 94,977±3,079 n = 1600, m = 10,
cr = 2, ce = 2, cc = 0.2

guided random 13.1±2.36 103,866±3,420 n = 3200, τ = 1

unguided random 17.0±2.93 115,062±229 n = 1600

Rosenblatt 23.9±1.58 121,115±92 ρ = 0.5,
p1 = 0.9, p2 = 0.3, p3 = 0.1

Table 4.11: Performance Summary for Multiplexer Task
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Step 2,000 Step 5,000 Step 10,000

Unit 1 ā1ā2d̄1d̄3d4 ā1ā2(d̄1d̄3 ∨ d̄1d2d4)∨ ā1ā2(d̄1d̄3 ∨ d̄1d4)∨
a1ā2(d̄1d2d̄3 ∨ d̄1d̄3d4) a1ā2(d̄1d̄3 ∨ d̄1d4)

(-2) (-7) (-7)

Unit 2 ā1ā2d̄1d̄3d4 ā1ā2d̄1 ā1ā2d̄1

(-2) (-7) (-11)

Unit 3 null ā1ā2d̄2d3d4∨ ā1a2d̄2

ā1a2(d̄2d4 ∨ d̄2d3 ∨ d̄1d̄2)
(-1) (-9) (-12)

Unit 4 null ā1ā2(d̄1d̄3d4 ∨ d2d̄3d4)∨ a1ā2d̄3

a1ā2(d̄1d̄3d4 ∨ d2d̄3d4)
(-1) (-3) (-7)

output ā1ā2(d3d4 ∨ d2d3 ā1ā2∨ ā1ā2∨
unit ∨d2d4 ∨ d1d̄2d4 ā1a2∨ ā1a2∨

without ∨d1d3d̄4 ∨ d1d2d̄3)∨ a1ā2∨ a1ā2∨
hidden ā1a2(d1d2d4 ∨ d1d3d4 a1a2(d4 ∨ d2d3) a1a2d4

units ∨d1d2d3 ∨ d2d3d4)∨
a1ā2(d3d4 ∨ d2d3

∨d2d4)∨
a1a2(d1d2d4 ∨ d1d3d4

∨d1d2d3 ∨ d2d3d4)

output ā1ā2(d1d2d4 ∨ d1d3d4 ā1ā2d1∨ ā1ā2d1∨
unit ∨d2d3)∨ ā1a2d2∨ ā1a2d2∨
with ā1a2(d1d2d4 ∨ d1d3d4 a1ā2(d3 ∨ d1d2d̄3)∨ a1ā2d3∨

hidden ∨d2d3)∨ a1a2(d4 ∨ d2d3) a1a2d4

units a1ā2(d1d2d4 ∨ d1d3d4

∨d2d3)∨
a1a2(d1d2d4 ∨ d1d3d4

∨d1d2d3 ∨ d2d3d4)

Table 4.12: New Features Developed by Rumelhart, et al.’s Algorithm
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Step 10,000 Step 20,000 Step 50,000

Unit 1 ā1ā2d1d̄2d̄4∨ null ā1ā2d̄1d2d̄4

a1ā2d1d̄2d3d̄4∨
a1a2(d1d̄2d̄4

∨d1d̄2d3d̄4)
(0) (-1) (-7)

Unit 2 ā1ā2(d̄1d̄2d3 ∨ d̄1d2)∨ ā1ā2d̄1∨ ā1ā2d̄1∨
a1ā2d̄1d2 a1ā2d̄1d2 a1ā2d̄1d2

(-7) (-13) (-13)

Unit 3 ā1a2d4∨ ā1ā2d4∨ ā1ā2d4∨
ā1a2d̄2d4∨ ā1a2d̄2d4∨ ā1a2d̄2d4∨
a1ā2d̄2d4 a1ā2(d̄2d4 ∨ d2d̄3d4) a1ā2d̄2d4

(-8) (-10) (-16)

Unit 4 null a1ā2d̄3 a1ā2d̄3

(-1) (-9) (-25)

output ā1ā2∨ ā1ā2∨ ā1ā2∨
unit ā1a2(d2d3 ∨ d4)∨ ā1a2d4∨ ā1a2(d3 ∨ d̄2d4)∨

without a1ā2(d4 ∨ d3d̄4)∨ a1ā2∨ a1ā2∨
hidden a1a2d4 a1a2d4 a1a2d4

units

output ā1ā2(d1 ∨ d̄1d̄2d̄3)∨ ā1ā2d1∨ ā1ā2d1∨
unit ā1a2(d2d3 ∨ d2d4)∨ ā1a2d2d4∨ ā1a2d2∨
with a1ā2(d̄2d3 ∨ d2d3d4 a1ā2d3∨ a1ā2d3∨

hidden ∨d1d2d4 ∨ d1d2d3) a1a2d4 a1a2d4

unit

Table 4.13: New Features Developed by AR−P with Penalty Prediction Algorithm

exactly the multiplexer expression, as expected. The expressions for the output unit without
hidden units show that at step 10,000 the new features learned by the hidden units are necessary
for the generation of the correct output for input vectors containing three of the four possible
addresses; for address (1,1) the output unit itself is capable of producing the correct output.

Given the expression for the output unit without hidden units at step 10,000, it is clear how
the terms formed by Units 2, 3, and 4 are being used. All have negative influences on the output
unit, effectively carving out of the outputs unit’s expression those input vectors for which the
output unit produces a 1 when the correct output is 0. The role played by Unit 1 is much less
clear, and would require a careful analysis of exact weight values for us to understand.

Table 4.13 shows the results of a similar analysis of a run with the AR−P with penalty pre-
diction algorithm. The run was interrupted at 10,000, 20,000, and 50,000 steps, a larger total
number of steps than was used for the analysis of Rumelhart’s algorithm. The expression for the
output unit with hidden units at the 50, 000th step is indeed the multiplexer expression.

The manner in which the hidden units interact with the output unit to produce the correct
output is not as straightforward as it was for the previous example. It is clear that Unit 4 has
acquired the same role here as it did in the other run. This is purely a matter of coincidence, since
there is no a priori bias among the hidden units; initially, each unit is equally likely to develop a
particular feature.

In conclusion, this chapter presents the results of several multilayer learning algorithms on
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a task that requires new features in order to solve it. The task is of sufficient scale that direct
search methods perform poorly, never solving the task within the allotted time. Several error
back-propagation algorithms were studied, of which Rumelhart, et al.’s algorithm readily dealt
with the difficulties of the task, reliably solving it within several thousand steps. Reinforcement-
learning algorithms were also tested, with various degrees of success. A particular contribution
of this study is the proposal and demonstration of a new reinforcement-learning algorithm for
which unused units attempt to predict the occurrence of low reinforcements, thereby expanding
the representation of inputs for which the system performs poorly. Reinforcement-learning and a
data-directed form of new-feature generation are combined into one learning algorithm.

The use of data-directed methods for the generation of new features is not limited to reinforcement-
learning algorithms. Chapter III reviews several data-directed ways in which new features are
generated for the correction of errors. A possibly fruitful research topic would be the combina-
tion of such data-directed methods with the exact gradient-descent method of Rumelhart, et al.,
(1986). Gradient-descent techniques can get stuck at local minima, but the generation of new
features related to inputs for which the system produces incorrect responses might provide the
extra degrees of freedom needed by the system to escape from the local minima.

In comparing the performance results of this chapter, it is important to keep in mind two
critical limitations of this study. The most obvious limitation is that a single task was used.
The results provide no indication of how the relative ranking of the algorithms would change if
different tasks, either simpler or more complex, are used. Answers to the question of how well the
algorithms scale-up to harder tasks require further experiments on tasks of varying complexity.
Hand in hand with this issue is the issue of how an algorithm’s performance is affected by altering
the network architecture, such as the addition or removal of hidden units. Neither issue was
investigated by this study.

The second limitation is due to the manner in which the values for each algorithm’s parameters
were chosen. The experimenter became part of every learning algorithm by trying a number of
different parameter values. The values that resulted in the best performance for a particular
algorithm were used in its comparison with the other algorithms. The time required to perform
this parameter optimization process is not taken into account by the performance measures used
in this study. An algorithm might rank very well according to the performance measures but be
very sensitive to its parameter values and require much effort to find optimal parameter values.
This does not appear to be the case for the results of this chapter. The algorithm with the
best performance is Rumelhart’s error back-propagation algorithm modified to use the sign of the
output weight and it reliably solves the multiplexer task for a wide range of parameter values.
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Chapter 5

Strategy Learning with Multilayer
Connectionist Systems

The learning of strategies has been studied from a number of perspectives. Much of the research
has concerned the development of existing strategies (either directly provided by an expert or
extracted from sample solutions of an expert) into forms appropriate for a given task (see Keller
[1982] for a review of this research). However, as stressed by Langley (1983), a system that
learns from its own experience must possess additional capabilities for behavior generation and
credit assignment based on the outcome of the behavior. The temporal credit-assignment problem
complicates this kind of learning; there is no standard with which to compare the system’s actions
on every step.

This problem severely restricts the use of connectionist systems for strategy learning because
most connectionist learning algorithms require knowledge of correct actions for a training set of
input vectors. Learning proceeds by the presentation of input vectors from the training set and
the modification of weights in a manner that is dependent on the error between the correct action
and the actual action, as was done for the experiments of Chapter IV. This form of learning is
called supervised learning since it is supervised by a teacher that knows the desired responses for
the training set. If correct actions are known for certain problem states, supervised learning can
be used to train a connectionist system to respond correctly for those states, but further learning
from experience requires a different type of learning.

An example of the kind of connectionist learning systems needed to learn strategies from ex-
perience is presented in this chapter and demonstrated in subsequent chapters. One connectionist
network, called the evaluation network, learns an evaluation function by a method that is based
on Sutton’s (1984) AHC algorithm. Simultaneously, a reinforcement-learning algorithm is used
in a second network, the action network, to learn search heuristics as a probabilistic mapping
from states to actions. This approach was taken by Barto, Sutton, and Anderson (1983; see
also Sutton, 1984), but the networks there consisted of single units, limiting the complexity of
evaluation functions and search heuristics that could be learned for a given representation of the
problem’s state. In this chapter, the capability of the system is increased by extending the learn-
ing algorithms to multilayer networks, thus decreasing the effort needed to design a problem-state
representation.

5.1 Strategy Learning Behavior of the Algorithms

5.1.1 Initial Search Strategy

The initial search strategy followed by the action network is an unguided, random search, defined
by the stochastic output functions of the output units. Action probabilities are used to select an
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action for immediate application and the resulting heuristic reinforcement affects the modification
of action probabilities. This is most appropriate when a model of the problem is not available,
in which case transitions from the current state corresponding to different actions cannot be
evaluated and a mechanism for selecting a single action based only on the current state (and
perhaps past states) is required. For some problems models can be formed, and when the state
space is not prohibitively large, systematic searches like breadth-first and depth-first search can
be performed much more efficiently than the initial random search performed by the network.
However, our goal is to develop a connectionist learning paradigm that does not require a model.

The learning algorithms of the connectionist system are not restricted to learning from behav-
ior generated randomly. Any other search technique could be used but would require additional
mechanisms for integrating the search process with the heuristic advice generated as the evalu-
ation network’s output. With the approach described in this chapter, the manner in which the
action probabilities are updated after every step interfaces naturally with the probabilistic search
performed by the units. Although the search is initially random, it gradually gains direction
as the learning algorithm biases the action probabilities in favor of the more successful actions.
Thus, the determination of the action probabilities, based on the state of the problem, is the
connectionist system’s counterpart to symbolic rules for expressing heuristics. This connection is
discussed further in relation to the experimental results of the following chapters.

5.1.2 Credit Assignment

Langley distinguishes two classes of credit-assignment methods. One is based on knowledge of
solution paths.1 The initial search strategy must guarantee that solution paths will be discovered.
Search heuristics are altered to recommend actions that move the puzzle’s state onto a solution
path, and to recommend against taking actions that move the state off of a solution path. Large
search spaces make this approach impractical—many actions must be tried before a complete
solution path becomes available. The alternative is to learn during the search process, before the
goal is achieved. Anzai and Simon (1979) refer to this as learning by doing.

In order to learn before the goal state has been reached, heuristics must be available for the
assignment of credit to actions as they are generated. Langley lists the following three heuristics
that are domain-independent, but are specific to the class of tasks for which solution paths of
minimum length are desired. For example, for the Tower of Hanoi task of Chapter VII a minimum
length path is desired from the initial state to the goal state. However, the following heuristics
are not useful for avoidance tasks, like the pole-balancing task of Chapter VI, where longer paths
are more desirable. The heuristics are:

1. Avoid loops.

2. Shorter paths are desirable.

3. Avoid dead ends.

When a previously-visited state is revisited, the last action is marked as undesirable. Obviously,
visiting a state more than once results in a non-minimal solution path. Similarly, when two paths
are discovered between two states, the shorter of the two is desirable. The third heuristic assigns
blame to the previous action when a state is reached from which all actions have been deemed
undesirable. Humans seem to follow these heuristics in solving the Tower of Hanoi puzzle (Anzai
and Simon, 1979).

The following two additional heuristics, also from Langley, incorporate domain-specific infor-
mation:

4. Do not violate legality constraints.

5. Seek improvement in the value of an evaluation function.
1This discussion focuses on tasks with goal states and for which solution paths are desired. Analogous statements

can be made concerning tasks with failure states that are to be avoided.
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In most problem-solving tasks, each action can only be applied to a subset of states. Such
constraints on the legal actions for a state are often embodied in the process of action selection,
but can also be formulated as credit-assignment heuristics.

The last heuristic actually encompasses a range of heuristics, differing in the type of evaluation
function used. An evaluation function can be naively based on clues assumed to be of use in
guiding the search toward the goal, or it can reliably rank every state, guaranteeing that of any
pair of states the state closer to the goal has the higher evaluation. Such an ideal evaluation
function would subsume the roles of the other heuristics. However, it is very difficult to construct
a good evaluation function for nontrivial tasks. Korf (1985) notes that an evaluation function
based on a sequence of subgoals that appears to lead to the goal will not work if the subgoals are
not serializable, i.e., if a satisfied subgoal must be violated to satisfy a subsequent subgoal.

To alleviate this dilemma, methods for the learning of evaluation functions have been proposed.
Some methods learn only from complete solution paths, while others permit learning during the
search process—again learning by doing. Rendell’s (1983) method for learning evaluation functions
relies on the discovery of a complete solution path. An interesting aspect of his approach is the
division of the state space (or feature space, if only certain features of a state are presented to
the evaluation function) into regions, and the learning of a unique, linear evaluation function for
each region. In this way, complex mappings from states to evaluations can be constructed.

Samuel’s (1959) well-known system for learning to play checkers does not require a complete
solution path, a practical impossibility for games with so many states and moves. He used
a polynomial with variable coefficients as an evaluation function. The difference between the
evaluation of a state and a backed-up evaluation from a state encountered during a short look-
ahead search defines an error, which guides the modification of the polynomial’s coefficients.
Samuel’s learning algorithm met with limited success—the single linear evaluation function is not
sufficiently complex to represent an evaluation function that is useful for all phases of the game.
Sutton’s (1984) AHC algorithm is a generalization of Samuel’s method and of others. It is also
limited to linear functions, but the extension presented in this chapter to multiple layers of units
relaxes this restriction. Hampson (1983) developed an algorithm for learning evaluation functions
that is similar to Sutton’s AHC algorithm, though its development is less rigorous. Hampson also
combined his algorithm with a method for learning in hidden units and for learning in an action
network.

5.1.3 Modification

Generally, search strategies are improved by adding heuristics in the form of symbolic rules that
limit the number of alternatives for each search step. This can be accomplished either by creating
heuristics for evaluating actions or states and using a best-first type of search, or by creating
heuristics that directly indicate the best actions for a given state.

The learning of symbolic rules has received considerable attention in the machine learning
literature. Langley (1985) reviews generalization-based methods (e.g., Winston, 1975) which
start with very specific hypotheses about appropriate conditions on the rules and generalize the
conditions as experience is gained. Opposed to these are the discrimination-based methods (e.g.,
Langley, 1982) which start with general conditions which are refined with experience. Mitchell’s
(1977) version space method is an alternative that both generalizes and refines conditions.

On the surface, the heuristics learned by connectionist systems are much different from those
expressed as symbolic rules. The differences are not so much in what can be expressed, but in how
the heuristics are modified. Most learning procedures for connectionist systems do not assume
that the information available at each step is sufficient to determine exactly how the heuristics
should be modified. The information from each step is used to make only minor adjustments, and
as additional experience is gained the cumulative adjustments result in a large overall change.
Thus, heuristics are not significantly transformed to account for the outcome of each search
step, but are incrementally adjusted. Fewer assumptions are made with this approach: the state
representation and evaluation might be noisy, there might be an infinite number of states, and
actions might not have reliable effects. For these reasons, the connectionist approach usually
requires many more steps than do symbolic approaches to learn solutions to the same tasks. In
making such comparisons, it is important to note the above differences in the assumptions of the
two approaches.
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Figure 5.1: Two-Layer Networks for Strategy Learning

5.2 Connectionist Algorithms for Strategy Learning

As presented, the connectionist networks are two-layered, but the algorithms are easily extended
to additional layers. The evaluation network and action network do not necessarily have the same
number of hidden or output units, but since the particular network being discussed is always
obvious from the context, the same variables are used to index units in both networks. Let there
be mh hidden units and mo output units, for a total of m = mh + mo units. The hidden units
are indexed from 1 to mh and the output units are indexed from mh + 1 to m. (The evaluation
network has only a single output unit.) Let H and O respectively denote the sets of hidden units
and the output units. The evaluation and action networks do not share hidden units in order to
avoid the difficulties of integrating the hidden-unit learning algorithms for the evaluation network
and for the action network.

This structure is shown in Figure 5.1. The triangles represent the “computation-center” of
the units; values of input components arrive from the left and “pass through” their weighted
connection points, represented by intersections of horizontal and vertical lines, and down to the
units, where an output is computed and sent out the output lines emanating from the apex of
the triangles. Input from the environment is represented by x0, x1, . . . , xn and is provided to all
hidden units and output units. There is an interconnection weight at every intersection—hidden
units receive n + 1 inputs and have n + 1 weights each, while output units receive n + 1 + mh
inputs and have n + 1 + mh weights. The weights of the evaluation network are labeled vij for
the ith input to Unit j, and the analogous weight of the action network is wij . Particular values
of these variables are referenced by the corresponding time step, e.g., x1[t], vij [t], and wij [t].

The learning algorithm for the evaluation network is composed of Sutton’s (1984) AHC algo-
rithm for the output unit and Rumelhart, Hinton, and William’s (1986) error back-propagation
algorithm for the hidden units. The AHC algorithm results in a prediction of future reinforce-
ment for a given state. Changes in this prediction are used as heuristic reinforcement to guide
the learning of search heuristics by the action network. The output units of the action network
follow a reinforcement-learning algorithm2 also studied by Sutton (1984; and Barto, Sutton, and
Anderson, 1983). It is combined with the error back-propagation algorithm for hidden units. The
connectionist learning system described in this chapter and demonstrated in Chapters VI and VII
is based on the work of Barto, Sutton, and Anderson (1983) who demonstrated a very similar
system without the hidden units.

2Other reinforcement-learning algorithms, such as the AR−P algorithm, could be used for the output unit. The

AR−P algorithm would require an additional mechanism for scaling the heuristic reinforcement to be between 0

and 1. We chose to draw on our previous experience with the single-layer connectionist system (Barto, Sutton,

and Anderson, 1983) by employing the reinforcement-learning algorithm used there.
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5.2.1 Output Functions

Evaluation Network

The output of the evaluation network is computed in the following way. First, the outputs of the
hidden units are calculated. The output, pj , of Hidden Unit j is calculated using the values of its
weights, v, at time tv and input, x, at time tx, as follows:

pj [tx, tv] = f

(
n∑
i=0

xi[tx] vi,j [tv]

)
, for j ∈ H,

where f is the following logistic function:

f(s) =
1

1 + e−s
.

Variables representing the output of units of the evaluation network are doubly time-indexed to
permit the multiplication of weight and input vectors from different time steps, required by the
learning algorithms for reasons described in the next section.

The input vector, y, for the output unit is composed of the input from the environment and
the output of the hidden units:

yi[tx, ·] = xi[tx], for i = 0, . . . , n,

yi[tx, tv] = pi−n[tx, tv], for i = n+ 1, . . . , n+mh.

The index, m, of the single output unit is dropped from pm for clarity. Thus, the output of the
evaluation network is p, and is defined as

p[tx, tv] =
n+mh∑
i=0

yi[tx, tv] vi,m[tv].

Action Network

To define the output of the action network we first define the hidden unit outputs, aj :

aj [t] = f

(
n∑
i=0

xi[t]wi,j [t]

)
, for j ∈ H.

These values partly determine the input vector, z, for the output units, along with the input from
the environment:

zi[t] = xi[t], for i = 0, . . . , n,

zi[t] = ai−n[t], for i = n+ 1, . . . , n+mh.

For the experiments in later chapters, the output components, aj , j ∈ O, of the action network
are in one-to-one correspondence with the possible actions defined for the task.3 To select an

3Rather than having actions and output units in one-to-one correspondence, each action can be encoded by

a pattern of output values from a number of output units. For example, the six possible actions for the Tower

of Hanoi puzzle could be represented as patterns of output values over three output units. This can lead to

generalization among actions represented by similar output patterns, which can either benefit or hinder the learning

of correct actions. These issues are not addressed by the one-to-one representation described in the text, although

the reinforcement-learning algorithm is capable of dealing with the credit-assignment problem that results when

output patterns encode actions.
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action for a given problem state, the output of one output unit is set to 1 and the outputs of
other units are set to 0 by the following process. The output functions of the reinforcement-
learning units are stochastic, i.e., their output depends on a noisy weighted sum of inputs. A
competition among the output units is implemented by assigning the value 1 to the unit with
the highest weighted sum plus noise. This competition is limited to units corresponding to legal
actions for the current state. Let Lt ⊂ O be the set of indices for the output units that represent
legal actions for the state at time t. The determination of Lt at each time step can be implemented
by a network and even learned through experience, though for our experiments we specified Lt a
priori. The responses of the output units are calculated as follows.

Let sj be the noisy weighted sum of the input for Unit j, j ∈ Lt, defined as

sj [t] =
n+mh∑
i=0

zi[t]wi,j [t] + ηj [t],

where ηj [t] is a sequence of random variables from the probability distribution Ψ, i.e., Ψ(q) =
P{ηj ≤ q}. or the pole-balancing task of Chapter VI, Ψ is defined as:

Ψ(q) =
1

1 + e−q
.

The unit with the largest value for sj wins the competition and is assigned a nonzero output:

aj [t] =


1, if sj [t] > sk[t], for k ∈ Lt and j 6= k;

0, otherwise.

To simplify the determination of the unit with the largest sj for the Tower of Hanoi task, the
following exponential probability distribution is used for Ψ:

Ψ(q) = 1− e−q.

The output function can be simplified for tasks with only two possible actions for every state,
such as the pole-balancing task of Chapter VI. A single output unit is used whose binary output
values encode the two actions. Let this unit be Unit k, i.e., O = {k}. The specialization of the
output function for this case is:

ak[t] =


1, if sk[t] > 0;

0, otherwise,

A weighted sum of 0 results in equal probabilities for generating the two output values, i.e.,
P{ak[t] = 1} = P{ak[t] = 0} = 1/2. As the weighted sum increases, P{ak[t] = 1} approaches 1,
and as the weighted sum decreases P{ak[t] = 1} approaches 0, and P{ak[t] = 0} approaches 1.

5.2.2 Learning Algorithms

Output Layer of Evaluation Network

The change in p plus the value of the external reinforcement r, if present, is called the heuristic
reinforcement, or r̂, generally defined as:

r̂[t] = r[t] + γp[t, t− 1]− p[t− 1, t− 1],

where 0 ≤ γ < 1, called the discount rate. The use of r̂ in updating the weights of the evaluation
network’s output unit is meant to result in a prediction of future discounted reinforcement for the
current state, with reinforcement further in the future discounted more than earlier reinforcement
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(a formal analysis of this algorithm is currently being conducted by Sutton). States for which p
is relatively large are favorable, while those with relatively low p are to be avoided. Once this
mapping is correctly formed, changes in p can be used to indicate whether recent actions are
leading towards favorable or unfavorable states.

The double time dependencies of variables in the equations for the evaluation network are
needed for the following reason. In comparing one value of p with a previous value, care must be
taken to avoid instability in the growth of weight values (equations for changing weight values are
presented shortly). If the computation of p for step t−1 uses v[t−1] whereas p for step t uses v[t],
then a change in p from one time step to the next could be caused by a change in weight values
rather than the encounter of a state with a different expectation of reinforcement. To avoid this,
the pair of subsequent p’s is based on a single set of weight values, i.e., the difference between p
for step t− 1 and for step t is due only to the change from xi[t− 1] to xi[t], because both p’s are
calculated using vi[t− 1]. If weights are known to change by small magnitudes on each step, then
this precaution may not be necessary (as done in Barto, Sutton, and Anderson, 1983).

Sutton (1984) specialized the AHC algorithm by redefining r̂ for several classes of tasks in-
volving distinct trials, where a trial consists of the following steps:

1. setting the state of the problem to a start state,

2. letting the learning system and environment interact, until

3. a goal state or failure state is encountered, signaled by a particular external reinforcement
value.

Following Sutton, r̂ for trial-based tasks, like those of Chapters VI and VII, is defined to be:

r̂[t] =


0, if state at time t is a

start state;
r[t]− p[t− 1, t− 1], if state at time t is a goal

or failure state;
r[t] + γ p[t, t− 1]− p[t− 1, t− 1], otherwise.

The weights of the output unit, Unit m, of the evaluation network are updated by the following
equation:

vi,m[t] = vi,m[t− 1] + β r̂[t] yi[t− 1, t− 1],

for i = 0, . . . , n + mh and β > 0. A positive change in state evaluations, indicated by a positive
r̂, results in an increase (decrease) in weight values proportional to the corresponding positive
(negative) input values on the preceding steps. In this way, the evaluation of the preceding state
is altered, effectively shifting evaluations to earlier states.

The above expression is a simplification of Sutton’s algorithm: in the algorithm’s general
form, yi[t − 1, t − 1] is a trace of previous values of yi, called an eligibility trace. An example of
an eligibility trace is a weighted average of past values of yi with recent values weighted more
heavily. This generally results in faster development of good evaluation functions. Eligibility
traces can also be used in the weight update equations of the action network. We chose not to
implement eligibility traces primarily for the following reason. Preliminary experiments with the
pole-balancing task of Chapter VI showed that a single-layer action network functioning with
eligibility traces and without an adaptive evaluation network, i.e., learning only from the external
reinforcement, could learn to perform relatively well. However, our interests were in studying
learning in hidden units, which are required for the development of a good evaluation function for
the pole-balancing task as it is formulated in Chapter VI. We removed the eligibility traces from
both networks to force a greater reliance on the evaluation function and to increase the number
of failures early in a run, providing more external reinforcement and thus more opportunities to
improve the evaluation function. Thus, our primary goal was not to achieve the fastest possible
learning on this task but to investigate learning in hidden units.
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Output Layer of Action Network

Output Unit j, j ∈ Lt, of the action network updates its weights according to:

wi,j [t] = wi,j [t− 1] + ρ r̂[t]
(
aj [t− 1]− E{aj [t− 1]|w; z}

)
zi[t− 1],

for i = 0, . . . , n + mh, where E{aj [t − 1]|w; z} is the expected value of aj [t − 1] conditional on
the current values of w and z. Weight values are not changed for output units corresponding
to illegal actions. The value of aj [t− 1]− E{aj [t− 1]|w; z} can be viewed as a measure of the
difference between action aj [t − 1] and the action that is usually taken for the given values of
zi[t − 1] and wij [t − 1]. Thus, the results of an unusual action have more of an impact on the
adjustment of weights than do other actions. Since aj ∈ {0, 1}, the expected value of aj is equal
to the probability that aj is 1, i.e.,

E{aj [t]|w; z} = P{aj [t] = 1}.

Equations are derived for P{aj [t] = 1} in Appendix B for the cases of two and three legal actions
for the current state—the only cases that arise for the formulation of the Tower of Hanoi puzzle
used in Chapter VII. The calculation of this probability is simplified for the pole-balancing task,
since the binary-valued output of the single output unit encodes one of the two possible actions.
In this case, P{a[t] = 1} is just Ψ(q), where q is the unit’s weighted sum of its input.

Hidden Layer of Evaluation Network

¿From the results of the comparative experiments of Chapter IV, we concluded that the error
back-propagation algorithm of Rumelhart, Hinton, and Williams (1986) usually acquired missing
features most rapidly (for the particular multiplexer task used in the experiments). However, this
algorithm cannot be applied directly because it requires knowledge of the correct output; we do
not know the correct action or the correct evaluation for a given state, which would be needed in
order to calculate an error to be back propagated.

To apply an error back-propagation scheme to the hidden units of a network whose output
layer is learning through reinforcements, a way of translating a reinforcement into an error must
be found. This can be done in a heuristic manner by extracting from the reinforcement-learning
equations the terms that govern weight updates in a fashion similar to the error terms in the
gradient-descent rules. However, it is not obvious how to incorporate the eligibility traces often
used in reinforcement-learning algorithms into a back-propagation scheme, which is another reason
for not including traces for the experiments reported here. A formal analysis of the resulting
algorithms and the degree to which they follow the gradient of the expected value of reward was
not attempted.4

For the evaluation network, r̂ plays the role of an error in the update of the output unit’s
weights. If r̂ is positive, the unit’s weights are altered to increase the network’s output, p, for
positive input; if r̂ is negative, weights are altered to decrease the output. Therefore, we define
the error of the output unit, δpm, to be:

δpm[t− 1] = r̂[t],

where the superscript denotes the association with the evaluation network that generates output
p. The error that is back-propagated from the output unit to Hidden Unit j is just r̂, and
Rumelhart, et al.’s (1986) expression with Sutton’s (1985) modification for the error of Hidden
Unit j, called δpj , becomes:

δpj [t− 1] = δpm[t− 1] sgn(vj+n,m[t− 1]) yj [t− 1, t− 1] (1− yj [t− 1, t− 1]),

and their method for updating the hidden units’ weights can be applied:

vi,j [t] = vi,j [t− 1] + βh δ
p
j [t− 1]xi[t− 1] + βm ∆vi,j [t− 1],

4Williams (1986) has proved that a similar algorithm, the AR−I algorithm (Barto and Anandan, 1985), results

in expected weight changes equal to the gradient of the expected value of the reinforcement.
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for units j ∈ H and inputs i = 0, . . . , n. Note that the sign of Hidden Unit j’s output weight
rather than the weight value itself is used. This variation is used because the results of Chap-
ter IV’s comparative study suggest that the algorithm’s sensitivity to the value of the learning
rate parameter, here βh, is decreased by the use of the sign of the weight.

Hidden Layer of Action Network

The equation for updating the weights of the action network’s hidden units is a bit more compli-
cated. Once r̂ becomes a good evaluation of the previous action, the role of an error is played by
the product of r̂ and the difference between the previous action and its expected value. The sign
of the product is an indication of whether the action probability should be increased or decreased.
So the error in the output of Output Unit k, k ∈ Lt, of the action network is defined as:

δak [t− 1] = r̂[t] (ak[t− 1]− E{ak[t− 1]|w; z}).

The back-propagated error to Hidden Unit j is used to compute the hidden unit’s error:

δaj [t− 1] =
∑
k∈Lt

(
δak [t− 1] sgn(wj+n,k[t− 1])

)
zj [t− 1] (1− zj [t− 1]),

and the weights are updated by the following equation:

wi,j [t] = wi,j [t− 1] + ρh δ
a
j [t− 1]xi[t− 1] + ρm ∆wi,j [t− 1],

for units j ∈ H and inputs i = 0, . . . , n. Disregarding the different errors that are back-propagated
by the two networks, the learning algorithms applied to the hidden units of the two networks are
identical. The sum over the products of output unit errors and weights is not included in the
expression for a hidden unit’s error in the evaluation network because there is only one output
unit.

5.2.3 Parameters

The equations for the evaluation network are governed by the following parameters:

β = learning rate for the output unit (β > 0);
βh = learning rate for the hidden units (βh > 0);
βm = momentum factor for the hidden units (βm ≥ 0);
γ = discount rate (0 ≤ γ < 1).

Similar parameters appear in the equations for the action network:

ρ = learning rate for the output units (ρ > 0);
ρh = learning rate for the hidden units (ρh > 0);
ρm = momentum factor for the hidden units (ρm ≥ 0).

In applying this connectionist system to a task, it is important to test a number of values for each
parameter to investigate the sensitivity of the algorithms with respect to the parameters. This
was done for every experiment reported in this thesis.
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Chapter 6

Learning a Solution to a
Numerical Control Task

Tasks that are typically characterized numerically are easily expressed in a connectionist repre-
sentation, although different representations will result in a wide range of learning abilities. In
this chapter, we study a realistic, numerical control task, called the pole-balancing or inverted-
pendulum task, which is difficult to solve for two reasons:

1. the evaluation function to be learned by the connectionist system cannot be formed by a
single unit, and

2. a performance evaluation in the form of a failure signal appears only after a sequence of
actions has been taken, making it difficult to identify which actions are good and which are
bad.

The objective of these experiments is to show that multilayer connectionist systems can learn
the solution to this type of numerical control task. Results show that hidden units learning
by means of the error back-propagation algorithm can learn new features that are sufficient for
the pole-balancing task to be solved. A single-layer network (without hidden units) is shown to
be incapable of solving the task. The second difficulty is the lack of a performance evaluation
until the end of an action sequence—an example of delayed reinforcement—making it difficult to
determine which actions early in a sequence share the responsibility for a subsequent failure.

The connectionist system described in Chapter V deals with both of these difficulties. In
applying this system of connectionist networks and learning algorithms to the pole-balancing
task, very little knowledge about the task is assumed, only that failure is to be avoided. We show
in Chapter VII how this results in a very general learning system whose algorithms and structures
vary little between this numerical control task and the puzzle-solving task of Chapter VII.

6.1 The Pole-Balancing Task

The pole-balancing task involves a pole hinged to the top of a wheeled cart that travels along a
track, as shown in Figure 6.1. Both pole and cart are constrained to movement in a plane, i.e.,
the environment is two-dimensional. The state at time t of this dynamical system is specified by
four real-valued variables:

xt = the horizontal position of the cart, relative to the track;
ẋt = the horizontal velocity of the cart;
θt = the angle between the pole and vertical, clockwise being positive;
θ̇t = the angular velocity of the pole.
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Figure 6.1: The Pole-Balancing Environment

The goal is to exert a sequence of forces, Ft, upon the cart’s center of mass such that the pole
is balanced for as long as possible and the cart does not hit the end of the track. More abstractly,
the state of the cart-pole system must be kept out of certain regions of the state space, making
this an avoidance control problem. There is no unique solution—any trajectory through the state
space that does not pass through the regions to be avoided is acceptable. A minimal amount of
knowledge about the task is assumed in our experiments. The only information regarding the goal
of the task is provided by the external reinforcement signal, rt, which signals the occurrence of a
failure caused either by the pole falling past a prespecified angle, or the cart hitting the bounds
of the track. rt is defined as

rt =


0, if− 0.21 radians < θt < 0.21 radians and − 2.4 m < xt < 2.4 m;

−1, otherwise.

Note that rt does not depend on θ̇t or ẋt.
The dynamics of the cart-pole system are given by the following equations of motion:

θ̈t =

g sin θt + cos θt

[
−Ft −mplθ̇

2
t sin θt + µcsgn(ẋt)
mc +mp

]
− µpθ̇t
mpl

l

[
4
3
− mp cos2 θt

mc +mp

] ,

ẍt =
Ft +mpl

[
θ̇2
t sin θt − θ̈t cos θt

]
− µcsgn(ẋt),

mc +mp

where

mc = 1.0 kg = mass of the cart,
mp = 0.1 kg = mass of the pole,
l = 0.5 m = distance from center of mass of pole to the pivot,

µc = 0.0005 = coefficient of friction of cart on track,
µp = 0.000002 = coefficient of friction of pivot,
g = −9.8 m/s2 = acceleration due to gravity.

A simulation of these dynamics was used in our experiments. Before describing the simulation
and results, other approaches to the pole-balancing task are discussed.
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6.2 Control-Engineering Approach

The pole-balancing task is frequently used to illustrate standard control techniques due to the
inherent instability of the pole and the task’s similarity to many balance-control problems. Cannon
(1967) shows how the root-locus method is used to analyze the stability of a “lead compensation-
network” controller that exerts a force proportional to the derivative of an error signal—in this
case the pole’s angular velocity. His analysis is confined to small angles and angular velocities
and does not include the goal of avoiding the bounds of the track.

Eastwood (1968) used the pole-balancing task to contrast the calculus of variations and the
dynamic programming approaches to optimal control. Both involve the optimization (minimiza-
tion) of a performance index, defined over trajectories of xt, θt, and Ft. The calculus of variations
method and a quadratic performance index result in the linear control law:

Ft = axt + bẋt + cθt + dθ̇t,

whereas the dynamic programming approach typically results in a computational procedure for
determining Ft. Dynamic programming can deal with more realistic bounds on Ft, such as fixed
maximum and minimum bounds.

These control-design techniques require a model of the system to be controlled in the form of
differential equations that define how the state variables change over time. A good deal of time
must be spent by the control engineer in determining a model that approximates the behavior of
the system to the desired degree of accuracy. Control systems that learn without a predefined
model, or that acquire internal models through observation of the system’s behavior, would obviate
this potentially difficult analysis.

6.3 Our Approach

An alternative to expressing a control law as an analytical equation is to represent the function in
tabular form. Michie and Chambers (1968) took this approach for their learning system as applied
to the pole-balancing task. Their table consisted of approximately 162 “boxes”—nonoverlapping,
rectangular regions of the cart-pole system’s state space—containing average counts of the number
of steps before failure for a push to the right when the system’s state addresses the corresponding
box, and an analogous count for a push to the left. When a box is entered, the push with the
highest count is applied. Their system successfully improved its performance with experience.

The learning system of Barto, Sutton, and Anderson (1983) integrated the table look-up
approach with connectionist learning algorithms. Separate tables were used to store predictions
of reinforcement and probabilities of generating actions, each indexed by the state of the cart-
pole system. The tables are implemented as two units with linearly-weighted input components,
each receiving 162 binary-valued input components. When the state is in a particular box, the
corresponding input component is set to 1 and all other components are set to 0. Therefore, the
weighted sum of the unit’s input is equal to the value of the weight associated with the nonzero
input component.

An obvious problem with the table look-up approach is that the size, shape, and placement of
the regions into which the state space is divided greatly influence the ability of the system to learn
the desired mappings. A region might be too large, meaning that different states inside the region
require different output values, e.g., different pushes on the cart. Conversely, regions are smaller
than optimal when many regions require the same output. If these regions are instead subsumed
by one large region, then what is learned for one state is generalized correctly to all other states in
the region. With many small regions, learning must occur in all regions independently. Michie and
Chambers proposed a solution to this problem: regions for which one output is not clearly better
than any other despite repeated experience should be “split” into several, smaller regions, and
regions with the same output value should be “lumped” into a single, larger region. Politis and
Licata (1986) have pursued this possibility with Barto, et al.’s, learning system and a technique
for periodically splitting every region uniformly into a number of smaller regions.

The problem of selecting the best sizes and shapes of the regions is exactly the problem of
designing the set of features for representing the state of the cart-pole system. In the following
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experiments, the fixed “decoder” that Barto, et al. used to translate the cart-pole state to a region
address is replaced by an additional adaptive layer of hidden units that learns features useful in
solving the pole-balancing task.

This “adaptive decoder” view is closely related to current research topics in control theory
involving the application of multiple controllers to one task. For example, the control of a full 360-
degree pole requires a complex control law in order to be useful for all states. An alternative is to
use a collection of less-complex control laws, and activate one at a time, based on the current state
and an ordering of the control laws according to their ability to deal with that state. Learning
when to switch from one controller to another is analogous to learning how to classify the state
into one of a set of boxes.

Another example of connectionist systems applied to the pole-balancing task comes from the
work of Widrow and Smith (1964). They present results of using a supervised-learning scheme to
train a network of Adaline units (Widrow, 1962) to duplicate the responses of a teacher. For their
experiments the teacher was a predefined linear control law. A human could play the role of the
teacher by manually controlling the pole through an interface, such as a joystick, and the Adaline
network could use the human’s responses as training examples. Learning to mimic a teacher is
much easier than learning from delayed reinforcement as is required for our formulation of the
pole-balancing task.

6.4 Experiments

6.4.1 Simulation

The cart-pole system was simulated on a digital computer by numerically approximating the equa-
tions of motion using Euler’s method with time step τ = 0.02 seconds, resulting in the following
state equations:

xt+τ = xt + τ ẋt,
ẋt+τ = ẋt + τ ẍt,

θt+τ = θt + τ θ̇t,

θ̇t+τ = θ̇t + τ θ̈t.

For the ensuing discussion, discrete time is used by considering each time interval of length τ
as a single time step. Letting state (xt, ẋt, θt, θ̇t) be indicated by (x[t], ẋ[t], θ[t], θ̇[t]), the above
equations become the following difference equations:

x[t+ 1] = x[t] + τ ẋ[t],
ẋ[t+ 1] = ẋ[t] + τ ẍ[t],
θ[t+ 1] = θ[t] + τ θ̇[t],
θ̇[t+ 1] = θ̇[t] + τ θ̈[t].

6.4.2 Desired Functions

From successful experiments with two-layer systems, we discovered that the desired evaluation
and action functions are as sketched in Figure 6.2. For clarity, let us limit attention to projections
of the functions to the (θ, θ̇) subspace. Figure 6.2a shows the kind of function expected to be
learned by the evaluation network. Failure is likely to occur in the upper right and lower left
portions of the (θ, θ̇) state space. We want the learning system to shift this failure signal to states
that precede failure states, then to states that precede failure by longer time intervals, with the
strength of the shifted prediction indicative of the average number of time steps until failure.
Without this map, the system can only learn when the external failure signal arrives. Past states
and actions, or weighted averages of previous states and actions, could be used to apportion blame
for the failure to previous actions, but the tradeoff between a) the need for a long history to blame
actions many steps in the past, and b) the need for a short history to avoid blame being spread
too thinly (resulting in slow learning), is difficult to optimize. Learning this evaluation function
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Figure 6.2: Desired Functions for Pole-Balancing Solution

allows actions very early in a sequence that ends in failure to be blamed if they are responsible for
moving the cart-pole system to a state with a lower evaluation. These temporal credit-assignment
issues are studied in detail by Sutton (1984), who developed the AHC algorithm used here in the
output unit of the evaluation function.

The map from (x, ẋ) to a prediction of failure also looks like Figure 6.2a. In the lower left
corner, the cart is moving to the left and is near the left border of the track, and in the upper
right corner it is approaching the right border of the track.

Figure 6.2b shows an action function for generating a push on the cart. For small angles,
such as −0.21 < θ < 0.21 as used in our experiments, the surface that separates states requiring
different actions, called the switching surface, can be linear. States in the upper right region
require a push to the right, while states in the lower left require a left push. These are the only
actions available—the system is unable to produce a zero force. Such a control system is referred
to as a bang-bang controller—the sign of the applied force can be changed, but the magnitude
of the force is constant. The linear surface is an approximation to the true nonlinear switching
surface of the optimal bang-bang controller. The linear approximation works well for the small
range of angles used in the experiments. The position and slope of the linear surface varies for
different values of x and ẋ.

Knowledge of these desired functions was not used during learning. Obviously, any clues
as to what the desired mappings are should be applied to the design of the learning system.
For a connectionist system, this involves the initialization of weight values such that appropriate
features are formed by the hidden units and the correct actions are generated by the output units.
However, our objective was to study the learning ability of the connectionist system without such
predefined knowledge to see how applicable the system may be to tasks for which this knowledge
is not easily obtainable.
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6.4.3 Interaction between Learning System and Cart-Pole Simulation

The components of the networks’ input, xi[t], are scaled versions of the state variables:

x1[t] = 1
4.8 (x[t] + 2.4),

x2[t] = 1
3 (ẋ[t] + 1.5),

x3[t] = 1
0.42 (θ[t] + 0.21),

x4[t] = 1
4 (θ̇[t] + 2).

An additional input, x0[t], with a constant value of 0.5 provides a variable threshold. Inputs x1[t]
and x3[t] range from 0 to 1, while x2[t] and x4[t] are primarily within the 0–1 range, but can
fall outside these bounds. This scaling accomplishes two things. Since the learning algorithms
involve the input terms, xi[t], as factors in the equations for updating weight values, terms with
predominantly larger magnitudes will have a greater influence on learning than will other terms.
To remove this bias all input terms are scaled to lie within the same range. Secondly, since the
values of the state variables are centered at zero, and due to the linear nature of the network’s
units, the correct action for positive θ and θ̇ will transfer to negative θ and θ̇ in exactly the
right way, i.e., the correct action for negative θ and θ̇ is the negative of the correct action for
positive θ and θ̇ (see Figure 6.2b). If the state variables are used without scaling, these correct
generalizations would make the task much easier, circumventing the need for hidden units in the
action network. Thus, scaling the state variables allowed us to test the learning algorithm for
hidden units.

The force exerted on the cart’s center of mass at time t is given by:

Ft =


10 nt, if a[t] = 1;

−10 nt, if a[t] = 0,

where a[t] is the binary-valued output of the action network at time t. The sampling rate of the
cart-pole system’s state and the rate at which control forces are applied are the same as the basic
simulation rate, i.e., 50 hz..

The experiments consisted of a number of trials, each starting with the cart-pole system set
to a state chosen at random, and ending with the appearance of the failure signal. A series of
trials constitutes a run, with the first trial of a run starting with weights initialized to random
values between −0.1 and 0.1.

A sample of the interaction between the learning system and the cart-pole simulation is pre-
sented in Table 6.1. It shows the cart-pole state, the networks’ input, the action generated, F [t],
the state evaluation, p[t], and the failure signal, r[t], for the first 14 steps. The steps are from
the beginning of a run, so the actions are mostly random and the evaluation is zero (p = 0) until
a failure occurs. The two failures shown are due to θ exceeding −0.21 radians, indicated by x3
approaching 0. (e.g., for the next state after t = 9, x3 ≤ 0, so the state was randomly reset
for t = 10). We want the learning system to learn to generate actions, F [t], that maximize the
number of time steps between occurrences of r[t] = −1. The only information available to the
system is given by the sequences xi[t], i = 0, . . . , 4 and r[t].

6.4.4 Results of One-Layer Experiments

We experimented with single-layer networks (no hidden units) to obtain performance measures
with which the performance of the two-layer system could be compared. The learning algorithms
for the one-layer networks depend on the three parameters, ρ, β, and γ. The value of γ was fixed
at 0.9, while different values of ρ and β were crudely optimized (simulation time prevented an
accurate optimization) by performing 2 runs of 500,000 steps each for approximately 25 different
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Input Output Failure

t x[t] ẋ[t] θ[t] θ̇[t] x1[t] x2[t] x3[t] x4[t] F [t] p[t] r[t]
1 1.90 0.09 −0.01 −1.03 0.90 0.59 0.54 0.17 −10 0.00 0
2 1.91 −0.11 −0.03 −0.74 0.90 0.53 0.48 0.24 −10 0.00 0
3 1.90 0.09 −0.04 −1.04 0.90 0.46 0.43 0.32 10 0.00 0
4 1.91 0.29 −0.07 −1.35 0.90 0.53 0.39 0.24 10 0.00 0
5 1.91 0.09 −0.09 −1.08 0.90 0.60 0.34 0.16 −10 0.00 0
6 1.91 0.29 −0.11 −1.40 0.90 0.53 0.28 0.23 10 0.00 0
7 1.92 0.48 −0.14 −1.72 0.90 0.60 0.23 0.15 10 0.00 0
8 1.93 0.68 −0.18 −2.06 0.90 0.66 0.16 0.07 10 0.00 0
9 1.94 0.49 −0.22 −1.82 0.90 0.73 0.08 −0.01 −10 0.00 −1

10 −1.76 −0.52 −0.14 −0.41 0.14 0.26 0.18 0.48 10 −0.03 0
11 −1.77 −0.32 −0.15 −0.74 0.13 0.33 0.17 0.40 10 −0.03 0
12 −1.77 −0.12 −0.16 −1.08 0.13 0.39 0.15 0.31 10 −0.04 0
13 −1.77 0.08 −0.18 −1.42 0.13 0.46 0.12 0.23 10 −0.04 0
14 −1.77 −0.12 −0.21 −1.19 0.13 0.53 0.07 0.15 −10 −0.04 −1

Table 6.1: Sample Interaction of Learning System and Cart-Pole Environment

Run Trials Last Trial
1 33,977 14
2 61,888 4
3 24,795 16
4 22,717 130
5 28,324 28
6 15,218 100
7 31,594 15
8 44,903 9
9 16,115 72

10 26,402 14

Table 6.2: Results of One-Layer System

sets of parameter values. Two performance measures were used to select the best parameters. The
number of trials, averaged over runs with one set of parameter values, provides a rough measure
of performance over the length of a run. To judge how well the solution had been learned by the
end of the run, the number of steps in the last trial, or the previous trial, whichever is larger, is
averaged over all runs. In this way, an abnormally short final trial caused by the termination of
a run on the 500, 000th step does not enter into the average of final trial lengths.

Performance did not vary considerably for the parameter values that were tested. The best
parameter values were used to obtain a more statistically-significant result by performing 10 runs
of 500,000 steps each. The following parameter values were used:

β = 0.05,
ρ = 0.5,
γ = 0.9,

resulting in the number of failures for the 10 runs shown in Table 6.2. The average number of
trials for each run is approximately 30,593. In addition, the number of steps in the last trial is
shown for each run. As explained above, this value is actually the larger of the last trial length
and the previous trial length, in case the last trial had just begun when the run was terminated
at step 500,000.

The number of steps per trial versus the number of trials is plotted in Figure 6.3. The plotted
values are averages over the 10 runs and over bins of 100 trials, i.e., the trials for a run are grouped
into intervals of 100 trials, the number of steps per trial is averaged for each interval, and the
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Figure 6.3: Balancing Time versus Trials for One-Layer System

results are averaged over the runs. The learning curve shows that performance does improve with
experience; the trial length is approximately equal to 10 steps initially, and after 30,000 trials
approximately 30 steps occur per trial. Even with little experience, the learning system performs
better than a fixed controller that selects pushes on the cart at random. The large variance from
trial to trial is due to the initialization of the cart-pole system to random states upon failure. The
starting state of each trial might be very similar to a failure state, or it might be near the state
of perfect balance where (x, ẋ, θ, θ̇) = (0, 0, 0, 0). This method of restarting after failure differs
from that used by Barto, Sutton, and Anderson (1983), who started the cart-pole system at state
(0,0,0,0) after every failure.

The values of the weights at the end of each run varied considerably. The best of the 10 runs,
resulting in 15,218 failures, resulted in the weights that are displayed on the network schematic
of Figure 6.4. Positively-valued weights are drawn as hollow circles and negative weights as filled
disks. The magnitude of a weight is proportional to the radius of its circle, or disk. Appendix C
contains a list of actual weight values. ¿From the size of the weights we see that the output of
the evaluation network (Figure 6.4a) is rather insensitive to the values of the state variables, and
the value of the output is always negative. The output of the action network (Figure 6.4b) does
depend on the system’s state. A large θ has a positive effect, producing a push on the cart to the
right, and a large value for x has a negative effect, pushing the cart to the left.

A better understanding of what these weights mean is obtained from a graph of the output of
the networks versus the state. To display these functions of four variables, we generated graphs
of the functions’ values versus θ and θ̇ for nine different pairs of x and ẋ values. Figure 6.5a and
Figure 6.5b contain such graphs for the evaluation network and the action network, respectively.
The insensitivity of the evaluation network to the state is evident from the flat surfaces of its
graphs. The base plane in these graphs does not represent a value of 0; the surface is actually at
a small negative value. Obviously this function serves no useful role as an evaluation function for
states—its value varies an insignificant amount from state to state. It is for this reason that the
one-layer system could not improve its performance over 30 steps per trial. Credit is assigned by
the external reinforcement signal only to actions that push the cart-pole into a failure state in
one step. These actions may not be responsible for the failure and may even be correct for the
state preceding failure.

Figure 6.5b shows that the action network has learned a function with approximately the
desired shape (see Figure 6.2b). The height above the base plane represents the probability of
generating a push to the right. The level of the base plane is at zero probability, so for states
where the surface lies near the base plane a push to the left is generated with high probability.
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Figure 6.4: Weights Learned by One-Layer Network

The middle graph, where x = 0 and ẋ = 0, shows a smooth transition from a high probability of
pushing left to a high probability of pushing right as θ and θ̇ go from negative to positive. This
transition is shifted in the direction of negative θ for negative values of x and in the positive θ
direction for positive values of x. In relating these graphs to those for the two-layer networks,
we will see that this relationship between the transition line and the value of x is the opposite of
what is needed to balance the pole while avoiding collisions with the track boundaries.

6.4.5 Results of Two-Layer Experiments

Two-layer networks were formed by adding 5 hidden units to the evaluation and action networks.
The two-layer algorithms depend on the seven parameters, β, βh, βm, ρ, ρh, ρm, and γ. As was
done for the one-layer system, sets of parameter values (approximately 10) were each tested in 5
runs of 500,000 steps. Performance varied significantly for small changes in parameter values (γ
was not varied). The values giving the best performance are:

β = 0.2,
βh = 0.2,
βm = 0,
ρ = 0.5,
ρh = 0.5,
ρm = 0,
γ = 0.9.

Notice that βm = ρm = 0. Results suggest that nonzero momentum terms in the hidden unit
learning algorithms hinder performance on this task. These values were used for 10 runs of
500,000 steps, resulting in the total number of trials and final trial lengths shown in Table 6.3.
The average number of trials over all runs is approximately 10,983, compared to 30,593 trials for
the one-layer system. Even after much learning experience, a nonzero probability of selecting the
wrong action exists for every state, as suggested by the relatively small number of steps in the
last trials of Runs 1 and 10.

The learning curve for the two-layer system is shown in Figure 6.6. The large, stair-like jumps
in the curve are due to the way in which performance is averaged over runs, described as follows.
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Figure 6.5: Functions Learned by One-Layer Networks
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Run Trials Last Trial
1 10,123 88
2 7,790 2,011
3 5,814 14,535
4 8,466 5,753
5 7,212 28,407
6 23,539 20,328
7 19,401 14,302
8 8,804 4,674
9 9,756 20,889

10 9,645 154

Table 6.3: Results of Two-Layer System

Figure 6.6: Balancing Time versus Trials for Two-Layer System
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The axis for the number of trials is labeled from 0 to 30,000 trials, so runs for which less than
30,000 trials occurred were handled in a special way. The learning curve for such a run is extended
to 30,000 trials by assigning to trials that didn’t occur a value equal to the larger of a) the number
of steps in the last trial, and b) the number of steps in the previous trial. In this way, a very
short final trial is disregarded and the length of the previous trial is used to extend the curve.
The large jumps in the curve occur when the last trial of a particular run is very long and the
run is terminated when 500,000 steps have elapsed. If the experiments were run for more steps,
the final performance level would be higher. This large number of steps is then averaged into the
performance curve from that trial through Trial 30,000. For example, the jump at Trial 20,000
is due to the last trial of Run 7, which was approximately 14,000 steps in length. All 10 runs
were terminated before 30,000 trials elapsed, resulting in a final performance level of about 11,000
steps per trial. Recall that the final level achieved by the one-layer system is only about 30 steps
per trial.

The large number of weights, 35 in each network, makes it difficult to interpret the solutions
found by the learning algorithms directly from the weight values. Their relative magnitudes and
signs are shown in the network schematics of Figure 6.7. Figure 6.7a shows the final weight values
for the evaluation network of Run 6, and Figure 6.7b shows the weights for the action network.
Actual weight values are provided in Appendix C. Units 1, 2, 4 and 5 of the evaluation network
are similar, having all positive weights. (In the figure, the small size of the corresponding circles
make them appear to be filled-in disks.) Unit 3’s weights differ, and it is also distinguished by
having a large positive connection to the output unit. It appears that only Unit 3 has developed
a new feature that is useful to the prediction of failure.

The function implemented by the evaluation network appears in Figure 6.8a. The height of
the surface ranges from approximately −1.5 and 0.1. Its shape is just what is needed for the
action network to receive an immediate evaluation of an action. At the center of each base plane,
representing the (θ, θ̇) subspace, the cart-pole is in a state where the pole is vertical and not
falling. The evaluation has its highest value for these states, therefore forming an evaluation
function that decreases as the cart-pole system moves away from this state. Any action that
takes the system toward either the positive or negative θ, θ̇ corner results in a negative evaluation
change, i.e., a negative r̂. The tilt of the surface as x and ẋ change is also correct. Positive θ, θ̇
states are more likely to result in failure when the cart is heading toward the right border of the
track, where x and ẋ are positive. Similarly, negative θ, θ̇ states are likely to precede failure when
the cart is heading to the left border, where x and ẋ are negative.

Before discussing the features learned by the hidden units, let us look at the solution learned
by the action network. From Figure 6.7b we see that again Hidden Unit 3 differs from the other
units in its weight values: θ and θ̇ have large positive effects on Unit 3’s output, and x and ẋ have
smaller positive and negative effects, respectively. Unit 3 is connected positively to the output
unit, whereas the other units are connected negatively. The fact that the Unit 3’s of both networks
play significant roles is fortuitous; for other runs useful features are learned by a different set of
units.

These hidden-unit influences in combination with the influences of the network’s input and
the weights on their direct connections to the output unit result in the action function displayed
in Figure 6.8b. Two observations can be made in relation to the action function learned by the
one-layer network, shown in Figure 6.5b. First, the transition from a high probability of pushing
left to a high probability of pushing right is much quicker, as θ and θ̇ vary. This probability
function implements a much more deterministic control than does that of the one-layer network.
Due to the good evaluation function learned by the evaluation network, actions near the transition
line are credited or blamed appropriately. A second observation is that the shift in the transition
line as x and ẋ vary is in the right direction. The pole should be balanced slightly to the right
of vertical (positive θ) when the cart is near the left track boundary (negative x), and to the left
of vertical when near the right boundary, resulting in a net action over several steps of a push
towards the center of the track. To see that this is indeed what happens, note that the point at
which the pole is balanced is roughly indicated by the location of the transition line. This line
shifts toward positive θ when x is negative, and toward negative θ when x is positive.
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Figure 6.7: Weights Learned by Two-Layer Network
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Figure 6.8: Functions Learned by Two-Layer Networks
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New Features

Now we continue with the analysis of the hidden units. Unit 3 of both networks acquired significant
effects on their output units. The functions implemented by their weights can be visualized by
graphing them as functions of θ and θ̇ for different values of x and ẋ, as done for the functions
implemented by an entire network. Figure 6.9a shows these graphs for Unit 3 of the evaluation
network and Figure 6.9b shows the graphs for Unit 3 of the action network. The outputs of
these units varies from 0 to 1. Very similar functions were learned by the two units. They both
produce a fairly constant value of 1 for most states, with lower values approaching 0 when θ
and θ̇ become more negative. However, the contribution of Unit 3 of the action network is very
small—its output weight is small in comparison to the larger weights on the output unit, Unit 6.
This is not surprising, since the desired mapping from state to action can be implemented with
a single unit. In fact, setting Unit 3’s output weight to 0 and adding its magnitude to Unit 6’s
constant-input weight causes little change in the state-to-action mapping.

To test the significance of the new feature learned by Unit 3 of the action network, further
experiments were run with a one-layer action network and the two-layer evaluation network. The
one-layer action network did learn the desired function, but it learned it slower than did the
two-layer action network. Perhaps the feature learned by Unit 3 facilitated the learning of a
good action function, and with additional experience the output unit developed the appropriate
weights for its state-variable inputs. This must be verified by observing the evolution of the action
function both as a function of the state variables and as a function of the hidden units’ outputs.

The role of the evaluation network’s Unit 3 is much more important. The hill-shaped eval-
uation function cannot be implemented without the hidden units, shown by the results of the
single-layer experiments. Through its positively-weighted connection to the output unit, Unit 3
generates the positive gradient in the evaluation surface as we move from negative θ, θ̇ to θ, θ̇ = 0.
At this point, the gradient in the response of Unit 3 effectively becomes zero, and the output
unit’s negative weights on its state-variable inputs provide the negative gradient as we continue
to move in the positive θ, θ̇ direction.

6.5 Transfer to Similar Tasks

Selfridge, Sutton, and Barto (1985) investigated the ability of a pole-balancing system to trans-
fer learning between tasks. They applied the one-layer system designed by Barto, Sutton, and
Anderson (1983) to a number of balancing tasks that differ in the values of the mass or length
parameters, and discovered that training to one task facilitated training in subsequent, related
tasks. Transfer was successful because for many states the related tasks required the same action
or the same evaluation.

The two-layer learning system explored here would result in transfer of learning for the same
reason. In addition, transfer would arise from the new features learned by the system. New
features could decrease the time needed to learn a subsequent task, even if the task required the
use of a novel set of actions. For example, an electric motor might be used to exert a force on the
cart for one task, and a pneumatic piston might be used in a second task. Transfer of learning
would not be caused by the use of the same action functions, but by the presence of features that
are learned through experience with the first task. In some sense, a higher-level of knowledge
about the domain would be learned—knowledge that is useful for a wider range of tasks, with
different action sets and even with different goals. We didn’t, alas, have time to show this.

6.6 Conclusion

It is immediately apparent from the learning curves of Figures 6.3 and 6.6 that the two-layer
learning system far outperformed the one-layer learning system. New features are required for
the formation of a good state-evaluation function and, although not required for the learning of
a good action function, new features facilitated the action function’s formation.
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Figure 6.9: New Features Learned by Two-Layer Networks
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Thus, the synthesis of the error back-propagation scheme of Rumelhart, Hinton, and Williams
(1986) and the reinforcement-learning techniques (Barto, Sutton, and Anderson, 1983; Sutton,
1984) produced a learning algorithm for a connectionist network that successfully deals with
delayed reinforcements and the initial lack of an adequate representation. The algorithm resulted
in a controller that balanced the pole for 9 minutes (simulated time—28,000 steps at 0.02 seconds
per step) and probably would have balanced it longer if the experiments had been run for a greater
number of steps.

Comparison with the single-layer system of Barto, et al. (1983) is made difficult by the dif-
ferences in how the experiments were conducted. The difference with the greatest effect is that
Barto, et al. started the cart-pole system in the same state, (x, ẋ, θ, θ̇) = (0, 0, 0, 0), following
every failure, whereas here the start state was selected randomly. This is one explanation for the
lack of steady improvement followed by the large jump in the performance curve of Figure 6.6.
Average performance is kept low by start states that are very close to failure states. Disregarding
this difference, comparisons show that the system of Barto, et al. achieved a higher average trial
length after 500,000 steps: their system resulted in approximately 80,000 steps per trial, while the
experiments here resulted in approximately 30,000 steps per trial. This difference reflects the fact
that the two-layer connectionist system learned good solutions later in the runs than did Barto, et
al.’s, system. We conclude that a considerable number of steps are required for the hidden units
to learn the necessary features—it is not until good features are learned that a useful evaluation
function can be formed, and until the evaluation function is learned the action network cannot
progress past a low level of performance.

The heuristic combination of reinforcement-learning and error-correction methods developed
here is just an initial attempt at the formulation of algorithms for reinforcement learning in
multilayer systems. The current algorithm did learn solutions to the pole-balancing task, but
much experience—an average of 10,000 failures—was required before the pole could be balanced.
Ways of accelerating the learning of new features would be fruitful.

The pole-balancing task is described in detail so others can directly compare the results of
other learning techniques to the results reported here. More complicated versions of the pole-
balancing task are easily generated, to create increasingly difficult tests for learning algorithms.
Widening the bounds on the pole’s angle introduces nonlinearities in the desired action function.
A full 360-degree pole is a an interesting case—the controller must learn to switch strategies as
the pole passes through the horizontal plane. The two-dimensional world of the cart-pole can be
expanded to three dimensions. The parameters of the cart-pole can be varied over time, simulating
disturbances arising from wind, wear between the cart and the track or on the pole’s pivot, loss
of pole mass, etc. The task can also be complicated by adding more poles to be balanced, or
by using a flexible pole (Schaefer and Cannon, 1966). Additional inputs to the learning system
that encode additional factors, such as the number of poles or the wind speed, would result in
functions that are dependent on these variables, and the system would react appropriately when
they abruptly change. One further complication is introduced when an explicit representation
of the goal is presented to the system. For example, a system could learn to balance the pole
upright, to point the pole downward, dampening all motion, or to spin the pole as quickly as
possible, choosing its actions based on which of these is the current goal.

A learning system that can solve this pole-balancing task has potential application in a number
of related control domains. The dynamics of the inverted pendulum are closely related to those
of other systems for which balance must be maintained. Raibert (1986) reviews research on
walking machines, and mentions its relationship to the work of Cannon and his colleagues on the
design of controllers for inverted pendulums (Higdon and Cannon, 1963; Schaefer and Cannon,
1966; Cannon, 1967). Another related control problem is the stabilization of rockets through the
control of the direction of thrust.

116



Chapter 7

Learning the Solution to a Puzzle

Connectionist representations present a natural approach to the learning of solutions to numerical
control tasks, as illustrated in Chapter VI. In this chapter, we show that by casting the solution
of a problem-solving task as a mapping between numerical representations of problem states
and actions, the connectionist system used in Chapter VI for a numerical control task can be
applied with little modification to a problem-solving task whose solution is typically represented
symbolically (as production rules, for example). As before, the connectionist system consists of
two networks: an evaluation network which learns an evaluation function, and an action network
which learns heuristics that guide the search for good actions. Comparisons of methodology are
made with Langley’s (1985) adaptive production system, called SAGE, which learns heuristics
that improve the performance of an initial weak search strategy. To facilitate this comparison,
we selected the three-disk Tower of Hanoi puzzle for our experiments, one of the puzzles that
Langley used to demonstrate SAGE.

7.1 The Tower of Hanoi Puzzle

The Tower of Hanoi puzzle is popular for research in problem-solving because the number of states
is small, but the puzzle is still difficult to solve. Human strategies for solving the Tower of Hanoi
have been analyzed (Luger, 1976) and modeled (Anzai and Simon, 1979). Amarel (1981) used
the Tower of Hanoi puzzle as a vehicle for studying shifts of representations to forms of increasing
efficiency for the discovery of a problem’s solution.

The state of the Tower of Hanoi puzzle can be represented in a number of ways. A common
representation is one used by Nilsson (1971), for which the pegs are numbered 1, 2, and 3, and the
disks are labeled A, B, and C, where Disk A is the smallest disk and C is the largest. A particular
state is represented by the peg numbers where each disk resides, listed for disk C, then disk B
and disk A. As pictured in Figure 7.1, the initial state of the puzzle is (111), and the objective is
to achieve state (333) by applying a sequence of actions. The only legal actions are movements of
the top-most disk from one peg to another, with the restriction that a disk may never be placed
upon a smaller disk. An action may be represented as a source peg and destination peg, so the
transformation of state (111) to state (112) is performed by the action of moving the top-most
(smallest) disk from peg 1 to peg 2, represented by Action 1-2. For the three-peg puzzle, only six
actions exist: 1-2, 1-3, 2-1, 2-3, 3-1, and 3-2.

The states of the puzzle plus the transitions between the states corresponding to the legal
actions form the puzzle’s state transition graph, as shown in Figure 7.2. To evaluate a human’s or
machine’s ability to improve its search strategies on the Tower of Hanoi puzzle, we measure the
number of actions in the solution path—a route through the state transition graph from the initial
to the goal state—the minimum length path being the objective. For the three-disk puzzle, the
minimum-length solution path has seven actions and is the straight path down the right side of
the state transition graph. Finding the shortest solution path is confounded by the large number
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Figure 7.1: Initial and Goal States of the Tower of Hanoi Puzzle

Figure 7.2: State Transition Graph for Three-Disk Tower of Hanoi Puzzle
(Adapted from Nilsson, 1971)
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Figure 7.3: 3-Dimensional State Space and Desired Evaluations

of possible solution paths and by the presence of many loops, or cycles, in the state transition
graph.

The Tower of Hanoi puzzle is a good test of the multilayer connectionist system developed in
Chapter V, particularly of its ability to generate new features, for the following reason. A useful
evaluation function must map states to values that indicate the states’ closeness to the goal node.
For the state representation described above, this mapping can be visualized by considering the
peg numbers to be dimensions of a three-dimensional state space, as shown in Figure 7.3. Each
point corresponding to a state is annotated by the number of actions required to reach the
goal state. A linear threshold unit, or other unit based on a linear weighted sum of its inputs,
cannot make the necessary discriminations between states to form a good evaluation function.
New features must be formed by a layer of hidden units that carve up the state space into a
representation for which the linear output unit can learn a good evaluation function. For the
experiments described in this chapter the representation was simplified somewhat, as described
later, to reduce the time required to learn the solution. The fact that new features are still
required is shown by the inability of a one-layer system to learn the minimal solution path.

The formation of useful search heuristics for the Tower of Hanoi is less complicated. A small
set of rather simple heuristics can constrain the search to exactly the correct actions (Anzai and
Simon, 1979; Langley, 1985). For example, many alternatives are removed by a rule stating that
it is undesirable to apply the inverse of an action. The action network used to learn search
heuristics in the following experiments is single-layered, and did successfully learn the minimal
solution path. The representation provided to the network is sufficient—new features are not
required. The simplicity of the search heuristics does not lessen the need for a good evaluation
function; credit must be assigned correctly in order for the heuristics to be learned.
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7.2 Experiments

As done for the pole-balancing experiments, the performance of a one-layer connectionist system
is compared to the performance of a two-layer system to demonstrate the development of useful
features. The learning algorithms and the networks are very similar to those used for the pole-
balancing task, with small modifications to the network structure and the algorithms. Before
describing these modifications, the state and action representations are discussed. Then the
results of experiments with the one and two-layer networks are presented.

7.2.1 Representation of States and Actions

As mentioned above, the state representation consisting of the three peg-numbers corresponding
to each disk results in a very complex mapping from states to evaluations. Although in principle
the connectionist systems used here should be able to learn this mapping, we wished to simplify
the task somewhat to reduce the simulation time required for the experiments.

The state representation used in the following experiments is composed of nine binary digits.
The first three digits encode Disk C’s peg number, the second encode Disk B’s peg, and the third
set of three digits encode Disk A’s peg. Peg 1 is encoded as 100, Peg 2 as 010, and Peg 3 as 001.
For example, state (111) is represented as (100 100 100), and state (123) is represented as (100
010 001).

The output of the action network represents an action by a six-component, standard unit basis
vector, where the components correspond to actions 1-2, 1-3, 2-1, 2-3, 3-1, and 3-2, respectively;
Action 1-2 is encoded as (100000), Action 1-3 is (010000), and so on.

Both the evaluation network and the action network receive the representation of the state.
This completely defines the input to the evaluation network, but additional terms are presented
to the action network. We wished to investigate the ability of the connectionist network to
learn search heuristics similar to the rules developed by Langley’s SAGE system. As mentioned
above, one such rule is to never apply the inverse of the previous action. In order to learn such
an association between the previous action and the current action, the previous action must be
provided as input to the action network. Another rule learned by SAGE is to not apply an
action that returns the puzzle to a state that was visited two steps ago. This avoids the three-
step loops around the smallest triangles in the state transition graph (Figure 7.2). Rather than
providing past states as input, we chose to present the action taken two-steps ago, in addition
to the previous action. The previous two actions along with the current state provide enough
information to identify the state visited two steps ago, although our results suggest that hidden
units are needed to overcome the linearity of the output unit, perhaps by forming a conjunction
of the previous two actions. This possibility was not investigated.

7.2.2 Credit Assignment

The evaluation network learns an evaluation function, but in its initial state the network imple-
ments a meaningless function that evaluates all states approximately equally since its weights are
initialized to small random values. With experience it converges on a function that predicts the
occurrence of reinforcements.

The most significant reinforcement occurs whenever the goal state is entered. A reinforcement
value, labeled r[t], of 1 is presented for the time step at which the goal state (333) is entered.
Recall that for the pole-balancing task, the goal is to avoid certain states for as long as possible,
and r[t] was set to −1 upon entering those states. The Tower of Hanoi task could be solved (by
a two-layer network) with only this final reinforcement, but two additional reinforcements are
provided for the following reasons.

If the action probabilities converge too quickly, due to a large value for the parameter ρ, a
solution path of longer than minimum length will probably be learned. For example, say the
learned solution path is of length eight, one step longer than the minimum number, due to the
incorrect Action 1-2 being taken from the starting state (111). If this action is always chosen over
the correct Action 1-3, then an evaluation function tailored to this particular solution path will be
learned. To avoid this, a second reinforcement signal is presented having a constant value of −0.1
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for all non-goal states. In this way, a shorter solution path results in a higher total reinforcement
than does a longer solution path. This parallels the role of Langley’s heuristic for judging shorter
paths between two states as more desirable.

The third reinforcement is a value of −1 presented whenever a two-step loop occurs, i.e., when
the current action reverses the effect of the previous action. The random search initially followed
by the action network results in many two-step loops (and longer loops), thus many steps elapse
before the goal is discovered. The large negative reinforcement results in a significant decrease in
the probability of selecting the action that is the inverse of the previous action. As shown later,
this must be learned for each action—the concept of inverse actions is not known to the system, so
generalizing across actions is not possible. This reinforcement is not presented to the evaluation
network, enabling a large negative reinforcement to be used without decreasing the evaluation for
the corresponding state. The large negative reinforcement is not meant to indicate that a state
is bad, only that the action was bad. The selection of the inverse action should be discouraged,
but not necessarily the visitation of the state.

This third type of reinforcement is not necessary for the system to learn the puzzle’s solution.
It was included for two reasons. Firstly, it does significantly reduce the number of search steps
during the early stages of learning. Secondly, it demonstrates how domain knowledge, such as the
undesirability of one-step loops, can be added by altering the reinforcement function.

7.2.3 Interaction between Learning System and Puzzle

The input to the evaluation network is composed of the nine binary digits that encode the state
of the puzzle, plus a constant component with a value of 0.5. Specifically, the input terms, xi[t],
for the state at time t are given by:

x0[t] = 0.5,

x1[t] =
{

1, if Disk C is on Peg 1 at time t;
0, otherwise,

x2[t] =
{

1, if Disk C is on Peg 2 at time t;
0, otherwise,

x3[t] =
{

1, if Disk C is on Peg 3 at time t;
0, otherwise,

and similarly for x4[t], x5[t], x6[t] and Disk B, and for x7[t], x8[t], x9[t] and Disk A. After the goal
state is reached and at the start of every run, the state is set to (111), so the input becomes (100
100 100) disregarding the constant input.

The input to the action network consists of these terms and, in addition, the previous two
actions. The action at time t is encoded by six binary components, a1[t], a2[t], . . . , a6[t],1 so the
additional input terms are defined as:

x10[t] = a6[t− 2],
...

x15[t] = a1[t− 2],

and
x16[t] = a6[t− 1],

...
x21[t] = a1[t− 1].

1The indices of the action variables have been renumbered to start from one. In Chapter V they were indexed

by the output unit indices mh, . . . ,m.

121



Rein-
force-

State Delayed Actions Action Evaluation ment
t State Action x1...x9 x10...x15 x16...x21 a1...a6 p[t] r[t]
1 111 1-3 100100100 000000 000000 010000 −0.32 −0.1
2 113 1-2 100100001 000000 010000 100000 −0.17 −0.1
3 123 3-2 100010001 010000 100000 000001 −0.14 −0.1
4 122 1-3 100010010 100000 000001 010000 0.10 −0.1
5 322 2-1 001010010 000001 010000 001000 0.35 −0.1
6 321 2-3 001010100 010000 001000 000100 0.51 −0.1
7 331 1-3 001001100 001000 000100 010000 0.75 1.0
8 333

Table 7.1: Interaction of Learning System and Tower of Hanoi Puzzle

The possible values of reinforcement are defined as follows. The value of r[t] includes just the
first two kinds of reinforcement, while the one-step loop penalty is given by rloop[t] to distinguish
between the reinforcements that are and are not presented to the evaluation network:

r[t] =
{

1.0, if state at time t is (333);
−0.1, otherwise.

rloop[t] =
{
−1.0, if state at t equals state at t− 2;

0.0, otherwise.

An example of the interaction between the learning system and the Tower of Hanoi puzzle is
shown in Table 7.1. The sequence is taken from a successful experiment, after the networks have
learned good evaluation and action functions. The correct action is taken on each step, and the
evaluation, p, increases as fewer steps remain to reach the goal state.

7.2.4 Results of One-Layer Experiments

The only modification to the learning algorithms used for the pole-balancing task involves the
equation for updating the weights of the action network. The reinforcement signal for one-step
loops, rloop, is added as follows:

wi,j [t] = wi,j [t− 1] + ρ (rloop[t] + r̂[t])
(
aj [t− 1]− E{aj [t− 1]|w;x}

)
xi[t− 1].

As in the pole-balancing experiments, two performance measures were used to select the best
values for the parameters of the weight-update equations. A measure of cumulative performance
throughout a run is provided by the number of trials (achievements of the goal state) averaged
over all runs for a given set of parameter values. The second performance measure is the average
over all runs of the number of steps in the last trial, or the preceding trial, whichever is smaller.

The final performance level averaged over 5 runs of 50,000 steps each was used to select the
best of approximately 20 sets of parameter values, differing in ρ and β, leaving γ = 0.9. The best
values were:

β = 0.100,
ρ = 0.01,
γ = 0.9.

These values were used in a longer experiment of 10 runs of 100,000 steps each, resulting in the
number of trials and last trial lengths shown in Figure 7.2. The average number of trials is 3, 145.
From the lengths of the last trial for each run we see that the minimal solution path was not
learned in any run—all trials are longer than seven steps. Run 7 resulted in a last trial of length
nine, but it wasn’t determined whether the path taken on the final trial would be reliably followed
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Run Trials Last Trial
1 2,911 28
2 2,877 23
3 2,884 19
4 2,893 65
5 2,686 651
6 2,928 25
7 4,481 9
8 2,902 25
9 3,951 38

10 2,940 41

Table 7.2: Results of One-Layer System

Figure 7.4: Length of Solution Path versus Trials for One-Layer System

for subsequent trials. The low number of total trials for Run 7 indicates that paths longer than
nine steps are likely.

The trial length versus the number of trials is plotted in Figure 7.4, showing how the length
of the solution path varies with experience. The horizontal dotted line in the figure is at a trial
length of seven, the length of the minimal solution path. The values plotted are averages over
the 10 runs and over bins of 100 trials. The length of the solution path decreases quickly from an
average of 50 steps to approximately 30 steps, but performance is never much better than 30 steps
per solution. A non-learning strategy of random action selection was found to result in an average
of 140 steps per solution path, so the one-layer system significantly improves the initial random
search strategy. Note that all runs were terminated before 5,000 trials elapsed—the learning curve
was extended as was done for the pole-balancing experiments. The curve might have continued
to decrease slightly if the one-layer experiments had been run longer.

The weights learned by the end of Run 7 are shown in Figure 7.5. Actual values are provided
in Appendix C. The evaluation network has acquired only three weights of significant magnitude,
and they are all associated with the encoding of Disk C’s peg. The weights’ signs result in high
evaluations for states with Disk C on Peg 3, the goal peg, and low evaluations for other states.
The weights of the action network are more difficult to interpret. Let us postpone the discussion of
these weights until the results of the subsequent experiments with a two-layer evaluation network
are presented.

We can visualize the learned evaluation function by viewing the state transition graph and
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Figure 7.5: Weights Learned by One-Layer Network
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Figure 7.6: Evaluation Function Learned by One-Layer Network

at each state (i.e., node in the graph) drawing a circle with radius proportional to the state’s
evaluation. The evaluation function learned in Run 7 is pictured in this manner in Figure 7.6.
As determined from the signs of the weights, the evaluation function indeed produces high values
for states for which Disk C is on Peg 3, which are the states in the large, lower right triangle of
the state transition graph. There is very little additional information provided by this evaluation
function. We can describe this function as a credit-assignment heuristic, viz., states with Disk C
on Peg 3 are desirable.

7.2.5 Results of Two-Layer Experiments

Our two-layer experiments involved a two-layer evaluation network with 10 hidden units, but with
the same one-layer action network as above. We suspected that with the delayed actions as input
terms, the one-layer action network could find weight values that result in following the minimal
solution path. This is verified by the results of the experiments.

Approximately 20 sets of parameter values were tested by performing 5 runs of 50,000 steps
each. The values resulting in the best performance are:

β = 0.1
βh = 2.0
βm = 0.9
ρ = 0.02
γ = 0.9

Momentum was discovered to facilitate learning in this case, though interestingly it retarded
learning for the pole-balancing task. Applying these values in 10 runs of 100,000 steps produced
the results in Table 7.3. For all but one run the length of the last trial was seven steps, equal to

125



Run Trials Last Trial
1 11,809 7
2 11,418 22
3 11,584 7
4 11,559 7
5 11,967 7
6 12,093 7
7 11,856 7
8 11,636 7
9 12,432 7

10 12,041 7

Table 7.3: Results of Two-Layer System

Figure 7.7: Length of Solution Path versus Trials for Two-Layer System

the length of the minimal solution path. The average number of trials is 11,839, roughly 10 steps
per trial averaged over the 100,000 steps. So in 9 out of 10 runs the minimal solution path was
learned, and judging from the number of trials in Run 2, the minimal solution path was probably
reliably followed in that run, also. There is always a nonzero probability of trying an alternative
path, which could explain the last trial of Run 2.

The learning curve of Figure 7.7 shows that the two-layer system quickly learned solution
paths averaging about 15 steps in length, and gradually reduced this to the minimum of seven
steps. The learning curve for the one-layer system is superimposed on this graph to highlight the
performance increase resulting from the hidden units in the evaluation network.

The weights learned during Run 1 are displayed in Figure 7.8. (See Appendix C for actual
values.) First we focus on the weights of the evaluation network. The hidden-unit weights are
more varied than they were for the pole-balancing task. Most of the units appear to have acquired
useful new features. Units 1, 2, 5, 6, and 9 have weights of large magnitude, though they are by no
means the only units of significance. As is usually the case, it is difficult to comprehend what role
the units play by studying individual weight values. However, by encoding their output values
by the size of circles on the state transition graph, as done earlier for the evaluation function
itself, we can learn exactly what the new features are and can gain some intuitions about their
contributions to the overall evaluation function. First, we analyze the evaluation function that
was learned in Run 1.
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Figure 7.8: Weights Learned by Two-Layer Network
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Figure 7.9: Evaluation Function Learned by Two-Layer Network

7.2.6 The Evaluation Function and New Features

The value of the evaluation function learned in Run 1 is represented in Figure 7.9. In comparing
two states, the state with the larger circle would be evaluated as being more desirable. Notice that
a consistent progression from small circles to larger circles results as one moves from any state
toward the goal state by the shortest route, thus this evaluation function is extremely informative.
Any search strategy, in addition to the probabilistic method used to generate actions, would
benefit from this evaluation function. The sample of the interaction between the learning system
and the Tower of Hanoi puzzle shown in Table 7.1 is actually a trial from the end of Run 1,
and one column of that table is the output value of the evaluation network. The value steadily
changes from a negative value to increasing positive values as the goal state is approached.

Now let us see how this evaluation function is constructed. Figure 7.10 shows the output
functions for the 10 hidden units, i.e., the features acquired during learning. The radii of the
circles for a feature are calculated by scaling the 27 output values for the corresponding hidden
unit to be between 0 and a maximum radius. So circles of extreme size do not necessarily indicate
that the output is 0 or 1, but only that the output is a minimum or maximum of the values
for that unit. We will not attempt to explain every feature, but will consider the contributions
of several. We refer to a feature by the corresponding unit number, such as Feature 1 for the
function learned by Unit 1.

Feature 1 has a positive effect on the evaluation. Figure 7.10 shows that Feature 1 roughly
represents three states near the bottom of the graph just outside of the lower right triangular
region where Disk C is on the goal peg. Feature 1 boosts the evaluation of these states, thus
directing a search from states in the lower left part of the graph toward the state through which
the search must pass to get Disk 3 onto the goal peg. This part of the graph is a “bottleneck”, and
similar bottlenecks exist at the other two junctions of the three largest triangles. The values of
the evaluation function are critical near these bottlenecks—the choice of an incorrect action can
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Figure 7.10: New Features Learned by Two-Layer Evaluation Network
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result in many additional moves to return to the bottleneck to try a different action. Features 1
and 2 seem to be particularly helpful in evaluating the lower bottleneck and the bottleneck on
the right, respectively.

Feature 9 has a very strong negative influence on the evaluation function. The value of
Feature 9 is high for all states except the first four states on the minimal solution path, plus one
nearby state. The evaluations of the first states in the solution path are raised in relation to the
evaluations of the other states, thus Feature 9’s role is to make the first few states of the minimal
solution path more desirable than states next to the path.

Feature 10 also has a negative effect. Mainly the evaluations of states along and next to the
minimal solution path are lowered by Feature 10, with the exception of the very last state before
the goal state. It appears that this feature guarantees that the difference in state evaluations is
positive as the last state is reached.

Other features also have important contributions. Perhaps a good way to understand their
roles is to observe changes in the evaluation function as each feature is removed and then restored.
From the small amount of analysis done here, it is clear that a variety of new features were
developed for this task. The initial representation of the state is far from ideal when it comes to
forming the evaluation function, but the combination of the error back-propagation algorithm with
Sutton’s AHC algorithm successfully learned sufficient new features for the state representation.

7.2.7 The Action Function

When the two-layer evaluation network was used, the single-layer action network was able to
constrain the search to the minimal solution path. Figure 7.8b shows that this was accomplished
mainly through the development of weight values for the previous-step’s action and for the current
state. The two-step delayed action did not acquire a significant effect on the selection of the current
action.

The large negative weights on the previous action components stand out. Note that there
is one large negative weight for each component. These weights have the same effect as did
Langley’s heuristic for preventing the application of the inverse of the previous action. By tracing
the delayed output of each unit to the corresponding negative weight, we find that the negative
weights are on the intersections of actions and their inverses. In other words, Action 1-2, or
a1[t− 1], has a negative connection to Action 2-1, or a3[t], Action 1-3 is negatively connected to
3-1, etc. A negative weight lowers the probability that the corresponding action will be generated,
and these weights are of such high magnitudes that the probability of the previous-action’s inverse
is effectively zero.

There are other weights associated with the previous-action inputs that are positive-valued.
Through these weights, the generation of an action on one step results in a high probability for
a particular action on the next step, thus forming two-step sequences. For example, Action 3-2
will be followed by Action 1-3. Referring back to Figure 7.2 on page 118, this two-step sequence
can change the puzzle from the third state on the minimal solution path to the fifth state. Other
sequences exist for other two-step transitions along the minimal solution path, and for moving
onto the minimal solution path.

The weights on the delayed action components are not sufficient in themselves for limiting
actions to movement along the minimal solution path. The current state must at least play a role
in selecting the very first action, and indeed it does. Consider the values of the input terms when
in the start state (111). All of the delayed-output terms are 0, since this is the first step in the
trial. All other input terms are 0, except for the first term of each of the three triples encoding
the state. The first of these is connected positively to Unit 2 and negatively to the rest, except
for Unit 6, whose action is not legal for the start state. The other two non-zero input terms have
small or negative connections to units having legal actions, so Unit 2 will be the unit to respond
to the start state. Unit 2 represents Action 1-3, the first action along the minimal solution path.
Langley’s system was not required to learn the correct action for the initial state, because both
states (333) and (222) were goal states—two minimal solution paths exist, and both actions from
the initial state (111) move along one of the paths.
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7.3 Transfer of Learning

It is desirable for a learning system to be able to improve its performance on a single task, called
improvement, and to also improve performance over a set of tasks, called transfer (distinction by
Ohlsson, 1982). Langley (1985) lists the following four kinds of transfer between tasks:

1. Transfer to more complex versions of the task.

2. Transfer to different initial states or goal states.

3. Transfer to tasks of similar complexity with different state-space structures.

4. Transfer to tasks of little similarity, perhaps requiring some of the same actions (referred to
as learning by analogy).

The ability of the connectionist learning system of this chapter to perform the first two kinds of
transfer are discussed below.

Langley showed that the heuristics learned by SAGE for solving the three-disk Tower of Hanoi
puzzle were directly applicable to the four-disk and the five-disk versions of this puzzle, solving
these more complex puzzles with no additional search. The representation of the rules’ conditions
and actions made this possible: disk, peg, and action names are generalized to variables, therefore
the rules can be applied to the new task having an additional disk, since its name can be bound
to a variable as well as any previous disk name. In addition, the concept of an action’s inverse
in included in the system’s representation, enabling a situation where an action is followed by its
inverse to result in a rule discouraging the use of the inverse of any action.

The connectionist representation used here does not permit such generalizations, though learn-
ing is transferred to Tower of Hanoi puzzles having more disks. The state transition graph of
the four-disk puzzle can be generated by duplicating the three-disk puzzle’s graph three times,
making an upper, lower left, and lower right major triangle to be connected in a structure iden-
tical to that for the three-disk graph, as shown in Figure 7.11. If the input representation of the
networks is augmented by simply adding three components to encode the position of the new
fourth disk, assumed to be the largest disk for this discussion, then the action function resulting
in the minimal solution path learned for the three-disk puzzle is left intact, as highlighted in the
figure. Due to the recursive nature of the Tower of Hanoi family of puzzles, the solution path
appears three times. This solution path from the initial state (1111) actually moves the four-disk
puzzle away from the goal state (3333). The action associated with the initial state is wrong,
but there are associations that are appropriately transferred. The negative weights preventing
the selection of an action that is the inverse of the previous action are still very helpful for the
four-disk puzzle. Some of the two-step sequences might also be applicable. To learn the four-disk
solution, the evaluation function must also be adjusted, since it is very tailored to the three-disk
version. Therefore, the solution of the four-disk puzzle would require additional learning, though
probably less than would be needed by a naive system that has no experience with the three-disk
puzzle.

The second form of transfer concerns different initial and goal states. Langley’s system was
not capable of transferring to Tower of Hanoi puzzles with different initial and goal states, but
he has shown on another task how the inclusion in the system of a representation of the goal can
lead to strategies that are goal-dependent.

The action function learned by our system might generalize correctly to different initial states,
particularly those close to the minimal solution path, but this was not tested. The evaluation
function does generalize correctly to different initial states. As shown in Figure 7.9, the evaluations
increase for states closer to goal, whether or not the states are on the minimal solution path if
the new goal is not close to the original goal. Therefore, learning would be facilitated if the initial
state were changed from its original position after the evaluation function had been learned.

As for different goal states, both action and evaluation networks have learned inappropriate
functions. In fact, generalization to a puzzle with a different goal state would retard the learning
of a new solution path. As Langley suggested, to learn evaluation and action functions for different
goals, some representation of the goal must be included as input to the networks. This could be
done very simply by duplicating the terms of the current state representation and using them
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Figure 7.11: State Transition Graph for Four-Disk Tower of Hanoi Puzzle
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to encode the goal state. Different evaluation and action functions would then be learned for
different goals, though a multilayer action network would probably be required.

7.4 Conclusion

In Chapter VI, a connectionist learning algorithm was shown to solve a task having a large search
space, delayed reinforcement, and requiring non-trivial (nonlinear) combinations of features. In
this chapter, its generality was tested by applying it to a task with a small search space, requiring
non-trivial feature combinations, and for which reinforcement is delayed and infrequent. We have
shown how some of the credit-assignment techniques that have been developed for learning rules
while doing can be incorporated into a reinforcement scheme.

The connectionist learning system was able to learn the solution to the three-disk Tower of
Hanoi puzzle. The time (amount of experience) required to solve it is much greater than that
required by Langley’s (1985) adaptive production system, but fewer assumptions are made by
the connectionist implementation. A very limited input representation was used, consisting only
of the current state and the two-previous actions, though this is sufficient for a solution to be
learned.

The speed of learning could be accelerated in a number of ways. The learning algorithms are
just a first attempt at combining reinforcement-learning techniques with a particular method for
learning in multilayer networks. The combination of reinforcement-learning with other multilayer
learning algorithms should be investigated. Some multilayer learning algorithms are more appro-
priate when credit-assignment methods can be completely trusted, and can remove errors in a
single step (such as Reilly, Cooper, and Elbaum, 1982). Such approaches can lead to a prolifera-
tion of features—in the limit one for every state. This would not be a problem for the three-disk
Tower of Hanoi task, but it is not a general solution for tasks with a large number of states.

Comparisons of this connectionist approach for strategy learning with symbolic approaches
highlights some of the limitations of connectionist representations. For example, the connectionist
system used for the Tower of Hanoi experiments is not capable of doing variable binding in the
way that Langley’s (1985) production system can. Langley’s system was able to learn a single
symbolic rule that uses action variables to prohibit actions that are the inverses of the previous
actions. Langley’s production system was able to learn such rules using built-in knowledge of what
“inverse” means and how particular actions and states can be generalized to variables. This raises
two questions of fundamental importance to the research of connectionist systems. First, how
can variables be represented in connectionist representations? This is a well-known limitation of
connectionist representations (e.g., Touretzky and Hinton, 1985). In our implementation, actions
are not generalized to variables; distinct negative weights from each action to its inverse had
to be learned. Second, given that variables are not represented, how can task knowledge, such
as the “inverse” action concept, be used to generalize one experience to other actions? For the
action representation used in this chapter, this would entail some mechanism that a) observes the
negative change in the weight between the previous action and its inverse, and b) uses knowledge of
which weights connect other actions and their inverses to duplicate this weight change for the other
actions. The answers to both questions will certainly involve connectionist structures of greater
complexity than the small networks used in this study. Perhaps a connectionist implementation
of symbolic processing is required (e.g., Touretzky, 1986).
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Chapter 8

Summary and Future Work

The difficulty of the structural credit-assignment problem for learning in the hidden units of a
connectionist system has led to a diverse set of proposed solutions. Similarities and differences in
these methods are emphasized by reviewing them within a consistent framework. In this thesis,
detailed performance comparisons have been made by applying several different kinds of methods
for learning in hidden units to a single task. Then a connectionist approach to the learning of
problem-solving strategies is developed by integrating the error back-propagation algorithm for
learning in hidden units with reinforcement-learning algorithms. The ability of the connectionist
system to overcome limitations of its input representation is demonstrated through its application
to two strategy-learning tasks. Commonalties in the learning of new features and the learning of
new symbolic terms are discussed.

8.1 Comparison of Methods for Learning in Hidden Units

Eleven hidden-unit learning algorithms were compared by applying them to the task of learning
a multiplexer function. The algorithms were tested in the hidden units of a two-layer network.
Two kinds of performance measures were used: the number of errors accumulated throughout
a training run and the total number of input vectors for which the final weight values of a run
result in an incorrect output. Care was taken to try different parameter values for each algorithm
and to present performance measures as averages and confidence intervals over repetitive training
runs. The results in Chapter IV are as follows.

The learning algorithm with the best performance of the algorithms compared is the back-
propagation algorithm (Rumelhart, Hinton, and Williams, 1986), which is a gradient-descent pro-
cedure. Since the desired output of the system was available (given by the multiplexer function),
the sample gradient of a criterion function with respect to each weight could be calculated. Next
in performance are some reinforcement-learning algorithms (Barto and Anandan, 1985; Sutton,
1984), which do not require the desired output to be known but use an evaluation, or reinforce-
ment, of the system’s output to obtain an approximation of a gradient through a stochastic search
of the possible output values for each unit. Standard optimization techniques were also applied by
directly searching (both random and deterministic search methods were tried) for the best weight
vector encompassing all hidden-unit weights. Such a large search space and the ignorance of the
network’s structure resulted in very poor learning performance for these methods. Surprisingly,
even worse performance resulted from a heuristic error back-propagation scheme proposed by
Rosenblatt (1962). This is evidence for the subtlety of the structural credit-assignment problem.

Some novel reinforcement-learning algorithms were also tested. One is an attempt to provide
the hidden units with more informative, unique, reinforcement values by back-propagating rein-
forcements based on the weight with which the hidden units are connected to the output unit. This
modification exhibits faster error reduction early in a learning run, but the rate of error reduction
slows and is surpassed by that of the unmodified algorithm. This indicates that the manner in
which the additional structural knowledge (the interconnection weights) is used is advantageous
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for a system that has not acquired significant inter-unit weights, but is disadvantageous once
approximately correct weight values have been found.

A second novel algorithm was designed as an attempt to combine reinforcement-learning meth-
ods with the following heuristic: a potentially useful feature is one that discriminates among input
vectors for which the system is performing poorly, or that discriminates these input vectors from
others for which the system’s performance is good. The addition of features with these prop-
erties provides to the output layer new degrees of freedom with which it can learn to generate
more appropriate output values. To learn such features, the weight vector of a hidden unit is
shifted towards or away from the current input, depending on whether the resulting reinforce-
ment value is low or high, respectively. A gradual transition from this process to the original
reinforcement-learning algorithm takes place for each hidden unit as the unit develops an output
weight of increasing magnitude. This results in a faster reduction of errors, bringing the cumu-
lative number of errors for this augmented reinforcement-learning algorithm closer to that of the
error back-propagation method.

These results are summarized in Figure 4.5, which is a superposition of learning curves for
the learning algorithms that were tested. The recent error back-propagation and reinforcement-
learning algorithms perform much better than the direct search methods and Rosenblatt’s method.
A recent contribution that was not included in the comparative study is the Boltzmann Machine
learning algorithm (Ackley, Hinton, and Sejnowski, 1985). Time did not allow its inclusion in the
current study, so comparisons with this algorithm are reserved for future work.

As in all empirical studies, it is important to stress that the results are valid only for the
particular task and training regime that was used during the experiments. For example, a task
requiring a smaller network might be most readily solved by a random search of the entire weight
space. In fact, in selecting a task for the comparative study, a small task with two input com-
ponents was tested and it was discovered that a random search solved the task faster than the
error back-propagation and reinforcement-learning algorithms. The multiplexer task was chosen
because the weight space was sufficiently large that direct optimization methods are slow, and also
because it wasn’t so complex that a prohibitive amount of simulation time would be needed to
gather significant performance statistics. Time also prohibited the extension of the comparative
study to other, more complex tasks as would be required to address issues regarding how well the
algorithms scale up to harder tasks.

8.2 Strategy Learning with Multilayer Connectionist Sys-
tems

Strategy learning can be characterized as the acquisition of a method for generating actions that
cause desired transitions among the states of a problem. The desirability of particular transitions
is often indicated by an evaluation that imposes a preference ordering on the possible transitions
from a given state. Reinforcement-learning methods have been shown to be a viable approach
to learning to select the best action under these conditions (Barto, Sutton, and Brouwer, 1981;
Barto and Sutton, 1981a), whereas most connectionist learning methods are based on knowledge
of the correct action.

For some tasks, an evaluation is not immediately available, but occurs only after a sequence of
actions has been generated. Sutton (1984) has developed the AHC algorithm for dealing with this
temporal credit-assignment problem. Hampson (1983) has develop a similar, though less general,
algorithm. Barto, Sutton, and Anderson (1983; Sutton, 1984) combined the AHC algorithm with
a reinforcement-learning algorithm into a single-layer connectionist system for strategy learning.
A major accomplishment of this thesis is the extension of their learning algorithms for single-layer
systems to algorithms for learning strategies with multilayer connectionist systems.

Reinforcement-learning has been successfully applied to learning in the hidden units of mul-
tilayer connectionist systems (Barto, Anderson, and Sutton, 1982; Barto and Anderson, 1985;
Anderson, 1982; Barto, 1985), but since the error back-propagation algorithm resulted in faster
error reduction for the multiplexer task, this algorithm was combined with the AHC and the
reinforcement-learning algorithms. This hybrid system was applied to two tasks that were diffi-
cult, because
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• the functions to be learned are nonlinear, so a single-layer system given the original features
is not sufficient, and

• a performance evaluation appears only after a sequence of actions have been taken, making
it difficult to identify which actions are good and which are bad.

One task involved the control of a dynamical system—a simulated pole that was to be balanced
for as long as possible. The second task was chosen to demonstrate the application of the funda-
mentally numerical, connectionist approach to a task that has typically been solved with symbolic
representations. The Towers of Hanoi puzzle was used to facilitate comparisons with published
results from the application of an adaptive production system to this puzzle (Langley, 1985).

8.2.1 Pole Balancing

The major difficulty of the pole-balancing task is due to the use of a very uninformative evaluation
signal. Task-specific information, such as the dynamics of the pole, were assumed to be unavailable
to the design of the learning system. The evaluation signal was supplied only when the pole fell
or hit the end of the track, so other information concerning the task objective, like the advantage
of maintaining the pole near the vertical, was not assumed. Of course, if such information is
available it should be incorporated into the initial design of a learning system. Our intentions
were to develop learning algorithms for those parts of a task for which a minimum amount of
information is available.

The combination of the error back-propagation algorithm with the AHC and reinforcement-
learning algorithms was successful: the two-layer system balanced the pole for many more steps
than did a one-layer system receiving the same representation of the pole’s state. The hidden
units learned features with which the output units could overcome the limitations imposed by
the representation of the pole’s state and the linearity of the output functions. In analyzing
the new features that were formed, it was discovered that only a small number of new features
were needed to solve the task. Some runs resulted in the formation of a single new feature, while
others resulted in up to three features that developed significant influence on the system’s output.
For two of the ten runs using the two-layer system, the pole was balanced for approximately 9
simulated minutes, at which point the runs were terminated.

Our previous experiments (Barto, Sutton, and Anderson, 1983) with the pole-balancing task
involved a single-layer system for which each state of the pole was represented by a 162-dimensional
standard unit basis vector. The continuous state space was discretized into 162 distinct, 4-
dimensional rectangles to allow the system’s units, whose outputs are based on linear weighted
sums of input, to learn the desired functions. The current connectionist system differs in the
absence of this “decoder” and the addition of hidden units that through experience learn features
that decode the state into an appropriate form. Another difference, which makes performance
comparisons difficult, is that after every failure the state of the pole is set to a random state
instead of the zero state (vertical, stationary pole), as was done in the previous experiments. For
this reason, many more failures were generated in the current paradigm, because some reset states
were very near failure states. We can say that after the same number of training steps, the current
system had not attained as high an average balancing time as had the previous system. This is
due to either a) the additional experience needed to learn useful new features, or b) the lack
of experience in critical states (such as the zero state) for which nearby states require opposite
actions.

8.2.2 Tower of Hanoi

The generality of the connectionist system was tested by applying it with few modifications
to a non-numerical problem-solving task—the Towers of Hanoi puzzle. Similar restrictions on
the amount of a priori knowledge were assumed; primarily a final reinforcement at the end of a
successful sequence of actions (as opposed to an unsuccessful sequence for the pole-balancing task)
provided information regarding the objective of the task. The state of the puzzle is presented
to the connectionist system as binary-valued features representing the peg on which each disk
resides.
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The two-layer system again performed better than a single-layer system. The two-layer system
reliably found a minimum-length solution, i.e., the system applied a sequence of actions consisting
of the minimum number of actions required to achieve the goal state. In solving the puzzle, an
evaluation function was learned that ranked states according to the smallest number of moves
between the state and the goal state.

In learning an evaluation function, a number of new features were developed. In the state-
transition graph for the Towers of Hanoi puzzle there are several bottlenecks—parts of the graph
are interconnected by a single path. New features were formed that discriminate states in the
bottlenecks from other states. The output unit of the evaluation network could not learn a
monotonically-increasing function through the bottlenecks with the original features, but the new
features resulted in a good evaluation function.

Langley (1985) developed an adaptive production system that learned to solve the Towers of
Hanoi puzzle, plus several others. The connectionist system that we applied to the Towers of
Hanoi puzzle has few similarities to Langley’s production system. It is instructive to analyze the
differences and to question whether or not they are fundamental distinctions between symbolic
and connectionist representations.

One difference is that Langley uses a full history of past states and actions to aid the assignment
of credit, whereas the connectionist system relies on the learning of a good evaluation function
to solve the credit assignment problem. This difference is not fundamental to the representations
involved; evaluation functions can be used for symbolic systems and a history of states and actions
can be of use in training a connectionist system. A history could be used much as it is for the
symbolic system, by retrieving the events as training instances. A separate issue is the association
by a connectionist system of past events with current action probabilities in order to base decisions
on previous states and actions. In our experiments, the connectionist system does receive the two
previous actions as input, so two and three step sequences can be learned; the inclusion of all
past events as input to the system is not feasible. An alternative is to collapse the history into a
weighted average of past events (Jordan, 1986).

Another difference is that a breath-first search is not performed by the connectionist system.
In its initial, naive state, the connectionist system chooses actions randomly and as the evaluation
function develops, the action probabilities become increasingly biased towards actions that result
in state transitions producing positive changes in the evaluation function. Breadth-first search
control can be added to the connectionist framework by disregarding the probabilistic generation
of actions and presenting state-action pairs as training instances after some process has assigned
credit to every pair. Learning an evaluation function in this case requires the extraction of
desirable paths from a state history. One attraction of the connectionist approach demonstrated
here is its ability to learn with minimal resources for search control and history maintenance.

A very important distinction that is currently a topic of debate is the use of variables. A single
symbolic rule can be applied to many situations through the binding of variables. For example,
Langley’s system learns a rule that, through variable binding, can be used to avoid the application
of the previous action’s inverse for all possible actions. With one training instance and knowledge
of what an action’s “inverse” means, a single rule is learned that generalizes to all other actions.
It is not clear how knowledge of an action’s inverse can be used in a connectionist system to either
a) learn the connectionist analog of a generalized rule with variables, or b) duplicate the weight
changes due to experience with one action to the weights of other actions. Touretzky and Hinton
(1985) have shown how variable binding can be performed in a particular connectionist system.

Related to the issue of variables is the issue of the transfer of learning. After learning strategies
for solving one task, an efficient learning system must be able to exploit common aspects between
this task and subsequent tasks by applying in similar situations the strategies that worked well
for the first task. Langley’s production rule having a variable action and state can be immediately
applied to other, more complex Tower of Hanoi puzzles. This is not possible for the connectionist
system and the state and action representations used here. Learning is transferred but not to the
degree possible with variablized rules. The strategies learned from the 3-disk Tower of Hanoi are
specifically dependent on the 3 disks—the addition of another disk does not affect the strategies
until further learning occurs. Different representation of states and actions would result in different
amounts of transfer.

In addition to transfer to larger tasks, we can consider transfer to tasks having different goal
states. A representation of a task’s goal can be included in a connectionist network’s input
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representation and therefore acquire an effect, through learning, on the strategies followed in
solving a problem. Again, the amount of transfer depends on the representation of the goal.

8.3 Future Work

Learning algorithms now exist for multilayer connectionist systems, but their convergence to
solutions is slow. Methods for accelerating the convergence of the algorithms warrant further
study (Saridis, 1970; Barto and Sutton, 1981b; Parker, 1985) In addition, ways of breaking a
gradient-following search out of local minima, such as the combination of the AR−P algorithm
with a data-directed search described in Chapter IV, could reduce learning time and increase the
chances of finding solutions.

The development of future learning algorithms must be related to the issues of generalization,
i.e., how learning in one situation is transferred to similar situations. To take full advantage of
the generalization properties of connectionist systems, the search for new features must be guided
by consideration of how they will affect the transfer of learning in future situations, as discussed
in Chapter II. Such methods could be developed into theories of how animals “learn to learn” and
that account for behaviors from “learning set” experiments (Kehoe, 1986). Transfer of learned
responses does not account for these behaviors; rather, the acquisition of a representation tailored
to the learning of particular tasks seems to occur.

Ways of extending the capabilities of the simple connectionist systems that have been dealt
with to date are required. The ability to scale-up current architectures and algorithms to large,
realistic problems requires further research on the learning of multilayer, hierarchical representa-
tions. Concerns similar to those illustrated by Fu and Buchanan (1985) of learning intermediate
levels of knowledge must be addressed in connectionist learning research.

8.4 Applications

Connectionist schemes have potential application for domains requiring complex decision-making.
The problem of programming a connectionist network to perform as desired can be intractable;
complex decisions would require the specification of a great number of interconnection weights.
With the recent advent of successful multilayer learning algorithms, connectionist systems appear
more feasible.

Chapter VI demonstrated an application to a numerical control task. This task is represen-
tative of a wide class of tasks involving the maintenance of balance, such as the control of rocket
thrusters and of walking machines. An even larger class of control tasks, including those just
mentioned, are tasks with delayed evaluation signals. For example, in a process control situation,
the effects of adjustments to process parameters may not be observed immediately. A system
like that used in Chapter VI to predict failure could be used to appropriately credit a parameter
change. The “generate-and-test” paradigm, however, could only be used when the cost of an
incorrect action is small.

The solution of the Towers of Hanoi problem in Chapter VII shows that connectionist meth-
ods can be applied to tasks with a symbolic flavor. Problem-solving and planning tasks involving
a large number of states might be more practically addressed by the connectionist approach of
not explicitly storing a history of past experience with a task. A more reasonable application
of connectionist systems would be in combination with symbolic techniques, taking advantage of
symbolic reasoning methods and the generalization and fast decision-making abilities of connec-
tionist representations.

We are just beginning to see the potential of connectionist representations in machine learning
applications. A common criticism of connectionist systems—that the difficulty of learning in
multilayer networks restricts their usefulness—has been diminished by the recent development of
techniques for learning in hidden units. Many difficult problems remain, but we hope that the

138



work presented here contributes to an understanding of the issues of connectionist learning and
to the extension of the connectionist paradigm to the learning of problem-solving strategies.
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Appendix A

Results from One-Layer Network
Experiments of Chapter II

This appendix contains results from parameter sensitivity investigations for the single-layer con-
nectionist systems of Chapter II. These results are discussed in Chapter II, so they are simply
listed here with little explanation.

Due to the large number of parameter values that were tested, the results of the experiments
with the output-vector task are presented in graph form. The 99% confidence intervals are shown
as vertical bars superimposed on every data point.
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Original Representation

ρ ν µ
0.0001 23.1 ±1.2 20,371 ±35
0.001 24.4 ±1.7 20,406 ±37
0.01 24.0 ±1.3 20,383 ±32
0.1 23.3 ±1.7 20,379 ±43
1 24.6 ±1.9 20,379 ±39
10 23.9 ±1.3 20,357 ±43

Basis Vector Representation

ρ ν µ
0.001 0.0 ±0.0 32.0 ±0.0
0.01 0.0 ±0.0 32.0 ±0.0
0.1 0.0 ±0.0 32.0 ±0.0
1 0.0 ±0.0 32.0 ±0.0

Original Representation Plus New Features

ρ ν µ
0.001 0.0 ±0.0 31.5 ±2.3
0.01 0.0 ±0.0 30.6 ±2.0
0.1 0.0 ±0.0 32.8 ±2.1
1 0.0 ±0.0 31.8 ±2.5
10 0.0 ±0.0 30.8 ±2.5

Table A.1: Multiplexer Task—Parameter Search Results

Original Representation
ρ µ1 µ2

0.0001 21.9 ±0.14 21.9 ±0.11
0.001 22.0 ±0.05 21.9 ±0.14
0.01 22.0 ±0.05 21.9 ±0.16
0.1 22.0 ±0.07 22.0 ±0.07
1 22.0 ±0.05 22.0 ±0.00
10 21.9 ±0.11 21.9 ±0.11

Basis Vector New Features
ρ µ1 µ2

0.0001 21.9 ±0.14 4.0 ±0.00
0.001 22.0 ±0.05 4.0 ±0.00
0.01 22.0 ±0.05 4.0 ±0.00
0.1 22.0 ±0.07 4.0 ±0.00
1 22.0 ±0.05 4.0 ±0.00
10 21.9 ±0.11 4.0 ±0.00

New Common Features
ρ µ1 µ2

0.0001 21.9 ±0.14 2.9 ±0.28
0.001 22.0 ±0.05 2.9 ±0.29
0.01 22.0 ±0.05 3.1 ±0.27
0.1 22.0 ±0.07 3.1 ±0.28
1 22.0 ±0.05 3.0 ±0.25
10 21.9 ±0.11 3.3 ±0.29

Table A.2: Input-Cluster Task—Parameter Search Results
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Figure A.1: Output-Vector—Original Representation
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Figure A.2: Output-Vector—New Output Representation
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Appendix B

Derivation of P (aj = 1) for Tower
of Hanoi Experiments

The output values of the action network for the Tower of Hanoi experiments of Chapter VI are
determined by setting the output of the unit with the largest weighted sum plus noise to 1 and the
other outputs to 0. Only those units representing legal actions for the current state are involved in
this competition. For a given state there are either two or three legal actions, so the competition
on any step is between two or three units. This simplifies the calculation of P (aj = 1), since at
most the output of three units must be considered in determining the probability of the output
of one unit being the maximum. To derive an expression for P (aj = 1), we must solve problems
concerning relationships between the values of two or three random variables, the random variables
being the weighted sums of the units plus noise.

B.1 Two Legal Actions

We start with the case for which only two actions, aj1 and aj2 , can be legally applied to the
current state. First we define variable sj [t] as the weighted sum of Unit j’s input:

sj [t] =
21∑
i=0

wij [t]xi[t].

Now the random variables X and Y are defined for Units j1 and j2, respectively, to be the units’
weighted sums plus noise:

X = sj1 [t] + ηj1 ,

Y = sj2 [t] + ηj2 ,

where the ηj are random variables from an exponential distribution. Let Xm be the minimum
value of X and Ym be the minimum value of Y , which are simply the weighted sums:

Xm = sj1 [t],

Ym = sj2 [t].

The density functions for random variables X and Y are given by:

fX(x) = eXm−x
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Case Integral Expression Evaluation

Xm < Ym

∫ ∞
Ym

fY (y)
∫ ∞
y

fX(x) dx dy
eXm−Ym

2

Xm ≥ Ym
∫ ∞
Xm

fX(x)
∫ x

Ym

fY (y) dy dx 1− eYm−Xm

2

Table B.1: Expressions for P (X > Y ) by Cases

fY (y) = eYm−y

An equation for P (aj = 1) is derived by isolating the cases of Xm or Ym being the larger, and
finding expressions for P (X > Y ) for each case. Integrals over the possible values of X and Y
result in the expressions shown in Table B.1. A single equation for P (aj1 [t] = 1), and therefore
for E{aj1 [t] |w;x}, when there are two legal actions for the current state is given by:

E{aj1 [t] |w;x} =


1
2
esj1 [t]−sj2 [t], if sj1 [t] < sj2 [t];

1− 1
2
esj2 [t]−sj1 [t], if sj1 [t] ≥ sj2 [t].

B.2 Three Legal Actions

For three legal actions, aj1 , aj2 , and aj3 , we must define an additional random variable:

Z = sj3 [t] + ηj3 ,

with lower bound:
Zm = sj3 [t].

Z also has the exponential density function

fZ(z) = eZm−z.

There are six possible orderings of Xm, Ym, and Zm, and each is analyzed in turn to determine
P (X > Y,X > Z). The resulting expressions for P (X > Y,X > Z) for each case are shown in
Table B.2. These are combined into the following expression for the expected value of aj1 [t] (t
is dropped for clarity):

E{aj1 |w;x} =



1− 1
2
esj2 − sj1 − 1

2
esj3 − sj1

+
1
3
esj2 + sj3 − 2sj1 , if sj1 ≥ sj2 , sj1 ≥ sj3 ;

1
2
esj1 − sj2 − 1

6
esj1 + sj3 − 2sj2 , if sj2 ≥ sj1 , sj2 ≥ sj3 ;

1
2
esj1 − sj3 − 1

6
esj1 + sj2 − 2sj3 , if sj3 ≥ sj1 , sj3 ≥ sj2 ;
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Case Integral Expression Evaluation

1− 1
2
eYm−Xm

Xm ≥ Ym ≥ Zm
∫ ∞
Xm

fX(x)
∫ x

Ym

fY (y)
∫ x

Zm

fZ(z) dz dy dx − 1
2
eZm−Xm

+
1
3
eYm+Zm−2Xm

1− 1
2
eZm−Xm

Xm ≥ Zm ≥ Ym
∫ ∞
Xm

fX(x)
∫ x

Zm

fZ(z)
∫ x

Ym

fY (y) dy dz dx − 1
2
eYm−Xm

+
1
3
eZm+Ym−2Xm

Ym ≥ Xm ≥ Zm
∫ ∞
Ym

fX(x)
∫ x

Ym

fY (y)
∫ x

Zm

fZ(z) dz dy dx
1
2
eXm−Ym

− 1
6
eXm+Zm−2Ym

Zm ≥ Xm ≥ Ym
∫ ∞
Zm

fX(x)
∫ x

Ym

fY (y)
∫ x

Zm

fZ(z) dz dy dx
1
2
eXm−Zm

− 1
6
eXm+Ym−2Zm

Ym ≥ Zm ≥ Xm

∫ ∞
Ym

fX(x)
∫ x

Ym

fY (y)
∫ x

Zm

fZ(z) dz dy dx
1
2
eXm−Ym

− 1
6
eXm+Zm−2Ym

Zm ≥ Ym ≥ Xm

∫ ∞
Zm

fX(x)
∫ x

Ym

fY (y)
∫ x

Zm

fZ(z) dz dy dx
1
2
eXm−Zm

− 1
6
eXm+Ym−2Zm

Table B.2: Expressions for P (X > Y,X > Z) by Cases
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Appendix C

Weights for Solutions of Strategy
Learning Tasks

The values of the weights at the end of the particular runs discussed in the text of Chapters VI and
VII are included in this appendix for those who wish to study the behavior of the resulting systems
in more detail. The values are relatively arranged as they appear in the network schematics
pictured in the figures of the above chapters. Weights for the single-layer networks and for the
two-layer networks are shown. First the resulting weights of the pole-balancing runs are presented,
followed by the weights for the Tower of Hanoi runs.

C.1 Pole-Balancing Task

Figure C.1a shows the weights for the one-layer evaluation network and Figure C.1b shows the one-
layer action network’s weights. These figures correspond to the network schematic in Figure 6.4.
Figure C.2a and C.2b are the weights for the two-layer networks, corresponding to the network
schematics of Figure 6.7.

C.2 Tower of Hanoi Task

Now the weights from runs with the Tower of Hanoi task are presented. Figure C.3a and C.3b
are the weights for the single-layer evaluation and action networks, respectively. This figure
corresponds to Figure 7.5. Weights for the two-layer evaluation network with the one-layer action
network are divided into two figures. Figure C.4 shows the weights for the two-layer evaluation
network and Figure C.5 shows the weights for the one-layer action network. The corresponding
figure in Chapter VII is Figure 7.8.

−0.22 −6.76

−0.00 −16.00
−0.09 −1.75

0.02 15.61
−0.02 5.92

Figure C.1: Pole-Balancing—Weights Learned by One-Layer Network
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5.69 5.60 −0.16 5.64 5.62 −3.06 3.11 3.16 0.11 3.10 3.10 −5.24

3.45 3.53 1.64 3.54 3.43 −0.34 2.19 2.75 2.91 2.82 2.82 15.82
3.32 3.34 1.22 3.25 3.40 −0.53 2.41 1.39 −2.84 1.63 1.46 3.70
1.96 1.92 2.30 1.79 1.87 −0.71 1.23 1.50 5.03 1.45 1.54 28.38
3.28 3.33 1.42 3.28 3.31 −0.58 2.34 2.71 4.11 2.69 2.73 14.13

−1.00 −8.98
−1.01 −9.03

6.95 9.44
−1.00 −8.94
−1.03 −8.59

Figure C.2: Pole-Balancing—Weights Learned by Two-Layer Network

−0.02 −1.83 2.47 −2.56 7.36 −0.72 −4.73

−0.35 3.52 2.83 −6.18 −3.29 −2.49 5.61
−0.22 −12.01 −8.85 −0.76 18.20 4.67 −1.25

0.54 4.84 10.97 1.82 −0.18 −3.62 −13.83

−0.12 −13.76 −10.33 −0.67 19.45 −0.29 5.59
−0.01 1.32 8.12 −6.17 −2.69 −0.73 0.15

0.09 8.78 7.16 1.73 −2.04 −0.42 −15.21

0.08 −5.69 −7.62 0.00 21.91 0.00 −8.61
−0.03 0.00 12.57 −4.24 −7.18 −1.14 0.00
−0.08 2.03 0.00 −0.87 0.00 −0.29 −0.86

0.39 −1.01 0.80 0.13 −0.44 0.14
1.04 7.90 −0.83 −2.57 2.98 −8.52

−10.66 −8.41 0.82 21.16 −1.25 −1.66
3.64 1.95 0.16 −0.23 −3.97 −1.55
−2.68 0.25 −1.90 −1.30 2.55 3.08

4.03 4.85 −4.16 −2.46 −1.30 −0.96

0.93 8.30 −5.01 −3.85 −0.37 0.00
−7.43 −12.40 0.57 20.71 0.00 −1.44

2.99 8.41 −0.02 0.00 0.65 −12.03
−6.84 −2.54 0.00 0.78 4.14 4.47

6.70 −0.30 2.47 −0.59 −8.02 −0.25
0.00 3.48 −3.12 −2.32 2.16 −0.20

Figure C.3: Tower of Hanoi—Weights Learned by One-Layer Networks
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−2.63 −1.31 −2.97 −0.20 −1.70 0.00 −2.05 3.24 1.89 0.02 0.33

−5.00 −3.17 −0.14 1.43 −2.54 0.85 −2.11 3.06 −2.92 1.47 −0.14
2.47 1.13 −3.19 −2.81 2.38 2.10 −1.02 −0.38 1.97 −4.45 −0.18
−2.29 −1.80 −2.53 1.66 −4.50 −1.93 −0.81 3.62 4.55 3.56 0.98

2.56 −4.76 −2.46 −3.18 −3.13 3.92 −0.26 0.47 −0.83 3.45 0.23
−3.09 1.42 −3.37 2.15 0.16 −6.12 −2.51 2.21 0.25 3.60 −0.01
−3.84 −0.01 1.19 0.37 −0.70 2.98 0.01 4.11 4.49 −6.67 0.43

−2.77 −4.11 −6.38 −6.52 −3.97 2.01 −2.27 −0.06 2.86 −1.30 0.62
0.59 4.88 1.66 2.58 −0.45 −1.04 −0.32 3.22 0.17 3.54 −0.16
−2.03 −4.11 −0.94 4.21 −0.31 −0.80 −1.39 3.09 1.11 −1.55 0.19

−0.26
−1.08

0.09
0.14
−0.48

0.32
0.20
0.20
0.43
1.03

Figure C.4: Tower of Hanoi—Weights Learned by Two-Layer Evaluation Network
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−0.33 0.52 0.05 0.31 −0.47 −0.08

0.89 1.70 −1.04 −1.28 −1.80 1.52
−0.55 −1.17 0.84 −0.17 1.14 −0.10
−1.00 0.51 0.30 2.06 −0.28 −1.59

0.33 −0.41 0.38 0.75 −0.52 −0.53
−0.60 0.76 0.24 −0.77 −0.30 0.68
−0.38 0.71 −0.52 0.63 −0.12 −0.32

−2.40 0.05 0.00 1.98 0.00 0.37
0.00 1.00 0.88 −1.37 −0.52 0.00
1.74 0.00 −0.78 0.00 −0.43 −0.54

−0.35 −0.46 1.10 −0.34 −0.43 0.46
0.01 −0.01 −0.33 0.10 0.15 0.08
−0.49 −0.55 −0.35 1.37 −0.53 0.56

0.91 0.46 −0.22 −0.83 0.03 −0.33
1.10 −0.42 −0.65 0.52 −0.15 −0.40
0.43 −0.22 0.56 −0.20 −0.01 −0.55

0.49 2.51 −0.52 −2.65 0.17 0.00
0.72 −3.05 0.59 1.84 0.00 −0.10
0.22 0.34 0.14 0.00 1.09 −1.79
−2.92 −1.03 0.00 1.69 1.32 0.94

0.83 2.13 1.17 −0.60 −3.12 −0.41
0.00 0.14 −1.28 0.34 −0.40 1.20

Figure C.5: Tower of Hanoi—Weight Values Learned by One-Layer Action Network with Two-
Layer Evaluation Network
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