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ABSTRACT OF DISSERTATION

STABILITY ANALYSIS OF RECURRENT NEURAL NETWORKS WITH APPLICATIONS

Recurrent neural networks are an important tool in the analysis of data with temporal structure.

The ability of recurrent networks to model temporal data and act as dynamic mappings makes

them ideal for application to complex control problems. Because such networks are dynamic,

however, application in control systems, where stability and safety are important, requires certain

guarantees about the behavior of the network and its interaction with the controlled system. Both

the performance of the system and its stability must be assured. Since the dynamics of controlled

systems are never perfectly known, robust control requires that uncertainty in the knowledge of

systems be explicitly addressed. Robust control synthesis approaches produce controllers that

are stable in the presence of uncertainty. To guarantee robust stability, these controllers must

often sacrifice performance on the actual physical system. The addition of adaptive recurrent

neural network components to the controller can alleviate, to some extent, the loss of performance

associated with robust design by allowing adaptation to observed system dynamics. The assurance

of stability of the adaptive neural control system is prerequisite to the application of such techniques.

Work in [49, 2] points toward the use of modern stability analysis and robust control techniques

in combination with reinforcement learning algorithms to provide adaptive neural controllers with

the necessary guarantees of performance and stability. The algorithms developed in these works

have a high computational burden due to the cost of the online stability analysis. Conservatism

in the stability analysis of the adaptive neural components has a direct impact on the cost of the

proposed system. This is due to an increase in the number of stability analysis computations that

must be made. The work in [79, 82] provides more efficient tools for the analysis of time-varying

recurrent neural network stability than those applied in [49, 2]. Recent results in the analysis
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of systems with repeated nonlinearities [19, 52, 17] can reduce the conservatism of the analysis

developed in [79] and give an overall improvement in the performance of the on-line stability

analysis.

In this document, steps toward making the application of robust adaptive neural controllers

practical are described. The analysis of recurrent neural network stability in [79] is not exact and

reductions in the conservatism and computational cost of the analysis are presented. An algorithm

is developed allowing the application of the stability analysis results to online adaptive control

systems. The algorithm modifies the recurrent neural network updates with a bias away from the

boundary between provably stable parameter settings and possibly unstable settings. This bias is

derived from the results of the stability analysis, and its method of computation is applicable to

a broad class of adaptive control systems not restricted to recurrent neural networks. The use of

this bias term reduces the number of expensive stability analysis computations that must be made

and thus reduces the computational complexity of the stable adaptive system. An application of

the proposed algorithm to an uncertain, nonlinear, control system is provided and points toward

future work on this problem that could further the practical application of robust adaptive neural

control.

James N. Knight
Department of Computer Science
Colorado State University
Fort Collins, Colorado 80523
Summer 2008
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Chapter 1

Introduction

Solutions to real world control problems often make simplifying assumptions to enable automated
design techniques. To ensure that the resulting controllers behave as expected on the actual system,
the simplifications made for analysis generally involve constructing a set of simpler systems which
cover all the behaviors of the real world plant. These types of relaxations generally result in
controllers that are suboptimal with respect to the desired performance metric and the plant of
interest. Adaptive control techniques allow the initial design to be modified with the goal of
improving performance based on observations of the plant’s actual behavior. The application of
adaptive control systems to real world control problems is, however, often impossible or too risky
because of a lack of guarantees about the adaptive system’s performance and stability.

Most existing research on stable adaptive control takes a specific algorithm and proves stability
on some class of plants. For example, a Lyapunov function might be constructed showing that
a certain gain scheduling procedure is stable for a class of linear, time-invariant plants [64]. A
second approach is to ensure stability by restricting the updates an adaptive system makes to the
controller parameters [49, 62]. This type of approach is not restricted to a given adaptive control or
learning algorithm, but it requires online monitoring of the control parameter updates. Compared
to the first approach, online update monitoring increases the computational cost of the adaption,
sometimes considerably. On the other hand, this type of approach is more general.

This document focuses on the second approach for ensuring the stability of adaptive control
systems. Specifically, the use of recurrent neural networks in adaptive control systems is considered.
Recurrent neural networks are capable of representing a wide class of both static and dynamic
mappings. In fact it can be shown that recurrent neural networks are capable of approximating a
many dynamical systems arbitrarily well [32]. This makes them suitable for many different uses
in control systems. For example, a recurrent neural network can be used as a controller or as an
estimator of system parameters or unobservable states. Since recurrent neural networks are dynamic
systems, they have their own stability properties which must be understood. The first part of this
dissertation analyzes existing techniques for assessing the stability of recurrent neural networks and
extends them in several ways to improve their performance. Recurrent neural network stability is
analyzed in terms of the input-output relationship of the nonlinear, time-varying mapping defined
by the network parameters. The main stability analysis tool that is applied is the theory of
integral quadratic constraints [59]. Stability properties are framed in terms of the feasibility of
certain matrix inequalities. Such formulations are addressed mathematically and computationally
by semidefinite programming [92]. The second part of this dissertation proposes an algorithm for
ensuring the stability of a recurrent neural network that is adapted as part of a larger control
system. The algorithm is applicable to the adaption of recurrent neural networks in isolation or in
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a loop with a controlled plant. Examples are presented of application in both of these situations.

1.1 A Motivating Example

Reinforcement learning is a term used to describe a large class of problems and algorithms that
involve learning through observation of, and interaction with, an environment. While the theory
and practice of reinforcement learning for control has improved dramatically over the last two
decades, applications of this approach for online adaptation on real systems remain elusive. Two
problems persist that impede the deployment of reinforcement learning systems: guarantees of
performance and guarantees of safety. Much of the progress in reinforcement learning has come
in the form of proofs of convergence and characterizations of solutions. Sufficient conditions for
the convergence of reinforcement learning algorithms have emerged for increasingly large classes
of algorithms and problems. This body of research gives results concerning the properties of the
resulting controllers. More recently, literature addressing the dynamic behavior of these algorithms
has appeared [49, 67]. Here, the research seeks to address the problem of providing guarantees
of safety. The dynamic effects of reinforcement learning algorithms interacting with a controlled
system must be understood.

Consider a class of problems in which the goal is to drive the state of a system to some operating
point. This class of problems includes stabilization of unstable systems, reference tracking problems,
and regulation problems. Controllers for these problems must meet some performance goal while
also guaranteeing stability of the closed loop system. A large body of research exists that addresses
the problem of designing and characterizing controllers for these types of problems. These design
methods are generally restricted to time-invariant linear systems and controllers that are linear in
their inputs. In most cases, however, the system that is to be controlled will exhibit nonlinear
dynamics that change over time. To specify the discrepancy between the design assumptions and
reality, linear, time-invariant (LTI) models can be derived with the unmodeled dynamics of the
system — its time varying components and its nonlinearities — characterized as uncertainty in
the basic LTI model. Robust control theory provides methods for designing controllers for these
uncertain models and for characterizing the uncertainties.

Robust controllers, however, can exhibit suboptimal performance because of restrictions in their
design. In this situation performance can be improved through the use of adaptation. Rather than
adapting the given robust controller, an extra adaptive component can be added to the control
loop. Retaining the fixed controller gives the system a guaranteed level of initial performance. The
adaptive component is allowed to have a more general structure than the fixed controller. The
actual control signal is generated by combining the output of the fixed controller and the adaptive
controller. The stability of the closed loop system is given for the fixed controller case, but the
addition of an adaptive component can drive the system to instability. This instability can result
in damage to the physical plant or its environment and an associated decrease in performance.
Thus, a method is needed to guarantee the stability of the system with the adaptive component. In
Chapters 5 and 6 such a method is given using recurrent neural networks as the adaptive component.

Consider the simple spring-mass-damper system in Figure 1.1. This system can be described
by a second order, nonlinear, differential equation in the variable y, giving the distance from the
equilibrium point. The equation describing the system is

mÿ + (c + cf )ẏ + ky + ka2y3 = u, (1.1)

where c is the damping coefficient, cf is the coefficient of friction, k is the spring constant and a is
the spring hardening constant. A force, u, can be applied to the mass. A control system similar to
this simple spring-mass-damper is described in Chapter 6.
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Figure 1.1: A simple spring-mass-damper.

A control problem for this system is defined by requiring the mass to be held at a certain
position, r(t), that can vary with time. For expository purposes a simple proportional integral (PI)
controller is defined for this problem. The controller has the form

u(t) = Kpe(t) + Ki

∫ t

0
e(τ)dτ

e(t) = y(t)− r(t)

where Kp and Ki are controller parameters. Values of the parameters giving good performance
and stability can be derived using standard control techniques and tuning on model systems. An
example trajectory of the controlled system is shown in Figure 1.2.

A simple, single node neural network is added to the system as the adaptive controller compo-
nent. A schematic of the control system is shown in Figure 1.3. The neural controller is described
by the equation

a(t) = wo(t) tanh(wh(t) e(t))

and has two adjustable parameters, the hidden weight, wh, and the output weight, wo. In later
chapters more neural networks with recurrent connections will be used, but here a simple forward
network suffices. By adjusting these parameter values away from zero, the behavior of the system
can be modified. It is then necessary to answer the following question: what setting of these
parameters gives optimal performance under the stability constraint? In general, performance will
be measured as some function of the tracking error, e, over time, and stability will require that the
system’s states do not grow without bound for bounded reference signals.

The stability of the system is analyzed, using the methods presented in Chapters 2 and 3, for
parameter values (wh, wo) ∈ [−4, 4]2. The region of the parameter space that can be proved to
result in stable behavior is shown in Figure 1.4. The average tracking error over a fixed amount
of time is estimated for all parameters settings of the neural controller in the same range. The
estimated performance for stable parameter settings is shown in Figure 1.5. These results show
that stable, performance improving parameter settings exist for this problem. Examples of stable
and unstable behavior of the system are shown in Figure 1.2. The stability analysis methods
developed in Chapters 2, 3, and 4 can, to a certain extent, distinguish the parameter settings that
result in unstable behavior from those that result in stable behavior.

To guarantee stability during learning, transitions from one controller to another must be con-
sidered. The stability analysis presented in Chapter 4 considers a range of possible controllers and
assesses whether or not the system will remain stable as the controller changes within this range.
In Figure 1.6, for example, several regions are shown in which the control parameters can vary
while not making the control loop unstable. Notice that the regions are smallest near the stability
boundary. This means that the controller can vary only a little when its parameters are in this
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Figure 1.2: Behavior of the spring-mass-damper system with different controllers:
PI controller (left-top), PI with stable NN controller (right-top), and PI with un-
stable NN controller (bottom). The dashed line is the reference point, and the
solid line is the position of the mass. The parameters used were m = 1.0, c = 1.2,
cf = 0.05, k = 0.5, a = 0.1, Kp = 1.0 and Ki = 0.2.

Figure 1.3: A control system with a neural network controller in parallel to a PI
controller.
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Figure 1.4: An analysis of a finite mesh of controller parameters reveals the struc-
ture of the region of static stability.
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Figure 1.5: Tracking error is estimated over a range of NN parameter values. The
estimated average tracking error is shown only for statically stable controllers. The
plot shows that the error can be reduced for values that result in statically stable
controllers.
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Figure 1.6: Regions of provably stable dynamic stability are shown for the example
problem.

part of the space. This in turn can degrade learning performance by restricting the amount of
change that can be made to the controller. In this example good parameter settings for the neural
controller are not near the boundary between stable and unstable controllers, but it can be the
case that the parameters resulting in the most improved performance lie near the boundary of
instability. When this happens, this type of approach can become quite inefficient.

Because of this problem, it is useful to consider whether or not the stability analysis provides
information that can be used to influence the updates made to the adaptive controller. The stability
analysis that resulted in Figure 1.4 produces an upper bound on the gain around the feedback loop
— the amount of amplification of the input signal — between the plant and controller. These
upper bounds are shown in Figure 1.7. The gain increases rapidly near the stability boundary and
is useful for biasing the learning algorithm away from this boundary. These ideas are explored more
fully in Chapter 5, where a method of exploiting this information is developed.

1.2 Objectives

The immediate goals of this research are two fold: to improve the state of the art in the analysis
of recurrent neural network stability and to provide a method for efficiently applying such stability
analysis to the online adaptation of recurrent neural networks in control systems. Improvements
in stability analysis techniques can be measured along two axes. The first is the conservativeness
of the analysis. A conservative analysis provides only sufficient conditions for stability as opposed
to conditions that are both sufficient and necessary. Less conservative methods provide conditions
which are closer, in some sense, to the necessary conditions of stability. The second axis is compu-
tational complexity. The methods presented in the following chapters rely on testing the feasibility
of certain matrix constraints. Reducing the size or number of such constraints allows the stability
analysis to be applied to larger or more complex systems. Often, reduction in conservativeness
and reduction in computational complexity are at odds. Understanding the relationship between
the two allows better choices to be made in practical systems. Improvements along both axes are
presented in Chapters 3 and 4.
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Figure 1.7: The estimated gain for points in the stable region of the parameter
space.

Improvements in the stability analysis of recurrent neural networks are only applicable to adap-
tive control systems in a framework that considers the whole control system. The second goal of
this research is to develop a method that allows recurrent neural networks to be adapted in control
systems with guarantees of stability for the entire system. This type of system has been proposed
in earlier work [49, 50, 2]. This research pointed to a problem with naively applying the proposed
stability analysis techniques to an adaptive control system. Often the adaptation drives the system
to the boundary in the parameter space between parameter settings for which stability could be
proved and those settings for which it could not. When this occurs, an increasingly large number
of stability analysis computations must be made. This, in turn, makes the method very expensive
computationally. The objective in proposing a new algorithm here is to reduce the cost of guaran-
teeing stability of adaptive control systems with recurrent neural network components and make
such methods more practically applicable.

A secondary goal of this document is to illustrate some practical aspects of working with the
proposed stability analysis computations and stable adaptation algorithms. To this end computa-
tional comparisons are made throughout the document between different formulations of problems
and different optimization algorithms. Rather than attempting to provide a comprehensive picture
of the computational aspects of these problems, results are presented simply to give a sense of the
class of computations involved.

1.3 Document Outline

The basic ideas presented in the motivating example will be developed more fully in the remaining
chapters of this document. In Chapter 2 background material on recurrent neural networks and
stability analysis is presented. A formal definition of stability is established, and the basics of
integral quadratic constraints analysis are explained. The presentation assumes some knowledge
of dynamical systems theory and analysis, but briefly covers all of the necessary control theoretic
material used in the dissertation. Pointers to more thorough presentations of the material are
provided. Previous work in this area is described at the end of the next chapter. Some limitations
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of this previous work are described.
Chapter 3 is an in-depth study of the integral quadratic constraint approach to the stability

analysis of recurrent neural networks. Theoretical as well as computational aspects of the approach
are considered. Specifically, work in [19, 52] is applied to reduce the conservativeness of the stability
analysis. Also, it is shown that for solving the resulting matrix constraint feasibility problems,
the augmented Lagrangian method of [46, 47] is much more efficient than standard semidefinite
programming algorithms. These results are important for practical application of the algorithm
presented in Chapter 5.

When applied in an adaptive control context, the parameters of recurrent neural networks
vary with time. Chapter 4 examines the stability analysis of recurrent neural networks in the time
varying case. The application of integral quadratic constraints analysis to recurrent neural networks
requires formulation of the networks as feedback systems between linear, time-invariant components,
and the nonlinear, time-varying and uncertain parts of the system. A new formulation of time-
varying recurrent neural networks as feedback systems is developed in Chapter 4. Experiments
show that compared to the formulation developed in [79], this results in a less conservative stability
analysis. Modifications of the basic stability problem that improve its numerical conditioning are
also presented.

The example earlier in this chapter hinted at how certain problems might arise in the application
of stability analysis techniques to time varying neural networks in a feedback loop with a plant.
Naive application of these techniques requires a large number of stability analysis problems to
be solved. Since these problems can be expensive, this limits the applicability of these results to
extremely simple systems. In Chapter 5 a general algorithm for filtering parameter updates to
ensure stability is described. A method of biasing the parameter trajectory away from the stability
boundary is developed. This bias reduces the number of expensive stability analysis computations
that must be performed. On the other hand, it requires the solution of many smaller, but non-trivial
problems. A technique for reducing the cost of solving these problem is also presented.

In Chapter 6, the proposed algorithm is applied to a multiple spring-mass-damper system with
nonlinear friction. The example demonstrates the capability of the algorithm to ensure stability of
an adaptive controller for a non-trivial system. The example also exposes some remaining problems
with the approach that are proposed as future research. Some general conclusions and a description
of this future research are presented in the final chapter.
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Chapter 2

Background

This chapter presents some background material useful for understanding the later chapters. Specif-
ically, a class of dynamical systems known as recurrent neural networks is introduced. Then, after
a brief review of some of the basic notions of stability for dynamical systems, a general framework
for the analysis of feedback systems, known as integral quadratic constraints (IQC) analysis, is
described. The IQC analysis method addresses stability analysis in terms of optimization problems
with matrix constraints. The basics of numerical methods for solving this type of optimization
problem are covered in Section 2.4. Two main classes of methods are considered: interior point
methods and augmented Lagrangian methods. Both methods will be used throughout the remain-
ing chapters. Finally, in Section 2.5, some previous work in the area of recurrent neural network
stability is examined.

2.1 Recurrent Neural Networks

Recurrent neural networks (RNNs) are a large class of both continuous and discrete time dynam-
ical systems. RNN formulations range from simple ordinary differential equation (ODE) models
to elaborate distributed and stochastic system models. The main focus of this work is on the ap-
plication of RNNs to control problems. In this context, RNNs can be seen as input-output maps
for modeling data or acting as controllers. For these types of tasks, it will be sufficient to restrict
attention to continuous time RNN formulations, primarily of the form

ẋ = −Cx + WΦ(x) + u

y = x.
(2.1)

Here, x is the state of the RNN, u is a time varying input, y is the output of the network, C is
a diagonal matrix of positive time constants, W is the RNN’s weight matrix and Φ is a nonlinear
function of the form

Φ(x) = [φ(x1) φ(x2) . . . φ(xn)]T .

The function φ(x) is a continuous one dimensional map, and generally a sigmoid like function, such
as tanh(x). Since the RNN will be applied as an input-output map, the output, denoted by y, is
defined to be the state x. More general models allow the selection of certain states as outputs or
an additional mapping to be applied at the output layer. These modifications do not affect the
stability analysis of the RNNs dynamics, but will need to be considered when the network is used
in a control system.

The stability analysis and stable learning methods constructed in this work are, in principle,
applicable to other RNN structures such as discrete time RNN models or other continuous time
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Figure 2.1: An example of a recurrent neural network with three fixed points. On
the left is a sample trajectory over time and on the right is the same trajectory in
state space.

models; an example is the echo state network [37]. Continuous time echo state networks have the
form

ẋ =
1

c
(−ax + Φ(Wx + Winu + Wfby))

y = g

(
Wout

[
x
u

])
.

While some of the specific details of the proposed methods must be changed for application to this
type of network, its structure is similar enough to (2.1) that the general principles will be the same.

The dynamic system (2.1) can exhibit a wide variety of dynamics. Equation 2.1 can have a
single, globally attractive fixed point whose value varies with different constant input signals. The
ability of an RNN to have multiple fixed points allows it to be used as a type of associative memory
since regions of the input space can be associated with the different fixed points. An example of an
RNN with three fixed points is shown in Figure 2.1. The figure on the left shows the time evolution
of the two states of the RNN. The figure on the right depicts the trajectory in state space with the
arrows representing the direction of flow in the system.

RNNs can also possess limit cycles in the constant input case [73]. Figure 2.2 shows example
dynamics of such a network. Time-varying input signals obviously can lead to even more complex
dynamics, but even when the inputs are not time-varying (2.1) can exhibit chaotic dynamics [6]. The
stability analysis that will be presented considers the case of time-varying input signals explicitly,
but the results are intimately connected to these different dynamic situations in the constant input
case.

2.2 Input-Output Stability of Dynamical Systems

Since the focus of this work is on the stability analysis of RNNs and control systems with RNN
components, it is important to make clear what stability means in this context. This section pro-
vides an overview of important concepts from nonlinear systems analysis, and a working definition
of stability is established. More thorough introductions can be found in [20, 42, 44, 91]. The
presentation here follows along the lines of [44].
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Figure 2.2: An example of a recurrent neural network with a stable limit cycle.
On the left is a sample trajectory over time and on the right is the same trajectory
in state space.

For the purposes of this document, an m-dimensional signal, u, will be defined as a mapping
from the time interval [0,∞) to R

m. The most important class of signals for the analysis that will
be presented is the space of signals that are piecewise continuous and square integrable. This space
of signals in combination with the norm defined by

||u||Lm
2

=

√∫ ∞

0
uT (t)u(t) dt, u(t) ∈ R

m,

forms a normed vector space denoted Lm
2 or Lm

2 [0,∞). When the dimension of u(t) is unimportant
the superscript m will generally be dropped. Also, the restriction of u to the interval [0,∞) will be
assumed and the simpler notation, L2 will be used.

The space L2 is of interest for stability analysis purposes since it describes the space of signals
with finite energy. The following inner product can be associated with L2

〈u, v〉 =
∫ ∞

0
uT (t)v(t)dt =

1

2π

∫ ∞

−∞
û∗(jω)v̂(jω)dω

where û(jω) and v̂(jω) are the Fourier transforms of the signals, u and v. Since L2 is also a complete
space, the addition of the inner product defines a Hilbert space. Hilbert spaces have important
properties that will be exploited in the development of the stability analysis results that follow.
Other classes of signals can be defined in a similar manner. For instance, the space of piecewise
continuous, bounded signals with the norm

||u||Lm
∞

= sup
t≥0
||u(t)||, u(t) ∈ R

m,

is also a normed vector space and is denoted Lm
∞.

A nonlinear system such as (2.1) can be viewed as an operator mapping an input signal, u,
in some signal space to an output signal, y, into another signal space. It is the properties of this
operator that determine the stability of the system. While it is tempting to define an operator as a
mapping from say, Lm

2 → L
q
2, a more general definition is necessary. It is possible that an operator
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such as (2.1), call it H, can map a signal u ∈ Lm
2 to a signal that is not bounded on the interval

[0,∞), in other words, not in Lq
2. To address this difficulty, the notion of extended spaces must be

introduced. The extended space, Lm
pe, is defined as

Lm
pe = {u | uτ ∈ Lm

p , ∀ τ ∈ [0,∞)}

where uτ represents the restriction of the signal u to the time interval [0, τ). Given this definition,
the operator H is taken to be a mapping from Lm

pe to Lq
pe. This definition allows poorly behaved

operators, H, to be dealt with within the same framework. While an operator may map u ∈ L2 to
some unbounded signal not in L2, the truncation of this unbounded signal, (H(u))τ , will often be
in the extended space, L2e.

Before proceeding to define stability, one further definition is necessary. An operator, H, is
said to be causal if (H(u))τ = (H(u)τ )τ . Causal operators depend only on signal values in the
past and not on any value of signals in the future. Systems such as (2.1) that have state space
representations are causal by definition. With the basics in place, a formal definition of stability
can be given.

Definition 2.1 (Finite Gain Lp Stability [44]). An operator H : Lm
pe → Lq

pe is finite gain Lp stable
if there exists a non-negative constant γ such that

||(H(u))τ ||Lq
p
≤ γ||uτ ||Lm

p

for all uτ in Lm
p and τ in [0,∞). The constant γ is called the gain of the system.

Finite gain, stable operators that are also causal can be shown to satisfy the additional property
[44]

||H(u)||Lq
p
≤ γ||u||Lm

p
.

The choice of p and thus of signal space affects the meaning of the definition. When p is taken to
be ∞, finite gain L∞ stability of an operator H implies that it maps point-wise bounded signals to
point-wise bounded signals. When the space of signals is taken to be L2 the definition implies that
a stable operator H maps signals of finite energy to signals of finite energy. For complex systems,
computational methods of assessing the stability of an operator are very useful. The choice of p
determines the applicability and complexity of some of these computational approaches. In what
follows, the space of signals is taken to be L2. This choice gives the resulting stability analysis
an interpretation in terms of energy amplification in the system. The stability analysis that is
developed for RNNs will determine if an RNN is finite gain L2 stable and can produce an upper
bound on this gain.

2.3 Establishing Stability

For linear operators, L2 stability analysis is straightforward. Consider the linear system

ẋ = Ax + Bu

y = Cx + Du,
(2.2)

that has the associated transfer function, G(s) = C(sI − A)B + D. A transfer function relates
the input of an LTI system to the output in the space of the Laplace transform of the signals,
Y (s) = G(s)X(s). The Laplace transform is given by the equation

X(s) =

∫ ∞

−∞
x(t)e−stdt.
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Figure 2.3: A feedback loop with interconnection noise.

A necessary and sufficient condition for the stability of (2.2) is that all eigenvalues of the matrix A
have real part less than zero. Such a matrix is called a Hurwitz matrix and the associated transfer
function is also called Hurwitz. The L2-gain, γ, of the system is given by its so-called H∞ norm

||G(jω)||H∞
= sup

ω∈R

||G(jω)||2 = sup
ω∈R

σmax(G(jω)),

where σmax(·) denotes the largest singular value of a matrix argument.
Consider two systems, with operators H1 and H2, connected in a loop as in Figure 2.3 and

given by the equations

e1 = u1 −H2(e2)

e2 = u2 −H1(e1)

y1 = H1(e1)

y2 = H2(e2).

(2.3)

The system is said to be well posed if for all inputs e1, e2 ∈ L2 the system has a unique solution.
In other words, u1, u2, y1, and y2 exist and are unique. A sufficient condition for stability of the
feedback loop, that is, of the mapping from u = [u1 u2]

T to y = [y1 y2]
T is given by the small gain

theorem.

Theorem 2.1 (Small Gain Theorem [44]). If the feedback system given by (2.3) is well posed and
the operators H1 and H2 are finite-gain L2-stable then the feedback loop (2.3) is finite-gain L2-stable
if

||H1|| ||H2|| < 1.

A proof is given in [44].

The small gain theorem gives an efficient test for stability of interconnected components when the
computation of the necessary operator norms is efficient. Notice, however, that the theorem only
states a sufficient condition for stability, and it is thus possible for the condition to be conservative.
In fact, this condition is known to be quite conservative in many cases and techniques for reducing
this conservativeness have been developed [15].

Another characterization of stability can be made in terms of the passivity of operators. Pas-
sivity theory is derived from the theory of linear circuits, and passivity signifies a property that
can be likened to the dissipation of energy in a circuit. The following definition is from [42].
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Definition 2.2 (Passivity). A causal operator, H : L2e → L2e, is said to be passive if

〈(H(u))τ , u〉 ≥ 0

for all u ∈ L2e and all τ ≥ 0. The operator is said to be strictly output passive if there exists an
ǫ > 0 such that

〈(H(u))τ , u〉 ≥ ǫ ||(H(u))τ ||2

for all u ∈ L2e and all τ ≥ 0.

A system that is strictly output passive has an L2-gain less than 1/ǫ [44]. The following passivity
theorem is proved in [42].

Theorem 2.2 (Passivity Theorem [42]). Assume that the feedback system (2.3) is well posed and
that u2 = 0. If H1 is strictly output passive and H2 is passive then the system is stable in the sense
that ||e2τ || ≤ 1

ǫ ||u1τ || for all τ ≥ 0. If additionally, H2 is bounded then ||e1τ || ≤ c||u1τ || for all τ ≥ 0
and some c > 0.

Like the small gain theorem, the passivity theorem is only a sufficient condition for stability.
The application of loop transforms and multipliers can significantly reduce the conservativeness
of the stability condition. The use of loop transforms and multipliers will be introduced in the
context of a slightly modified feedback loop. Many nonlinear and uncertain systems can be viewed
as the connection of an LTI system with some nonlinear or uncertain operator in a feedback loop.
A general feedback system of this type is depicted in Figure 2.4, where the LTI operator G has the
block form

G(s) =

[
G11(s) G12(s)
G21(s) G22(s)

]

Gij = Ci(sI −A)−1Bj + Dij

with the matrices, A, Bi, Ci, Dij derived from the corresponding state space realization

ẋ = Ax + B1u + B2w

y = C1x + D11u + D12w

v = C2x + D21u + D22w

w = ∆(v).

(2.4)

A common short hand for the operator, G, is

G =




A B1 B2

C1 D11 D12

C2 D21 D22




Since the operator G is LTI its L2-gain, γ1, and passivity coefficient can be computed explicitly.
Often the gain, γ2, of the nonlinear operator ∆ can also be computed, or at least bounded. Never-
theless the small gain theorem may prove to be conservative. On the other hand, by transforming
the feedback loop as in Figure 2.5, it is often possible to show that the conditions of the passivity
theorem are satisfied for the modified system. Under certain conditions stability of the transformed
system is a necessary and sufficient condition for stability of the original loop. The first transfor-
mation considered is the addition of the additive operators, H1 and H2, to the loop. If H1 and
H2 are bounded, causal, linear operators and the transformed loop is well-posed, then stability
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Figure 2.4: An extended system for performance analysis.

of the transformed loop is equivalent to stability of the original loop [42]. The input and output
signals of the feedback loop are unaffected by the transformations. On the other hand, the passivity
conditions are now applied to the operators (G −H2)(I + H1G)−1 and (∆ + H1)(I −H2∆)−1. If
operators H1 and H2 can be found that make the modified feedback loop passive, then stability
can be assured.

A second transformation that can be made is the introduction of an invertible operator M into
the feedback loop. This operator is called a multiplier. The multiplier approach to stability analysis
originated in the works of Popov [70], Zames [97] and Brockett and Willems [11]. A good summary
of the approach can be found in [91]. Under the conditions of the following theorem, the stability
of the multiplier transformed loop implies stability of the original system. A proof can be found in
[20].

Theorem 2.3 (Multiplier Theorem [31]). Take the system in Figure 2.4 with ∆ a set of L2 → L2

operators. Given a multiplier of the form

M(s) = M∗
1 (s)M2(s) (2.5)

with M1(s) and M2(s) Hurwitz, and a constant ǫ > 0 such that
∫ ∞

−∞
Re[v∗(jω)M(jω)w(jω)]dω ≥ 0, v ∈ L2, w = ∆(v), ∆ ∈∆, (2.6)

and
M∗(jω)G(jω) + G∗(jω)M(jω) � −ǫI, ∀ ω ∈ R, (2.7)

then the system is L2 stable for all ∆ ∈∆.

The two conditions of the theorem ensure that the transformed nonlinear operator is passive and
that the transformed LTI operator is strictly passive thus ensuring the stability of the feedback
loop by the Passivity theorem.

Rather than deriving a multiplier for each particular problem of interest, the search for mul-
tipliers can be automated. For some class of systems, such as RNNs with a tanh(x) nonlinearity,
a set of valid multipliers, M, must be specified. The following problem, if solvable, finds a valid
multiplier.

Problem 2.1 (Multiplier Opimization Problem).

max
ǫ,M

ǫ s.t.

M(jω)G(jω) + G∗(jω)M(jω) � −ǫI, ∀ ω ∈ R,

M ∈M,

ǫ > 0.
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Figure 2.5: The extended system of Figure 2.4 transformed by various loop ma-
nipulations.

The constraint, M ∈M, poses both theoretical and computational problems. For Problem 2.1
to be efficiently solved the set M should be convex. Additionally, the representation of M by
linear matrix inequalities and simple linear constraints allows standard LMI software to be applied
to Problem 2.1. The determination of a valid setM and a computationally feasible representation
is a difficult problem, but some examples will be seen in the next chapter.

Solving Problem 2.1 requires ensuring that the semi-infinite constraint (2.7) is satisfied. The
problem is clearly computationally infeasible, but two approaches exist to circumvent the difficulty.
The first approach tests the condition over a finite grid of frequencies, ω [1, 65]. While this is
computationally attractive, the approach can not always guarantee stability. An alternative ap-
proach gives an exact solution but at a higher computational expense. Application of the following
lemma converts the infinite dimensional constraint (2.7) into a finite dimensional constraint with
the addition of another decision variable. A proof of the lemma can be found in [72].

Theorem 2.4 (Kalman-Yakubovich-Popov (KYP) [72]). Given A ∈ R
n×n, B ∈ R

n×p, M = MT ∈
R

(n+p)×(n+p), with det(jωI −A) 6= 0 , for ω ∈ R, the statements

[
(jωI −A)−1B

I

]∗
M

[
(jωI −A)−1B)

I

]
≺ 0 ∀ ω ∈ R ∪ {∞} (2.8)

and

M +

[
AT P + PA PB

BT P 0

]
≺ 0 for some P = P T ∈ R

n×n (2.9)

are equivalent.

When n is large, the cost of introducing the additional variable, P , can be prohibitively expensive
for standard LMI software. These solvers generally have a complexity of Θ(m3) per step where m
is the number of variables. For KYP problems they have a complexity of Θ(n6) per step since the
number of variables, m, is of order n2. Special purpose solvers have been developed for problems
derived from the KYP lemma that can be much more efficient for large n [89].
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Restricting the multipliers to be causal and decomposable in the multiplier stability theorem
restricts the types of multipliers that can be applied. In [59] the method of integral quadratic
constraint analysis (IQC) was introduced. The IQC approach to system analysis derives from
much of the same literature and research as the multiplier approach and generalizes the multiplier
theory by simplifying the conditions on valid multipliers. The main benefit of the IQC formalism
is that it allows complex systems to be analyzed by considering descriptions of the system’s var-
ious components. Also, the IQC paradigm allows general purpose software to be constructed for
piecing together IQC models for complex systems and automating the derivation of the necessary
optimization problems [43].

An integral quadratic constraint describes the relationship between two L2 signals, v and w in
the following way ∫ ∞

−∞

[
v̂(jω)
ŵ(jω)

]∗
Π(jω)

[
v̂(jω)
ŵ(jω)

]
dω ≥ 0, (2.10)

where v̂ and ŵ are the Fourier transforms of the two signals [59]. Pairs of signals satisfying the
constraint are said to satisfy the IQC given by Π. The IQC Π is taken to have the form

Π(jω) = G∗
f (jω)M̃Gf (jω), (2.11)

with Gf a bounded, LTI operator and M̃ a constant, symmetric matrix. Some IQCs, called static
IQCs, have no dynamic component and consist only of the static matrix M̃ .

IQCs that are satisfied by the pair of signals, (v, w), in the feedback system in Figure 2.4 will
be of particular interest due to the following theorem proved in [59].

Theorem 2.5 (IQC Stability [31]). Take the system in Figure 2.4 with G a stable, linear, time-
invariant operator mapping L2 → L2 and ∆ a causal L2 → L2 operator with bounded gain. The
system is stable if

1. for every τ ∈ [0, 1], the interconnection of G and τ∆ is well-posed;

2. there is an IQC, Π, such that for every τ ∈ [0, 1], (2.10) is satisfied for (v, τ∆(v));

3. there exists an ǫ > 0 such that

[
G(jω)

I

]∗
Π(jω)

[
G(jω)

I

]
� −ǫI, ∀ ω ∈ R. (2.12)

The three conditions of the theorem require further elaboration. As previously discussed, well
posedness means that for each input the system has a unique solution. For the particular feedback
configuration of interest well posedness is given by invertibility of the operator, (I − τG∆), which
can often be checked easily. In regard to the second condition, the following remark from [59] is
important. An IQC, Π can generally be partitioned as follows

Π =

[
Π11 Π12

ΠT
12 Π22

]
.

If Π11 � 0 and Π22 � 0 then condition two of the theorem is satisfied for all τ if and only if it is
satisfied for τ = 1. Since most IQCs satisfy these inequalities, the second condition of the theorem
is usually simple to verify. The third condition is a semi-infinite condition that can be addressed
computationally by application of the previously stated KYP lemma. In addition, the search for a
valid IQC can be formulated as an optimization problem much as the search for a valid multiplier
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was formulated. In fact, the IQC approach generalizes the Multiplier approach. To see this, take
the restricted set of IQCs

Π(jω) =

[
0 M(jω)

M(jω)∗ 0

]
(2.13)

where M(s) is a multiplier satisfying (2.6). Note that the IQC approach does not require the
factorizability condition (2.5) of the multiplier M(s). Both the multiplier and additive loop trans-
formations can be treated by application of the IQC [42]

Π(jω) =

[
I −H2(jω)

H1(jω) I

]∗ [
0 M(jω)

M(jω)∗ 0

] [
I −H2(jω)

H1(jω)∗ I

]
.

In addition to analyzing stability, IQCs can be formulated for performance analysis [43]. In
particular, an IQC can be constructed that bounds the L2-gain of a system. Consider the extended
system depicted in Figure 2.4 and given, in general, by the equations

ẋ = Ax + B1u + B2w

y = C1x + D11u + D12w

v = C2x + D21u + D22w

w = ∆(v).

Assume the relation v = ∆(w) satisfies the IQC given, in the time domain, by

σ∆(λ) =

∫ ∞

0

[
v
w

]T

Π(λ)

[
v
w

]T

dt ≥ 0

where Π is linearly parameterized by λ. Also, define the performance IQC by

σp(γ
2) =

∫ ∞

0

[
y
u

]T [
I 0
0 −γ2I

] [
y
u

]
dt ≤ 0.

If a solution to
inf
γ2,λ

γ2 s.t. σp(γ
2) + σ∆(λ) < 0 (2.14)

exists, then its square root is an upper bound on the L2-gain of the system. The σ∆ condition
ensures stability of the system, and the performance IQC ensures that

∫ ∞

0

[
y
u

]T [
I 0
0 −γ2I

] [
y
u

]
dt =

∫ ∞

0
yT y − γ2uT udt ≤ 0

= ||y||2L2
≤ γ2||u||2L2

.

Thus, γ is an upper bound on the L2-gain of the system.
Application of the KYP theorem to the frequency form of the constraints in (2.14) results in

the following problem

Problem 2.2 (IQC Performance).

inf
γ,λ,P

γ s.t.




AT P + PA PB1 PB2

BT
1 P 0 0

BT
2 P 0 0


+ Σ ≺ 0,
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where Σ = Σ1 + Σ2 and

Σ1 =

[
C1 D11 D12

0 I 0

]T [
I 0
0 −γ2I

] [
C1 D11 D12

0 I 0

]
,

Σ2 =

[
C2 D21 D22

0 0 I

]T

Π(λ)

[
C2 D21 D22

0 0 I

]
.

Problem 2.2 can be efficiently solved when Π is linearly parameterized by λ and λ is restricted
to a convex set. The cost of directly estimating the L2-gain is an expansion of the main LMI
constraint from a size of (2n)2 to (3n)2.

When the use of a single IQC is insufficient for proving stability or gives a poor estimate of
the L2-gain, multiple IQCs can be applied. The application of multiple IQCs creates non-convex
constraint sets which are difficult to optimize over. A relaxation known as the S-procedure reduces
the non-convex constraint set to a single convex constraint.

Let V be a linear vector space and σk : V → R for k = 0, . . . , N . The S-procedure is essentially
a Lagrangian relaxation technique for converting the generally non-convex condition

S1 : σ0(y) ≥ 0 ∀ y ∈ V such that σk(y) ≥ 0, k = 1, . . . , N

into the convex sufficient condition

S2 : ∃ τk ≥ 0, k = 1, . . . , N such that σ0(y)−
N∑

k=1

τkσk(y) ≥ 0 ∀ y ∈ V.

Under certain conditions the convex condition, S2, is both necessary and sufficient for condition S1
[42]. Even when it is only sufficient, however, it is useful for constructing computationally tractable
constraint conditions.

If the pair of signals, (v, w), can be described by multiple IQCs a less conservative analysis can
often be achieved. The resulting set of conditions

[
G(jω)

I

]∗
Πk(jω)

[
G(jω)

I

]
� −ǫI, k = 1, . . . , N

are converted, via the S-procedure, to the constraint

N∑

i=1

τk

[
G(jω)

I

]∗
Πk(jω)

[
G(jω)

I

]
� −ǫI. (2.15)

Under the additional constraint that there exists a pair of signals, (v, w), such that σΠk
(v, w) > 0

for k = 1, . . . , N , Theorem 2.5 with constraint (2.15) is, in fact, both necessary and sufficient. This
is not to say that the conditions of the theorem are necessary for stability of a given system —
since the IQCs may be satisfied by multiple operators, ∆ — only that the use of the S-procedure to
incorporate multiple IQCs into the theorem’s conditions does not introduce further conservativeness.
If the IQCs are linearly parameterized by some λk’s in a convex cone then the τk variables can be
absorbed into the λk’s and removed from the problem [42].

2.4 Solving LMI Problems

A brief introduction to linear matrix inequality problems of the type derived from the KYP lemma
will be useful for understanding developments later in the paper. More complete discussions of
LMIs and semidefinite programming can be found in [33, 9, 92].
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A strict LMI is a constraint of the form

A(x) = A0 +
n∑

i=1

xiAi ≺ 0

with x ∈ R
n and Ai ∈ S

n. A non-strict LMI relaxes the constraint to allow equality with zero.
Optimizing a linear constraint subject to an LMI results in the following problem.

min cT x

s.t. A(x) ≺ 0
(2.16)

The LMI optimization problem (2.16) can be written as a standard semidefinite program (SDP) in
dual form,

min cT x

s.t. A(x) + S = 0

S ≻ 0,

(2.17)

where S ∈ S
n is called a slack variable [92]. The associated primal form problem is an optimization

problem over S
n given by

max A0 •X

s.t. A∗(X) + c = 0.

X � 0

(2.18)

where X • Y = tr XT Y and

A∗(X) =




A1 •X
...

An •X


 .

The SDPs that arise in this paper will all be written naturally in the dual form. The primal form
of the problem is important, however, since the pair of problems (2.17) and (2.18) are related and
under certain conditions have the same optimal value.

Linear SDP problems are convex and can be solved in polynomial time. Interior point methods
are generally considered to be the most efficient and robust algorithms for solving SDPs. See [93] for
a good reference. Primal-dual interior point methods attempt to solve problems (2.17) and (2.18)
simultaneously by minimizing the gap between the objective functions subject to the constraints.
A good description of the method can be found in the appendices of [89]. Since the number of
steps the algorithm takes is independent of problem size, the asymptotic run-time complexity of the
primal-dual interior point method for SDPs is determined by the cost of solving the set of linear
equations that give the updates for the decision variables. Throughout this paper the Sedumi
software is used to solve LMI problems [83].

A different approach that is directly applicable also to nonlinear SDPs is the augmented La-
grangian, or penalty-barrier, approach of [46, 47]. The augmented Lagrangian approach works
solely with the dual problem (2.17). The dual problem is modified with a penalty function,

min cT x

s.t. Φ(A(x), p) � 0.
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The penalty function is chosen to ensure, among other things, that when p > 0

A(x) � 0⇔ Φ(A(x), p) � 0.

The Lagrangian of the modified problem is

F (x, U, p) = cT x + U • Φ(A(x), p)

where U is the Lagrange multiplier and p is a penalty variable. The algorithm consists of repeated
steps of minimizing F (x, U, p) for fixed U and p, followed by updates to U and p. The unconstrained
minimization of F (x, U, p) is the most computationally expensive step of the algorithm. Much like
the interior point methods, the computational complexity of this step is determined by the cost
of solving a set of linear equations, specifically, Newton equations derived from the Hessian of the
Lagrangian, ∇2

xF (x, U, p). Rather than solving the Newton equations via a standard Cholesky
decomposition, preconditioned conjugate gradient methods can be used. For SDPs with many
variables compared to the size of the constraints the conjugate gradient approach has much better
time complexity. In addition, the Hessian need not be formed explicitly since it is only used in
matrix-vector products. This drastically reduces the memory and run time requirements of solving
large scale SDPs since actually forming the Hessian matrix can account for a large portion of the
run time and requires a large amount of memory. In the next chapter the primal-dual interior point
method and the augmented Lagrangian method will be compared on a set of problems derived from
RNN stability conditions. The augmented Lagrangian approach of [47], because of the way it solves
the Newton equations, has much better overall time and space complexity.

2.5 Previous work on Stability of RNNs

The stability of RNNs has been addressed from many different viewpoints. Much of the work in
this area considers the RNN as a sort of dynamic memory device mapping constant input signals to
different fixed values. Stability in this context means that the network states converge for constant
inputs. Often the stability analysis allows some uncertainty in the knowledge of the nonlinearity,
delays in the interconnections, or noise in the connection weights. This allows application of the
stability results to hardware implementations of the networks where heat, defects, and other types of
noise affect the behavior of the system. The literature is this area is quite vast but not immediately
applicable to the problem at hand where time-varying inputs are the rule. A representative sample
can be found in the references [5, 14, 94, 16].

The main point of origin for the research presented in this dissertation is the work of Steil in
[79, 82, 80]. Of the most interest are LMI conditions developed in [79] for the stability of both time-
invariant and time-varying RNNs with time-varying inputs. In addition, a method of approximating
the maximal allowable bounds on weight variations is given in [82]. The conservativeness of these
LMI conditions is analyzed and also reduced in Chapters 3 and 4 of the present document.

An LMI condition, identical to the one in [79], is presented in [9] for the analysis of the so called
Lur’e system. The Lur’e system is given by the equations [9]

ẋ = Ax + Bpp + Bww

q = Cqx

z = Czx

pi(t) = φi(qi(t)), ∀ i = 1, . . . , np,
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where p(t) ∈ R
np and the φi satisfy the conditions

0 ≤ σφi(σ) ≤ σ2, ∀ σ ∈ R.

This type of system has been studied since the 1940’s, beginning with the work of Lur’e and
Postnikov in [56]. The class of RNNs considered in this dissertation are clearly a subclass of the
Lur’e systems, so it is no surprise that similar stability analyses have resulted. The analysis in
Chapter 3 applies recent results that reduce conservativeness in the case when all of the φi’s are
the same. In Chapter 4 the case when Bp is time-varying is considered. The work of Chu in [17, 18]
considers the subset of Lur’e systems where the φi’s are equal. Taking this fact into consideration,
Chu derived an improved analysis for this specialized class of systems. Papers by D’Amato et al.
[19] and Kulkrani and Safonov [52] present similar results to the work of Chu in the context of the
multiplier and IQC theory. These results are considered in detail in the next chapter.

The class of recurrent networks known as echo state networks (ESN) was mentioned briefly
early in this chapter. The defining property of ESNs is the echo state property which says that, in
the long term, the dynamics of the network are independent of initial conditions and that similar
inputs produce similar state trajectories [36]. This class of networks is popular because there exist
efficient, well behaved learning algorithms for the weights of ESNs [38]. The efficiency comes from
the fact that only a subset of the weights is adapted and that the resulting optimization problem is
convex. More general adaptation like that used in standard RNN algorithms gives rise to nonconvex
problems with many local minima. The well-behavedness of the learning algorithms comes from
the fact that the networks satisfy the echo state property and only the output weights are adapted;
the networks do not pass through bifurcations during adaptation [13]. Such bifurcations plague
learning algorithms for standard recurrent network architectures by introducing discontinuities into
the error surface [21].

Necessary and sufficient conditions can be derived for the echo state property based on algebraic
properties of W [37, 12]. For certain classes of weight matrices, such as upper triangular W , these
conditions are known to be both necessary and sufficient [12]. The echo state property is essentially
an incremental stability property. A system that is incrementally stable maps input signals that are
close to state trajectories that are close in the same sense. This type of behavior is analyzed in the
work of V. Fromion, specifically [29] which gives conditions that ensure the incremental stability
of RNNs. The results presented in the following chapters do not always guarantee incremental
stability and so do not, for instance, always guarantee the echo state property. The results do,
however, allow bifurcations in network dynamics to be avoided during adaptation. A more in
depth study of the relation between the work presented here and the echo state network literature
is left for future research.
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Chapter 3

Analysis of Time-Invariant RNNs

Research on the stability of recurrent neural networks has yielded a large variety of results. Typi-
cally, these results are limited to a particular configuration of the RNN. For example, as discussed
in the previous chapter, RNNs can be used as a type of associative memory when the inputs are
not time varying. In this situation it is necessary to show that the RNN does indeed converge to
a fixed point for some set of constant inputs. Many such results exist; see for example [5, 14]. For
time-varying inputs, an RNN is generally seen as a nonlinear, input-output map, and the type of
stability of interest is input-output stability. Several stability results are known for this situation.
For instance, it is known that when W has a maximum singular value less than one, the RNN
will have stable dynamics [36]. Often these criteria are too conservative and limit the optimization
of some broader objective. Unfortunately, analytically characterizing the complete set of matrices
that result in stable dynamics is difficult, and a computational approach must be taken. In this
section an approach is developed that casts the stability analysis of RNNs as a convex optimization
problem using the IQC method described in Chapter 2. The method presented here is similar to
that in [79], but provides less conservative stability conditions. This will be useful in later chapters
where the stability analysis is applied to RNNs in a feedback loop with a controlled system.

Throughout this chapter attention will be fixed on the RNN described by the equations

ẋ = −Cx + WΦ(x) + u

y = x
(3.1)

where u is the time-varying input signal and y is the output. The matrix C is a fixed, diagonal
matrix of positive time constants, and the matrix W represents the time-invariant connection
weights between the neurons of the network. In Chapter 4 the case of time-varying W is considered.
The function Φ(x) will be taken as

Φ(x) = [tanh(x1) tanh(x2) . . . tanh(xn)]T

unless explicitly specified otherwise. Determining the stability of such a nonlinear dynamic system is
difficult. The approach considered here relaxes the problem such that the stability analysis instead
involves sets of linear systems. The problem is relaxed by replacing Φ with a set of operators, ∆,
that contains Φ but has a more tractable representation. This can also be viewed as finding a
description of the operator, Φ, that is more amenable to analysis. The methods considered below
use descriptions of the nonlinear operator in terms of integral constraints on its behavior. For
example, the constraint

〈v, MΦ(v)〉 ≥ 0, ∀ M ∈M
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can convey useful information about Φ ifM can, in turn, be described by a set of linear constraints.
These types of integral constraints will often be satisfied for nonlinearities other than Φ; the set
of all operators satisfying such constraints is denoted by ∆. Given descriptions of this type,
feasible computational methods for stability analysis can be derived. These methods, however, will
capture stability information about the set of systems derived from ∆, and as such, will generally
be conservative for the particular nonlinearity of interest. More descriptive constraints on the
nonlinear operator will reduce the conservatism of the stability results, but will generally increase
the cost of the computational analysis.

The RNN defined by (3.1) can be viewed as a feedback loop between a linear, time-invariant
(LTI) system and a nonlinear or uncertain operator. The LTI operator G and state space matrices
are given by

G =



− C I W

I 0 0
I 0 0


 (3.2)

where w = Φ(v). Since the system has no feed-through terms, Dij = 0, it is well posed for all inputs
in L2. The sections that follow develop a number of different stability criteria for (3.1) ranging
from simple small gain criteria to complex LMI based tests. These different results are compared
in terms of conservativeness and computational complexity in Sections 3.5 and 3.6.

3.1 Stability by the Small Gain Theorem

Stability of (3.1) can be proved via the small gain theorem if

||G|| ||Φ|| < 1. (3.3)

In general the norm of Φ(x) will be denoted by β. With φ(x) = tanh(x), β = 1, and the small gain
theorem simply requires that ||G|| < 1. Since G is an LTI operator its norm is readily computed.
First note that

G(jω) = (jωI + C)−1W,

and that when C = I, as assumed for this Chapter, that ||G|| = ||W ||. So the small gain theorem
gives a very simple test for stability of the RNN. This condition is equivalent to that developed in
the echo state network literature for ensuring the so called echo state property [36]. The examples
in Section 3.5 show that the small gain condition is quite conservative. This conservativeness can
be reduced by applying a scaling to the operators [12]. Essentially, a multiplier is introduced into
both paths in the feedback loop, resulting in

˜G(jω) = TG(jω)T−1, and Φ̃ = T−1ΦT.

Since the operator Φ is assumed to be diagonal, it commutes with a diagonal scaling T resulting
in Φ̃ = T−1TΦ = Φ. Applying the small gain theorem to the modified feedback loop results in the
condition

||TWT−1|| < 1.

To reduce the conservativeness of the condition the norm should be minimized over all positive,
diagonal matrices, denoted D+. The resulting optimization problem is

min
γ,T

γ s.t. W T TW ≺ γ2T, T ∈ D+

which is an instance of the generalized eigenvalue problem [9]. The problem is quasi-convex and
can be solved efficiently using special interior point methods. If a T can be found such that γ < 1
then the RNN is shown to be stable.
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3.2 Stability with Multipliers and Transformations

In [79] an LMI based method for analyzing the stability of RNNs is developed. The LMI is derived
by introducing multipliers and loop transformations, and then applying the passivity theorem and
KYP lemma. The nonlinearity φ(x) is assumed to lie in the sector [0, β]. A loop transformation,
H2 = β−1I, is applied to normalize the sector and give the modified operator Φ(x)(I−β−1Φ(x))−1

a gain of one. The loop transformation operator, H1 is taken to be zero. The resulting forward
path operator is G− β−1I.

To apply Theorem 2.3 to the modified RNN feedback system it is necessary to find a class of
multipliers that satisfies the first two conditions of the theorem for the nonlinearity Φ(x). When
the function φ(x) is bounded in a positive sector, that is, when it satisfies the condition

αx2 ≤ xφ(x) ≤ βx2,

0 ≤ α < β α, β ∈ R,

it is easy to show that the set of diagonal matrices with positive entries, D+, is a valid set of
multipliers. Taking M(s) = T ∈ D+, condition (2.6) becomes

∫ ∞

−∞
Re[z∗(jω)TΦ(z(jω))]dω ≥ 0.

This condition holds for all z ∈ L2 since

xTΦ(x) =
n∑

i=1

dixiφ(xi) ≥
n∑

i=1

dix
2
i α ≥ 0 ∀ x ∈ Rn.

The set D+ is convex and has an efficient representation as a set of n linear constraints of the form
dii > 0. Given this set of multipliers the stability of an RNN can be assessed by solving the LMI
feasibility problem, Problem 2.1.

The full problem can be derived as follows. Call the modified feed-forward operator, G̃ and let
G̃ = (G − β−1I), also let M(jω) = T ∈ D+. Condition (2.7) of Theorem 2.3 can be written as
follows

TG̃(jω) + G̃(jω)T = TG(jω)− β−1T + G(jω)T − β−1T

=

[
G(jω)

I

]∗ [
0 T
T −2β−1T

] [
G(jω)

I

]
� −ǫI.

At this point the KYP lemma can be applied. It yields the condition

[
−CP − PC PW + T
W T P + T −2β−1T

]
� −ǫI ≺ 0 (3.4)

where P = P T > 0. This result appears multiple times in the literature, see Chapter 6 of [9] for
example. In [79], this condition is written as

[
CP + PC PW + T
W T P + T 2β−1T

]
� ǫI (3.5)

but the two formulations are equivalent due to the following result from [8].
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Theorem 3.1 (Theorem 1.3.3 from [8]). If A, B � 0 then the block matrix
[

A X
X∗ B

]

is positive if and only if A � XB−1X∗.

Applying the theorem to both (3.4) and (3.5) shows the equivalence.

3.3 IQC Stability Analysis

Integral quadratic constraint analysis [59] is a formalism for the analysis of complex, nonlinear,
and uncertain systems made up of connections between different components. The IQC theory
generalizes the multiplier theory by removing some of the constraints on multipliers. It also leads
to automated analysis tools such as the IQCβ toolbox [43]. While this tool is not used for the
work described here, it is a convenient way to automate the construction of the type of LMIs
developed here. This is of particular importance, say, when an RNN is used in a feedback loop
with a complicated nonlinear plant that must also be modeled with IQCs.

To formulate the RNN stability problem in the IQC framework it is necessary to find a set of
IQCs describing the nonlinearity in the system. A simple IQC describing diagonal nonlinearities in
the sector [0, 1] is given by

Π(jω) =

[
0 T
T −2T

]
(3.6)

where T ∈ D+. For this IQC, condition (2.10) is easily verified for ∆(z) = Φ(z) with φ(zi) bounded
in the sector [0, 1]. To see this, consider

[
z(jω)

Φ(z(jω))

]∗
Π(jω)

[
z(jω)

Φ(z(jω))

]
= Φ(z)′Tz + z′TΦ(z)− 2Φ(z)′TΦ(z)

= 2
n∑

i=1

tiziφ(zi)− 2
n∑

i=1

tiφ
2(zi)

= 2
n∑

i=1

ti(ziφ(zi)− φ(zi)
2) ≥ 0.

The last step relies on the relation

(φ(zi)− αzi)(φ(zi)− βzi) = φ(zi)
2 − ziφ(zi) ≤ 0

which follows from the definition of a sector bounded nonlinearity. Notice that this IQC results in
the same stability conditions derived in the previous section by application of loop transformations,
multipliers, and the passivity theorem. With this IQC in hand, stability can be proved by finding
a particular T ∈ D+ for which condition (2.12) is satisfied.

The L2-gain of an RNN is the maximal amplification of energy in the input signal observed in
the output signal. To estimate the L2-gain of an RNN, Problem 2.2 can be specialized for (3.1).
Taking the IQC defined in (3.6), the specialized problem is as follows.

Problem 3.1 (RNN IQC Problem).

inf
γ,T,P

γ s.t.



−CP − PC + I P PW + T

P −γI 0
W T P + T 0 −2T


 ≺ 0, P = P T , T ∈ D+.
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3.4 Additional IQCs for the RNN Nonlinearity

In the previous section a test for the stability of an RNN was developed using the IQC formalism.
A simple IQC describing nonlinearities restricted to a positive sector was described and applied to
the Φ(x) function in the RNN system (3.1). While the test in Problem 3.1 is sufficient for proving
stability of an RNN, more exact conditions can be constructed by the application of multiple IQCs.
Additionally, more descriptive IQCs can be developed for the nonlinearity Φ(x). In this section
several IQCs are described and applied to the RNN stability problem. The S-procedure introduced
in the previous chapter is applied to combine the multiple IQC constraints.

3.4.1 Popov IQC

The nonlinearity Φ(x) does not vary with time, but the simple diagonal multipliers and correspond-
ing IQC (3.6) considered thus far do not account for this and are equally valid for time varying
nonlinear operators. An IQC derived from the Popov criteria [70] is only valid for time invariant
nonlinear operators and therefore provides a more exact description of the RNN nonlinearity. Re-
sults in [79] show that incorporating this constraint can reduce conservativeness in the stability
analysis.

The Popov IQC is a dynamic IQC of the form

q

[
0 jω
−jω 0

]
, q > 0.

This IQC is not bounded on the imaginary axis and must be used in combination with the loop
multiplier, M(s) = 1

s+1 [59], which yields the combined IQC

q

[
0 jω

1+jω
jω

1−jω 0

]
.

The modified IQC is bounded and can be applied in combination with the previously presented
IQC. The resulting LMI stability condition has the form

[
−CP − PC PW + T −QC

W T P + T −QC QW + W T Q− 2β−1T

]
� −ǫI ≺ 0

where Q ∈ D+.

3.4.2 IQCs for Repeated Nonlinearities

In addition to using multiple IQCs to reduce conservatism in the stability analysis, better IQCs —
those that account for more properties of the nonlinearity — can further improve the results. The
IQC (3.6) is valid for nonlinearities in which φi(x) and φj(x) are different sector bounded functions.
In [19] an IQC is developed for repeated nonlinearities which have the restricted form

Φ(x) = [φ(x1) φ(x2) . . . φ(xn)]T . (3.7)

A further restriction can be made to the case when φ(x) is an odd function, such as tanh(x). The
following result is proved in [19],
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Theorem 3.2 (IQC for Repeated, Odd Nonlinearity). Take Φ : L2 → L2 to be a static diagonal
operator of the form (3.7) with φ an odd function. Let T ∈ Sn×n and satisfy

Tii ≥
n∑

j=1, j 6=i

|Tij | ∀ i = 1 . . . n. (3.8)

Then for any z ∈ L2 the following two conditions hold.

1. If φ is monotonically non-decreasing and belongs to a finite sector [0, k], then

〈Φ(z), T z〉 ≥ 0. (3.9)

2. If φ has slope in the interval (α, β) then

〈Φ(z)− αz, T (βz − Φ(z))〉 ≥ 0. (3.10)

Matrices satisfying (3.8) are called diagonally dominant and denoted Sdd. All diagonally domi-
nant matrices are also positive definite, but the converse is not true. The set of positive diagonal
matrices is a subset of the diagonally dominant matrices. Since tanh(x) is a monotonically non-
decreasing, odd, function with slope in the interval (0, 1 + ǫ) the condition (3.10) holds. This
condition is equivalent to (2.10) with

Π(jω) =

[
0 (1 + ǫ)T

(1 + ǫ)T −2T

]
.

Numerically, the (1 + ǫ) term is irrelevant since ǫ can be taken arbitrarily small. Compared to the
IQC (3.6), less conservative results are achievable with this new IQC because the resulting set of
valid IQCs is larger. This means that better estimates of the L2-gain bound of the system can be
computed and that some systems that could not be proved stable using (3.6) can be proved stabled.

A result from [52] shows that T need not be diagonally dominant, or even symmetric, to satisfy
the conditions of a valid multiplier; T must only satisfy

Tii ≥
n∑

j=1, j 6=i

|Tij | ∀ i = 1 . . . n, and

Tii ≥
n∑

j=1, j 6=i

|Tji| ∀ i = 1 . . . n.

Matrices satisfying this condition are called doubly dominant, and the set of such matrices is denoted
Mdd. The set contains the diagonally dominant matrices and also the positive diagonal matrices.
The larger set of IQCs that results can further improve the gain estimates for RNNs and reduce
the conservatism in the stability analysis. Since T is not symmetric, the resulting IQC is of the
form

Π(jω) =

[
0 T

T T −(T + T T )

]
. (3.11)

The second condition of the IQC theorem can be simplified as described in Chapter 2 because the
lower right hand corner of Π satisfies −(T + T T ) � 0.
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Using these new IQCs in Problem 3.1 requires restricting T to be in Sdd orMdd. Following [19]
the set of diagonally dominant matrices can be described by the equations

T = T+ − T−,

T+, T− ∈ Sn×n,

T+
ij ≥ 0 ∀ i, j = 1, . . . , n,

T−
ij ≥ 0 ∀ i, j = 1, . . . , n,

T−
ii = 0 ∀ i = 1, . . . , n,

T+
ii ≥

n∑

j=1
j 6=i

(T+
ij + T−

ij ) ∀ i = 1, . . . , n.

Implementing these constraints requires the introduction of n(n − 2) decision variables for T+

and T− and n2 linear constraints. The constraints for T−
ii are implemented implicitly — in the

dual form problem — in the definition of T−. For the IQC of [52], twice as many variables and
constraints are necessary since T is not symmetric. Whether or not the additional computational
cost is worthwhile depends on the application. In the next section several examples are developed
that highlight the difference in cost and conservativeness of the different IQCs.

3.5 Experimental Evaluation

In this section the stability analysis described in the previous sections will be illustrated on a few
example networks. The different IQCs are compared on various network sizes to provide insight
into the trade-off between computational cost and conservativeness in the stability analysis. For
all of the examples in this section φ(x) is the tanh function and time constants are all equal to one,
C = I.

3.5.1 Analysis of Simple Network

An analysis of a simple RNN with W ∈ R
n×n will illustrate some important properties of the

different stability conditions. Define the matrix W (a, b) as

W (a, b) =

[
−.4326 a

b .2877

]

By allowing a and b to vary over the range [−8, 8] the conservativeness of different conditions can
be compared visually. The first experiment compares the set of weight matrices that could be
proven stable using the small gain theorem, the scaled small gain theorem, and the IQC method
with IQC (3.6) (equivalently, the LMI (3.4) from [79]). The results are shown in Figure 3.1. The
results show that the small gain theorems results in a more conservative analysis than the LMI
approach, even with a simple IQC. On the other hand, the two small gain theorems — especially
the simple condition (3.3) — are more computationally efficient.

Figure 3.2 shows the set of (a, b) pairs for which stability could be proven by the IQC approach
in Problem 3.1 with different IQCs. Three cases were compared where T was restricted to be in
D+, Sdd, or Mdd. In the 2 × 2 case the IQC from [19], with T diagonally dominant, does not
produce much of a reduction in conservativeness. As shown in the next section, this is not the case
for larger networks. The IQC of [52], with T doubly dominant, does reduce the conservativeness
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Figure 3.1: A comparison of the diagonal IQC approach with the small gain and
scaled small gain theorems on a 2× 2 RNN.
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Figure 3.2: A comparison of different IQCs applied to a 2× 2 RNN.
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Figure 3.3: The set of matrices for which stability is given by the IQC 3.6 and the
Popov IQC.

quite a bit, but as the next example will show, inclusion of the Popov IQC provides a much greater
reduction in conservativeness for this small network.

Figure 3.3 shows the set of weight matrices proved stable by the use of the diagonal IQC and
the Popov IQC. Addition of the Popov IQC expands the set of provably stable weight matrices
and makes the stable sets for the three nonlinearity IQCs the same in this 2 × 2 example. Note,
however, that the computed gains are not the same and more complex IQCs result in better upper
bounds.

3.5.2 L2-gain Estimation Examples

Applying the IQC stability analysis allows an upper bound on the L2-gain of an RNN to be
computed. A good estimate of this gain can allow the small gain theorem to be applied when the
RNN in connected in a loop with other nonlinear systems. Better estimates of the gain allow a wider
range of interconnected systems to be proven stable. To illustrate, upper bounds on the L2-gains
for the RNN from the previous section are computed using the doubly dominant IQC. These gains
are shown in Figure 3.4. The bound on the L2-gain increases exponentially as the weight matrix
nears the stability boundary. This makes sense because the stability analysis declares stable only
RNNs for which a finite upper bound on the gain can be computed.
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Figure 3.4: The estimated L2-gains for the stable weight matrices from application
of the doubly dominant IQC. There are some edge effects in the figure due to the
coarseness of sampling.

In the next experiment, gains are computed for RNNs with the following four weight matrices

W1 =

[
−0.4326 0.1253
−1.6656 0.2877

]
, W2 = 5W1,

W3 =




0.3274 −0.3744 −1.2173 0.9535 −0.2624
0.2341 −1.1859 −0.0412 0.1286 −1.2132
0.0215 −1.0559 −1.1283 0.6565 −1.3194
−1.0039 1.4725 −1.3493 −1.1678 0.9312
−0.9471 0.0557 −0.2611 −0.4606 0.0112




,

W4 ∈ R
30×30.

The weight matrix W4 has elements drawn independently from a standard normal distribution. It
has the following properties: max Re (λ(W )) = 0.8368, |λmax(W )| = 0.8805 and ‖W‖ = 1.8666.

The following definitions are made for brevity:

• γsg is the gain estimated using the small gain theorem [79],

γsg =
1

1− ||W || ,

• γssg is the gain estimated by the scaled small gain theorem [79],

γssg =
||T ||||T−1||

1− ||TWT−1||
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γsg γssg γd γ′
d γdd γ′

dd γks γ′
ks

W1 - 20.5633 1.8374 1.8304 1.8315 1.8304 1.8304 1.8304

W2 - - - - 27.8302 12.2278 21.3654 12.2278

W3 - - 77.3804 8.2504 2.7857 2.1354 1.9689 1.8552

W4 - - - - 17.7149 15.4765 13.6553 13.2346

Table 3.1: Results for estimating the gain of several RNNs using different tech-
niques. A ‘-’ signifies the inability of the given approach to prove stability.

• γd is the gain estimated using the IQC approach with IQC (3.6) and T ∈ D+,

• γdd is the gain estimated using the IQC approach with IQC (3.11) and T ∈ Sdd,

• γks is the gain estimated using the IQC approach with IQC (3.11) and T ∈Mdd.

To denote addition of the Popov IQC, the notations γ′
d, γ′

dd, and γ′
ks are used. The results of

the different gain estimates are shown in Table 3.1. The results illustrate the decreasing conser-
vativeness of the more computationally involved approaches. In the next section the question of
conservativeness is addressed in more detail. In Chapter 5 the effect of conservativeness in the
stability analysis on the ability of an adaptive system to optimize performance will be illustrated.

3.6 Discussion

The experiments in the previous section illustrated the general behavior of the proposed stability
analysis method and showed the effects of different IQCs on the analysis. In this section three
properties of the stability analysis are addressed in more detail. In the presence of constant inputs
the stability analysis ensures that the RNN (3.1) is asymptotically stable. There is then a rela-
tionship between the space of weights matrices for which static stability can be proven and points
in the weight space at which bifurcations of the RNN dynamics occur. This is discussed in more
detail in the next section. Closely related is the issue of continuity in the network dynamics and the
relationship of continuity to stability. The use of different IQCs affects the meaning of the stability
results, in the sense that the use of some IQCs ensure, in addition to stability, continuity of the
solutions. Finally, a number of computational issues related to solving Problem 3.1 are explored in
the last section.

3.6.1 Stability and Bifurcations

The idea of input-output stability is related to the more common notions of stability, such as
Lyapunov stability for unforced systems. If a system is input-output stable then the origin is an
asymptotically stable fixed point for the zero input case [44]. The relationship ties the notion
of input-output stability over a set of RNN weight matrices to the occurrence of bifurcations. In
Figure 3.5 two phase diagrams are shown. The phase diagrams depict the RNN flow with a constant
zero input. In the left plot, the weight matrix has a = b = 1 which is a point just inside the region
of provable stability. There is a single globally attractive fixed point at the origin. In the right
plot, the weight matrix has a = b = 1.1 which is a point just outside the stable region. The system
has three fixed points: an unstable fixed point at the origin and two stable fixed points, symmetric
about the line y = −x. This behavior is typical of a system passing through a pitchfork bifurcation
[69]. The key feature of this example is that the IQC stability analysis is non-conservative with
respect to this feature at this particular point in the weight space.
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Figure 3.5: An example of a bifurcation occurring in the zero-input dynamics
of an RNN. In the left plot, there is a single stable fixed point at the origin. In
the right plot, there are three fixed points marked by large dots; the system has
passed through a pitchfork bifurcation. The stability analysis with any IQC is non-
conservative with respect to this transition. Sample trajectories are shown with the
starting points marked by the smaller dots. The arrows represent the vector field
induced by the zero input RNN equations.

Standard nonlinear systems analysis [69] shows that a fixed point is stable if all the eigenvalues
of the system’s Jacobian have negative real part at the fixed point. When evaluated at the origin,
the Jacobian of the RNN equation (3.1) is given by

[
∂Fi

∂xj

]

ij

= W − I

where F (x) is the right hand side of (3.1). The fixed point at the origin is stable if

Re λi(W − I) < 0, ∀ i ∈ 1, . . . , n, (3.12)

where λi is the ith eigenvalue of its argument. This condition is necessary for input-output stability
as defined in Chapter 2. To see this consider the case where another point besides the origin is
an asymptotically stable fixed point. For zero input, the state will converge to this nonzero fixed
point for some initial conditions, and thus the output will have unbounded norm; there can be no
finite gain bounding this signal amplification. While the condition is obviously necessary it is not
necessarily sufficient.

For the 2× 2 RNN example, the set of weight matrices that satisfy this necessary condition is
shown in Figure 3.6. Clearly, the set is equivalent to the set of weight matrices proven stable by use
of the diagonal and Popov IQCs. In this 2× 2 case it appears that (3.12) may be both necessary
and sufficient. The next example explores the issue further.

Take W to be the 3× 3 matrix

W =




0 2 0
0 0 2
a −2 0


 . (3.13)

Some example dynamics of this system were shown for a = −4 in Figure 2.2 of Chapter 2. The
system has a stable limit cycle and an unstable fixed point at the origin. When a > −4 the origin is
an attracting, stable, fixed point. So, as the system passes from a > −4 to a ≤ −4 it passes through
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Figure 3.6: Weight matrices with Re λi(W − I) < 0.

a Hopf bifurcation [69]. In passing through this bifurcation, two of the eigenvalues get a positive
real part. This explains why the origin is no longer an asymptotically stable fixed point. Passing
through the bifurcation, makes L2-gain stability of the system impossible. Table 3.2 shows the
minimum value of a ∈ [−4, 0] at which different combinations of IQCs are able to prove stability.

It appears from these results that the scaled small gain theorem is not as conservative as the
IQC approaches with respect to this transition. The use of doubly dominant IQCs with the Popov
IQC, however, also transitions from stability to instability at a = −4 and so appears to be non-
conservative in this case. These two examples suggest that there may exist conditions where the
eigenvalue condition (3.12) is sufficient as well as necessary for stability. To understand the problem
in more detail, the issue of continuity needs to be discussed.

3.6.2 Incremental Positivity and Continuity

The stability results presented thus far give sufficient conditions for an input-output operator, in
particular (3.1), to map signals from L2 to L2. Following the definition of Zames [97], stability also
requires that the input-output operator be continuous. To establish continuity in terms of the IQC
or multiplier theory, it is necessary not only for the IQC or multiplier to preserve positivity (2.6),
but also to preserve incremental positivity [20]. An operator, F , is incrementally positive if [53]

〈x− y, F (x)− F (y)〉 =
∫ ∞

−∞
(x(jω)− y(jω))∗(F (x(jω))− F (y(jω)))dω ≥ 0, ∀x, y, F (x), F (y) ∈ L2.

For example, the operator Φ in the RNN is incrementally positive since it is monotone increasing.
For a multiplier, M , to preserve incremental positivity of an operator, F , it must satisfy

〈x− y, M (F (x)− F (y))〉 ≥ 0.
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asg assg ad a′d add a′dd aks a′ks

- -3.998 - -3.235 - -3.420 -2.815 -3.999

Table 3.2: Minimum value of a ∈ [−4, 0] at which different combinations of IQC
give stability of an RNN with weight matrix 3.13. Recall that a′ represents the
addition of the Popov IQC.

The following example shows that the multipliers in Sdd and Mdd do not preserve incremental
positivity. Consider the diagonally dominant matrix

G =




30.1273 −4.3628 0.0000 5.5058
−4.3628 46.9257 −11.0083 −0.0000
0.0000 −11.0083 33.6067 0.0000
5.5058 −0.0000 0.0000 93.3303


 .

Let the two signals, x and y, have the constant values

x =
[
1.3683 16.1398 0.8666 1.4473

]
and

y =
[
3.1623 1.9500 −0.2566 1.4126

]

for t ∈ [0, 2] and to be zero elsewhere. Also, take F (x) to be the tanh(·) function. The signals are
clearly in L2, yet

〈x− y, F (x)− F (y)〉 = 3.6862,

and

〈x− y, G (F (x)− F (y))〉 =

∫ ∞

0
(x(t)− y(t))T G (F (x(t))− F (y(t))) dt

= −18.5472

∫ 2

0
dt

< 0.

The multipliers in Sdd andMdd do not in general preserve the incremental positivity of the nonlin-
earities of the RNN, and thus the multiplier theory does not in general give a sufficient condition
for continuity of the RNN when these multipliers are used. The same result can be shown for the
IQC conditions when T is in Sdd or Mdd. So, while the output of the system is guaranteed to be
bounded and in L2, it may be critically sensitive to the input. That is, a small perturbation of the
input may produce a change in the output that is unbounded [30]. In [53] the Popov multiplier
is also shown not to preserve incremental positivity. Additionally, it is proved that the inputs for
which non-continuity can be observed are always time varying.

Having made these observations, it is then important to realize that even though the results of
the previous section suggested the possibility that the eigenvalue condition on W might be necessary
and sufficient for stability in certain cases, that the condition does not address sensitivity to inputs.
The importance of this distinction is, to some extent, application dependent. For example the
continuity property is essential to the definition of the echo state property [36], and the eigenvalue
condition is not sufficient for this application. For other applications it may be sufficient to ensure
that the output signal is in L2, and for these applications it might be possible to prove sufficiency
of the eigenvalue condition for certain cases.
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3.6.3 Computational Issues

There are a number of computational considerations that must be made when solving the IQC or
multiplier optimization problem. In this section some run-time and complexity comparisons are
made between an interior point solver, Sedumi [83], and an augmented Lagrangian solver, PENBMI
[46, 47]. First, two results that reduce the complexity of the LMI problems are developed. Recall
the main LMI stability constraint derived from the multiplier theory,

[
CP + PC PW + T
W T P + T 2β−1T

]
� ǫI. (3.14)

It was noted in [72] that if the upper left corner of M in the KYP lemma is positive semidefinite,
the existence of a solution implies that P is positive definite. Thus it is not necessary to explicitly
constrain P to be positive definite for (3.14), since for the constraint considered the upper left block
of M , specifically 0, is positive semidefinite. Additionally, when T is taken to be a positive diagonal
matrix an explicit constraint on the positivity of T is not necessary. The following relation from
[98] is useful; if A ≻ 0 then [

A X
X∗ B

]
≻ 0⇒ B ≻ X∗A−1X. (3.15)

Since C is assumed to be a positive diagonal matrix and P ≻ 0, the matrix A = CP + PC is also
positive definite. Let the matrix B = 2β−1T and X = PW + T . The relation (3.15) implies that

2β−1T ≻ (PW + T )∗(CP + PC)−1(PW + T ) ≻ 0.

The last inequality follows from two basic properties of positive definite matrices. First, if A ≻ 0
then A−1 ≻ 0. Second, if A ≻ 0 then B∗AB ≻ 0 for any matrix B of conforming size [34]. So, by
the previous arguments, T must be positive definite if the LMI (3.14) is satisfied. Applying these
observations reduces the complexity of implementing the stability result by removing one order n2

matrix constraint and n scalar constraints. Similar arguments can by applied to the IQC derived
constraint in Problem 3.1.

Since the number of variables in the LMI conditions grows with the square of the dimension
of the RNN and the complexity of an iteration in the SDP solvers is on the order of the cube
of the number of variables, the overall complexity should grow as n6. The PENBMI software,
which implements an augmented Lagrangian approach to solving SDPs, avoids explicitly forming
a Hessian matrix and uses a preconditioned conjugate gradient to solve the Newton equations at
each iteration [47]. The method generally takes more iterations than interior point methods, but
overall a significant time and space savings are achieved by this technique.

The PENBMI solver was compared to the interior point method solver, Sedumi [83], on a set
of RNN stability problems of increasing size. The LMI condition (3.5) was used, and a comparison
was made between T ∈ D+ and T ∈ Mdd. In the diagonal case there is a single 2n × 2n LMI
constraint and n(n + 3)/2 decision variables. In the doubly dominant case the problem has one
2n × 2n LMI constraint plus 2n linear constraints for ensuring that T ∈ Mdd. The problem has
5n(n − 1)/2 decision variables for representing P and T . Figure 3.7 shows the time spent in the
SDP solver for different values of n averaged over ten random, but stable, RNNs.

The results clearly show both the added expense of taking T ∈ Mdd but also the benefit of
not explicitly forming a Hessian matrix. Further analysis shows that the run time of Sedumi does
indeed grow at a rate dominated by an n6 term for both IQCs. For the PENBMI solver, the run
time of the diagonal IQC problems grows at a rate of n3, and the doubly dominant IQC problems
grow at a rate of n4. This difference is likely due to the effect of T being diagonal on the complexity
of evaluating the Hessian-vector products necessary for solving the Newton equations.
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Figure 3.7: Average running times for LMIs of increasing sizes with PENBMI and
Sedumi. The left figure shows the average run times when using the simple diagonal
IQC. The figure on the right shows the run times for using the doubly dominant
IQC. Note that in the case of T ∈ D+ Sedumi fails for n > 90 and for T ∈ Mdd

Sedumi fails for n > 55. These failures are due to excessive memory consumption.

Estimating the L2-gain of a network directly, as in Problem 3.1, creates a computational diffi-
culty when RNNs are almost unstable. For these RNNs the computed upper bound on the L2-gain
is very large. This leads to ill-conditioning of the resulting LMI problem as the γ variable is much
larger than the other decision variables. In Figure 3.8 run times for solving the 2×2 RNN stability
problems from the previous section are shown. For this example T is restricted to be doubly domi-
nant. The run times trend higher as the L2-gain increases for both solvers. For the PENBMI solver
the run times for detecting infeasibility of the LMI problem are on average higher than the run
times for feasible problems. For Sedumi the opposite is true, but the difference is less pronounced.

The results suggest that the PENBMI solver is a good choice due to the low complexity of the
iterations. On the other hand, the PENBMI solver does exhibit increased run times for infeasible
problems that the Sedumi solver does not suffer from. Other general purpose SDP solvers were
applied to the LMI problems developed in the chapter and all performed similar to Sedumi. This
suggests that the cost of general purpose interior point methods for SDPs is prohibitive for the
analysis of large RNNs. The special purpose solver in [89] is efficient for SDPs derived from the
KYP lemma, but only in the case where B has fewer columns than A (see Theorem 2.4). For the
LMI derived for RNN stability B has at least as many columns as A and more if γ is estimated
as part of the optimization problem. Whether or not a suitable modification exists that makes the
method efficient for these types of problems is left as a question for future research.

3.7 Conclusions

In this chapter a method for assessing the stability of recurrent neural networks with time-invariant
weights was developed in the framework of IQC analysis. The method was compared to an LMI
approach developed in [79] and shown to be the same when simple diagonal multipliers are used.
Better IQCs were incorporated into the analysis and shown to reduce its conservatism. In the next
chapter when the maximal amount of allowable variation in the RNN weights is sought, this reduced
conservatism is helpful. The computational cost of the LMI stability conditions was reduced by
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Figure 3.8: Estimating the L2-gain directly as part of the LMI problem makes the
problem ill-conditioned near the stability boundary. The ill-conditioning increases
the run time of the solvers.

exploiting some of the properties of the main IQC LMI constraint. Additionally, the PENBMI
solver was shown to drastically reduce the run times for the analysis of large networks because it
does not explicitly form a Hessian of the problem’s Lagrangian. In Chapter 5 a large number of
these LMI problems must be solved as part of a stable adaptive control framework. The ability
to solve this type of LMI problem quickly is very important. Unfortunately, the conservatism and
computational complexity of the stability analysis are clearly at odds even when an efficient LMI
solver is available. Further reduction in the complexity of the analysis is important and may for
example require the use of multipliers that lie somewhere in between the diagonal multipliers and
the doubly dominant multipliers. For example, a block diagonal matrix T consisting of doubly
dominant blocks could be constructed for use in the IQCs. This type of construction would allow
a more fine grain control of the trade-off between complexity and conservativeness.

The use of the IQC (3.11) from [52] in combination with the Popov IQC was shown to result in a
non-conservative analysis with respect to certain bifurcations in two different examples. The exact
relationship between the necessary stability condition of λmax(W ) < 1 and the sufficient conditions
given by the LMI problems is, however, still unclear. The examples provided suggest that further
exploration of this relationship is warranted and may produce simplified stability conditions under
certain assumptions. The relation of the stability conditions presented in this chapter and the
so-called echo state property is also not completely clear. At least for the case when T is positive
diagonal and the Popov IQC is not used, the LMI conditions may provide a less conservative test
for the echo state property.
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Chapter 4

Stability of Time-Varying RNNs

The stability analysis presented in the previous chapter is applicable to time-invariant recurrent
neural networks. Often, however, the weights of an RNN are tuned online to improve some perfor-
mance measure. It is important in this situation to assure more than the stability of each individual
RNN visited during the adaption. The transitions between different weight matrices must be con-
sidered explicitly. This chapter addresses the problem of determining the stability of time-varying
RNNs. In Section 4.1, a sufficient condition for stability is formulated as a feasibility problem with
matrix constraints. This result is applicable to RNNs whose weights are known to vary within fixed
ranges. For application to adaptive control systems it is useful to compute the largest ranges of
variation under which stability can be assured. In Section 4.2, a method for solving this problem
is described. Computationally, this problem is more difficult than those of the previous chapter
and the problem in Section 4.1. Several different solution methods are described and compared on
example problems.

4.1 Analysis of RNNs with Dynamic Weights

Establishing the stability of an RNN with time-varying weights is not as simple as establishing the
stability of the RNN at each value of W through which it passes. To see why this is not sufficient
consider the pair of linear systems, ẋ = Aix, with

A1 =

[
−0.9 0
10 −0.9

]
, A2 =

[
−0.9 10

0 −0.9

]
.

Each system is stable — the system ẋ = Aix converges for all x(0) — since λmax(Ai) = −0.9 < 0.
Nevertheless, the time varying system

ẋ =

{
A1x ⌊t⌋ is even,

A2x ⌊t⌋ is odd,

is unstable. The system has the solution [77]

x(t) = [eA(⌊t⌋)(t−⌊t⌋)e(⌊t⌋/2)(A1+A2)]x(0)

which grows without bound for x(0) 6= 0 since λmax(A1 + A2) > 0. From the example it is
obvious that considering only the stability of the individual values of W will not be sufficient for
guaranteeing stability of the time varying system.
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Since the variation of the RNN weights must be explicitly accounted for in the stability analysis,
the RNN equations from Chapter 3 must be modified. The variation in the RNN weights is written
as an additive perturbation to some fixed weight matrix, W , with the equations

ẋ = −Cx + (W + ∆W )Φ(x) + u,

y = x.
(4.1)

Other formulations, such as writing the variation as a multiplicative perturbation are also pos-
sible, but the additive perturbation is more easily analyzed. The elements of ∆W , ∆Wij , vary
independently with time in the ranges [−∆ij , ∆ij ]. For convenience the following definitions are
made

∆ = diag{∆11, ∆12, . . . ,∆nn}, and

∆ = diag{∆11, ∆12, . . . ,∆nn}.

The stability analysis of (4.1) can be framed in two ways. First, is (4.1) stable for a given set
of variation bounds, ∆ and ∆. Second, for a given W and C, what is the maximum amount of
variation under which stability of (4.1) can be guaranteed. A more concrete definition of maximum
amount of variation will be given in Section 4.2, where the problem is addressed in detail.

The stability of a time-varying system such as (4.1) can be addressed in a number of ways.
In this chapter the IQC theory is applied to the problem and results in a characterization of
stability involving matrix constraints. To apply the IQC method the time varying parameters and
nonlinearity must be separated from the LTI part of the system into a feedback formulation. With
the appropriate IQCs defined the IQC theorem from Chapter 2 can then be applied.

4.1.1 IQC Analysis of Time-Varying RNNs

IQC models of the RNN nonlinearity were discussed in the previous chapter. All of the IQCs
defined there are applicable in the time-varying case as well. There are several approaches to
modeling the time varying parameters with IQCs. If ∆W is known to vary within a polytope,
P = c̄o{∆1, . . . ,∆N} then the relation w(t) = ∆W (t)v(t) satisfies the IQC [59, 43]

∫ ∞

−∞

[
v̂(jω)
ŵ(jω)

]∗ [
Z Y
Y T −X

] [
v̂(jω)
ŵ(jω)

]
dω ≥ 0

if X = XT � 0, Z = ZT , and

[
I
∆i

]T [
Z Y
Y T −X

] [
I
∆i

]
≥ 0 ∀ i ∈ 1, . . . , N. (4.2)

When nothing is known about the variation of ∆W , a full rank polytope must be used. In other
words, ∆W is allowed to vary in a hypercube defined by 2n2

vertices. This results in an exponential
number of constraints of the form (4.2). Obviously, this is an unreasonable computational burden
when n is large.

Rather than modeling the time-varying parameters as a group, [79] proposed to model each
parameter individually. An IQC for such time-varying scalars can be derived from the polytopic
IQC by considering the one dimensional polytope [a, b]. The IQC has the form

∫ ∞

−∞

[
v̂(jω)
ŵ(jω)

]∗ [
z y
y −x

] [
v̂(jω)
ŵ(jω)

]
dω ≥ 0 (4.3)
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if x ≥ 0, [
1
a

]T [
z y
y −x

] [
1
a

]
≥ 0, and

[
1
b

]T [
z y
y −x

] [
1
b

]
≥ 0.

For a time varying scalar, δ(t), that varies in the range [0, 1] the conditions simplify to x ≤ 0, z ≥ 0,
and z + 2y − x ≥ 0. Under these conditions, the IQC is easily shown to be true since

[
v(t)

δ(t)v(t)

]T [
z y
y −x

] [
v(t)

δ(t)v(t)

]
= zv2(t) + 2yδ(t)v2(t)− xδ2(t)v2(t)

= v2(t)
(
z + 2yδ(t)− xδ2(t)

)
≥ 0

because δ2(t) ≤ δ(t). An IQC for time varying scalars can also be derived from the multiplier
approach. Recall the multiplier condition (2.6)

∫ ∞

−∞
Re[v∗(jω)M(jω)w(jω)]dω ≥ 0, v ∈ L2, w = ∆(v), ∆ ∈∆.

When w(t) = δ(t)v(t), δ(t) ∈ [0, β], and M(jω) = y ∈ R+

∫ ∞

−∞
Re[v∗(jω)M(jω)w(jω)]dω =

∫ ∞

0
Re[v(t)yδ(t)v(t)]dt =

∫ ∞

0
yv2(t)δ(t)dt ≥ 0.

From this simple positive multiplier, the IQC

Π(y) =

[
0 y
y 0

]

can be defined. Clearly this parameterized IQC is contained in the more general set of IQCs
described above. This positive multiplier approach is used in [79] to model the time varying scalar
RNN weights. Finally, note that a time-varying scalar in the sector [0, β] is essentially a nonlinear,
sector bounded function, and the IQC

Π(y) =

[
0 y
y −2y

]
(4.4)

is also applicable. In fact, this IQC is also contained in the set defined by (4.3). Preliminary results
revealed that when the IQC (4.3) is used the resulting instance is always of the form (4.4). Thus,
the more general IQC did not provide any reduction in conservativeness but did increase the cost
of the optimization. For this reason the simpler IQC (4.4) is used throughout the remainder of this
chapter and those that follow.

4.1.2 Time-Varying RNNs as Feedback Systems

To apply the IQCs of the previous section to time-varying RNNs, the weight variations must be
written in terms of multiplication by positive, time-varying scalars. To facilitate such a represen-
tation, [79] suggested writing the variation as

∆Wij = δij(t)∆ij − δij(t)∆ij , δij(t), δij(t) ∈ [0, 1].

Additionally, the system (4.1) can be rewritten as

ẋ(t) = −Cx(t) + W̃∆(x(t), t)KRx(t) + u(t) (4.5)
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where

W̃ =
[
W Ŵ −Ŵ

]
∈ R

n×(n+2n2),

Ŵ =
[
e1

×n. . . e1 e2 . . . en

]
∈ R

(n×n2),

K = diag{I,∆, ∆},
R =

[
I I ×2n. . . I

]T ∈ R
(n+2n2)×n,

∆(x(t), t) = diag{δi(xi(t)), δij(t)δi(xi(t)), δij(t)δi(xi(t))} ∈ R
(n+2n2)×(n+2n2),

0 ≤ δi(xi(t)) ≤ 1, 0 ≤ δij(t) ≤ 1, 0 ≤ δij(t) ≤ 1.

Note that since φ(x) is in the sector [0, 1], it can be written as δi(xi(t))xi(t). Then,

∆Wij(t)φ(xi(t)) = δij(t)δi(xi(t))xi(t)− δij(t)δi(xi(t))xi(t) = δij(t)xi(t)− δij(t)xi(t),

since multiplication by δi(xi(t)) does not change the sectors of the time varying parameters.
The formulation can be simplified when only certain elements of W are time-varying. For

example, consider an RNN with W ∈ R
n×n and the W11 and W12 elements time-varying in the

range [−3, 2]. The model parameters are

W̃ =
[
W Ŵ −Ŵ

]
∈ R

(2×6),

Ŵ =

[
1 1
0 0

]
∈ R

(2×2),

K = diag{1, 1, 2, 2, 3, 3},
R =

[
I I I

]T ∈ R
(6×2).

The modified RNN system (4.5) can be written in the form of a feedback system with

G =



− C I W̃

I 0 0
R 0 0


 ,

∆ = K




Φ

δ
δ


 . (4.6)

Keeping with the assumption that φ is bounded in the sector [0, 1], a loop transformation, H2 =
−K−1, is introduced to normalize the gain of the nonlinear operator ∆. The modified feedforward
operator is G(s) = R(C + sI)−1W̃ − K−1. The multiplier and IQC theorems can be applied to
construct LMI conditions whose feasibility is sufficient for stability of the time varying network.
Using the IQC from the previous section to model the time varying scalars and one of the IQCs
from the previous chapter for the nonlinearity φ, an IQC for ∆ is given by

Π =




T

Y
Y

T T

Y
Y




(4.7)

43



where T is either positive diagonal, diagonally dominant, or doubly dominant. The variables Y and
Y are positive, diagonal matrices. Let the matrix T̂ be defined as T̂ = diag{T, Y , Y }. Applying
the loop transformation, Problem 2.2 results in the main LMI condition,

[
−CP − PC PW̃ + RT T̂

W̃ T P + T̂ T R −(T̂ + T̂ T )K−1

]
< 0. (4.8)

The details of the derivation can be found in Appendix A. Appendix A also shows how to include
gain estimation terms and the Popov IQC in the problem. Equation (4.8) is an LMI in T , Y , and
P and can be solved by standard SDP software. When T is taken to be positive diagonal, this
condition reduces to an LMI presented in [79]. When K is not fixed, but is instead intended to be
part of the optimization problem, condition (4.8) is no longer an LMI constraint. The difficulties
this presents will be discussed in Section 4.2

The formulation of time-varying RNNs in (4.5) does not fully exploit the power of the multipliers
in Sdd and Mdd. The terms ∆Wijφ(xi) are modeled as purely unstructured time-varying scalars.
This ignores the fact that the nonlinearity φ(xi) = δi(xi)xi and the time varying components δij(t)
are fundamentally different. The IQCs for the time varying components do not account for the
repeated structure of Φ(x). This will introduce conservativeness into the analysis so a new approach
is proposed here.

An alternative way to write (4.1) is

ẋ(t) = −Cx(t) + W̃

[
I 0

0 ∆̃(t)

]
KR∆̂(x(t))x(t) + u(t)

∆̂(x(t)) = diag{δi(xi(t))}
∆̃(t) = diag{δ(t), δ(t)}

(4.9)

or equivalently as a feedback system with forward operator

G =




− C I W̃

I 0 0[
I 0
0 0

]
0

[
0 0

R̃ 0

]


 ,

R̃ =
[
I ×2n. . . I

]T

and the nonlinear, time-varying, feedback operator (4.6). Since the feedback operator has the same
structure as the formulation (4.5), IQC (4.7) can be applied to this formulation as well. An LMI
stability condition can be derived from Problem 2.2 and is given in Appendix A. In the next section
the two LMIs developed thus far are compared on some example problems.

4.1.3 Examples

In the first example, all of the weights of the 2 × 2 RNN with weight matrix W1 are allowed to
vary in the range [−δ, δ] for three values of δ: 0.25, 0.30, and 0.32. An upper bound on the L2-gain
is computed using the six combinations of IQCs used to model the nonlinearity in the previous
chapter. The computations were repeated for both formulations of the time varying RNN: (4.5)
and (4.9). The computed bounds on the gain are shown in Table 4.1. There are several trends
visible in the data. The first and most obvious is that the computed upper bounds on the L2-
gain increase as the amount of variation allowed in the weights increases. Much like the gain
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γd γ′
d γdd γ′

dd γks γ′
ks

W1, δ = 0.25 9.5010 8.2631 8.6793 8.0019 7.9741 7.5941

W1, δ = 0.30 61.2402 29.4420 35.3116 25.3251 24.9618 20.7134

W1, δ = 0.32 - - - 190.3413 170.3540 67.4899

W1, δ = 0.25 7.6177 7.4700 7.4700 7.4700 7.4700 7.4700

W1, δ = 0.30 20.0857 18.7144 18.7144 18.7144 18.7144 18.7144

W1, δ = 0.32 57.7000 46.4455 46.4455 46.4455 46.4455 46.4455

Table 4.1: Results for estimating the gain of an RNN with weight matrix W1

using different IQCs. The weights are allowed to vary in the range [−δ, δ] with
δ = .25, .30, .32. The results in the top half of the table were computed using for-
mulation (4.5). The results in the bottom half were computed using the formulation
in (4.9).

bounds computed for the time-invariant RNNs, the bounds computed here increase rapidly near
the boundary between an amount of variation that can be tolerated and an amount that can not.
The second trend to notice is the decrease in the gain bounds as more complex IQCs are applied to
model the nonlinearity. This is not so much of a trend in the case of formulation (4.9) as a phase
shift, but for larger networks this transition is smooth and the trend is obvious. Finally, note that
in all cases the formulation in (4.9) results in smaller L2-gain bounds. More accurate modeling
due to the complete separation of the nonlinearity and time-varying parameters results in a less
conservative analysis.

The second example repeats the first experiment on a larger network with weight matrix W3

and takes δ ∈ {0.25, 0.35, 0.45}. The trends observed in the first experiment are more clear in this
example. The use of formulation (4.9) results in a larger reduction in conservativeness than for the
smaller network. Also, the benefit of using more complex IQC models of the nonlinearity is more
apparent. The results suggest that the least conservative analysis is achieved by application of the
Popov IQC in combination with a doubly dominant T and formulation (4.9).

4.1.4 Computational Considerations

The LMI problems presented so far in this chapter are more expensive to solve than those in
Chapter 3. When all of the weights of an RNN are allowed to vary, the cost can be much greater
because an additional 2n2 variables are added to the problem. Before proceeding to examine the
cost of working with these LMIs, a few arguments from the previous chapter should be recalled.
No explicit constraint on the positive definiteness of P is needed. Since the IQCs used here are
essentially the same as those applied in the previous chapter, the arguments applied there are still
valid. In the same manner, when T and Y are taken to be positive diagonal, no explicit constraints
on the positiveness of T and Y are needed. Since Y can be of order n2, this can drastically reduce
the number of constraints in the optimization problem. Problems with ill-conditioning due to large
values of γ exist in these problems as well. The problem is somewhat more pervasive since the
amount of variation allowed in the system is often taken to be large resulting in large γ.

For problems with a number of variables n that is large relative to the size of the LMI constraints,
the run time of SDP solvers is dominated by the n3 cost of solving a set of linear equations. For a
fixed size RNN, allowing m weights to vary should increase the cost on the order of m3 since each
new weight that is allowed to vary adds two decision variables to the problem. Analysis of the run
time data in Figure 4.1 shows that the cost grows at a slower rate for both the Sedumi and PENBMI
solvers. The data was generated by testing feasibility of the LMI derived from either (4.5) or (4.9)
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γd γ′
d γdd γ′

dd γks γ′
ks

W3, δ = 0.25 - - 7.5793 4.8872 4.8980 4.4094

W3, δ = 0.35 - - 22.9458 10.4151 10.6142 9.1089

W3, δ = 0.45 - - - - - 458.3935

W3, δ = 0.25 - 683.6985 4.7750 3.1480 3.0335 2.8275

W3, δ = 0.35 - - 6.8962 4.3408 4.3382 4.1482

W3, δ = 0.45 - - 14.1467 8.0225 8.2289 7.9151

Table 4.2: Results for estimating the gain of an RNN with weight matrix W3 using
different IQCs. The weights {W1,2,W2,1,W1,3,W1,4,W1,5} are allowed to vary in
the range [−δ, δ] with δ = .25, .35, .45. The results in the top half of the table were
computed using formulation (4.5). The results in the bottom half were computed
using the formulation in (4.9).

for an increasing number of time varying weights. The simple IQC with T positive diagonal is used,
but results were similar for the other IQCs. The RNN tested had a 10 × 10 weight matrix, and
all instances of the resulting LMI were feasible. Results in the previous chapter showed that the
PENBMI solver is considerably slower on infeasible problems than on feasible problems. Ensuring
that all problem instances were feasible gave a more meaningful comparison. Growth rates for the
cost of increasing the number of varying weights were estimated to be between m2 and m3 for
Sedumi and m

3

2 for PENBMI. Two factors may be contributing to the less than expected growth
rates. First, the n3 cost model assumes that the size of the constraints stays constant as the number
of variables grow. Here, however, the size of the constraint is growing at a rate of 2m. Second, the
lower right hand corner of the LMIs is extremely sparse; it is a diagonal block. This may improve
the cost of constructing the Newton equations, in the case of PENBMI, and the linear update
equations in Sedumi.

The experiment also shows that the cost of using the new time-varying RNN formulation (4.9)
and the cost of using the formulation (4.5) are nearly the same. This seems reasonable since
comparison of the different LMIs reveals relatively minor structural differences. Since it is no more
expensive and produces less conservative results, use of the formulation (4.9) appears to be the
best choice.

4.2 Maximizing the Allowable Variation

The ability to prove stability and estimate the L2-gain of an RNN with time-varying weights is
useful in certain situations where some fixed amount of variation needs to be accommodated. In
other problems, it is more useful to compute the largest ∆ij and ∆ij values under which stability
can be proved. A simple approach to the problem is to apply a bisection algorithm and repeatedly
evaluate the LMI conditions of the previous chapter. This was done, for example, in [49], but
is very expensive because of the large number of LMI problems which must be solved. In [79]
it was proposed to maximize the sum of the ∆ij ’s and ∆ij ’s directly as part of an optimization
problem subject to the stability constraints. Such a problem is computationally difficult, and some
of the computational problems it poses are explored in this section. For expository purposes, the
constraint (4.8), will be used throughout the development presented here. The results are equally
applicable to the conditions derived from formulation (4.9) and to versions of the constraints with
gain estimation terms.

When the bounds on the variations of the individual weights, ∆ and ∆, are fixed, testing the
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Figure 4.1: Run time results for an increasing number of time-varying weights in
a 10× 10 RNN and a 30× 30 RNN.

feasibility of the stability constraints is computationally tractable. To compute maximum variation
bounds as part of an optimization problem, ∆ and ∆ must be made decision variables. Beyond
simply increasing the number of decision variables, this presents a serious problem for the following
reason. The modified constraint is no longer linear in the decision variables since it contains

terms of the form Y ij∆
−1
ij . Such a constraint is known as a bilinear matrix inequality (BMI) [74].

BMI problems are not generally convex, and there is no known polynomial time algorithm for
verifying the existence of feasible solutions for such constraints [87]. Despite the general difficulty
of such problems, several relatively efficient algorithms exist for finding locally optimal solutions to
optimization problems involving BMIs.

To formulate a concrete optimization problem for maximizing the allowable variation, this
quantity needs a formal definition. Several objective functions can be said to describe maximum
allowable variation. In [79] the problem is defined as maximizing the sum of the bounds,

max
∑

ij

(
∆ij + ∆ij

)
. (4.10)

The objective function has the advantage of being linear and is also a reasonable definition for the
goal of the optimization problem. An alternative is to maximize the volume of the space within
which the weights can vary. Such an objective function is given by the product of the length of the
individual ranges

max
∏

ij

(
∆ij + ∆ij

)
= max log


∏

ij

(
∆ij + ∆ij

)



= max
∑

ij

log
(
∆ij + ∆ij

)
.

(4.11)

While not linear, the function is convex, and a log transformation of the objective results in a form
that is easy to handle using epi-graph formulations [10]. Initial results for problems using this
objective function, however, proved to be difficult to solve and resulted in poor solutions. That is,
the volume of the resulting bounding box was smaller than that computed using the simpler additive

47



objective function (4.10). For this reason, the additive objective function is used throughout the
remainder of the section.

4.2.1 Methods

Different approaches exist for optimizing (4.10) subject to the BMI constraint (4.8). A convex
approximation developed in [79] is described first. To help assess the quality of the convex approx-
imation, three approaches to directly solving BMI problems are then discussed. In Section 4.2.3
the methods presented here are applied to some sample problems to illustrate the differences in
behavior between the algorithms.

4.2.1.1 A Convex Approximation

To remove the bilinear terms from the LMI constraint a set of auxiliary variables, H ij = Y ij∆
−1
ij

and H ij = Y ij∆
−1
ij can be substituted into the matrix constraint. Since the ∆ij variables only

exist in the objective function of the modified problem, the objective function is unbounded and
essentially meaningless. An approximate objective function involving the auxiliary variables must
be used. In [79] the objective function is defined as

max
∑(

Y i −H ij + Y i −H ij

)
= max

∑(
Y i

(
1− 1

∆ij

)
+ Y i

(
1− 1

∆ij

))
. (4.12)

Maximizing such an objective function requires making the Yij ’s large but also making the Hij ’s
small. This implies that optimization of the objective will result in large values for the ∆ij ’s.
These modifications result in a standard LMI problem that can be solved with the SDP software
previously described.

4.2.1.2 Alternating Minimization Method

The alternating minimization method for finding approximate solutions to BMIs solves a sequence of
LMIs generated by fixing alternating groups of decision variables. For example, in the RNN stability
problem the Yij variables could be held constant while the objective function is optimized over the
∆ij variables. Fixing the Yij variables makes the constraint (4.8) convex and the optimization
problem solvable by standard software. The second step is to then fix the ∆ij variables while the
objective function is optimized over the Yij variables. Unfortunately, the Yij variables do not have
a direct effect on the objective function, but an auxiliary objective function, such as minimizing
the trace of Y can be used. The sequence of steps is repeated until some halting criteria is met.
Unless the BMI is convex, the algorithm will not generally converge to the optimal solution and
may fail to converge at all. The algorithm was implemented using Sedumi to solve the convex
subproblems. When applied to the examples later in the section, the method always produced
solutions that were nearly the same as those produced by the augmented Lagrangian method but
at a much greater cost. For this reason and for conciseness, the results for this algorithm are not
given in the examples that follow.

4.2.1.3 Sequential Semidefinite Programming

The sequential semidefinite programming (SSDP) method is an extension of the sequential quadratic
programming algorithm used to solve nonlinear programming problems [25, 26]. Like the alternat-
ing minimization method, SSDP proceeds by solving a sequence of LMI subproblems, but SSDP
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generates them differently. The SSDP method, as given in [26], is designed to solve a very general
class of problems of the form

min bT x s.t. x ∈ R
n,

B(x) � 0,

c(x) ≤ 0,

d(x) = 0,

(4.13)

where b ∈ R
n, B : R

n → Sm, c : R
n → R

p, and d : R
n → R

q. The function B(x) is a nonlinear,
matrix valued function such as a BMI constraint. The function c(x) and d(x) describe element-wise
nonlinear constraints on the decision variables. The Lagrangian of the problem is given by

L(x, Y, u, v) = bT x + B(x) • Y + uT c(x) + vT d(x)

where Y, u and v are Lagrangian multiplier variables [26].
The SSDP algorithm solves a sequence of subproblems of the form

min bT ∆x +
1

2
(∆x)T HK∆x s.t. ∆x ∈ R

n

B(xk) + DxB(xk)[∆x] � 0,

c(xk) + Dxc(xk)∆x ≤ 0,

d(xk) + Dxd(xk)∆x = 0,

where Hk is the Hessian of the Lagrangian at step k. If Hk ∈ S+ then the problem can be converted
to an SDP and solved efficiently [90]. Unless the original problem is convex, however, this will not
be the case, and a positive semidefinite approximation to Hk must be computed. For example, the
projection of Hk onto the cone of positive semidefinite matrices can be used [39]. Updates for the
Lagrange multipliers are easily computed from the dual variables of the SDP subproblem [26].

The generality of the optimization problem (4.13) allows some alternate formulations of the
BMI constraint to be constructed. Obviously, the BMI formulation can be used directly. On the
other hand, since the number of nonlinearities is small, it may be more computationally efficient to
introduce auxiliary variables, H ij = Y ij/∆ij and H ij = Y ij/∆ij . By introducing these variables
into the BMI it becomes a standard LMI constraint. Rather than using an alternative approximate
objective function as suggested in [79], the auxiliary variables can be constrained using element-
wise nonlinear constraints of the form H ij∆ij = Y ij . These constraints are not convex, so the
lack of convexity has simply been shifted out of the matrix constraint. On the other hand, the
Hessian of the Lagrangian is simplified considerably in this formulation since the Hessian of the
term B(x)•Y is now zero. Unfortunately, analysis of the SSDP method in [90] shows that while the
algorithm exhibits good global convergence properties it converges linearly near the solution. Any
gain in the efficiency of solving the LMI subproblems is trivial compared to the cost of this linear
convergence. The SSDP algorithm was implemented using Sedumi to solve the LMI subproblems.
The method was applied to the examples in the next section, but the linear convergence was clearly
evident. This resulted in the necessity of solving a large number of LMI subproblems which made
the algorithm tremendously slow. The SSDP method does not appear to be appropriate for solving
the BMI problem under consideration.

4.2.1.4 Augmented Lagrangian Approach

The augmented Lagrangian approach to solving linear SDPs that was described in Chapter 2 can
also be applied to nonlinear SDPs. Certain modifications must be made to the algorithm to solve

49



non-convex problems. The algorithm is modified to add a small multiple of the identity to the
Hessian of the augmented Lagrangian to ensure its positive definiteness. Its similarity with the
other BMI methods is that it solves a sequence of simpler subproblems. In this case, however, the
subproblems are unconstrained, nonlinear, optimization problems solved by preconditioned conju-
gate gradient methods. Also like the other BMI methods, the augmented Lagrangian algorithm is
not guaranteed to converge to the globally optimal solution. The PENBMI software applied earlier
to linear SDPs includes the necessary modifications for application to nonconvex problems. As the
examples that follow will show, the PENBMI software produces very good solutions compared to
the LMI approximation problem, but it has longer run times for large problems.

4.2.2 Problem Simplifications and Modifications

The BMI optimization problem for determining the maximum amount of allowable variation is not
appropriate for all applications. One modification, designed mostly to decrease the cost of solving
the problem, is to restrict all of the ∆ijs and ∆ijs to be the same. The restriction has two benefits:
a reduction in the number of decision variables and a reduction in the problem difficulty. The
simplification can be implemented simply by replacing all of the ∆ij decision variables with a single
decision variable δ. For example, the BMI constraint (4.8) becomes the constraint



−CP − PC PW + RT

[
T 0
0 Y

]

∗ −
[
T T + T 0

0 −1
δ 2Y

]


 ≺ 0.

While the constrain is clearly not an LMI, it is a special type of constraint called a linear-fractional
constraint. Optimization problems with linear-fractional constraints can be solved efficiently as
generalized eigenvalue problems [9]. PENBMI does not explicitly exploit this problem structure,
but it solves this simpler problem more quickly than the general case and is used in the examples
below. Certain a priori knowledge about the expected weight variation can be incorporated into
this problem formulation. For example, the IQC variables Y and Y can be multiplied by a constant,
positive, diagonal matrix expressing the relative amount of expected variation in the weights. If it
is known that, say, weight W11 varies more than weight W12, then Y 11 and Y 11 can be multiplied
by two everywhere these variables occur in the constraints. Such a modification keeps the simpler
problem structure, but allows different bounds on the variation of the different weights.

Another modification that can be made to the problem is the imposition of minimum values
for the ∆ijs and ∆ijs. These types of constraints are easily handled by standard SDP software
and do not seriously impact the cost of solving the optimization problem. For the convex LMI
approximation, however, it is unclear how such constraints can be enforced by themselves without
constraints on other variables since the ∆ij variables have been removed from the problem. Such
a constraint can be enforced indirectly by bounding both the Y variables and the H variables. In
addition to imposing minimum values on the ∆ij variables, it can be useful to place an upper bound
on the L2-gain. Using the BMI condition in Appendix A, such a constraint can easily be enforced
by placing an upper bound on γ. This constraint can be used to ensure stability of a feedback loop
between an RNN and some other system. The small gain theorem states that the feedback loop
will be stable if the gain of the RNN is less than 1/γp where γp is the gain of the other system.
In this way a certain amount of variation in the RNN weights can be allowed while still ensuring
stability of the entire feedback loop.
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Formulation γd γ′
d γdd γ′

dd γks γ′
ks

(4.5) 0.0112 0.0751 0.4001 0.4426 0.4400 0.4521

(4.9) 0.0248 0.2525 0.5321 0.5595 0.5595 0.5604

Table 4.3: The results of maximizing δ for weight matrix W3 using the different
IQCs and both formulations of the time-varying RNN equations. The PENBMI
solver is used to generate the results.

4.2.3 Examples

The first example in this section uses the simplified optimization problem in which all of the ∆ijs and
∆ijs are constrained to be equal to some value δ > 0. Since the ∆ij variables do not show up directly
in the convex LMI approximation, it is unclear how to adapt the approximation to this particular
problem. So, for this example only the PENBMI solver is used. The RNN had weight matrix
W3, and only the weights {W1,2, W2,1, W1,3, W1,4, W1,5} were allowed to vary. The six different
combinations of IQCs applied in previous experiments were used here, and both formulations of
the time-varying RNN equations were compared. The results are shown in Table 4.3. The results
show that, as expected, the use of better IQCs results in reduced conservativeness and thus an
increase in the value of δ. Clearly, separately modeling the nonlinearity and the time-varying
components as in (4.9) also reduces conservativeness.

In the second example, the first experiment is repeated, but the ∆ijs and ∆ijs are not con-
strained to be equal. For this example the convex LMI approximation of the stability constraint
can be applied, and it is compared with the PENBMI solution of the BMI version of the constraint.
The trends obvious in the first example are clear in this example as well. Better IQCs result in
less conservative analysis, and the problem formulation in (4.9) also reduces conservativeness. Ad-
ditionally, in this problem it is clear that directly solving the BMI problem gives better solutions
than solving the LMI approximation. In two cases the BMI solution is twice as large as the solu-
tion to the approximate problem. These results suggest that there is some slackness in the LMI
approximation, which is to be expected. The relative computational costs of these two approaches
are compared in the next section.

Solutions to the convex approximation problem and the BMI problem have a qualitative as
well as quantitative difference. The approximate problem tends to produce solutions where at least
some of the ∆ijs are zero. Solutions to the BMI problem on the other hand tend to have all of the
∆ijs with positive values. For example, solving the two optimization problems with a combination
of diagonal T the Popov IQC for W = W3 results in the solutions

∆LMI =
[
0.023 0.581 0.000 0.123 0.297 0.284 0.190 0.475 0.526 0.000

]
,

∆BMI =
[
0.234 0.492 0.281 0.585 0.367 0.362 0.310 0.427 0.759 0.143

]
,

with objective function values of 2.4967 and 3.9496, respectively. Bounding the Yij and Hij vari-
ables in the approximate problem improves the conditioning and the solution to some extent. For
example, using the bounds, 10−3 < Yij < 103 and 102 < Hij < 103 results in the solution

∆LMI =
[
0.107 0.885 0.012 0.091 0.552 0.777 0.448 0.690 0.250 0.000

]

with an objective function value of 3.8104. The last value in the solution is 10−5. Note that
bounding Yij and Hij implies the bounds 10−6 < ∆ij < 10. Imposing the same constraints on the
BMI problem does not changes the solution. To avoid the problem with the LMI solutions it makes
sense to bound the minimum values of the ∆ variables from below by some minimum acceptable
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Formulation γd γ′
d γdd γ′

dd γks γ′
ks

(4.5) 0.0257 1.0846 2.9710 3.8680 3.1947 4.2511

(4.9) 0.4832 2.4976 3.7931 6.1525 4.9405 7.8575

(4.5) 0.1777 2.3244 4.7165 5.2476 4.8831 5.3251

(4.9) 0.7211 3.9142 5.7217 8.1077 6.8020 8.2610

Table 4.4: The results of maximizing (4.10) for weight matrix W3 using the dif-
ferent IQCs and both formulations of the time-varying RNN equations. The γ in
this column titles simply refers to the combination of IQCs used. The numbers
in the table are sum of variation bounds and not L2-gains. The top two rows of
results were generated using the convex LMI stability constraint and the approxi-
mate objective function (4.12). The numbers in parentheses were computed using
a modified objective function described in the next section. The bottom two rows
were generated using the BMI constraint and the PENBMI solver.

value. This is rather arbitrary, however, and it can not be known a priori whether or not such
constraints can be satisfied.

Returning to the 2×2 RNN example from the previous chapter, Figure 4.2 shows three examples
of computed bounds on weight variation. For these computations the combined Popov and doubly
dominant nonlinearity IQCs were used. The two different time-varying RNN formulations were
compared along with the two different computational approaches: the BMI problem and the LMI
approximation. Like the previous examples, the results here show that the formulation (4.9) and
the direct BMI problem generally produce better results. There is, however, an exception in this
example. At the origin, the LMI approximation results in a larger sum of variation bounds, 4.29,
than the BMI problem, 4.04. Neither method, however, produces the solution that maximizes the
sum of the ∆’s. This solution is achieved by making one pair of ∆ and ∆ vanishingly small and
the other increasingly large. Such solutions can be found and do satisfy the stability constraints.
On the other hand, the solutions actually returned by the software, while not optimal, are, in a
practical sense, better. This suggests that in some cases actually optimizing the given optimization
criterion might produce bad solutions. Placing bounds on the maximum and minimum ∆ values
or on the maximum difference in magnitude between any two ∆’s would improve the objective
function. These types of constraint are easily included in the BMI problem, and can be included
implicitly in the LMI approximation. Many such constraints can be imagined, but the simple
objective function works well enough in most cases and is used throughout the remainder of the
document.

4.2.4 Computational and Numerical Considerations

Ill-conditioning can occur for a number of reasons in the optimization of (4.10) subject to the BMI
stability constraint (4.8). Inclusion of gain estimation terms easily leads to ill-conditioning unless
a bound is placed on the L2 gain, γ. For both computational and numerical reasons these terms
should not be included unless such an explicit bound is required. It is possible for the difference in
magnitudes among the ∆ij variables to be quite large, and for this difference in scale to result in ill-
conditioning. For instance, the amount of negative variation allowed for a self feedback connection,
a weight Wii, is unbounded. Placing a bound on the maximum magnitude of the ∆ij variables can
improve conditioning in cases like this without affecting the usefulness of the computed solution.
In other words, since there is often little point in allowing some weight to vary on a scale which is
orders of magnitude different from the other weights, it is preferable to limit the variation to some
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Figure 4.2: Examples of stable variation ranges for different formulations and
solution techniques.
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extent to improve the problem conditioning.
In Figures 4.3 and 4.4 timing and performance results are given for experiments on a 5 × 5

weight matrix and a 10× 10 weight matrix. Three variation maximization methods are used: the
BMI formulation, the LMI approximation and the simplified problem where all ∆ij ’s are restricted
to be the same. The two time-varying RNN formulations (4.5) and (4.9) are compared. In this
experiment the Popov IQC is not used and T is taken to be positive diagonal. The top left plots
show the objective function values for an increasing number of time-varying weights. The top right
plots show the average ∆ij value for the same increasing set of time varying weights. The bottom
plots show the run time of each of the methods. PENBMI is a local solver, and the solution can
differ in different runs. The reported results for the BMI solutions are an average of five trials. In
both experiments it is clear that formulation (4.9) generally produces the best results regardless of
the solution method without much cost in terms of run time. The BMI solution is generally better
than the LMI solution and always better than the restricted problem solution. The BMI solution,
however, has a large computation cost that grows rapidly with the number of time varying weights.
The LMI approximation solution for formulation 4.9 is also quite good and has a run time cost near
to and sometimes less than the restricted problem. A final observation that can be made from these
results is that while the cost of computing the variation bounds grows quickly with the number of
weights that are allowed to vary, the average amount of variation allowed in the solution decreases
rapidly. There is clearly a trade-off between flexibility in the adaptation of an RNN’s weights and
the amount of variation that can be tolerated with known stability. This suggests that limiting
the number of weights that are allowed to vary may be wise in terms of a cost benefit trade-off.
There are examples of algorithms, such as ESN approaches, where only the weights for a subset of
neurons are adapted and good performance can still be achieved [81, 36].

4.3 Conclusions

The results in this chapter give sufficient conditions for the stability of RNNs with time-varying
connection weights. Starting from a formulation of the problem in [79], a novel formulation of the
time-varying RNN equations was developed. This new formulation reduced the conservativeness of
the stability analysis. The problem of finding the maximal amount of weight variation under which
stability can be assured was developed as a BMI problem. Through several example problems, it
was shown that directly solving the BMI problem produced better results than those obtained with
the convex approximation developed in [79]. On the other hand, it was shown that as the problem
size increases, the convex approximation is more computationally tractable.

The analysis in this chapter used a simple IQC model of the time-varying RNN parameters and
assumed that all the parameters varied independently. A more general IQC for the time-varying
parameters was introduced, but did improve performance in preliminary experiments. Further
exploration of this problem will provide insight into the reasons for this. The IQC presented in
this chapter bounded only the values of the time-varying parameters and not their derivatives.
Additional reduction in conservativeness can be achieved if the rates at which the parameters vary
are bounded. Often, however, the parameter variation is dependent on some error signal and
the rates of change are not naturally bounded. Even when such bounds are available the cost
of exploiting this information in an IQC is a factor of three increase in the number of decision
variables. For these reasons it might be better to accept some conservatism in the analysis for the
sake of computational tractability.
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Figure 4.3: The allowable variation under stability constraints is computed using
three approaches: the BMI problem, the LMI approximation, a restricted problem
where all ∆ij ’s are equal. The RNN weight matrix is of size 5×5 and the number of
time-varying weights varied from 1 to 25. The Popov IQC is not used and the matrix
T ∈ D+. Both time varying RNN formulations, (4.5) and (4.9), are compared. The
top left plot shows the objective values attained, the top right plot shows the mean
∆ij value, and the bottom plot shows the run times.
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Figure 4.4: The allowable variation under stability constraints is computed using
three approaches: the BMI problem, the LMI approximation, a restricted problem
where all ∆ij ’s are equal. The RNN weight matrix is of size 10 × 10 and the
number of time varying weights varied from 5 to 60. The Popov IQC is not used
and the matrix T ∈ D+. Both time varying RNN formulations, (4.5) and (4.9), are
compared. The top left plot shows the objective values attained, the top right plot
shows the mean ∆ij value, and the bottom plot shows the run times.
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Chapter 5

Stable Learning with RNNs

Adapting RNNs in an off-line setting, whether as controllers or models, generally requires no stabil-
ity analysis. In a control setting, off-line adaptation of recurrent neural networks uses interaction
with model systems that may not accurately reflect reality. Online adaptation allows RNN compo-
nents observe the actual properties of the controlled plant and track the changes of that system over
time. Using RNNs in online adaptive systems, however, requires that their stability be guaranteed
during adaptation. In this chapter an algorithm is presented which ensures the stability of an adap-
tive RNN. The algorithm is applicable to many systems that can be modeled and analyzed using
the approach described in the previous chapters. For instance, the algorithm is easily extended
to cover an RNN in a control loop with an uncertain plant model. In the next chapter, such an
extension is developed more fully. Here, however, the exposition is focused on simply maintaining
stability of an RNN under adaption from some arbitrary algorithm. This removes some distractions
and keeps the focus on the basic properties of the algorithm.

In Chapters 3 and 4 a stability analysis was developed for RNNs with fixed and time-varying
weights, respectively. Both types of analysis are necessary for enabling the algorithm proposed in
this chapter. Because the stability analysis computations are expensive and generally have worse
asymptotic complexity than the computation of weight updates, they dominate the run time of the
proposed algorithm. Steps are taken to minimize the number of stability analysis computations
thereby reducing the cost of ensuring the stability of adaptive RNNs. As shown in the previous
two chapters, there is a direct trade-off between the conservativeness of the stability analysis and
its computational cost. Conservativeness in the stability analysis impacts the online stable learning
algorithm in two ways. Increased conservativeness reduces the amount of variation allowable in the
weights of an RNN and will tend to increase the number of necessary stability computations. Also,
conservativeness can limit optimization of the overall control objective by over zealous restriction
of the RNN weight settings. Whether or not the increased cost of a single analysis computation is
worthwhile in terms of its effect on the total number of stability computations is dependent both
on the size of the network and the problem under consideration.

In the next section, a simple example problem is introduced. It is used throughout the chapter
to illustrate the properties of the proposed stable learning algorithm. The later sections will develop
the necessary components of the algorithm, beginning with initialization of RNNs to stable weight
settings, through the basics of the algorithm and ending with some techniques to improve its
performance in certain situations.

Before proceeding to the example problem some notation is introduced. Define the set Wn
ss as

all n× n weight matrices that result in stable RNN dynamics. The analysis of Chapter 3 produces
an inner approximation of this set whose quality is dependent on the choice of IQCs. The set Wn

ss
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is not generally known explicitly and to limit the notation somewhat, the symbol Wn
ss is also used

to represent approximations of it. The specific set of IQCs used to determine the approximation is
not indicated in the notation but is made clear when it is important.

5.1 An Example Adaptive System

To illustrate the behavior or the proposed algorithm, a simple RNN learning problem with stability
constraints is formulated in this section. The problem will be to train a recurrent neural network
to model a given dynamic system subject to constraints on the stability of the RNN. The problem
simulates the type of situation in which the proposed stable learning algorithm will be applied and
helps to illustrate many of the underlying issues which must be considered.

5.1.1 Problem Definition

The dynamic system that the RNN is trained to model is itself another RNN. The problem can be
constructed to have an optimal solution with weights in the set of stable weights or outside of it.
Also the solution can be made to lie near to or far from the boundary of Wn

ss. The problem has the
following form,

min
W∈W2

ss

N∑

i=1

(x̄(ti)− x(ti))
2 where

0 < t1 < t2 < · · · < tn ∈ R,

x̄(t) =

∫ t

0
−Cx̄(τ) + W̄φ(x̄(τ)) + u(τ) dτ, x̄(0) = 0,

x(t) =

∫ t

0
−Cx(τ) + Wφ(x(τ)) + u(τ) dτ, x(0) = 0, and

u(t) =

[
sin(t)

2 cos(t/2)

]

The input to the adaptive system will be the instantaneous error, E(t) = x̂(t) − x(t), generated
by continuously running versions of the optimal network and the adapted network. The times, ti
specified in the problem definition are used only for evaluating the performance of the adaptive
network. The task is to find an RNN with a 2×2 weight matrix that reproduces the behavior of the
optimal RNN on a given input sequence using only the available error signal. The optimal RNN has
a weight matrix W̄ that is chosen to illustrate different properties of the stable learning algorithm.
For illustrative purposes the diagonal elements of W will be fixed to the corresponding values in
W̄ . The resulting problem has a two dimensional parameter space and allows the dynamics to be
easily visualized. The matrix C is taken to be the identity and φ(x) is taken to be the tanh(·)
function.

5.1.2 Learning Algorithm

Many algorithms exist for adapting the weights of recurrent neural networks. A survey of gradient
based approaches can be found in [66]. To solve the example learning problem in this chapter, the
Real Time Recurrent Learning (RTRL) algorithm is applied. RTRL is a simple stochastic gradient
algorithm for minimizing an error function over the parameters of a dynamic system. It is used
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here because it is an online algorithm applicable in adaptive control systems. Computing the gra-
dient of an error function with respect to the parameters of a dynamic system is difficult because
the system dynamics introduce temporal dependencies between the parameters and the error func-
tion. Computation of the error gradient requires explicitly accounting for these dependencies, and
RTRL provides one way of doing this. A brief description of the algorithm follows, and a sample
implementation is given in Figure 5.1.

Recall the RNN equations

ẋ = F (x, u; C, W ) = −Cx + WΦ(x) + u

y = x

The gradient of the error function E(||x(t)− x̄(t)||22) with respect to the weight matrix, W , is given
in RTRL by the equations

∂E

∂W
=

∫ t1

t0

γ
∂E

∂y
dt

∂γ

∂t
=

∂F (x, u; C, W )

∂W
+

∂F (x, u; C, W )

∂x
γ

where γ(t0) = 0. The variable γ is a rank three tensor with elements γl
ij corresponding to the

sensitivity of xl to changes in the weight Wij . RTRL requires simulation of the γ variables forward
in time along with the dynamics of the RNN. The gradient, however, need not necessarily be
integrated. The weights can instead be updated by

W ←W − ηγ(t)
∂E(t)

∂y(t)

for the update time t. The parameter η is a learning rate that determines how fast the weights
change over time. The stochastic gradient algorithm requires that this parameter decrease to zero
over time, but often it is simply fixed to a small value. The listing in Figure 5.1 shows a discrete
time simulation of the RTRL algorithm using an Euler method, but the simulation can also be done
using other numerical integration techniques. The algorithm has an asymptotic cost of Θ(n4) for
each update to γ when all the RNN weights are adapted. For large networks the cost is impractical,
but improvements have been given. For example an exact update with complexity Θ(n3) is given in
[84] and an approximate update with an Θ(n2) cost is given in [3]. The basic algorithm is practical
for small networks and is sufficient for illustrating the properties of the proposed stable learning
algorithm. For this reason it is used throughout this chapter and the next.

5.1.3 Application of RTRL to the Sample Problem

For the example problem, W̄ is taken to be the matrix

W̄ =

[
0.0756 1.0663
1.2691 −0.4792

]
.

Using the least conservative stability analysis described in Chapter 3, the Popov IQC in combi-
nation with T doubly dominant, the L2-gain is bounded above by 149.1788. Using these IQCs
an approximation to Wn

ss is computed over the weights W12 and W21. In Figure 5.2 a sample of
weight trajectories generated by RTRL are displayed along with the approximation to Wn

ss. The
optimal solution, given by W̄ , is near the boundary of Wn

ss. Two weight trajectories are shown
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Real-Time-Recurrent-Learning(∆, η)

Initialize W (0), x(0)← 0, γ(0)← 0, k ← 0
repeat

k ← k + 1
x(k) = x(k − 1) + ∆t (−Cx(k − 1) + Wφ(x(k − 1)))

γl
ij(k) = γl

ij(k − 1) + ∆t
(
−γl

ij(k − 1)

+ δliφ(xj(k)) +
∑

m wlm(k − 1)φ′(xm(k))γm
ij (k − 1)

)

wij(k) = wij(k − 1)− η
∑

i(xi(k)− x̄i(k))γl
ij(k)

Figure 5.1: The RTRL Algorithm

for each of two starting points. The different trajectories were generated using different learning
rates. For higher learning rates the trajectories tend to be more erratic and can leave Wn

ss. This
is to be expected since RTRL has no knowledge of the stability constraints. Higher learning rates
also allow more rapid optimization of the objective function. The purpose of the stable learning
algorithm proposed in this chapter is to constrain the trajectories to the setWn

ss and to ensure that
the weight matrix transitions do not lead to instability. Forcing the trajectory to remain within
Wn

ss can allow larger learning rates to be used safely and thus provide an improvement in the rate
at which performance is improved.

5.2 Generating a Stable Initial Network

Any algorithm designed to ensure the stability of adaptive systems needs to ensure the stability of
the system at the initial parameter settings. The algorithm presented in the next section requires
that the initial weight matrix, W , of the RNN be in the set Wn

ss. Many heuristic and algorithmic
approaches for initializing RNNs based on a priori information about a problem or problem domain
exist. For example an RNN can be trained in a simulation environment before being used on a
real system. Literature on the echo state network (ESN), a special type of RNN, contains many
examples of heuristics for constructing RNN weight matrices [36]. The focus of this section is the
development of methods that take some arbitrary matrix, W , and modify it to ensure satisfaction
of the initial stability condition. Two optimization problems are developed for finding a matrix Ŵ
that is in Wn

ss and is, in some appropriate sense, close to W .

5.2.1 Scaling W into Wn
ss

As discussed in Chapter 3, a sufficient condition for W ∈ Wn
ss is that ‖W‖2 < 1. If this condition

is not satisfied, a simple procedure for constructing a stable approximation to W is to scale it by
α where α−1 = (1 + ǫ)‖W‖2 and ǫ > 0. In other words, make Ŵ ← αW . This approach is used
throughout the ESN literature and is sufficient for constructing an RNN with the so called echo
state property, a strong form of stability.

The norm condition on W is, however, very conservative compared to the LMI conditions
developed in Chapter 3. To reduce the effect of this conservatism on the initialization procedure
— and hopefully to retain more a priori information encoded in Ŵ — an optimization problem is
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Figure 5.2: Examples of weight trajectories induced by training an RNN to re-
produce the output of dynamic system using RTRL. The space of RNNs with fixed
weights that can be proved stable is shown in blue. Only the off diagonal weights
of the 2× 2 RNN weight matrix are modified. The diagonal weights are set to the
optimal values. Some trajectories leave the provably stable region.
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formulated to find a maximal α such that Ŵ ∈ Wn
ss. The scaling, α, is the solution to the problem

max
α,T,P

α s.t.

[
−CP − PC αPW + T
αW T P + T T −(T + T T )

]
≺ 0, P = P T ,

T ∈ D+, Sdd, orMdd,

0 < α ≤ 1.

(5.1)

This problem is not linear in the decision variables, but the introduction of an auxiliary variable
allows it to be written as a generalized eigenvalue problem. Recall that GEVPs can be solved
efficiently using special interior point methods. To formulate the problem as a GEVP, first define
the matrix P̂ = αP and rewrite the constraint as

[
1
α(−CP̂ − P̂C) P̂W + T

W T P̂ + T T −(T + T T )

]
≺ 0.

Second, introduce the auxiliary variable X ∈ S
n, and rewrite the optimization problem as

min
λ,T,P̂ ,X

λ s.t.

[
−X P̂W + T

W T P̂ + T T −(T + T T )

]
≺ 0, P = P T , X = XT ,

X ≺ λ
(
CP̂ + P̂C

)
,

CP̂ + P̂C ≻ 0,

T ∈ D+, Sdd, orMdd.

(5.2)

The optimal scaling is given by α = min{1/λ, 1}. Despite the fact that such problems can be
solved in guaranteed polynomial time [9], the introduction of the auxiliary variable, X, can make
the problem expensive.

5.2.2 Projecting W onto Wn
ss

Considering only scalings of W restricts what it means for an approximation Ŵ to be close to W .
A more general definition of closeness is to measure the magnitude of the difference in some matrix
norm, ||W − Ŵ ||. The resulting optimization problem must find a W ∈ Wn

ss that minimizes this
value. The solution of this problem is a projection of W onto the feasible set Wn

ss. The problem is
formulated as follows

min
Ŵ ,T,P

||W − Ŵ || s.t.

[
−CP − PC PŴ + T

Ŵ T P + T T −(T + T T )

]
≺ 0, P = P T ,

T ∈ D+, Sdd, orMdd,

where clearly the matrix inequality is now bilinear in the decision variables Ŵ and P . In addition
to the bilinear term, the optimization problem has a convex quadratic objective function. An
epi-graph representation [10], can be used to convert this into a linear objective at the cost of an
additional variable and additional constraints.
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To transform the objective function, first introduce the auxiliary variable t > 0 and change the
objective of the optimization problem to

min
t,Ŵ ,T,P

t.

Second, add the constraint, ||W − Ŵ || < t to the problem. It is clear that minimizing t results
in minimizing the norm of W − Ŵ . For both the two norm and the Frobenius norm it is possible
to transform the constraint into an LMI. The procedure differs depending on the choice of norm.
In the case of the 2-norm, the constraint can be written as an equivalent LMI via the following
transformations [10]

||W − Ŵ ||2 ≤ t2 ⇒ (W − Ŵ )T (W − Ŵ ) � t2I

⇒
[

tI W − Ŵ

(W − Ŵ )T tI

]
� 0.

The last step is a consequence of Schur’s complement theorem [98, 9]. The resulting LMI is of
size 2n × 2n. In the case of the Frobenius norm the transformation results in an LMI of size
(n + 1)× (n + 1). The transformation is [9]

||W − Ŵ ||F ≤ t ⇒ tr
(
(W − Ŵ )T (W − Ŵ )

)
≤ t

⇒
∑

i

∑

j

(Wij − Ŵij)
2 ≤ t

⇒ || vec (W − Ŵ )||2 ≤ t

⇒
[

I vec (W − Ŵ )

(vec (W − Ŵ ))T t

]
� 0.

5.2.3 Examples

Figure 5.3 shows an example of four different initialization methods for a weight matrix W 6∈ Wn
ss.

The two scaling methods produce weight matrices on the line between W and the origin. It is
clear that scaling by the norm of W is more conservative than scaling based on the LMI stability
conditions. Also, the two projections are much closer to W than the two rescalings. It is not exactly
clear how to interpret closeness in terms of the 2-norm in this context. The projection based on
the Frobenius norm has a lower computational cost and a more intuitive meaning. Ideally, the
projection would change the dynamics of the network as little as possible. It may be impossible
however, to preserve the dynamics, since projecting the network weights might cause them to cross
a bifurcation boundary of some kind. Using the Frobenius norm, causes the projection to minimize
the changes made to the weights. Because of this, the Frobenius norm projection will tend to
preserve the weight values of parts of the network that are not contributing to instability and may
preserve more of the dynamics.

When compared in terms of computational cost, however, the Frobenius projection method
is much less appealing. In Figure 5.4 performance and run time results are given for the differ-
ent initialization approaches. Initial weight matrices were generated with normally distributed
elements. The results are averages over ten different random weight matrices for each value of
n ∈ 2, . . . , 11. The results produced by the Frobenius projection method are much better than the
other approaches, but the run time of this approach grows rapidly with n. The Frobenius projection
method introduces n2 variables into the problem to represent W . Along with the non-convexity of
the matrix inequality condition, this causes the rapidly increasing cost.
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Figure 5.3: An example of the differences between several scaling methods for
generating stable networks from initial weight matrices.

Two methods were used to compute a scaling based on the LMI stability conditions. The first
method solved the BMI problem (5.1) directly using PENBMI. The second approach solved the
GEVP version of the problem in (5.2) using the GEVP solver from LMILAB [4]. The PENBMI
solver was slightly faster, but both methods produce very similar scalings. Further experimentation,
however, revealed that as n grows larger the PENBMI method becomes much more efficient due to
the cost of the additional variables in the GEVP version.

The initialization methods described find stable weight matrices that are close to some existing
weight matrix that, itself, may or may not result in a stable RNN. The cost of these initialization
methods is only worthwhile if there is useful information encoded in the initial Ŵ . If Ŵ is generated
randomly, for example, there is no reason to expect one method to be better than the other, and
a simple scaling of W by its norm is sufficient to generate a stable initial system. If, on the other
hand, an RNN is adapted to some model system, it can be useful to find the closest approximation
to it that is guaranteed to be stable.

5.3 Maintaining Stability of an Adaptive RNN

Given a stable initial RNN it is now possible to consider adapting the weights of the network to
optimize an objective function. As discussed in the introduction, it is necessary to guarantee the
stability of the system as it changes through time. Consider a simple approach to this problem.
Compute a set of bounds on the variation of the RNN weights within which stability is guaranteed,
and then filter out any weight updates that put the weights outside of the computed bounds. Such
an approach is at one end of a trade-off between computational cost and conservativeness. Only a
single stability analysis is required, and the cost of rejecting weight updates that can not be proved
stable is trivial. On the other hand, the initial weights may not be close to the optimal weights
and the bounds may limit optimization of the problem objective. In [79] this approach was applied
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ss as n grows. On the right is the log of the run times.
The Frobenius projection method has a rapidly growing computational cost.
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to training an RNN to model a chaotic system. Given a good initial weight matrix, the learning
algorithm was able to improve the model within the specified stability bounds. In general, however,
it can not be expected that the optimal weight matrix for a problem, W̄ , will be reachable from W
while still respecting the initial stability constraints. The relative inexpensiveness of this approach
has as its price a reduction in the achievable performance. At the other end of the spectrum is
an algorithm that recomputes the bounds on weight variations at every update to the weights.
The algorithm does not ensure that every update is accepted, but it does, in theory, result in the
acceptance of many more updates than the simple approach. It also allows, again, in theory, better
performance to be achieved. The computational cost of the algorithm is, however, prohibitively
expensive because of the large number of stability analysis computations required. The algorithm
proposed in this section falls somewhere between these two extremes allowing better optimization
of the objective than the first approach with less computational expense than the second.

An algorithm, called the Stability-Constrained-Learning algorithm, is listed in Figure 5.5.
The algorithm assumes that changes to the weight matrix are proposed by an external agent, such
as RTRL, at discrete time steps indexed by the variable k. The algorithm ensures the stability
of an adaptive RNN by filtering weight updates that can not be guaranteed stable. A constraint
set, Cj(W ) is a set of bounds, {∆, ∆}, on the variation in the RNN weight matrix centered on the
fixed matrix W . Variations in W (k) that stay within these bounds can be assured not to result in
instability. The constraint set, Cj(W ) is a hypercube centered on W with each element of W (k)
constrained by

Wij −∆ij ≤Wij(k) ≤Wij + ∆ij .

When an update causes W (k) to lie outside of the constraint set, a new set of constraints is
computed if updates to W (k) have occurred since the last set of constraints was constructed.
Otherwise, the update is rejected. Given this new set of constraints centered on the most recently
seen stable W , the current update W (k− 1)+∆W is again checked for validity. If the update fails
to satisfy the new constraints it is then rejected. Rather than rejecting the update outright, the
proposed procedure makes better use of the available weight update suggestions from the adaptation
algorithm. Figure 5.6 illustrates the behavior of the proposed algorithm.

In Figure 5.7 the result of applying the stability constrained learning algorithm to a weight tra-
jectory generated by RTRL for the example problem described in Section 5.1 is shown. The weight
matrix W was initialized using a scaling by its 2-norm. The constraint sets were generated using
the BMI method described in the previous chapter applied to time-varying RNN formulation 4.9.
The Popov IQC was used in conjunction with the repeated nonlinearity IQC, taking T to be doubly
dominant. The example is ideal in that very few sets of stability constraints were computed and
the optimal weight matrix was in Wn

ss. In later examples it will be seen that this is not always the
case.

Figure 5.2 shows an example of starting from an initial point generated by the Frobenius
projection method and adapting the weights using the RTRL algorithm. Without constraints on
the weight updates it is clear that the learning algorithm does not respect the stability constraints.
This is not to say that the algorithm produces unstable behavior, only that stability can not be
guaranteed along the trajectory induced by the unconstrained RTRL algorithm. Such excursions
from the stability region could have more damaging effects if the RNN was in a control loop with
some actual physical system.

Applying the proposed algorithm forces the trajectory to remain inWn
ss. The example shown in

Figure 5.8 and Figure 5.9 illustrates an unfortunate problem with the approach. In some instances,
weight trajectories can remain near the boundary ofWn

ss. This results in the computation of a large
number of constraints sets. Since this computation is expensive, its occurrence over the course of
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Stability-Constrained-Learning

j ← 0, k ← 0
update ← false

Initialize W (0)
Compute constraint set C0 (W (0))
repeat

k ← k + 1
Compute ∆W
if W (k − 1) + ∆W ∈ Cj

W (k)←W (k − 1) + ∆W
update ← true

else

if update
j ← j + 1
Compute constraint set Cj(W (k − 1))
update ← false

if W (k − 1) + ∆W ∈ Cj
W (k)←W (k − 1) + ∆W
update ← true

Figure 5.5: The stability constrained learning algorithm.

Figure 5.6: Given an initial stable point, the update δ1(τ) is proposed and accepted
since it satisfies the stability constraints. The next update is also accepted. Update
δ2(τ) violates the stability constraints, so the constraints are updated. The proposed
update violates the new constraints as well, and so is rejected. Update δ2(τ + 1) is
accepted since it satisfies the new constraints. Update δ3(τ) violates the constraints,
and causes the constraints to be updated again. Since it still violates the new
constraints the update is rejected.
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Figure 5.7: Shown here are the results of applying the stability constrained learning
algorithm to a sample trajectory. This is an ideal case where very few stability
constraint sets are generated.

the weight adaption should be minimized. Reducing the conservativeness of the stability analysis
is not much help in this situation. If the error gradient points toward the stability boundary and
the weight trajectory moves toward the boundary, allowing more variation in the interior of Wn

ss

does not help. To alleviate this problem the error gradient should be modified with a term that
captures stability information. In the next section, a method is introduced that explicitly biases
the trajectory away from the boundary of Wn

ss.

5.4 A Stability Bias

To bias learning trajectories away from the boundary ofWn
ss a measure of closeness to this boundary

is needed. Fortunately, as is obvious from its definition and illustrated in Figure 3.4, the L2-gain
of the RNN with static weights grows rapidly near the boundary ofWn

ss. So the L2-gain acts as the
inverse of distance to the boundary. The magnitude of the L2-gain is not immediately useful as a
bias, however, since it contains no information about the direction of the boundary from a weight
matrix. On the other hand, the gradient of this value with respect to W carries information about
closeness to the boundary and of its direction from W . In this section it is shown how to compute
this derivative. Its use as a bias for weight trajectories is illustrated using the sample problem.
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Figure 5.9: A close up of Figure 5.8 showing the weight trajectory.
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5.4.1 Optimality and SDPs

Consider a general, nonlinear, semidefinite program given in [27]

p∗ = min bT x s.t. x ∈ R
n,

B(x) � 0,

c(x) ≤ 0,

d(x) = 0.

(5.3)

The optimization problem encompasses all of the stability problems constructed in the earlier
chapters. The Lagrangian of this problem L : R

n × S
m × R

p × R
q → R, is defined by [27]

L (x, Y, u, v) = bT x + B(x) • Y + uT c(x) + vT d(x) (5.4)

where Y ∈ S
m, u ∈ R

p, and v ∈ R
q are the Lagrange multiplier variables. The Lagrangian dual

function, defined as, [10]
g(Y, u, v) = inf

x
L(x, Y, u, v) (5.5)

is a lower bound on the optimal value of (5.3) for all values of the multiplier variables. When the
best lower bound given by (5.5), that is,

d∗ = max
Y,u,v

g(Y, u, v) s.t. Y � 0, u � 0, (5.6)

is equal to, p∗, the optimal value of (5.3), the problem is said to satisfy a strong duality condition.
For convex optimization problems a sufficient condition, known as Slater’s condition, for strong
duality is the existence of a strictly feasible point. So, if B(x), c(x), and d(x) are convex functions
of x, and there exists an x satisfying, B(x) � 0 and c(x) < 0 then d∗ = p∗.

Often, rather than considering a single SDP a set of related SDPs parameterized by some data
θ is of interest. For example, the LMI stability condition for RNNs with time invariant weights
forms a set of SDPs parameterized by W . For parameterized SDPs, the Lagrangian, p∗, and d∗ are
functions of the problem data and are written L(x, Y, u, v; θ), p∗(θ), and d∗(θ). Of specific interest
is the set of θ for which the SDP satisfies the strong duality condition. Over this set, the affect
of perturbing the data, θ, on the optimal solution, p∗(θ), can be estimated with a Taylor series
expansion using the gradient defined by

∇θp
∗(θ) =

[
∂

∂θi
p∗(θ)

]
=

[
∂

∂θi
d∗(θ)

]
=

[
∂

∂θi
L(x̄, Ȳ , ū, v̄; θ)

]
.

This gradient is well defined when the Lagrangian is differentiable with respect to the data which
is always the case when it is linear in the parameters of interest. The gradient is a first order
approximation to the function p∗(θ) and gives the direction in the parameter space in which p∗(θ)
increases the most in this approximation.

5.4.2 Application to RNN Stability Conditions

Consider the optimization problem from Chapter 3,

γ̄ = inf
γ,T,P

γ s.t. (5.7)



−CP − PC + I P PW + T

P −γI 0
W T P + T 0 −2T


 < 0, P = P T , T ∈ D+, (5.8)
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associated with proving the stability of a time invariant RNN. Here, the decision variables are
x = (γ, T, P ). An upper bound on the gain of the RNN with weight matrices C and W is given by√

γ̄. The LMI constraint in the problem has an associated Lagrange multiplier denoted Y . Take the
Lagrangian to be a function of the weight matrix, W , and write L (x, Y ; W ). The problem is convex
and by the definition of Wn

ss satisfies Slater’s condition for all W in Wn
ss. The Lagrangian takes the

value γ̄ at the solution to (5.7). Since the Lagrangian is linear in W, and thus differentiable, the
gradient of γ̄ with respect to W can be computed by the formula

∇W γ̄ =

[
∂

∂Wij
L
(
x̄, Ȳ ; W

)]
. (5.9)

For conciseness ∇W γ̄ will be denoted by ∇s throughout the remainder of the chapter. The La-
grangian in (5.4) specializes to

L(x, Y ; W ) = γ + B(x) • Y

in this case. The function B(x) corresponds to the left hand side of the LMI constraint in (5.8). It
is a function of the problem data W given by

B(x; W ) =
∑

i

xiB
(i)(W )

where the B(i)s are linear functions taking W into S
m. Since this is the only point at which the

problem data enters the Lagrangian, its gradient is easily computed as

[
∂

∂Wij
L
(
x̄, Ȳ ; W

)]
=

(
n∑

i=1

x̄i
∂

∂Wij
B(i)(W )

)
• Ȳ . (5.10)

Since B(x; W ) is linear in W , the partial derivatives ∂
∂Wij

B(i)(W ) are constant and can be com-

puted without the knowledge of a specific W . Evaluation of the gradient is a simple operation, but
requires the optimal values x̄ and Ȳ associated with a given W . This in turn requires that the opti-
mization problem (5.7) be solved for each evaluation of the stability bias. Solving the optimization
problem (5.7) dominates the computational cost of computing ∇s. As discussed in Chapter 3, this
computation has a run time on the order of Θ(n3) to Θ(n6) depending on the IQCs used and the
choice of SDP solver.

Figure 5.10 shows the computed gradients of the L2-gain at a sample of weight matrices from
the example problem. It is clear from the example that ∇s contains the desired information. That
is, the gradient points away from the stability boundary toward the interior ofWn

ss and has a greater
magnitude when W is nearer to the boundary. It appears that biasing weight trajectories using
the gradient ∇s will successfully push the weight trajectories away from the stability boundary.
Nevertheless, the effect of the bias on the optimization of the overall problem objective still needs
to be considered.

Ideally, the stability bias would affect only the path the parameters take to an optimal solution
and not the final point to which they converge. To achieve this ideal behavior the effect of the
stability bias on the weight trajectories should be small relative to the effect of the updates given
by the learning algorithm and should diminish over time. For example, the update rule might scale
the magnitude of ∇s with respect to the magnitude of the learning update, η∇l, where, for example,
∇l = γ(t)∂E(t)

∂y(t) in the case of RTRL. Such an update would look like

W ←W −
(

η∇l + η2
‖η∇l‖2
‖∇s‖2

∇s

)
(5.11)
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Figure 5.10: Examples of ∇W γ̄ with respect to the two off diagonal weights of W1.
See Figure 3.4 in Chapter 3 for the actual L2-gain values.

with η2 < 1 and decreasing with time. A potential problem with this approach is that the effect of
the stability bias is small regardless of closeness to the boundary of Wn

ss. An alternative updating
scheme varies the scale of the stability bias with the magnitude of the L2-gain bound, γ. The
update is given by

η3 ← η2
3

4
(tanh(γ − γ̂) + 1)

W ←W −
(

η∇l + η3
‖η∇l‖2
‖∇s‖2

∇s

) (5.12)

where η2 ≤ 1 and decreases with time as before. The scaling, η3 is a monotonically increasing
function of γ with a transition from low to high centered at γ̂. This approach has the benefit of not
affecting the weight trajectory when it is far from the boundary of Wn

ss, but requires the transition
point γ̂ to be chosen. The scaling η2 must decrease to zero with time to ensure that asymptotically
the stability bias has no effect. If a certain maximum gain value is desired for the system, allowing
η3 to remain positive and setting γ̂ to the intended gain bound helps to bias the system toward
satisfying this condition. Methods for choosing a decay schedule for the parameter η2 are rather
ad-hoc, but the learning rate η for the RTRL updates has the same requirements and associated
problems.

5.4.3 Example

The example from Figure 5.8 is repeated in Figure 5.11 but with a stability bias added to the
weight updates. The update formula (5.11) is used and η2 = 0.1 throughout the run. The BMI
approach was used to generated the constraint sets as in the previous example. The bias clearly
improves the performance of the algorithm by reducing the number of constraint sets that must

72



−6 −4 −2 0 2 4 6
−5

−4

−3

−2

−1

0

1

2

3

4

5

W(1,2)

W
(2

,1
)

Optimal Soln 

Start
Stopped at 

Iter 2868

Figure 5.11: The same problem, but with the stability gradient incorporated into
the weight update. Notice how the trajectory is further from the stability boundary
and fewer recomputations of the stable variation region are needed.

be computed. In the example shown in Figure 5.8 a constraint set was computed at almost every
update. Replacing these expensive computations with the less costly stability bias computations
reduces the cost of the Stable-Learning-Algorithm.

To explore the effect of the stability bias further, four trials of 1000 steps were run from different
starting points in Wn

ss. The starting points are (3.95, 0.3), (−0.4,−3.0), (0.3, 4.0), and (−4.0, 0.0).
During the trials the number of rejected updates and constraint set computations were counted.
Also, the mean amount of variation allowed in a weight was measured, and the distance of the
final solution from the optimal solution was recorded. Three configurations of the stable learning
algorithm are compared. The first uses no stability bias. The second uses a stability bias with
the update rule (5.11) and η2 = 0.001. The third configuration uses the update rule (5.12) with
η2 = 1.0. The results for this experiment are shown in Table 5.1. The four rows in each box
correspond to the results for the four different starting points. The matrix Wf is the final weight
matrix reached during the 1000 steps of learning.

The results contain several interesting features. For the first and third starting point the use
of the stability bias update (5.12) significantly reduces the number of constraint sets that are
computed, the number of rejected updates, and the distance from the optimal solution after 1000
steps. Also, the average amount of weight variation allowed is larger when using (5.12) due to
the trajectories begin further from the stability boundary. The differences on the second and
fourth starting points are minimal, but the stability bias does not seem to have a negative impact.
Increasing η2 to 0.1 for use with (5.11) improves its performance to about the level of (5.12) in the
reported results. Nonetheless, the update (5.12) seems to be preferable because it has zero impact
when the trajectory is far from the stability boundary. This simple experiment illustrates the benefit
of using the proposed stability bias. The cost of computing the bias is still prohibitive, since it
is done every step. In the next section a method for reducing the cost of the bias computation is
developed.

73



Rejected Steps Constraint Sets Mean Variation ‖W −Wf‖F

No Bias

38
0
24
0

220
5

145
2

0.0794
1.8751
0.2538
4.2041

1.9957
2.0885
1.5252
2.5307

(5.11)

38
0
26
0

174
5

171
2

0.0836
1.4834
0.1451
4.2116

2.2487
2.0700
1.5538
2.5377

(5.12)

0
0
0
0

8
4
10
2

1.0029
2.0527
1.3200
4.2041

1.0968
2.0393
1.0911
2.5314

Table 5.1: Results of applying the stable learning algorithm with and without the
stability bias.

5.5 Solving Perturbed SDPs

The computation of the proposed stability bias requires that the semidefinite program (5.7) be
solved for each W at which the gradient, ∇s is evaluated. While this SDP is smaller and less
computationally burdensome than the SDP associated with computing a new set of variation con-
straints, computing its solution at each update to W is still costly. Updates to the RNN weights,
however, are generally small and give rise to SDPs that are mild perturbation of the SDP associated
with the previous weights. If the perturbation is small enough, it is reasonable to assume that the
solutions of the original and perturbed problems will be similar. Analysis in [26, 28] shows that
this is indeed the case under certain conditions on the problem. The details of this analysis are
discussed below. In this section the cost of evaluating the stability bias over a sequence of weight
matrices is significantly reduced by making use of similarity between the solutions of (5.7) for W
and W + ∆W .

5.5.1 A Warm-Start Method for SDPs

Optimization methods that use the solutions of previous problems to speed up the optimization
of new problems are known variously as warm-start or hot-start methods. These methods make
the most sense and have the greatest impact when the problems being solved are related in some
way. For example, consider a sequence of linear programs where a constraint is added in each new
problem. In the context of computing the proposed stability bias, the problems are related through
perturbations of the problem data. A successful warm-start method reduces the cost of solving
the set of problems in sequence relative to the cost of solving them all individually. Unfortunately,
simply initializing the problem variables to the values of the previous problem’s solution does not
generally make a successful warm-start method. In fact, using such an initialization can sometimes
increase the cost of solving the sequence of problems. This slow down effect has been observed in
the case of interior point methods for linear programming [95].

While interior point methods (IPMs) are generally the most efficient methods for solving
semidefinite programs and other convex optimization problems [47], it has proved quite difficult to
successfully benefit from warm-start information in IPMs [95, 95, 41]. Because of this deficiency in
IPMs, methods that are less generally efficient, but better able to leverage warm-start information
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may preferable in the context of solving sequences of related problems. In the context of semidef-
inite programming, there is very little published research on warm-start techniques for solving
perturbed problems. A method was suggested specifically for application to the Max-Cut graph
partitioning problem where constraints are added sequentially to a sequence of SDP problems [51].
More general purpose approaches are lacking in the current literature.

Completely addressing the issue of warm-start for semidefinite programming is beyond the scope
of this work. Nonetheless, the basic outline of a warm-start procedure is developed and successfully
applied to the problem of computing the stability bias at a sequence of weight matrices. The findings
reported in this section indicate that the augmented Lagrangian algorithm described in Section 2.4
and developed in [46, 47] is capable of capitalizing on available warm-start information. When
the solution to a nearby problem is known, the number of iterations of the augmented Lagrangian
algorithm needed to solve a problem can be significantly reduced. Furthermore, the results in [27,
28], characterize the effect of data perturbations on the decision variables and Lagrange multipliers
of an SDP as the solution to a linear program. At little additional cost, this characterization can
be used to modify a given warm-start solution in the direction of the perturbed problem’s solution.
Improving the warm-start information in this way further reduces the number of iterations necessary
in the augmented Lagrangian algorithm.

5.5.2 Warm-Start and the Augmented Lagrangian Method

In the light of the known problems with warm-starting IPMs and given the results in Chapter 3
demonstrating the efficiency of the augmented Lagrangian method [47] on the SDPs of interest, a
simple warm-start procedure for the augmented Lagrangian method is presented. Before describing
the warm-start approach, some details of the algorithm in [47] are discussed. Recall that the
augmented Lagrangian approach involves solving a sequence of minimization problems over the
augmented Lagrangian function

F (x, Y, p) = bT x + Φ(B(x), p) • Y

where p > 0 is a penalty parameter and Φ(·) is a penalty function satisfying the condition

B(x) � 0 ⇔ Φ(B(x), p) � 0.

The algorithm alternates between finding the minimum of F (x, Y, p) for fixed Y and p and updating
Y and p. The solutions of the minimization problem, x̂, are required to satisfy the penalty barrier
constraint, Φ(B(x̂), p) � 0. By decreasing p feasible solutions can be approached if they exist. The
problem becomes ill-conditioned as p approaches zero, but it can be shown that if a solution exists
it will be found with p > 0. The basic algorithm is given in Figure 5.12 and details about Φ(·) and
the updates to the Lagrange multiplier variables and the penalty parameter can be found in [46,
47].

The naive approach to warm-starting the augmented Lagrangian algorithm is to simply initial-
ize x and Y to the solution of the previous problem. The experiments later in the chapter show
that, unlike IPMs, the augmented Lagrangian algorithm is able to use this warm start informa-
tion successfully. When the perturbations are small the cost of solving the perturbed problem is
significantly reduced by initializing the solver with the warm start solution.

5.5.3 Improving the Warm-Start Data

The experiments in the next section show that the augmented Lagrangian method can successfully
use warm-start data to decrease the cost of solving a perturbed SDP. The cost can be further
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Pensdp

Initialize x0, Y0 � 0, and p0 > 0, k ← 0.
repeat

xk+1 ← argminx∈Rn F (x, Yk, pk)
Yk+1 ← DΦ(B(xk+1), p)[Yk]
pk+1 ← f(pk) where f(pk) < pk.

Figure 5.12: The PENSDP algorithm. The notation DΦ(B(xk+1), p)[Yk] denotes
the derivative of the augmented Lagrangian with respect to the Lagrange multiplier
evaluated at Yk.

reduced by applying some SDP analysis results from [26, 28]. In this section it is shown how to
improve the warm-start data at the cost of solving a linear program. The solution of the linear
program gives a perturbation of the warm-start data that is closer to the true solution of the
perturbed SDP problem. The augmented Lagrangian solver starting at this improved initial point
requires fewer iterations to solve the perturbed SDP.

The following discussion is a simplification of results in [26] to the case of linear SDPs. Consider
an SDP of the form

min bT x s.t. x ∈ R
n

A(x) + C � 0
(5.13)

where A(x) : R
n → S

m is an affine function. The problem (5.13) can be viewed as being parame-
terized by the data D = [A, b, C]. Given a perturbation to this problem data, ∆D = [∆A, ∆b, ∆C],
related perturbation of the problem solution, (x, S, Y ), can be computed. Here, x is the decision
variable, S is the slack variable, and Y is the dual variable associated with the matrix constraint.
A solution,

(
x̄, S̄, Ȳ

)
of (5.13) is called a stationary point if it satisfies the conditions

A(x̄) + C + S̄ = 0,

b +A∗(Ȳ ) = 0,

Ȳ S̄ + S̄Ȳ = 0, and

Ȳ , S̄ � 0.

(5.14)

The point is called a strictly complementary stationary point if it is a stationary point and satisfies
the condition

Ȳ + S̄ ≻ 0. (5.15)

The following theorem concerning the effect of the perturbation, ∆D, on the solution, (x̄, S̄, Ȳ ),
is proved in [26].

Theorem 5.1. Assume that (5.13) satisfies Slater’s condition. That is, assume there is at least
one feasible x ∈ R

n. Let the point,
(
x̄, S̄, Ȳ

)
, be a locally unique, and strictly complementary

stationary point of (5.13). For sufficiently small perturbations, ∆D, there exists a locally unique
stationary point,

(
x̄(D + ∆D), S̄(D + ∆D), Ȳ (D + ∆D)

)
of the perturbed program (5.13) with data

D+∆D that is a differentiable function of the perturbation. The derivative DD

(
x̄(D), S̄(D), Ȳ (D)

)

of
(
x̄(D), S̄(D), Ȳ (D)

)
with respect to D evaluated at

(
x̄, S̄, Ȳ

)
is characterized by the directional

derivatives (
ẋ, Ṡ, Ẏ

)
= DD

(
x̄(D), S̄(D), Ȳ (D)

)
[∆D] (5.16)
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for any ∆D. The point
(
ẋ, Ṡ, Ẏ

)
is the unique solution of the system of linear equations,

A(ẋ) + Ṡ + ∆C + ∆A(x̄) = 0,

A∗(Ẏ ) + ∆b + ∆A∗(Ȳ ) = 0,

Ȳ Ṡ + Ẏ S̄ + ṠȲ + S̄Ẏ = 0,

(5.17)

for the unknowns ẋ ∈ R
n and Ṡ, Ẏ ∈ S

m.

The system of linear equations describing the directional derivative, (5.16), has m2 + m + n
equations, (5.17), and m2 + m + n unknowns, the entries of (ẋ, Ṡ, Ẏ ). The LP has many more
variables than the original SDP problem, but if it can be solved more quickly than the original
SDP and if the perturbed warm-start data significantly improves the run time of the SDP solver
an overall speedup may be achieved.

The application of Theorem 5.1 to the warm-start problem is straightforward. Given the solution
to an SDP, (x, Y, S), and a perturbation of the problem data, ∆D, solve the linear program (5.17).
Update, (x, Y, S), by adding to each the associated part of the computed solution, (ẋ, Ṡ, Ẏ ). The
point, (x + ẋ, S + Ṡ, Y + Ẏ ), will not generally be the exact solution of the perturbed SDP. The
quality of the approximation given by the LP will degrade as the magnitude of the perturbation to
the problem data increases. The modified data can, however, be used to initialize the augmented
Lagrangian solver which can compute the exact solution to the perturbed SDP.

The RNN stability analysis problem (5.7) is easily written in the form of (5.13). Multiple LMI
constraints and scalar linear constraints can be treated as a single LMI by diagonal augmentation
of the constraints into a single matrix. Modifications of the RNN weight matrix affect the A(x)
data but do not affect b and C. This simplifies the constraints (5.17) slightly. The perturbation to
A(x) will affect all of the problem variables, (x, Y, S). As previously discussed, for stable RNNs,
the stability analysis problem has a strictly complementary solution that will be unique because of
the problem’s structure. Perturbations to the weight matrix may not be sufficiently small, and the
LP will only give an approximation to the solution of the perturbed problem. Modifications to the
weight matrix that are too large can cause the approximation to be very poor. Using these poor
approximations to update the warm-start solution may actually increase the solution time of the
augmented Lagrangian solver. Another problem that may be encountered is that the computed
solution to the previous SDP may not be exact or of high enough accuracy. The inaccuracy leads
to inconsistencies in the linear program and bad approximations to the solution of the perturbed
SDP. Both of these problems occurred in the experiments in the next section on occasion. These
problems can generally be detected by analyzing the magnitude of the LP solution. Since the
weight perturbations are typically small, solutions of the LP with magnitudes much larger than the
magnitude of the perturbation most likely signify that one of these problems has occurred. In these
cases, no update to the warm-start data should be made. The next section analyzes the proposed
warm-start procedure experimentally and shows that the correction given by the solution of (5.17)
further reduces the cost of solving the perturbed SDPs relative to the naive warm-start approach.

5.5.4 Experimental Evaluation

The PENBMI software used in the previous chapters for examining the augmented Lagrangian
approach does not support the initialization of the Lagrange multiplier variables needed to test
the proposed warm-start method. In the evaluation here a Matlab implementation based on the
publications [47, 46] is used. The implementation is not as efficient as the software available from
the authors, so the evaluation is not performed in terms of actual run times. Instead, the evaluation
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Main Iteration Count Minimization Problems CG Steps

No Warm Start 32 69 271

Warm Start 41 12 126

Augmented Warm Start 57 6 34

Table 5.2: Iteration counts for the different warm start approaches applied to a
single 5× 5 weight matrix and perturbation.

is presented in terms of three counts: the number of iterations of the main algorithm, the total
number of iterations in the minimization of the Lagrangian, and the total number of conjugate
gradient steps in the same minimization problem. When the modified Newton’s method is used
to minimize the augmented Lagrangian, the run time of the algorithm is governed by the cost
of forming and solving the Newton’s equations. The total number of steps in the minimization
then acts as a surrogate for total run time. If the conjugate gradient approach is used, the run
time is governed by both the cost of preconditioning and the cost of the conjugate gradient steps.
In this case, both the number of steps in the minimization and the total number of conjugate
gradient steps should be considered. The number of steps in the main algorithm captures the the
total cost of updating the Lagrange multipliers. These updates are relatively cheap compared to
solving the minimization problem but are not trivial. The updates require a matrix inverse and
the computation of a quadratic matrix product, ABAT . A large increase in the number of main
steps can slow the algorithm down.

A simple first experiment is constructed using the matrix

W =




−0.1153 0.3176 −0.0498 0.0304 0.0785
−0.4442 0.3171 0.1935 0.2845 −0.3563
0.0334 −0.0100 −0.1569 0.0158 0.1905
0.0767 0.0873 0.5822 −0.0255 0.4329
−0.3057 0.0466 −0.0364 −0.2220 −0.1845




and the perturbation

∆W =




0.0009 −0.0004 0.0007 −0.0016 0.0005
0.0013 0.0007 0.0012 0.0003 0.0002
−0.0016 0.0008 −0.0012 −0.0011 −0.0009
−0.0014 0.0007 −0.0000 0.0014 −0.0022
0.0006 0.0013 −0.0002 −0.0008 −0.0001




.

Problem (5.7) is solved for W to derive the warm start information. The minimization subproblems
in the augmented Lagrangian algorithm are solved by the conjugate gradient algorithm. Since the
augmented Lagrangian method implemented for this experiment is rather basic, the multiplier T
was taken to be positive diagonal, and the Popov multipliers were not used in the stability analysis
and bias computations. The iteration counts for using no warm start information, using the naive
warm start approach, and using the augmented warm start data to solve the stability problem
for W + ∆W are shown in Table 5.2. A clear trend is visible in the data: using the warm start
methods decreases the number of inner iterations and conjugate gradient steps at the cost of more
multiplier updates. The use of the augmented warm-start data reduces the number of conjugate
gradient steps of the naive warm-start approach by a factor of four. The cost of solving the LP
needed to produce the augmented warm-start data is discussed at the end of this section.

The naive warm-start approach and the LP augmented approach are compared using the con-
jugate gradient method to solve the minimization subproblems. The methods were evaluated on
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Main Iterations Minimization Problems CG Steps Bad LPs

No Warm Start 2235.66 4787.66 9432.66 0

WS, p def 2941 803.66 4231.33 0

WS, p = 1 1331.40 387.60 1890.40 0

WS Aug, p def 2476.00 684.00 3554.00 0.33

WS Aug, p = 1 2673.33 744.00 3828.33 0

Table 5.3: Average iteration counts for solving three sequences of 100 slightly
perturbed SDP problems. The sequences of problems are solved with three different
methods: no warm-start, naive warm-start, and augmented warm-start. The naive
warm-start method with a fixed initial p = 1 performs the best.

sequences of weight matrices generated by applying the stability biased RTRL algorithm to the
test problem in Section 5.1. Three sequences of 100 weight matrices were generated starting from
different stable starting points. The actual stability bias used in the updates was computed by
solving problem (5.7) to high accuracy using Sedumi. This ensured that the sequences of weight
matrices in different runs did not differ due to slight differences in the solutions computed by the
methods under comparison. The solution computed by Sedumi were not used in the augmented
Lagrangian computations in any way.

When warm-starting was not used, the penalty parameter p was initialized using the standard
approach from [46]. In the warm-start case two different settings of p were tested: the standard
initialization and a fixed initialization of p = 1. In Table 5.3, average iteration counts over the
three weight sequences are shown for the various algorithm configurations.

It is clear from the data that using warm-start information provides a drastic reduction in the
cost of solving the sequence of perturbed SDPs. Furthermore, initializing the penalty parameter
p to one can more than double the performance improvement. For the augmented warm-start
data, however, fixing p to one decreases the performance. In fact, the naive warm start solution
with p initialized to one provides the most efficient solution of the sequence of problems. This
suggests that while the augmented warm-start data can improve the solution cost in some cases,
the necessary LP computation may not be worthwhile. Additionally, solution of the LP with freely
available software generally took longer than solving the perturbed SDP from scratch. While this
may not be the case with better performing, commercial LP solvers, the results suggest that the
approach may not be cost effective.

5.6 Conclusions and Contributions

In this chapter an algorithm has been proposed that ensures the stability of an adaptive recurrent
neural network under the adaption of an arbitrary agent. This so called Stable-Learning-

Algorithm filters updates proposed by the adaptation mechanism to ensure that the RNN remains
within the space of stable RNNs and that the variations in the weights do not lead to instability.
The cost of this algorithm is the computation of bounds on the allowable variation in the weight
of the neural network. Under certain circumstances these bounds must be computed very often.
This often occurs when the weight trajectory is near the boundary of the set of stable RNNs, Wn

ss.
A method for biasing the trajectory away from this boundary was developed and shown to reduce
the number of constraint sets generated by the stable learning algorithm. The computation of
this stability bias is not cheap, however, and requires the solution of an SDP. When the weight
matrix changes in small steps, the cost of computing the stability bias can be reduced by applying
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warm-start methods. An approach to solving a sequence of perturbed SDPs was developed using a
perturbation analysis of SDPs and the augmented Lagrangian method. Experiments in the previous
section showed that the warm-start method could significantly reduce the cost of computing the
stability bias.

Maintaining the stability of an RNN under adaption is not often useful or necessary on its own.
On the other hand, when the RNN is introduced into a control system, stability becomes very
important. Stability of the RNN is a first step toward ensuring the stability of the entire closed
loop control system, but it is not sufficient. In the next chapter the stable learning algorithm and
stability bias techniques developed here are applied in the context of a robust, adaptive, neural
control system.
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Chapter 6

Robust Adaptive Neural Control

The control of physical systems requires dealing with uncertainty. Uncertainty enters the control
problem in at least three ways: unmeasured states, unknown dynamics, and uncertain parameters.
Robust control is the problem of ensuring stability and performance in uncertain control systems.
Modern robust control theory is based on explicit mathematical models of uncertainty [23]. If it
is possible to describe what is unknown about a system, stronger assurances can be made about
its stability and performance. The automation of robust controller design relies on the tractable
representation of the uncertainty in a system. For example, some types of uncertainty can be
described by IQCs and lead to representations of uncertainty as convex sets of operators. Linear
systems are a particularly tractable type of model, and the design of feedback controllers for linear
systems is a well understood problem. Thus, linear models of physical systems are particularly
attractive. Most physical systems, however, exhibit some nonlinear dynamics and linear models
are generally insufficient for accurately describing them. Unmodeled nonlinear dynamics can often
be treated within the same framework as uncertainty. The recurrent neural network stability
analysis presented in Chapters 3 and 4 relies on this approach. Because robust controllers must be
insensitive to inaccuracies and uncertainties in system models, performance is often sacrificed on
the actual system to which the controller is applied. Additional loss in performance is introduced
by restricting controllers to be linear and of low order. These properties are generally desirable
because low order, linear controllers can be easily analyzed and understood. Performance can often
be improved by the use of nonlinear and adaptive control techniques, but guaranteeing stability
and performance is more difficult in this environment. In this chapter the use of adaptive, recurrent
neural networks in control systems is examined within a framework of robust stability requirements.

Recurrent neural networks are, in some respects, ideal for applications in control. The nonlin-
earity in neural networks allows for the compensation of nonlinearties in system dynamics that is
not generally possible with low order, linear controllers. The dynamics of recurrent neural networks
allow internal models of unmeasured states to be produced and used for control. The histories of
the measured variables can often be used to internally model the behavior of the hidden dynam-
ics. The difficulty in applying recurrent neural networks in control systems is in the analysis and
prediction of the system’s behavior for the purpose of stability analysis.

The control of a nonlinear, uncertain, multiple spring-mass-damper system is considered in this
chapter. The system is a simple instance of a larger class of models representing physical systems
such as flexible manipulators and active suspension systems. The goal of this chapter is to construct
a neural controller for the system with guaranteed stability during operation and adaption. The
stable learning algorithm presented in the previous chapter is applied to the problem, but suffers
from conservativeness in the stability analysis of the closed feedback loop. Several modifications
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to the basic algorithm are considered. An alternative algorithm that ensures that the feedback
loop is stable for each static setting of the RNN weights visited during adaption of the controller
is developed. The algorithm gives up the guarantee of dynamic stability given by bounding the
variation in the RNN weights. This compromise reduces the computational cost of the algorithm
and allows the RNN to successfully adapt a stable control strategy for the system. The stability bias
described in Chapter 5 is used to keep the weight trajectory from getting stuck near the stability
boundary. Without the bias, the adaption algorithm produces many updates that must be rejected,
stalling the progress of learning. A comparison is made to a controller adapted without stability
constraints. The unconstrained controller exhibits instability during its adaption that decreases its
performance.

The next section introduces the control system under consideration and the associated models
used for stability analysis and simulation. Also, an IQC analysis of the uncertain plant model is
developed. Section 6.2 describes the control configuration used and develops an IQC analysis of
the closed loop, control system. Also, details of the reinforcement learning algorithm used to train
the adaptive controller are given. An experimental evaluation of the stable adaptive control system
is reported in Section 6.3. The example illustrates the ability of the simplified stability algorithm
to improve control performance by removing instability from the control loop. The stability bias
proposed in the previous chapter is integral to the success of the approach. The final section gives
a summary of the results and discusses some of the remaining deficiencies in the algorithm.

6.1 Two Degree of Freedom Spring Mass Damper

In this chapter, the stable learning algorithm of the previous chapter is used to adapt a controller for
an uncertain, nonlinear spring mass system. The model is adapted from the work in [45]. To simplify
the experimentation, the algorithm is applied to a simulated model of the actual system. Certain
features of the simulated model are considered unknowns and not used explicitly in the adaption
of controllers or stability analysis. The nonlinear model and simulation details are provided in this
section. Additionally, an uncertain model of the plant is developed, and an IQC analysis of the
closed loop control system is described.

6.1.1 The Simulated System

A diagram of the simulated plant is shown in Figure 6.1. Two masses are connected by nonlinear
springs and linear dampers. The first mass is attached via a spring and damper to a stationary
point. A control force is be applied to the first mass which is also acted upon by a nonlinear, static,
friction force. A position sensor is attached to the second mass. The goal of the control problem is
for the second mass to track a time-varying reference signal given by an external agent.

The plant dynamics are governed by the ordinary differential equations

m1ẍ1 + c1ẋ1 + c2(ẋ1 − ẋ2) + k1x1 + k2(x1 − x2) + h1x
3
1 + h2(x1 − x2)

3 = u− f(ẋ1)

m2ẍ2 + c2(ẋ2 − ẋ1) + k2(x2 − x1) + h2(x2 − x1)
3 = 0

(6.1)

where u is the control force applied to the first mass. Actuator dynamics are ignored for the
purpose of these experiments, and the control enters the system linearly. The parameters c1 and
c2 govern the damping force of the two dampers. The spring dynamics are governed by the spring
constants k1 and k2 and the spring hardening constants h1 = h2k1 and h2 = h2k2 with h ≥ 0. The
spring hardening constant was set to h = 0.1 for all simulations of the system. The friction force is
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Figure 6.1: A multiple spring-mass-damper system.

modeled by the equation

f(ẋ1) = g7(g1(tanh(g2ẋ1)− tanh(g3ẋ1)) + g4 tanh(g5ẋ1) + g6ẋ1)

with
(g1, g2, g3, g4, g5, g6, g7) = (12.5, 50, 1, 11, 50, 9, 0.05).

The magnitude of the friction force is shown in Figure 6.2 for ẋ1 ∈ [−5, 5]. The friction equation
and parameters are taken from [58] and model both stiction and Coulomb type friction.

All simulations of the system were performed using a variable step size, Dormand-Prince algo-
rithm with an absolute error tolerance of 10−5. Changes in the control signal occur at a rate of 10Hz,
and observations are sampled at the same rate. For the purposes of simulation, the parameters
were set to m1 = 2, m2 = 2.01, c1 = 1.05, c2 = 0.97, k1 = 5.3, and k2 = 4.8.

6.1.2 An Uncertain Linear Plant Model

For the purposes of controller design and stability analysis the parameters of the system are mea-
sured as m1 = m2 = 2, c1 = c2 = 1, k1 = k2 = 5 with an uncertainty of 2%, 10%, and 10%,
respectively. The parameters are thus assumed to lie in the ranges mi ∈ [1.96, 2.04], ci ∈ [.91.1],
and ki ∈ [4.5, 5.5]. The simulated plant’s parameters are within the assumed measurement errors,
and uncertainty models based on these error estimates will be valid.

A linear model of the plant is easily constructed for use in control design and analysis. Ignoring
the hardened spring and friction effects in (6.1) yields the linear model
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k2 −k2 c2 −c2







y1

y2
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y4


 .

The set of linear models derived by taking the parameters in the given uncertainty ranges does
not completely capture all of the possible dynamics of the system that is to be controlled. The
uncertainty model should also account for the nonlinearity in the spring response and the friction
force. It is also possible that the system exhibits other unmodeled dynamics. To account for the
effect of the unmodeled dynamics, a multiplicative input uncertainty is added to the model. If G(s)
is the transfer function of the nominal linear plant model, then the uncertainty model looks like

Gunc(s) = G(s)(1 + 0.2∆lti)

where ∆lti is an unknown, linear, time invariant system with ||∆lti||∞ < 1. The unknown LTI
system can model up to a 20% deviation in the plant input.
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Figure 6.2: A continuously differentiable friction model.

An uncertain real scalar, such as any of the parameters of the linear plant model, can be
modeled with the representation p = (pn + δpmp) where pn is the nominal value of the parameter,
δp is an unknown constant satisfying |δp| ≤ 1 and mp is a scaling factor on the uncertainty [57].
To represent the uncertain parameter, k1 ∈ [4.5, 5.5], for example, take pn = 5 and mp = 0.5. The
uncertain parameters in the model are assumed to be constant. The representation of time-varying
parameters is essentially the same, but δp is allowed to vary with time. Time varying parameters
can have a more varied impact on a system’s behavior than constant uncertain parameters. The
stability analysis presented below takes advantage of the fact that the parameters are constant to
reduce the conservativeness of the analysis.

To perform robustness analysis and control design for the uncertain plant, the uncertainties
must be factored out of the plant to form a feedback loop between the known LTI plant and the
uncertainties: ∆lti and the δp’s for the uncertain parameters. The details of this procedure can be
found in standard robust control references such as [57, 23]. The factored system is of the form
depicted in Figure 2.4. Standard robustness analysis shows that the linear plant model is stable
for all possible values of the uncertain parameters and all possible input perturbations allowed by
the model [57]. The IQC model developed in the next section is used to show the same result.

6.1.3 IQC Analysis of the Plant

Recall that the uncertain parameters in the linear model are represented by p = (pn + δpmp) where
δp is unknown but satisfies |δp| ≤ 1. If w, v ∈ L2, the relation w = δpv satisfies IQCs, with Π(s) of
the form

Π(s) =

[
x(s) z(s)
z∗(s) −x(s)

]

x(s) ≥ 0

where x(s) and z(s) are bounded, measurable functions [59, 43]. This type of IQC is known as
a dynamic IQC, as opposed to the static IQCs used in the earlier chapters. To work with the
IQC, the functions x(s) and z(s) need computationally tractable representations. Generally, the
functions are described as a linear combination of a finite set of simple basis functions. Increasing
the number or complexity of the basis functions enlarges the set of IQCs but also increases the size
of the resulting LMI constraints. For the analysis done in this section and the next, the function
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x(s) is represented as the combination of a constant function and a simple scaled transfer function

x(s) = x0 + x1
1

s + 1
.

The function z(s) has the representation

z(s) = z1
1

s2 − 1
= −1

2
z1

((
1

s + 1

)∗

+
1

s + 1

)
.

The representation of the resulting IQCs as LMIs is described in detail in Appendix B. Essentially,
the representation requires the extension of the plant state with states representing 1

s+1v and 1
s+1w.

This extension increases the dimension of the system by two and adds 2n + 3 decision variables
in the KYP matrix P . Also, three decision variables are added for x0, x1, and z1. Enforcing the
constraint x(s) ≥ 0 requires application of the KYP lemma and adds a further decision variable
and a 2×2 matrix constraint to the resulting problem. Modeling uncertain parameters can quickly
become expensive, even when x(s) and z(s) are restricted to be linear combinations of only two
basis functions.

Unmodeled LTI dynamics, of the kind used in the uncertain plant model developed above, can
also be described with IQCs. If ∆lti is an LTI operator with norm less than one, then the relation
w(s) = ∆(s)v(s) satisfies all IQCs of the form

Π(s) =

[
x(s) 0
0 −x(s)

]

x(s) ≥ 0

with x(s) a bounded, measurable function of the form used in the previous IQC [59]. The unmodeled
dynamics IQC increases the number of decision variables by 2n + 6 and adds an additional 2 × 2
LMI constraint to the resulting problem.

A stability analysis of the uncertain plant model can be constructed using the IQC stability
theorem from Chapter 2. Application of the theorem requires that the uncertainties be factored
out of the model into a feedback formulation. This type of representation is known as a linear
fractional representation and was used to describe recurrent neural networks in the earlier chapters.
The details of constructing such a representation can be found in [57]. A depiction of the nominal
plant with uncertainty feedback is shown in Figure 2.4. The uncertain operator in the feedback
model is structured as

∆(s) = diag{∆lti(s), δm1
, δm2

, δk1
, δk2

, δc1 , δc2}.

A bound on the L2-gain from u → y, computed using the IQC stability theorem, has a value of
γ = 1.4755. The finite gain is a proof of stability for all plants covered by the uncertainty model.

6.2 Robust Adaptive Control of the Multiple Spring-Mass-Damper

The closed loop control system under investigation is depicted in Figure 6.3. A reference signal
enters the system from an external source and specifies the desired value of the plant output. In
this case, the position of the second mass in the spring-mass-damper system is to be controlled. For
the experiments that follow, the reference signal takes values in the range [−2, 2] and can change
every 50 seconds. The reference signal might represent, for example, the desired position of a read
head in a hard drive or the desired location of the end point of a flexible manipulator.
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Figure 6.3: The closed loop control system.

Standard robust control designs for reference tracking problems generally use the error signal,
e = r− y, as the input to the controller. This particular representation is invariant with respect to
the position of the observed mass in the multiple spring-mass-damper system. It does not allow the
controller to adequately compensate for nonlinearity in the spring, since the nonlinearity in (6.1)
is a function of x1 and x1 − x2. Even though the position of the first mass is unobserved, the
trajectory of x2 contains information about the true state of the system and thus x1. It is possible
for a recurrent neural network to use this inferred information to improve control performance. For
this reason y is also included as an input to the RNN controller. The output of the RNN is the
control action, u. The control signal is fed directly into the plant since actuator dynamics are being
ignored.

6.2.1 Recurrent Neural Network Control Structure

The basic RNN equations must be adapted to fit the desired control structure. The simple RNN
model considered in earlier chapters had the same number of inputs, outputs, and states. In the
desired control configuration the network has two inputs, a single output, and a number of states
set to determine the learning complexity. Input and output weights are added to the RNN in the
following way

ẋr = −Cxr + WΦ(xr) + W i
[
e y

]T

u = W oxr.
(6.2)

Different configurations of W i and W o affect the behavior of the network. A common configuration,
see for instance [75], feeds each input into a different node and reads the output from another node.
This leads to

W i =




1 0
0 1
0 0

...
0 0




and W o =
[
0 0 1 0 . . . 0

]
.

A similar configuration removes feedback from the output node by fixing certain weights in W ,
in this case w3,i∀ i ∈ 1, . . . , n, to zero [24]. In echo state models, W i and W are often assigned
fixed, random values while W o is fully adjustable [36]. For the experiments that follow the first
configuration was used throughout.

The RNN stability analysis presented in Chapters 3 and 4 can easily be adapted to include the
input and output weights. These weights do not affect analysis of the internal stability of the RNN,
but they do affect the gain measured from the input to output signals. For instance, if the output
weights are all zero then the gain from input to output is zero regardless, even, of the internal
stability of the network. It is important, then, that these weights be included in the analysis since
the measured gain affects the stability analysis of the closed loop control system. The weights,
W i and W o only enter the analysis through the main KYP condition. As an example, consider
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the LMI constraint derived from (6.2) by adapting the analysis presented in Chapter 3. The IQC
stability theorem can be applying by modifying G in (3.2) to be

G =



− C W i W

W o 0 0
I 0 0




and solving Problem 2.2.

6.2.2 IQC Analysis of the Closed Control Loop

The analysis of robust control systems focuses on two properties of an uncertain system model:
robust stability and robust performance. A robustly stable system is stable for all systems in the
given uncertainty set. A system with robust performance, on the other hand, is guaranteed to
meet certain performance requirements for all systems in the uncertainty set. Robust stability
is necessary for robust performance, but it is not sufficient. Robust stability of a set of uncertain
systems implies stability of an actual physical system, if the physical system is adequately described
by the uncertain model. Increasing the size of the uncertainty set — that is, increasing the range
of system dynamics it covers — can allow better assurances to be made about the stability of
an actual system. At the same time, increasing the size of the uncertainty set can make it more
difficult to prove robust performance.

Performance of a robust control system is measured by the H∞ norm of the system. In other
words, performance is measured in terms of the L2-gain from the system’s input to its output.
Performance objectives in robust control systems are specified by augmenting a given control system
with weighted outputs that specify the desired behavior. For example, the weighted outputs might
be designed to penalize large actions or low frequency deviations of the plant output from the
reference signal. Robust performance of a system is given if the gain from the input to the weighted
outputs is less than one. Robust controller synthesis methods, such as the D-K iteration [23], are
computational approaches to designing linear controllers that have robust performance for a given
uncertain system model.

The synthesis of neural controllers with robust performance guarantees is a difficult problem.
The main difficulty arises from treating the RNN nonlinearity as uncertainty in the analysis. The
uncertainty descriptions of recurrent neural networks given in Chapter 3 in terms of IQCs have
the serious drawback that they do not explicitly model the boundedness of the nonlinearities. The
resulting uncertainty model and analysis can not distinguish between say, φ(x) = x and φ(x) =
tanh(x). Obviously, the resulting dynamics of the two RNNs will be very different. Recent work
in [35] on generalized sector conditions may provide a way to incorporate the boundedness of φ(x)
into the analysis, but at present this work is in its infancy. Until such improvements can be made,
it is necessary to restrict attention to the analysis of robust stability in neural control systems. The
inaccuracy in the analysis is slightly less troublesome here because the question being addressed
— stability of the uncertain, closed loop system — is less specific. The analysis requires only that
the gain from reference input to plant output is finite and not that it meet a prescribed bound.

While a robust synthesis method for neural controllers would be useful in generating the initial
neural control design for a system, adaptation is necessary to specialize the controller to a given
plant. In the context of adaptive control, robust performance is forgone in the name of performance
on a specific plant. This is convenient in the case of neural control because of the problems
discussed above with analyzing the robust performance of recurrent neural network controllers.
Robust stability, however, is still desirable. Given that the plant is not completely known, and that
even models adapted to the plant online can not be completely accurate, assuring stability with
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respect to a set of plant models makes sense. The robust stability of the closed control loop can be
addressed using the IQC descriptions of the plant and recurrent neural network derived earlier.

A linear fractional representation of the closed loop control system is needed to apply the IQC
analysis results. Representations of the control loop containing an RNN with time-invariant weights
and an RNN with time-varying weights are both needed. The details of constructing LFRs can be
found in [57]. The uncertain, non-linear operator in the resulting model has the structure

∆(s) = diag{∆lti(s), δm1
, δm2

, δk1
, δk2

, δc1 , δc2 , Φ(·)},

when the RNN weights are static. The operator is augmented with the time varying coefficients
for the full, time-varying control loop model,

∆(s) = diag{∆lti(s), δm1
, δm2

, δk1
, δk2

, δc1 , δc2 , Φ(·), δij , δij}.

Using IQCs for the different uncertainties and nonlinearities that have been previously described,
an LMI problem can be constructed to assess the stability of the closed loop system and compute a
bound on its gain. If the resulting LMI is feasible, the control loop is proved stable for all plants in
the uncertainty set and additionally, for all controllers satisfying the IQC description of the RNN.

An an example, consider the RNN with n = 3, C = I, and

W =



−1.4992 0.5848 0.5417
0.3425 0.4623 0.4551
0.7165 0.0323 −0.2045


 .

The gain across the RNN is bounded from above by γr = 0.9751. The bound was computed using
the Popov IQC and taking T ∈ Mdd, the doubly dominant nonlinearity IQC. Since the gain of
the uncertain plant model is bounded by γp = 1.4755 and γr > 1/γp ≈ 0.6777, the small gain
theorem fails to prove stability. The full IQC analysis, on the other hand provides a gain bound
of γcl = 1.7938 proving the stability of the closed loop for all systems in the uncertainty set. A
sense of the effect the plant uncertainty has on the analysis of the closed loop can be gained by
measuring the gain of the RNN in a loop with just the nominal plant. The gain of this system is
bounded above by γn = 1.4830. In this particular case the plant uncertainty has only a mild effect
on the estimated loop gain, but this is not always the case.

Bounds on the allowable variation in the RNN parameters can be computed using a similar
approach to the one used in Chapter 4, but using the full closed loop system model in the analysis.
For the weight matrix given above variation bounds are computed as

∆ =




0.1000 0.1000 0.1000
0.1000 0.1000 0.1000
0.1000 0.1000 0.1000


 and ∆ =




0.3409 0.1210 0.2290
0.8891 0.4266 0.3296
1.8523 0.2090 0.4622




using the LMI approximation approach from Chapter 4 and restricting the bounds to be greater
than or equal to 0.1. The uncertainty in the plant has a large effect on this particular computation.
Computing the variation bounds using just the nominal plant model leads to an increase in the
sum of the bounds by 1.8220 and for some weights doubles the amount of variation that can be
tolerated. Inaccuracies in the uncertain plant model can thus negatively impact the performance
of the stable learning algorithm presented in the previous chapter by allowing less variation in
the weights than can be safely tolerated by the actual system. Another feature of this example is
that the lower bound constraint is active for all of the positive variation bounds. As discussed in
Chapter 4 this is an artifact of the LMI approximation approach and a price that is paid for its
relatively low computational cost.
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6.2.3 Reinforcement Learning for Adaptive Control

In the previous chapter, the weights of an RNN were adapted using a supervised approach that
trained the RNN to reproduce a given temporal sequence. For adaptive control an alternative
approach must be taken since the desired output of the RNN is not explicitly known. In the
experiments that follow the RNN weights are adapted using a reinforcement learning approach
that is described in this section. Reinforcement learning is an unsupervised learning approach
characterized by its focus on learning through interaction. When applied to control problems,
reinforcement learning can be viewed as a class of direct, adaptive, optimal control algorithms [85,
78].

A reinforcement learning formulation of the reference tracking problem considered in this chap-
ter can be formulated following [22]. Since the algorithms are generally applied in discrete time to
sampled data, the following presentation uses a discrete time representation of certain parts of the
problem. Given a deterministic, dynamical system

ẋ = f(x, u)

where x ∈ R
n is the system state and u ∈ R

m is the control input, find a control law, or policy,
µ(x) : R

n → R
m, mapping x to u that minimizes

V µ(x(t)) =

∫ ∞

t
e−

s−t
τ c(x(s), u(s)) ds, u(t) = µ(x(t)). (6.3)

The function c(x, u) : R
n × R

m → R describes the cost of being in a particular system state and
taking a particular control action. For example, in the reference tracking problem, a simple cost
function is c(x(t), u(t)) = ‖r(t)−x(t)‖ where r(t) is the current reference signal. The design of the
cost function is one of the most important parts of the problem specification since it determines
the behavior of the optimal solution [55]. The parameter, τ , is a discount factor that determines
the time horizon over which the algorithm attempts to minimize the cost. For small values of τ
the optimal policy will be rather myopic; only the near term effects of actions are considered. As τ
increases the optimal control policy considers more of the long term impact of actions. Selecting an
appropriate value for τ is another important design decision in the construction of the reinforcement
learning problem, but it is not always straightforward [55].

The function V µ(x) is called a value function and captures the long term cost of following a
particular policy starting from a state x. When working with sampled data the value function is
written

V µ(x(t0)) =
∞∑

i=0

e−
ti−t0

τ c(x(ti), u(ti)), u(ti) = µ(x(ti)),

where the ti’s are the sample times and t0 is just the point of reference in time for some given
sample. If the sample time is a constant, ∆t, let γ = 1− ∆t

τ and write

V µ(x(t0)) =
∞∑

i=0

γic(x(ti), u(ti)), u(ti) = µ(x(ti)).

Another value function, often called a Q-function or state-action value function, is defined as

Qµ(x(t0), u(t0)) = c(x(t0), u(t0)) +
∞∑

i=1

γic(x(ti), µ(x(ti)))

= c(x(t0), u(t0)) + γV µ(x(t1))

(6.4)
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and captures the cost of taking a particular action in a given state and from then on following the
policy µ.

These value functions satisfy several useful relations that lead to a wide variety of algorithms
for finding — or more often, approximating — µ. The optimal value functions are evaluated at the
optimal policy, which is denoted µ∗. They are defined by

V µ∗

(x(t0)) = V ∗(x(t0)) = min
µ

V µ(x(t0))

Qµ∗

(x(t0), u(t0)) = Q∗(x(t0), u(t0)) = min
µ

Qµ(x(t0), u(t0)).

The minimization over policies requires an ordering relation which is defined by

V µ1(x) ≤ V µ2(x) ∀ x ∈ R
n ⇒ µ1 ≤ µ2.

The optimal value functions satisfy Bellman’s equation, or in continuous time the Hamilton-Jacobi-
Bellman equations. Bellman’s equation is a recurrence given by

V ∗(x(t0)) = min
u

Qµ∗

(x(t0), u) = min
u

c(x(t0), u) + γV ∗(x(t1))

and
Q∗(x(t0), u(t0)) = c(x(t0), u(t0)) + γ min

u
Q∗(x(t1), u).

If exact representations of V or Q are available for every policy, then the reinforcement learning
problem, finding the optimal policy, can be solved using policy iteration. Policy iteration is a simple
algorithm that iterates between two steps: policy evaluation and policy improvement. In policy
evaluation, a value function for the current policy is determined. In the policy improvement step,
the policy is made greedy with respect to the current value function. In other words

µ(x)← argmin
u

Qµ(x, u), ∀ x.

If only V is available, and not Q, then a model of the system dynamics is necessary to perform
policy improvement since the results of taking a particular action at a given state must be known.
Also, an explicit representation of µ is not strictly necessary since it can be computed implicitly
from Q or V .

Obviously, when x and u are in continuous spaces, exact representation of the value functions
is not generally possible. Exact evaluation of the policy improvement step is even less tractable.
To proceed, it is necessary to find computationally tractable representations of one of the value
functions. Parametric representations of V and Q are commonly used, but non-parametric repre-
sentations have also been explored [63]. Parametric representations of V and Q are denoted Ṽθ and
Q̃θ where θ is the current set of parameters, for example, a set of neural network weights. Many
algorithms for approximating the value function for a given policy are based on minimizing the
temporal difference error of the approximation. A temporal difference error is an error of the form

δtd = c(x(t0), u(t0)) + γ max
u

Q̃θ(x(t1), u)− Q̃θ(x(t0), u(t0))

If the parametric architecture is capable of representing the policy’s value function exactly then at
the optimal θ the architecture will produce no temporal difference errors. A general procedure for
producing an approximation of a value function is to modify the parameters of the representation
to minimize the temporal difference errors observed over some sample trajectories generated by
following the policy. When an exact representation of the value function is not possible minimizing
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the temporal difference errors of an approximation can still produce a value function that is close
to true value function in some appropriate sense [60, 76]. The convergence of such temporal
difference learning schemes is not guaranteed and has been explored extensively [71, 86, 96, 7, 88].
Given an approximate representation of one of the value functions, an approximate form of policy
improvement can be performed. When these approximations are involved, convergence of the policy
iteration algorithm is not necessarily assured [68, 54, 60]. Despite the lack of formal guarantees of
convergence great success has been reported with temporal difference approaches and approximate
policy iteration.

To use a reinforcement learning approach within the context of the proposed stable learning
algorithm, an explicit representation of the policy is needed. When an explicit representation of the
current policy is used in the policy iteration framework, the resulting algorithms are called actor-
critic algorithms. In actor-critic methods, policy evaluation and policy improvement correspond
to updating the critic, a Q function representation, and the actor, µ, respectively. Since the Q
function and policy can not be represented exactly, function approximators are used in both cases
[48]. The parameters of the critic are denoted θc, and the parameters of the actor are denoted
θa. Stochastic gradient descent on temporal difference errors is used to update the parameters
of the critic. The parameters of the actor are updated using the derivative of the critic, Q(x, u),
with respect to the control input. This update directs the actor to choose actions that minimize
the Q-value for a particular state. In actor-critic methods policy evaluation and policy iteration
are often interleaved. That is the actor is updated from the critic before the critic has converged.
The dynamics of the learning system are quite complex in this case and care is needed to ensure
reasonable behavior [55].

The specific details of the reinforcement learning algorithm used in Section 6.3 are now de-
scribed. Two of the basic assumptions of the reinforcement learning approach are that the state
of the environment is fully observable and that the dynamics satisfy the Markov property. The
Markov property requires that the observed effect of a control action at time t is a function of only
of the state at the current time and does not have any dependence on the past state trajectory.
The two assumptions of state observability and Markov dynamics are closely related. In the con-
trol problem under consideration, the state of the plant is not fully observable. Because of this,
the observed dynamics do not satisfy the Markov property. One approach to solving this type of
problem requires modeling the control problem as a type of partially observable Markov decision
process or POMDP. Another approach requires that a representation of the system that satisfies
the Markov property be developed. Recurrent neural networks are useful for this purpose because
of their ability to model temporal sequences and model hidden dynamics [13]. In this approach a
recurrent neural network is used to model the value function. The internal dynamics of the network
are used to construct, implicitly, a model of the system satisfying the Markov property. Because the
focus of this chapter is on the proposed stable learning algorithm and not reinforcement learning
per se, an unrealistic approach is used here to simplify the dynamics of the learning system. A
standard feedforward neural network is used to model the value function and is given the full state
of the plant as part of its input. The other inputs are the tracking error and the control signal. The
output of the critic network is the value of the Q-function at the given state and control inputs.
The network has 50 hidden nodes and uses the sigmoid nonlinearity, σ(x) = 1

1+e−x . A constant
bias input is provided to all of the neurons. The network equations are

Q(x, u) = W o

[
σ
(
W i
[
x u 1

]T)T
1

]T

The critic is trained by standard backpropagation of the temporal difference errors using the equa-
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tions

W o ←W o − ηo
∂δtd

∂W o

W i ←W i − ηi
∂δtd

∂W i
.

The learning rates, ηo and ηi, have the values, 0.001 and 0.01, respectively, throughout the experi-
ments.

The actor is a recurrent neural network of the design described in Section 6.2.1. The RNN
used for the actor has three states, thus W ∈ R

3×3. Updates to the actor weights are made using
stochastic gradient descent on the gradient of the Q-function with respect to the control inputs,

W ←W − ηa
∂Q(x, u)

∂u

∂u

∂W

The update can be computed by using −∂Q(x,u)
∂u as the error function in the RTRL algorithm. The

learning rate is varied for some experiments, but as a default η = 0.001. The updates to the actor
weights proposed by this algorithm are the update monitored by the stable learning algorithm to
ensure stability. The updates to the critic need not be considered in the stability analysis because
the critic is not directly part of the control loop.

A few other specifics of the actor-critic method should be discussed. In order to find the optimal
policy, or even a good policy for that matter, the critic requires observations of all of the actions
in all of the states. In continuous spaces the condition is slightly different, essentially the critic
needs to experience a large variety of state action combinations. This is generally referred to as
exploration. Often reasonable exploration can be achieved by causing the actor to deviate slightly
from its preferred output. In the simulations that follow random perturbations are occasionally
added to the output of the controller. These random perturbation are generally small, and can be
adequately addressed in the stability analysis by the input-multiplicative uncertainty that already
exists in the plant model. For the actor-critic model to converge to a reasonable solution the
amount of noise injected into the actions should decrease over time. In the experiments below the
noisy actions are taken with a probability that depends on time and is given by the schedule





(0.09, 2.0) : 0 ≤ t ≤ 500

(0.08, 1.6) : 500 ≤ t ≤ 1000

(0.05, 1.0) : 1000 ≤ t ≤ 4000

(0.01, 0.2) : 4000 ≤ t ≤ 8000

.

The first value of the pair is the probability of corrupting the action and the second value is the
magnitude of the random perturbation added to the actor output.

6.3 Experimental Evaluation

In this section the stable learning algorithm developed in Chapter 5 is applied to the control of
the multiple spring-mass-damper system using the actor-critic method discussed in the previous
section. The experiments are designed to illustrate the properties of the stable learning algorithm
more than to simulate the actual application of these techniques in practice. For instance, in
practice, a robust controller would be designed for the plant and the actor-critic model would
simply modify the output of the robust controller in some way. This was done in [2] for example.
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Figure 6.4: An example of unstable behavior exhibited during the training of the
actor-critic system.

The combination of robust controller and actor-critic system allows a certain amount of performance
to be guaranteed at the deployment of the system. In the experiments that follow less attention is
payed to the quality of the learned control law than to the stability properties of the adaption.

The actor and critic models were initialized by simulating them for 5000 seconds on the nominal,
linear, plant model described in Section 6.1.2. The simulation was done without regard for stability
since the actor and critic adaption was performed on a model and not the real system. Initializing
the actor and critic in this way allowed them to be hooked into the real system with some a
priori knowledge. All of the experiments that follow begin with these initialized actor and critic
parameters.

6.3.1 Actor-Critic Learning without Stability Analysis

Beginning with the actor and critic trained on the nominal, linear plant model, the control system
was simulated for 1000 seconds on the actual plant without any constraints on the stability of
the system. At a sampling rate of 10Hz, the actor and critic weights were updated 10000 times.
In Figure 6.4 a portion of the recorded system behavior is shown. Clearly, the system exhibits
instability for reference signals near zero.

In Figure 6.5 the results of simulating the actor with the weights from the 3600 second mark
and a reference input of r = 0.2 are shown. The actor weight matrix has the values

W =




1.5808 −0.2169 −0.5501
4.1411 0.1407 0.5892
2.9354 0.8355 −0.1111


 .

The closed loop system can not be proved stable by the IQC analysis developed in Section 6.2.2.
This type of instability should be avoided during the training of the actor and critic. The algorithm
from Chapter 5 is applied in the next section to prevent this type of behavior.

6.3.2 Stable Actor-Critic Learning

To avoid the instability seen in the previous example the stable learning algorithm from Chapter 5
is used to filter the actor updates. The stability bias is used with two slight modifications. First, to
make better use of the available information, updates that are rejected by the original algorithm are
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Figure 6.5: An example of an unstable RNN controller visited by the actor-critic
learning algorithm during training. The controller is unstable for small reference
inputs.

instead rescaled such that they satisfy the current constraint set. This allows progress to be made
at every step. Second, rather than compute the stability bias at every step, the bias computation is
turned on and off based on whether or not the previous steps were accepted without modification.
Initially, the stability bias is not used, but after a sequence of three updates in a row have been
rescaled due to violation of the constraints the stability bias computation is turned on. The bias
computation remains on until a sequence of five steps in a row are accepted without scaling.

The initial actor weights, generated by training on the linear plant, can not be proved stable.
To initialize the stable learning algorithm the weights are scaled down to satisfy the stability
constraints. The resulting initial network weights produced a gain of γcl = 0.600. The initial
variation bounds were

∆ =




0.1000 0.1000 0.3313
0.1013 0.1000 0.2957
0.1000 0.1183 0.1095


 and ∆ =




0.3474 0.3970 0.1141
0.1775 0.3067 0.1497
0.2674 0.1949 0.3359


 .

A minimum value of 0.1 was enforced on the variation bounds, but like in Chapter 5 this was
allowed to decrease if a set of bounds could not be found that satisfied this constraint.

The system was simulated for 1100 seconds and the following results were observed. Unlike
the previous example, no instability was observed in the controlled system during the adaptation.
Out of the 11,000 updates generated by the actor-critic algorithm, 2,541 — roughly one in four
— required rescaling to satisfy the stability constraints. The stability bias was computed 4200
times, or on almost half of the steps. The stability bounds were recomputed 6540 times. The mean
variation allowed per weight over these constraint sets was 0.028. Because of repeated failures
to find bounds that satisfied the minimum constraint, the lower bound was decreased repeatedly.
The amount of variation allowed in the weights is, on average, very little. This causes the number
of constraint computations to rise and increases the cost of the algorithm drastically. The gains
computed in the stability bias computations remained relatively small, γ < 5, during the simulation.
This suggests that the small amounts of allowable variation are not due to closeness of the controller
to the boundary of the stable weight set, Wn

ss. It appears that conservativeness in the analysis of
the time-varying RNN is hindering the application of the stable learning algorithm. The algorithm
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succeeds in keeping the control system stable, but has an excessive cost. In the next section, the
stability constraints are loosened somewhat and a modified version of the algorithm is applied.

6.3.3 Step-wise Stable Actor-Critic Learning

Because the conservativeness in the analysis of the time-varying RNN limits the amount of variation
that can be tolerated under the stability constraints, it seems worthwhile to consider what benefit
might be had from accepting weaker stability guarantees. Rather than constraining the variation
in the weights using the analysis developed in Chapter 4, the weights of the actor are simply
constrained to remain in Wn

ss at all times using the analysis of Chapter 3. Weight updates that
push the weights out ofWn

ss are rejected. This guarantees that stopping the adaptation at any point
will always result in a stable controller. This type of stability guarantee has been called step-wise
stability [55]. The weaker stability algorithm does not protect against the type of instability due to
switching problems like the one described in Chapter 4. Such problems might occur due to cycles
in the weight settings cause by a non-decaying step size in the actor updates. This type of problem
was never encountered during simulation, however.

Starting from the scaled actor used in the previous section, this new algorithm was simulated
for 5,000 seconds on the actual plant. Of the 50,000 updates generated, only 10,364 were accepted.
The updates were rejected when the weights approached the boundary between provably stable
and possibly unstable weight matrices. The behavior during the last 1000 seconds is shown in
Figure 6.6. No instability was seen over the entire 5000 second history. The weight trajectories
over the entire adaptation period are also shown.

6.3.4 Actor-Critic Learning with a Stability Bias

Only one in four updates to the actor was accepted using the simple step-wise stability algorithm.
In the last chapter the addition of a stability bias to the weight updates was shown to increase
the number of updates accepted by the stable learning algorithm. To test whether this result
carries over to the modified step-wise stability algorithm, the previous experiment is repeated with
the addition of a stability bias term to the weight updates. The weight update in (5.12) was
applied over two 5000 second adaption trials. The weight update is parameterized by γ̂ which
determines at what L2-gain the bias begins to have a major effect on the updates. The first trial
used γ̂ = 5 and the second used γ̂ = 50. The weighting parameters, η2 followed the decay schedule
η2 = 8000−t

8000 . Figure 6.7 shows the last 1000 seconds of the episode and the weight trajectories for
γ̂ = 5. Figure 6.8 shows the same data, but from the trial with γ̂ = 50. Several observations can
be made about the data. Compared to the previous experiment where no stability bias was used,
both trials of this experiment perform better at tracking the reference signal. Also, the weights
grow larger in these two trials. The lack of stability bias in the previous experiment caused the
actor to suffer from a lack of progress due to discarded updates.

In the case of γ̂ = 5 all 50000 updates were accepted. When γ̂ = 50 nearly 82% of the updates
were accepted. The larger value of γ̂ in this trial allowed the network weights to approach the
stability boundary more closely. This increases the likelihood that weight updates will be rejected.
The dynamics of the plant output in the low γ̂ experiment are smoother than those of the high
γ̂ trial. This is due, again, to the soft bound on the network gain that results from the update
functions dependence on γ and γ̂.

The performance of the two actor-critic systems was compared by running the systems for an
additional 5000 seconds and comparing the mean squared tracking error and mean squared control
output over the 5000 second window. The trial with γ̂ = 5 had a mean squared tracking error of

95



4000 4200 4400 4600 4800 5000
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

Time in Seconds

P
os

iti
on

 

 

y
2

ref

0 1000 2000 3000 4000 5000
−0.5

0

0.5

1

1.5

2

2.5

3

Time in Seconds

R
N

N
 W

ei
gh

ts

Figure 6.6: Example of the behavior and weight trajectories of the step-wise stable
adaption.
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Figure 6.7: Example of the behavior and weight trajectories of the step-wise stable
adaption and a stability bias.
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Figure 6.8: Example of the behavior and weight trajectories of the step-wise stable
adaption and a stability bias.
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MSTE MSC γ

Init 0.3493 6.3065 13.623

NS 0.1084 24.9356 ∞
SS 0.2478 8.9198 643.933

SSB 0.1004 17.1258 3.999

Table 6.1: After 5000 seconds of training the learned controllers were tested on
a fixed sequence of reference changes. Three cases were compared: no stability
analysis (NS), step-wise stability (SS), step-wise stability with the stability bias
(SSB).

0.1858 and a mean squared control output of 23.1557. For the γ̂ = 50 case these values were 0.2050
and 26.1874 respectively. Neither of the controllers perform extremely well, but the system with the
lower γ̂ value performs slightly better. This may be due to the fact that the smaller gain constraint
results in smoother dynamics which may in turn help to regularize the learning dynamics.

To complete the analysis, the controllers learned after the 5000 step trials of this and the
previous section were compared on a fixed set of reference changes over 1000 steps. No adaptation
was performed during these test trials. The mean-squared tracking error and mean-squared control
action were recorded. These results are reported in Table 6.1 along with the gain of the controllers.
The results reported for the stability bias trial are for γ̂ = 5.0. The results show that the step-wise
stability approach with the stability bias has the best overall mean-squared tracking error and a
lower mean-squared control output than the unconstrained case. The gain of the controller in the
step-wise stability constrained trial where no stability bias was used is very large. This is further
evidence of the controller parameters getting stuck near the stability boundary.

6.4 Conclusions

Application of the stable learning algorithm from the previous chapter proved to be to restrictive
and computationally expensive for application to the multiple spring mass damper system. By
relaxing the stability constraints to consider a weaker step-wise stability, the computational cost
was considerably reduced and better performance was achieved. The stability bias developed in
Chapter 5 improved the ability of the actor-critic system to learn under the step-wise stability
constraints. Instability was observed in an actor-critic control system when no stability constraints
were explicitly enforced. Application of even the relaxed step-wise stability constraint kept the
actor from instability.
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Chapter 7

Conclusions

The problem of stability is vastly more difficult when artificial neural networks are used
either for identification or control and the system is nonlinear. Unlike linear systems,
simple algebraic conditions are not available for assuring the stability of the overall
system. . . . All these indicate that our knowledge of the stability of dynamical adaptive
systems using artificial neural networks is quite rudimentary at the present time and
that considerable work remains to be done. . . . It is precisely in problems where the
system has to adapt to large uncertainty that controllers based on neural networks will
be needed in practical applications. For such problems, new concepts and methods based
on stability theory will have to be explored.

Adaptive Control Using Neural Networks [61], K.S. Narendra

The combination of reinforcement learning and recurrent neural networks provides a powerful
architecture for automatic control. On the other hand, both the nonlinearity and the adaptation
make the stability analysis of such control systems challenging. Almost twenty years after [61] was
published, the quote from Narendra remains true. In this work, several steps toward a practical,
adaptive, neural control system have been reported.

State-of-the-art analysis of the stability properties of neural networks involves the construction
and solution of linear matrix inequality problems. These conditions are computationally expensive
and generally not exact. One contribution of this work is a reduction in the conservativeness of the
existing stability analysis for recurrent neural networks. For time-invariant networks, this reduction
comes from the use of better IQCs for the description of the network’s nonlinearity. For time-varying
networks, this reduction is achieved by a novel formulation of the time-varying network equations.
Reducing the conservativeness in the analysis allows a larger class of systems to be proved stable.
In addition to the reduction in conservativeness, some reductions in computational complexity were
achieved by analysis of the LMI problems. Some of the constraints on the decision variables in these
problems were shown to be unnecessary. Finally, it was shown that the augmented Lagrangian, or
penalty-barrier, method is much more efficient than standard interior point methods for the LMI
problems of interest.

The algorithm presented in Chapter 5 for maintaining the stability of adaptive, recurrent neural
networks has its roots in the work of Kretchmar in [49]. One of the main contributions of this
work is the development of techniques for reducing the computational cost of the algorithm. Two
developments allowed the reduction in computational cost. The bounds on the allowable weight
variation were solved for directly, rather than through a bisection approach as in [49]. The cost
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of this step was thus reduced to that of solving a single LMI, or possibly BMI, problem. More
importantly, a stability bias was introduced in Chapter 5 that biased the weight trajectories of an
adapting network away from the boundary of the stable weight set. Use of this bias reduces the
number of times the variation bounds must be computed. Additionally, the stability bias improves
the behavior of the constrained reinforcement learning algorithm even when only step-wise stability
is enforced. A reasonable computational cost for the stability bias was achieved by applying a novel
approach to warm-starting the augmented Lagrangian SDP solver.

7.1 Summary

In Chapter 3, a stability analysis was derived for continuous time recurrent neural networks from
the theory of integral quadratic constraints. The resulting optimization problems were solved
efficiently using a recently developed approach [47] to semidefinite programming that avoids the
explicit formulation and solution of Newton equations.

In Chapter 4 the conservativeness of an existing analysis from [79] of recurrent neural networks
with time-varying weights was reduced. A new formulation of the time-varying RNN equations was
developed which improved the accuracy of the stability analysis and allowed more of the power of
certain IQCs to be applied to the problem. Additionally, the problem of finding maximal bounds on
the variation of an RNN’s weights under which stability can be assured was addressed. In [79] this
problem was addressed using an LMI approximation of an underlying BMI problem. In Chapter 4
the BMI problem was solved directly and shown to produce qualitatively better results. The LMI
approximations seems to suffer from some deficiency which causes it to set many of the variation
bounds to zero. The BMI solutions did not exhibit this pathology.

In Chapter 5 an algorithm for maintaining the stability of adaptive, recurrent neural networks
was developed. By restricting the variations in an RNN’s weights to satisfy the type of variation
bounds computed in Chapter 4, stability of the evolving network can be assured. A basic problem
with this approach is that, in general, the learning algorithm in charge of adapting the weights of
the network has no knowledge of the stability constraints. This ignorance can lead to situations
where the weight trajectory evolves along the border of the set of stable weight matrices. When this
occurs the stable learning algorithm must repeatedly compute new sets of constraints on the weight
variations. Because this computation is expensive, its occurrence should be minimized. Knowledge
about the stability properties of the network can be included in the weight updates through the use
of a stability bias. The stability bias is the gradient of an L2-gain bounding function with respect
to the weights of the network. It points to the interior of the set of stable weight matrices, and its
magnitude grows proportionally to the closeness to the estimated stability boundary.

A weighting rule for the stability bias was devised that limits the impact of the bias when
the weights are far from the boundary of the stable weight set. More importantly, it was shown
how the cost of computing the stability bias could be drastically reduced by applying warm-start
methods to the necessary semidefinite programs. Experimental analysis revealed that augmented
Lagrangian methods, such as [47], for solving SDPs are capable of capitalizing on available warm-
start information. If a sequence of slightly perturbed problems must be solved — this is the case
for computing the stability bias — initializing the SDP solver using the previous problem solutions
reduced the cost of solving the perturbed problem. A perturbation analysis of linear SDPs given in
[27] was applied to improve the quality of the warm start information. The improvement, however,
comes at the cost of solving a linear program and may not provide an overall benefit in terms of
run time.

The proposed stable learning algorithm and stability bias were applied, in Chapter 6, to the
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problem of robust, adaptive, reinforcement learning control of an uncertain, nonlinear, multiple
spring-mass-damper system. The stable learning algorithm was extended to ensure stability of the
closed loop between the RNN controller and nonlinear plant, even in the presence of uncertainty.
Unfortunately, conservatism in the stability analysis makes application of the algorithm computa-
tionally expensive. A modified algorithm was proposed that ensures a weaker step-wise stability of
the learning system. The weakening of the stability constraint allowed the computational complex-
ity of the algorithm to be reduced. Even under the weaker stability conditions the algorithm was
shown to prevent instability during the adaptation of the RNN controller. Use of the stability bias
further improved the behavior of the algorithm and allowed the actor-critic system to improve the
performance of the controller in the presence of stability constraints.

7.2 Future Work

The algorithm presented in Chapters 5 and 6 is a very general purpose tool for stable, adaptive,
neural control in the presence of uncertainty in the plant behavior. If an uncertainty model can
be constructed for a given plant in terms of IQCs the algorithm can be applied to ensure stability
of the closed loop control system. The adaptation of the RNN controller can be performed by any
algorithm since the stable learning algorithm is a general purpose filter for weight updates. The
combination of the stable learning algorithm with reinforcement learning is particularly interesting,
however, as it provides an approach to solving difficult control problems with guarantees of stability.
The reinforcement learning algorithm applied in Chapter 6 was rather basic and made inefficient
use of the available data. The resulting control performance, was therefore not extremely good.
The stable learning algorithm can be applied as-is to more advance reinforcement learning designs
such as dual heuristic programming approaches [78]. The improved learning efficiency of these
algorithms combined with the explicit stability guarantees of the stable learning algorithm could
make a powerful general purpose tool for adaptive control.

Two major barriers to the practical application of the proposed algorithm point the way toward
future research. The first barrier is the computation expense of the algorithm. Even with the
improvements made by application of warm-start methods, it is unlikely that the solution of the
stability LMI problem could be performed in real-time. One possibility, however, might be to adapt
the work in [40] that describes an analog neural circuit for real-time semidefinite programming.
Other possibilities include heuristic approaches that limit the computation of the stability bias to
certain time samples or based on the time constraints of the system. Even if such advances were
made, application to very large recurrent neural networks will probably remain elusive. The high
cost of the using the KYP lemma in systems with many states requires more analysis in terms of
the specific structure of the LMI related to an RNN’s stability. As in [89] it might be possible to
take advantage of some particular feature of the LMIs to decrease the size of the resulting problems.

The second barrier to practical application of the algorithm is the remaining conservativeness in
the IQC analysis of the recurrent neural network. As mentioned in Chapter 6, the analysis ignores
the boundedness of the nonlinearity. Following up on the recent work in [35] could prove extremely
fruitful. The analysis in [35] explicitly account for boundedness in the modeling of nonlinear
operators by covering the nonlinear system with a set of switched, saturated, linear systems for
which a tractable analysis can be performed. Because the boundedness of φ(·) is an essential
feature and differentiates the dynamics of the RNN from a linear network with similar weights
accounting for it in the analysis could provide a drastic reduction in conservatism. Additional
conservatism enters the analysis throughout the consideration of the time varying weights. An
alternative approach that limits the rate at which the controller switches between different sets of
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weights might allow the strong dynamic stability constraint to be recovered in what is currently the
algorithm that ensures step-wise stability of the system. Some relevant work can be found in [62]
where a similar idea is applied to linear, adaptive systems. Also, the vast literature on switching
systems, for example [77], might also provide insight into this problem.
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Appendix A

LMIs for Time-Varying RNNs

A recurrent neural network with time-varying weights can be written as the equation

ẋ(t) = −Cx(t) + W̃∆(x(t), t)KRx(t) + u(t) (A.1)

where

W̃ =
[
W Ŵ −Ŵ

]
∈ R

n×(n+2n2),

Ŵ =
[
e1

×n. . . e1 e2 . . . en

]
∈ R

(n×n2),

K = diag{I,∆, ∆},
R =

[
I I ×2n. . . I

]T ∈ R
(n+2n2)×n,

∆(x(t), t) = diag{δi(xi(t)), δij(t)δi(xi(t)), δij(t)δi(xi(t))} ∈ R
(n+2n2)×(n+2n2),

0 ≤ δi(xi(t)) ≤ 1, 0 ≤ δij(t) ≤ 1, 0 ≤ δij(t) ≤ 1.

See Chapter 4 for details. The stability of this system is implied by the feasibility of the LMI
condition [

−CP − PC PW̃ + RT T̂

W̃ T P + T̂ T R −(T̂ + T̂ T )K−1

]
< 0. (A.2)

In this section additional LMI conditions are given which include the Popov IQC and terms for
estimating the L2 gain of the time-varying system. Also, equivalent LMI conditions are given for
the time-varying network equations (4.9).

A.1 Adding the Popov IQC

The Popov IQC is a dynamic IQC, and the techniques described in Appendix B are required for
constructing the resulting LMIs. The details are left out for conciseness and only the main LMI is
given. Define the matrix Q as

Q = diag{q1, . . . , qn, 0,×2n2

. . . , 0}

where the qi are positive decision variables. The Popov IQC results in the LMI

[
RC −RW̃
0 I

]T [
0 −Q
−Q 0

] [
RC −RW̃
0 I

]
≥ 0.
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The resulting LMI condition is
[

−CP − PC PW̃ − CRT Q + RT T̂

W̃ T P −QT RC + T̂ T R QRW̃ + W̃ T RT Q− (T̂ + T̂ T )K−1

]
< 0.

A.2 LMI for Gain Estimation

The gain of a time varying network can be estimating by augmenting the LMI from the previous
section. In this case the Popov IQC results in the LMI condition

[
RC −RW̃ −R
0 I 0

]T [
0 −Q
−Q 0

] [
RC −RW̃ −R
0 I 0

]
≥ 0.

The main LMI condition is given by




−CP − PC + I PW̃ − CRT Q + RT T̂ P

W̃ T P −QT RC + T̂ T R QRW̃ + W̃ T RT Q− (T̂ + T̂ T )K−1 QR
P RT Q −γI


 < 0.

A.3 LMI Conditions for the Modified Time-Varying RNN Equa-

tions

A modified version of (A.1) is given in Equation 4.9. These equations are

ẋ(t) = −Cx(t) + W̃

[
I 0

0 ∆̃(t)

]
KR∆̂(x(t))x(t) + u(t)

∆̂(x(t)) = diag{δi(xi(t))}
∆̃(t) = diag{δ(t), δ(t)}

(A.3)

It is easier to write the LMI stability condition derived from this formulation in its unexpanded
form. The feedback system is defined by

A = −C, B1 = I, B2 = W̃ ,

C1 = In, C2 =

[
In

0

]
∈ R

(n+2n2)×n,

D11 = 0 ∈ R
n×(n+2n2), D12 = 0 ∈ R

n×n,

D21 =

[
0 0

R̃ 0

]
∈ R

(n+2n2)×(n+2n2),

D22 = 0 ∈ R
(n+2n2)×n,

where In is the n× n identity matrix and

R̃ =
[
I ×2n. . . I

]T
.

The main LMI is 

−CP − PC PW̃ P

W̃ T P 0 0
P 0 0


+ Σ1 + Σ2 + Σ3 ≤ 0
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where

Σ1 =

[
C1 D11 D12

0 0 I

]T [
I 0
0 −γI

] [
C1 D11 D12

0 0 I

]
,

Σ2 =

[
C1 D21 D22

0 I 0

]T [
0 T̂

T̂ T −(T̂ + T̂ T )K−1

] [
C1 D21 D22

0 I 0

]
,

Σ3 =

[
RC −RW̃ −R
0 I 0

]T [
0 −Q
−Q 0

] [
RC −RW̃ −R
0 I 0

]
.
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Appendix B

LMIs from Dynamic IQCs

In this short appendix, an explanation of the implementation of dynamic IQCs is given. Dynamic
IQCs are used in Chapter 6 to describe uncertain parameters and unmodeled linear time invariant
dynamics. First some basic details are recalled.

IQCs are generally applied to model the operator ∆ in the feedback system given by the equa-
tions

ẋ = Ax + B1u + B2w

y = C1x + D11u + D12w

v = C2x + D21u + D22w

w = ∆(v).

(B.1)

The IQC terms enter the main LMI from the KYP theorem through the equation

[
C2 D21 D22

0 0 I

]T

Π(λ)

[
C2 D21 D22

0 0 I

]
.

The structure of this equation comes from the fact that the inputs and outputs of the IQC are
constructed by the equation

[
C2 D21 D22

0 0 I

]


x
u
w


 .

The first n rows of the matrix multiplier construct the input v and the last n rows construct the
output w. For implementing dynamic IQCs it is necessary to augment the inputs and outputs of
the IQC and thus change the matrix multiplier in the above equations.

B.1 Unmodeled LTI Dynamics

The implementation of the IQC for unmodeled LTI dynamics is illustrated on the simple system
shown in Figure B.1. The plant operator is G(s) = s

s+100 and the operator ∆(s) is an LTI operator
with ‖∆(s)‖ ≤ 1. The system can be represented in the format of the feedback system (B.1) by
taking

A = −100, B1 = 1, B2 = −1, C1 = −100, C2 = −100,

D11 = 1, D12 = −1, D21 = 1, D22 = −1.
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Figure B.1: A feedback system with unmodeled LTI dynamics.

Recall from Chapter 6 that the relation, w(s) = ∆(s)v(s), where ∆(s) is an unknown LTI
operator satisfying ‖∆(s)‖ ≤ 1, satisfies the IQC given by

Π(s) =

[
x(s) 0
0 −x(s)

]

x(s) ≥ 0.

Here, x(s) is a bounded, measurable function that is represented for computational purposes as

x(s) = x0 + x1
1

s + 1

where x0 and x1 are real-valued decision variables.
The constraint x(s) ≥ 0 is enforced in the LMI problem by application of the KYP lemma.

Rewrite x(s) in the standard operator form, Cx(sI −Ax)−1Bx + Dx, by letting Cx = x1, Ax = −1,
Bx = 1, and Dx = x0. The KYP lemma results in the constraint

[
AT

x P + PAx PBx − CT
x

BT
x P − Cx −(Dx + DT

x )

]
≤ 0, P = P T ≥ 0,

or [
−2P P − x1

P − x1 −2x0

]
≤ 0, P ∈ R+

in the specific case of interest.
The part of the main LMI contributed by the IQC is constructed in the following way. The

dynamic parts of the IQC are extracted leading to the representation




v
−w
1

s+1v

− 1
s+1w




T 


x0

x0

x1

x1







v
w
v
w


 ≥ 0.

Multiplying out the left hand side of the condition gives

vT x0v − wT x0w +

(
1

s + 1
v

)T

x1v −
(

1

s + 1
w

)T

w

= vT

(
x0 + x1

1

s + 1

)
v − wT

(
x0 + x1

1

s + 1

)
w

=

[
v
w

]T [
x(s) 0
0 −x(s)

] [
v
w

]
.
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To construct the left-hand and right-hand multipliers in the IQC, two states must be added to the
system to represent 1

s+1v and 1
s+1w. This means augmenting the main system matrices as

A =



−100 0 0
−100 −1 0

0 0 −1


 , B1 =




1
1
0


 , B2 =



−1
−1
1


 ,

C1 =
[
−100 0 0

]
, C2 =

[
−100 0 0

]
.

The augmented system has three states and two signals. The first state of the augmented system
is the state of the plant. The second state is 1

s+1v, and the third state is 1
s+1w. The left- and

right-hand multipliers for the IQC can be constructed by selecting the correct signals and states.
The multipliers are

L =




−100 0 0 0 0
0 0 0 0 −1
0 1 0 0 0
0 0 −1 0 0


 , and

R =




−100 0 0 0 0
0 0 0 0 1
−100 0 0 0 0

0 0 0 0 1


 .

The LMI for the IQC is constructed by

LT




x0

x0

x1

x1


R + RT




x0

x0

x1

x1


L

where the second term exists to ensure symmetry and does not effect the meaning of the constraint.
This term must be added to the main KYP constraint and the term for estimating the L2 gain to
construct the complete LMI.

B.2 Uncertain Parameters

The relation w = δv with δ ∈ [−1, 1] can be described by the IQC

Π(s) =

[
x(s) z(s)
z∗(s) −x(s)

]

x(s) ≥ 0

where x(s) is the same as in the previous section and

z(s) = z1
1

s2 − 1
= −1

2
z1

((
1

s + 1

)∗

+
1

s + 1

)
.

The positivity of x(s) can be enforced using the KYP lemma as shown in the previous section.
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The IQC has three decision variables and can be written in the alternate form




v
w
v

1
s+1w
1

s+1w
1

s+1v




T 


x0

x0

x1

x1

z1

z1







v
−w
1

s+1v

−w
v
−w




.

Multiplying out the equation and adding to it its transpose gives the desired IQC. The rest of the
construction process follows the one used in the previous section for the unmodeled LTI dynamics
and is not repeated here.

116


