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Abstract
Recent experiments involving the training of artificial neural networks with multiple layers, sometimes referred to as deep learning, have demonstrated the ability to automatically 
identify features that are critical to solving complex pattern classification tasks, such as speech recognition.  Similar to speech, atmospheric data sets often consist of multiple 
time series with unknown, complex interrelationships.  In this project we seek to explore what kind of interrelationships can be discovered in climate data by applying the 
framework of artificial neural networks.  As a first application we look at establishing relationships between top of atmosphere radiative flux and air/surface temperatures.  This is 
an important application, since a thorough understanding of those relationships is essential for understanding the effect of CO2-induced warming on the Earth's energy balance 
and future climate. 

Principal Components Analysis

X is matrix of 5054 x 756 samples.    

           USVT = svd(X – X)

Using first 3 components of V

            Approximation error (RMS) is 77.9

                      NASA CERES and MERRA Data
lw – long wave flux at TOA st – skin temperature
sw – short wave flux at TOA t1 – air temperature 500 hPa
si – solar insolation at TOA t2 – air temperature 50 hPa
daily data from March 1, 2000 – December 31, 2013 (5,054 days)
low spatial resolution, 20 x 20 degrees, 7 latitudes, 18 longitudes
Each sample composed of 7 x 18 x 6 = 756 variables.

Objectives
1. Find low-dimensional (3) representation of each sample to study patterns among the 6 variables across
    spatial locations.
2. Compare linear PCA with nonlinear dimensionality reduction achieved with multilayer neural networks.
3. Compare standard way of training autoencoder network with new sequential approach using mutiple
     networks.

The key idea is to train neural networks from data and then
study the network properties as function of location and field.
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Neural Network as Autoencoder

Trained to minimize error in approximation (scaled 
conjugate gradient method)

     Approximation error (RMS) is 23.0

             Multiple Neural Networks as Autoencoders

Networks with single representation unit trained with approach akin to Gram-Schmidt.

                 Approximation error (RMS) is 17.2
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Problem:
All three units 
represent the 
annual cycle.

Better:
Only first unit 
represents the 
annual cycle.

Components of 
eigenvectors as 
function of location 
and field. Small 
magnitude values are 
not shown.

Weights of individual units 
in first layer as function of 
location and field. Small 
magnitude values are not 
shown.

Weights of individual 
units in first layer of first 
network as function of 
location and field. Small 
magnitude values are 
not shown.

Below figures show 
weights of individual 
units in first layer of 
second and third 
networks.

Discussion and Future Work
The example and initial results provided here illustrate the basic approach we plan to take, namely to 
train neural networks from data and to then study the network properties to discover interesting patterns 
in the data. The displays of weight magnitudes reveal subsets of locations and fields that are positively 
or negatively correlated in the set of data samples. We expect that further analysis of the network 
properties will reveal nonlinear combinations of key locations and fields that will facilitate an 
understanding of spatial and temporal variations in the data.  We have only just started to implement 
these ideas, so the initial results presented here serve as an illustration of the general process.
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