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Chapter 1

INTRODUCTION

1.1 Overview

In the quest for greater realism in computer graphics, increasingly complex illumi-

nation methods are being used to model not only the light falling directly on an object,

but also the light reected from other objects in the scene. The realism provided by these

methods comes at the cost of greater computational complexity.

Radiosity is a method which computes the distribution of light from di�use sources

and di�use reectors in a scene. The largest cost involved in rendering a scene with

radiosity is in the computation of geometrical relationships, called form factors, between

sections of the surfaces within the scene. This project report explores the use of neural

networks to accelerate the computation of radiosity form factors.

1.2 Radiosity

Radiosity is a method of calculating the distribution of di�use illumination within

a scene. In this method, every surface in the scene is divided into patches. Then, for

each patch, the contribution of light from every other patch in the scene is calculated and

summed into the total amount of light impinging on the patch. This redistribution of light

is repeated until the distribution of light in the scene stabilizes.

The contribution of illumination from one patch on another depends purely on geo-

metric considerations. For each pair of patches, a form factor is calculated which indicates

the relative amount of radiation from one patch to the other. The form factor, Fij , from

patch Ai to Aj can be expressed as

Fij =
1

Ai

Z
Ai

Z
Aj

cos �i cos �j

�r2
dAi dAj ; (1.1)
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where �i and �j are the angles between the normals of the di�erential elements dAi and

dAj and ~r is the vector between the centers of two di�erential elements. Figure 1 illustrates

the geometrical relationships in form factor calculations. Although closed form solutions
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Figure 1.1: The Geometrical Relationships Between Elements in Form Factor Calculations

exist for simple geometries, no general closed form solution exits.

1.3 Approximation with Neural Networks

Since the above integral has no general closed form solution, a number of approximate

schemes have been developed. These methods are computationally expensive and represent

the major bottleneck in the computation of radiosity calculations. Fast approximations of

the form factors would allow considerably faster computation of radiosity calculations and

would allow these computations to take place with less hardware than currently required.



3

Neural networks have a well known role as \function approximators" and were used in

this project to calculate radiosity form factors.

The overall goal of this project is to determine whether or not a neural network can

be trained to provide a useful approximation of radiosity form factors. Since no general

closed form solution to equation 1.1 above exists, the reduced problem of calculating form

factors for planar quadrilaterals will be considered. Schr�oder and Hanrahan [Schro 93]

have published a closed form solution for form factor calculation for general polygons and

have made a C library available for its computation. This solution will be used to train

and test the accuracy of the neural network approximation.

Since the analytic solution calculated by the C library is quite slow, the most popular

form factor approximation method, the hemicube, will also be run on the same data as a

measure of acceptable accuracy.

Two sets of data were generated. The �rst is a set of random, planar quadrilaterals

for which the analytic and hemicube approximations were computed. A neural network

was trained on the data with the values computed by the analytic solution as target

values. The trained network was then run on the same data to see how accurately it could

reproduce the form factor values and these results were compared to both the analytic

solution and the hemicube solution. The second set of data was from a simple scene and

was generated with a modi�ed radiosity rendering program. The form factor values were

computed with the analytic solution and a series of neural networks was trained. The

scene was rendered again with the neural network and the resulting form factor values

were compared with the analytic solution and the neural network solution.

1.4 Outline of Project Report

The following chapters will discuss the mathematical underpinnings of radiosity, the

methods used to train the neural network and the results of applying the neural network

to a simple scene. Chapter 2 describes radiosity form factors and the mathematics behind

them. Chapter 3 describes the experiments with random data. Chapter 4 describes the

experiments with data from a graphics scene. Chapter 5 concludes the report and suggests

future directions for research.



Chapter 2

RADIOSITY CONCEPTS

2.1 Overview

Radiosity describes the distribution of radiative energy in an environment. This

chapter introduces the basics of the radiosity method, the derivation of form factors

and describes the hemicube and neural network schemes for approximate computation of

form factors. The relative complexity of these approximation schemes will be compared.

More complete and general treatments of radiosity are given in heat transfer texts such

as [Sparr 78]. We use the notation used in Sillion's book [Sill 94] and use the development

in pages 9-13 and 23-31.

2.2 De�nition of Radiosity

Radiance, L, is de�ned as the amount of energy traveling at some point in a speci-

�ed direction per unit time, per unit area perpendicular to the direction of travel. (See

Figure 2.1.) Thus, the energy radiated into d! from dx2 in time dt is

L(x; �; �) dx cos � d!dt:

Hence, the power radiated into d! from dx2 is

d2P = L(x; �; �) dx cos � d!:

A useful property of radiance, which we won't derive, is the following reciprocity

property. For two points x and y, which are mutually visible

L(x; �x; �x) = L(y; �y; �y):
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Figure 2.1: De�nition of radiance.

(From [Sill 94, page 9]).

Radiosity, B(x), is de�ned as the total power leaving a point, x, on a surface per unit

area on the surface

B(x) =
dP

dx
=

Z



L(x; �; �) cos �d! (2.1)

where 
 means integration over the hemisphere above the patch.

2.3 The Radiosity Equation

Equation 2.1 is a general expression which characterizes the total radiation leaving

a point on a surface. However, radiosity as used in computer graphics makes some sim-

plifying assumptions. First, the environment in computer graphics is closed. Hence, all

radiation leaving a given surface in the environment will be received by another surface

in the environment; radiation from a surface will not sail o� into \deep space". Second,

ideal di�use reectors are assumed which implies that L is independent of angle. Hence,

L(x; �; �) = L(x):

We next seek to consider the distribution of energy from the point of view of a point

on a surface. Energy radiating from the point can be considered to be the sum of two
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Figure 2.2: Radiosity notation.

(From [Sill 94, page 29].)

sources. If a point is an emitter then it radiates light into the environment as a source.

The point can also gather radiation from the environment and re-radiate it into the scene

through di�use reectance. This can be written

B(x) = E(x) + �(x)H(x);

where E(x) is the total power emitted by the point (as a source) per unit area, �(x) is the

reectivity at point x and H(x) is the total power impinging on the surface per unit area.

Using the properties of ideal di�use reectors and the reciprocity property of radiance

mentioned above, it can be shown [Sill 94, pg. 26] that

H(x) =
1

�

Z
y2S

B(y)
cos � cos �

0

�r2
V (x; y)dy;

where S is the surface of integration, � and �
0

are de�ned in Figure 2.2 and

V (x; y) =

(
1; if x and y are mutually visible;

0; otherwise.
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Thus our energy balance equation can be written

B(x) = E(x) + �(x)
1

�

Z
y2S

B(y)
cos � cos �

0

�r2
V (x; y)dy; (2.2)

which is the radiosity equation for the continuous case.

2.4 Form Factors

In practice we need a discrete formulation of Equation 2.2 in order to render an

environment. Most common radiosity methods use some sort of meshing scheme to divide

the surfaces in the environment into patches and we would like to be able to compute

average radiosity values for each patch.

We can discretize 2.2 in a straightforward manner assuming an average radiosity

across patches:

B(x) = E(x) + �(x)
NX
j=1

Bj

Z
y2Pj

cos � cos �
0

�r2
V (x; y)dy; (2.3)

where Bj is the area-weighted average of the radiosity across patch Pj

Bj =
1

Aj

Z
x2Pj

B(x)dx:

Similarly, the energy emitted from the patch as a source (not through reectance) can be

written as

Ej =
1

Aj

Z
x2Pj

E(x)dx:

Finally, to compute Bi, we assume an average reectivity, �i and then we can take an

area-weighted average of Equation 2.3 to compute

Bi = Ei + �i

nX
j=1

Bj

1

Ai

Z
x2Pi

Z
y2Pj

cos � cos �
0

�r2
V (x; y)dydx:

We can write this equation more simply as

Bi = Ei + �i

nX
j=1

FijBj; (2.4)

where

Fij =
1

Ai

Z
x2Pi

Z
y2Pj

cos � cos �
0

�r2
V (x; y)dydx: (2.5)

The term Fij is known as the form factor between patch Pi and patch Pj and it

describes the proportion of total power leaving patch Pi that is received by patch Pj .

There is no known general closed form solution to the double integral in Equation 2.5.
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2.5 Computations Subsequent to Form Factor Calculations

Although computation of the form factors describes the geometrical relationships

between patches in a scene, it does not describe the distribution of light in the scene.

Each of the n patches in a scene has a corresponding instance of Equation 2.4. These

equations must be solved simultaneously in order to describe the distribution of light

within a scene. These equations can be written as a matrix equation:

0
BBBB@

B1

B2

...

Bn

1
CCCCA =

0
BBBB@

E1

E2

...

En

1
CCCCA+

0
BBBBB@

�1F11 �1F12 � � � �1F1n

�2F21 �2F22
...

...
...

�nFn1 �nFn2 �nFnn

1
CCCCCA

0
BBBB@

B1

B2

...

Bn

1
CCCCA

or rewritten as0
BBBBB@

1� �1F11 ��1F12 � � � ��1F1n

��2F21 1� �2F22
...

...
...

��nFn1 ��nFn2 1� �nFnn

1
CCCCCA

0
BBBB@

B1

B2

...

Bn

1
CCCCA =

0
BBBB@

E1

E2

...

En

1
CCCCA :

Solving the above equation is a familiar problem and many iterative methods exist to

invert the matrix on the left hand side of the equation. For scenes in which the number

of patches is relatively small, Gauss-Seidel relaxation can be used. For scenes with a large

number of patches, hybrids of Southwell and Jacobi iteration (progressive radiosity) are

frequently used. (See chapter 5 in [Cohen 93].)

2.6 The Hemicube Approximation

Given that there is no closed form solution to Equation 2.5, some form of approxima-

tion has to be made to compute form factors. The hemicube is one of the most popular

approximation method used in radiosity form factor computation. Despite the fact that

its accuracy is limited, its speed makes it the most popular choice.

The hemicube approximation rests on two assumptions. The �rst is that the inner

integral of Equation 2.5 varies little across the surface of patch Pi. Thus the area weighted

product of the outer integral can be approximated by a single di�erential element:

Fij =
1

Ai

Z
x2Pi

Z
y2Pj

cos � cos �
0

�r2
V (x; y)dydx �

Z
y2Pj

cos � cos �
0

�r2
V (x; y)dy: (2.6)
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This is a valid assumption provided the squared distance between the patches is larger

than the area of the patches. However, since we've already constrained the problem to

a closed environment, it will be likely that a number of the patches in the scene will be

closer to each other than this approximation assumes.

The second approximation used is Nusselt's analogy which is a geometrical interpre-

tation of the form factor (Figure 2.3). The value of the form factor is the ratio of the

intersection of the solid angle and the unit hemisphere projected on to the plane of the

patch and the area of the unit circle. This implies that all patches which intersect the

same solid angle will have the same form factor value.

The hemicube method erects a meshed half-cube above the center of the gathering

patch and pre-computes the form factor value for each window in the mesh. The form

factor values for each window are called delta form factors The hemicube method then

shoots a ray from the center of the gathering patch through the center of the window and

records the patch number of the closest patch intersecting the ray. After shooting a ray,

the form factor value between the gathering patch and the closest patch for that window

is incremented by the contribution to the form factor value for that window (Figure 2.4).

Because this method is similar to depth bu�ering algorithms used for rendering a scene,

the hemicube method is able to make use of special purpose hardware for depth bu�er

calculations built into many graphics cards in order to further accelerate the computation

of form factors.

Because of the simplicity of the geometry of the hemicube, computation of the delta

form factors is quite simple (Figure 2.5). Rewriting Equation 2.6 from a point x to a patch

P we have

Fx;P =
1

�

Z

P

cos � d!

where 
P is the set of directions in which a point on P is visible from x. Since

d! �
�A cos �

r2
;

the top faces of the hemicube (of unit height) have delta form factor values

�F =
�A

�(1 + x2 + y2)2
(2.7)



10

            

Figure 2.3: Nussult's analogy.

(From [Sill 94, page 49].)
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Figure 2.4: The Hemicube.

(From [Sill 94, page 51].)

            

Figure 2.5: Computation of the delta-form factors.

(From [Sill 94, page 51].)



12

and the side faces (positioned a unit from the origin) have delta form factor values of

�F =
�A

�(1 + z2 + y2)2
(2.8)

for a hemicube with a top face of 2 by 2 units and sides 1 unit tall.

There are several well known errors in the hemicube method. The most obvious error

is aliasing caused by the �xed number of windows in the hemicube. If the hemicube has n

windows in an environment having N patches and if n < N then obviously the hemicube

cannot gather light from all patches in the scene even if they are all visible. Thus it is

possible for a patch to miss a contribution from a light source while its neighboring patch

might include the contribution from that patch. These discontinuities in sampling cause

banding in the intensity of the �nal image. A second error in the hemicube method is

the lack of accuracy when patches are close together caused by the assumption that the

value of the inner integral does not vary much across the gathering patch. Although the

numerical values computed by the hemicube method for patches close together may be

100% or more o� from the true values, these errors do not produce discontinuities because

they are mis-approximations of geometrical relationships rather than computational noise.

Hence, they are less visible in the �nal image than aliasing errors.

Because the hemicube is so widely used in rendering radiosity images, it makes an

excellent benchmark for the usability of other form factor calculation methods and was

used to measure the usefulness of the neural network approximation.

2.7 An Analytic Solution

In 1993 Schr�oder and Hanrahan [Schro 93] published a closed form solution for the

computation of form factors between two general (planar, convex or concave, perhaps

containing holes) polygons. They made a C library implementation available over the

internet from Princeton University. (See reference [Schro 93]). The library functions

calculate the form factor between two polygons which are speci�ed by lists of the x; y; and

z values of each vertex in each polygon.

This library is too slow to be of practical use for rendering and the authors themselves

state the principle use of the library is for the computation of reference solutions for
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other, faster, approximation methods. The library is also somewhat fragile because of its

extensive use of inverse trigonometric functions, but we were able to use it as a ground

truth for the accuracy of both the hemicube and the neural network approximation. The

library consists of about 1300 lines of C code. The analytic solution itself requires the

computation of four auxiliary functions each of which require the solution of an integral.

The �nal solution has eighteen constants of integration. If nothing else, the complexity of

the solution is a testament to the di�culty of solving the form factor integral.

2.8 Training the Neural Networks with Cross Validation

The neural networks were trained using backpropagation with cross validation [Hass 95,

page 226]. Using cross validation makes the training more resistant to over �tting of the

training data. Roughly 80% of the training data was used to train the neural network,

10% was used as a validation set and 10% was used as a test set. With this method,

backpropagation is performed with the training set. The update rule in the method used

here seeks to minimize squared error over the training set. After an epoch of training,

the mean squared error of running the network on the validation set is computed. If the

validation error is lower than the current best validation error, then the weights of the

nodes in the neural network are saved. The test data set is also applied to the neural

network after each epoch in order to test how well the neural network will be able to

generalize to data it hasn't trained on.

The input vector for the neural networks was a list of the x; y and z values of each

vertex of each polygon. This representation of the input data, while simplistic, matches

that used by the analytic form factor library. This representation also has the advantage

of being easily extracted from graphics rendering software.

2.9 Comparing the Complexities of the Hemicube and Neural

Network Methods

Although the purpose of this report is to compare the accuracies of the hemicube and

neural network approximation methods, the computational complexity of each method

will briey be discussed here. For the purposes of discussion, we will consider only three
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Figure 2.6: A feed-forward neural network.

types of elementary operations: calls to the intersection routines of the rendering software,

calls to mathematic libraries and oating point operations (ops). The scene will consist

of n patches.

The hemicube method has two computational costs. The �rst is the computation of

the delta form factor values for the hemicube. For each window in the top of the hemicube,

the computations of Equation 2.7 must be performed. Since all of the side windows have

symmetric delta form factor values, the delta form factors only need to be computed for

one of the sides of the hemicube. The delta form factor values can be pre-computed and

stored on disk so they don't need to be a run time computational cost. During run time,

the hemicube computes the form factor values for the patch under the hemicube and all

other patches by determining the patches visible through each window in the hemicube.

The delta form factor values are then summed for each patch. Hence, for a scene with n

patches and a hemicube with c total windows, the complexity of form factor computations

with the hemicube method is

n� (c� [ray intersection] + c� [1 oating point sum]):

This algorithm has complexity O(nc).

A feed-forward neural network is shown in Figure 2.6. For each hidden unit, there is

a weight by which each of the input values is multiplied and a bias weight. The products
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of the inputs and the weights are summed for each hidden unit and the output of this

summation is passed through the sigmoid function to restrict the range of the output to

(0; 1). The output of each hidden unit is multiplied by a weight in the output unit and

these products are summed. This value is passed through a sigmoid function in the output

unit for the �nal value produced by the neural network. The sigmoid function, s(x), can

be written

s(x) =
1

1 + e�x
;

thus a call to a math library is required for each sigmoid computation.

For a neural network with ninputs inputs and nhiddens hidden units each form factor

computation requires

nhiddens(ninputs � 2 ops ) + (nhiddens � 2 ops ) + nhiddens math library calls :

Hence, the neural network takes O(nhiddens � ninputs) ops and O(nhiddens) math library

calls. Because the neural network calculates form factor values for each pair of patches,

n2 of these calculations must be done along with at least n2 visibility tests.

For scenes in which the number of patches is greater than the number of windows

in the hemicube, the hemicube will be faster because it performs fewer computations

however, this speed comes at the price of undersampling the environment and the aliasing

discussed above. The neural network approximation method can be used most pro�tably

as a substitute for pairwise numerical integration or pairwise Monte Carlo methods.

2.10 Summary

The accuracy of the analytic solution and the popularity of the hemicube method

make these methods excellent comparisons for the accuracy and usability of the neural

network method developed in the following sections.



Chapter 3

EXPERIMENTS WITH RANDOM DATA

3.1 Overview

The easiest way to use an approximation method would be if that method made very

few assumptions about the problem it was approximating. For neural networks, it would

be desirable to train the network once and not have to train it for each individual scene.

Since graphics rendering software often uses fairly simple schemes to mesh objects in the

scene, it would be desirable if an approximation method could extract vertices from these

representations and directly calculate form factors.

In order to assess neural networks as general purpose, form factor approximators, ex-

periments on randomly generated data were performed. In these experiments, randomly

generated, but arbitrarily shaped, planar quadrilaterals were generated. These repre-

sent the simplest representation of patches one can extract from rendering software while

maintaining no preference for orientation between the two patches. As a subset of general

polygons, these quadrilaterals are suitable for computation with Schr�oder's C library.

3.2 Generating Data

Generating data was the most problematic part of the experiment. The allowed values

of the form factor range from 0 to 1, however, if one were to use the polygons that were

generated in a computer graphics scene, one would �nd that the majority of the form

factors computed were in the range of 10�2 to 10�3. Hence, data from computer graphics

scenes are not useful in evaluating the full range of allowable form factor values.

In order to generate polygons which would cover the full range of allowed values, a

program was written to generate random quadrilaterals to be used for both testing data

and as training data for the neural network. The general algorithm used was:
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� Generate a random point.

� Generate a random normal vector (these together de�ne a plane).

� Generate vertices on a random walk about the plane until a non-crossing quadrilat-

eral is formed.

� Repeat the above steps to generate a second quadrilateral.

� Figure out which faces of the quadrilaterals face each other and compute a form

factor value using Schr�oder's analytic method and the hemicube method.

The above program still tended to generate form factors in the 10�2 to 10�3 range

so the generating program had to be adjusted to generate a sets of data with form factor

target values in a desired range. Changing the average distance between the patches and

the relative size between the patches allowed the range of form factor values to be varied.

Table 3.1 shows the mean, median, maximum and minimum values for data sets used

in this experiment. Portions of these data sets were used for training the neural network

while all data was used for testing.

For simplicity and to constrain the problem, the polygons generated for both testing

and evaluation data sets had the x; y and z values of all vertices lie within [0; 1). This

ensured that there will be no scaling e�ects arising from di�erent bounds on the training

and testing data sets.

3.3 The Neural Network

The neural network used in this experiment represents the best neural network de-

veloped thus far in terms of minimizing RMS error over the data used to train the neural

network. Preliminary experiments have indicated a general correlation between training

error and mean error measured over all data sets so training error us used to guide devel-

opment of the neural network. The neural networks were trained using cross validation as

described in the previous chapter.

Since sigmoidal hidden units and output units were used in the neural networks for

this experiment, some scaling of the data was needed for e�ective training. Although form
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factor values lie in the region [0,1], most of the data in real world scenes lie in the range

[10�6,0.2] with much of the data in the 10�3 range. Since the neural network must apply

extremely large negative values to the sigmoid to get values this close to zero, it is unlikely

that the neural network will e�ectively be able to learn to produce these values.

In order to avoid this problem the data was linearly scaled to lie in the range [0.1,0.9]

which is a more \linear" part of the sigmoid function. This was done using the function

fftrain = (0:8ffraw) + 0:1;

where ffraw is the value produced by the Rad program and fftrain is the value used to

train the network. When rendering, the output of the neural network must be unscaled

as

ffout =
(ffnet � 0:1)

0:8
;

where ffout is the �nal value from the approximation and ffnet is the value produced by

the neural network before unscaling.

The resultant weights were hard coded into the neural network software that did the

actual computation of errors over all the data sets.

3.4 The Experiment

A schematic of the experiment is illustrated in Figure 3.1.

The experiment is as follows:

� Generate data sets as described above. Form factor values using both hemicube and

the analytic method are computed in this step.

� Train the neural network on a data set which is the concatenation of all the data

generated in the previous step.

� The resultant neural network is used to compute approximate form factor values for

all data sets individually.

� The di�erences between the each approximate method and the analytic method are

taken.
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Figure 3.1: A schematic of the experiment with randomly generated data.
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� Two tailed, paired sample t tests are performed to test whether the means mean

errors of the hemicube and the neural network are signi�cantly di�erent for each

testing data set.

� F tests are computed for the variances of the errors of the hemicube and the neural

network to see if they are signi�cantly di�erent for each testing data set.

The reasons for the statistical tests are as follows. The mean error of the computed

form factor is the average o�set of an estimation from the true value. The standard

deviation of the error in estimating the form factors is related to the di�erence in the

form factor calculated for two adjacent patches. Since our eyes are much more sensitive to

di�erences in intensity than to intensity itself, it is believed that the standard deviation of

the approximation methods will have more visual signi�cance than the mean error. Hence,

in the following analysis standard deviation will be considered to be a more important

variable than mean error. Because the hemicube is a widely accepted approximation

method, the two tailed, paired sample, t tests will be performed on the hemicube and

neural network errors in order to see whether the neural network performs better or worse

than hemicube on a given data set.

3.5 Results

The results of the neural network run on all the data sets are shown in Table 3.1.

On the left hand side of the chart, the mean, median, maximum and minimum are listed

for the analytic values computed for that data set. This is meant to give some indication

as to the distribution of the data in the data set. In particular one can notice that it is

di�cult to generate data sets with a large portion of large form factor values.

On the right hand side of the chart are the mean error and standard deviation for both

the hemicube and the neural network. Also shown are the results of a two tailed, paired

sample t test between the neural network errors and the hemicube errors. (In this chart

1 = reject the null hypothesis; 0 = do not reject the null hypothesis.) The last column is

a F test on the variances of the data sets. (Again, 1 = reject the null hypothesis; 0 = do

not reject the null hypothesis.)
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Target Form Factor Values Results
Mean Median Max Min Samples NN mean NN std HC mean HC std T test F test

Error of Error Error of Error p < 0:0001 p < 0:05
A 0.6557 0.6304 0.9953 0.5000 1001 0.0119 0.0812 0.1111 0.1104 1 1
B 0.1576 0.1364 0.5763 0.1000 1001 -0.0025 0.0423 0.0045 0.0339 1 1
C 0.1536 0.1341 0.6043 0.1001 1001 0.0010 0.0416 0.0014 0.0339 0 1
D 0.3722 0.5005 0.9108 0.1000 2001 -0.0063 0.0532 0.0230 0.0565 1 1
E 0.1574 0.1374 0.6258 0.1001 1001 0.0019 0.0435 -0.0076 0.0110 1 1

F 0.0248 0.0101 0.4532 4.17e-7 989 -0.0054 0.0324 -2.1e-4 0.0076 1 1
G 3.14e-5 6.36e-6 0.0023 3.81e-11 989 0.0069 0.0424 1.2e-6 1.3e-4 1 1
H 0.0103 0.0031 0.2701 7.49e-9 998 -0.0074 0.0202 -9.6e-5 0.0097 1 1
I 0.0441 0.0215 0.6944 4.43e-7 978 -0.0037 0.0411 8.8e-4 0.0178 1 1

J 0.3673 0.3603 0.9052 1.44e-6 377 -0.0101 0.0634 0.0046 0.0511 1 1
K 0.3979 0.4033 0.9543 2.02e-7 410 -0.0160 0.0645 0.0035 0.0517 1 1
L 0.3470 0.3470 0.8214 4.01e-7 1425 -0.0057 0.0626 0.0056 0.0513 1 1
M 0.3676 0.3677 0.8957 1.44e-6 1507 -0.0084 0.0630 0.0063 0.0553 1 1
N 0.3591 0.3682 0.8117 1.06e-6 371 -0.0064 0.0607 0.0041 0.0469 1 1
O 0.4014 0.4095 0.9238 1.27e-5 414 -0.0110 0.0620 0.0035 0.0557 1 1

Table 3.1: Results of neural net (NN) and hemicube (HC) calculations on randomly

generated data.

In all data sets, the variance of the two methods were signi�cantly di�erent at the

p < 0:05 level. In all cases except one, the means of the distributions were signi�cantly

di�erent at the p < 0:0001 level. The one data set, C, where the null hypothesis was not

rejected could have been rejected at the p < 0:001 level. From this one can conclude that

the distributions are signi�cantly di�erent and one can reject the original hypothesis that

they would o�er equivalent performance.

The �rst group of data sets, A through E, were designed to have large form factor

values. These data sets should be di�cult for the hemicube approximation and indeed,

the neural network had lower absolute mean errors over all of these data sets. Data set A

is noteworthy in that it was deliberately designed to violate the assumptions behind the

hemicube approximation. Despite this, the neural network had standard deviations lower

than that for hemicube in only two of the �ve cases.

The second group of data sets, F through I, were designed to have small form factor

values. The hemicube had smaller absolute values of mean errors and smaller standard

deviations for all data sets.

The third group of data sets, J through O, were designed to try to mix large and small

form factors by creating bins 0.1 unit wide. When the form factors in a particular bin had

reached a predetermined limit, no more would be collected in that bin. This evened out

the data over the lower form factor values but at larger values, say, greater than 0.7, the

data were rare so that the bins of larger values didn't necessarily get �lled by the time the
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� 10�4 10�3 10�2 10�1 100

Samples 1219 652 1639 1858 10267

Hemicube Error �1:6(10�6) �1:7(10�6) �3:8(10�4) �1:5(10�3) 1:8(10�2)

Hemicube Std 6:4(10�5) 5:6(10�4) 1:7(10�3) 9:6(10�3) 6:6(10�2)

Neural Net Error �1:5(10�3) �5:7(10�3) �1:0(10�2) 3:8(10�3) �3:6(10�3)

Neural Net Std 3:4(10�2) 3:8(10�2) 3:0(10�2) 3:3(10�2 5:8(10�2

Table 3.2: All Data Sets Concatenated and then Binned by Decade

run was ended. In all cases, both the absolute value of the mean error and the standard

deviation were lower for hemicube.

The second group of data sets have values that represent the values most likely to be

encountered in the actual rendering of a radiosity scene and clearly, the neural network

o�ers less accuracy than the hemicube. However the remarkable uniformity of results

for both the hemicube and the neural network in the third group of data sets suggests

there might be a tighter relationship between the data and the results produced by the

approximation methods.

In order to further examine the relationship between the form factor size and approx-

imation method used, all data sets were concatenated into one data set and the results

were binned by decade as shown in Table 3.2. From this chart one can see that the abso-

lute value of the hemicube mean error is consistently two decades below the target form

factor value and the hemicube standard deviation is at least one decade below the target

form factor value. The neural network, on the other hand, had absolute mean error values

in the 10�3 range and standard deviations in the 10�2 range across all target form factor

values. Hence, the errors produced by the hemicube are a function of size of the form

factor value while the errors produced by the neural network are independent of the form

factor value.

Since fully one third of the data is less than 0.1 and since the neural network in

this experiment was trained on all the data one can conclude that the disparity in the

performance of the neural network above 0.1 and below 0.1 is not due to not having

seen training examples below 0.1, but due to the fact that training the neural network to
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minimize mean squared error produces a uniform \noise oor" which is not a function of

target value.

Finally, it should be noted that in the 100 bin of Table 3.2 that the neural network had

a lower absolute mean error and a roughly equivalent standard deviation when compared

to the hemicube.

From the above data, the following conclusions are drawn:

� As trained in this experiment, the neural network does not o�er the accuracy that

the hemicube did over these data sets.

� For this problem, it is desirable to have errors that are somehow proportional to the

target value rather than unrelated to the target value. Hence the neural network

should have trained with a function that minimized percentage error or some function

of percentage error.

� Most importantly, the absolute mean error and standard deviations produced by

the neural network for form factor values greater than 0.1 suggest that for the range

[0:11:0), the neural network can be a valid approximator of radiosity form factors.



Chapter 4

EXPERIMENTS WITH DATA FROM A SIMPLE SCENE

4.1 Overview

In order to do both visual and numerical comparisons of the accuracy of environments

rendered with neural networks, a public domain radiosity package, Rad [Patt 92], was

modi�ed to compute form factors with both the analytic solution described above and

with neural networks in addition to the hemicube method already implemented in Rad.

In the process of rendering an image with a given method, the form factors computed by

the program are written to a �le so that statistical comparisons could be made between

di�erent form factor computation methods. The rest of this chapter describes the methods

used to modify Rad, train the neural networks, perform the statistical tests. The results

are presented statistically and as a rendered scene.

4.2 The Method

4.2.1 Modifying Rad

Rad is a public domain radiosity rendering program written by S. N. Pattanaik

[Patt 92]. As delivered, Rad computes form factor values using the hemicube method

so the program was modi�ed to also compute form factors with the analytic library and

neural networks. The algorithm used for these modi�cations is shown in Figure 4.1.

For each of the n patches in a scene, this algorithm tests to see if each of the other n�1

patches is visible by casting a ray from the center of the base patch to the center of the

target patch using intersection routines already built into the Rad program. If the patch

is visible, then the algorithm calls built in routines to extract the x,y, and z values for

each vertex of the quadrilaterals in clockwise order and passes them to either the analytic
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O = the number of objects
Uires = the resolution of the u parameter of object i
Vires= the resolution of the v parameter of object i
Ui0res = the resolution of the u parameter of object i0

Vi0res= the resolution of the v parameter of object i0

ui; vi = the parameters of the surface of object i
ui0 ; vi0 = the parameters of the surface of object i0

For i = 1 to O

For j = 1 to Vires

For k = 1 to Uires

For i
0

= 1 to O

For j
0

= 1 to Vi
0 res

For k
0

= 1 to Ui
0 res

If Patch Pijk = Pi
0

j
0

k
0 , then set Fii

0 = 0 and go to next iteration.

ui = k=Uires, vi = j=Vires,
ui0 = k0=Ui0res, vi0 = j0=Vi0res

// The following adjustments to u and v values prevent
// degenerate points in the meshing of spherical objects
// which cause problems when give to the analytic form
// factor library

If vi (v
0

i) = 0 set vi (v
0

i) to 0:0001

If vi (v
0

i) = 1 set vi (v
0

i) to 0:999

If ui (u
0

i) = 0 set u (u0) to 0:0001

If ui (u
0

i) = 1 set ui (u
0

i) to 0:999

Cast a ray from the center of Pijk to the center of Pi
0

j
0

k
0

If the ray is obstructed or the patch normals don't face each other,
Set Fii

0 = 0 and go to next iteration

Extract x,y and z real world coordinate values for each of the vertices
(in clockwise order) for both patches using the i; (i0); u; (u0)

and v; (v0) values

Call the analytic form factor (or neural net) library
Input: vertex x,y and z values for both patches
Output: the form factor value, Fii0 , from Pijk to Pi

0

j
0

k
0

End
End

End
End

End
End

Figure 4.1: The algorithm for neural net and analytic form factor calculations.

This algorithm does n2 pairwise computations of form factor values for n patches in an

environment.
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form factor library or the neural network form factor library. In order to save memory, the

Rad program never explicitly meshes the scene and stores it as a vertex list, but instead

extracts patch numbers from the object description every time a ray intersects an object.

For this reason, this algorithm must specify each patch by the triplet <object,u,v> where

u and v are the indices of the patch on the surface of the object. Hence the loops of this

algorithm are nested six deep instead of doubly nested.

The algorithm in Figure 4.1 is naive in the way it does its visibility testing. Since it

only checks to see if the centers of the patches can see each other, it could overestimate

the form factor if the receiving patch is partially obscured or it could underestimate the

form factor value if the probing ray is obstructed. By contrast, the hemicube method

does much �ner grain visibility testing since the visible portion of all contributing patches

are actually projected on to the surface of the hemicube itself. On the other hand, this

algorithm is free of the aliasing problems one encounters with the hemicube method. In

order to accurately compare the hemicube method with the methods using this algorithm,

the tests must be performed on relatively simple environments with few obstructions.

4.2.2 Data Generation

The data was generated in the manner shown in Figure 4.2 A simple scene with no

obstructions was rendered with Rad using the analytic form factor computation method.

The scene itself consists of a cube with 6 walls. The top, back, bottom and back surfaces

white. The left side is red while the right side is blue. Each side is meshed with a 7 by 7

grid so that there are 49 patches on each side. The entire scene consists of 294 patches.

The entire side behind the viewer is uniformly luminous.

In the process of rendering with this method, a data �le is created with the input

values given to the analytic form factor library and the result returned by that library.

The same scene was rendered again with each of the neural network architectures and

with the hemicube method. In the process of rendering, the form factor matrices for each

method are written to a �le. After rendering, the images produced are compared visually

and the form factor matrices are compared statistically as described below.
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Figure 4.2: Experiment Design
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4.2.3 Training the Neural Networks

The neural networks were trained using backpropagation with cross validation as

described in Chapter 2. Networks with 5, 15, 30 and 50 hidden units were trained with a

learning rate of 1.0 for the hidden units and 0.1 for the output unit. The inputs for these

neural networks used the linear scaling described in the previous chapter.

As we have seen in the previous chapter and as we will see in the results that follow,

training the neural network with linearly scaled targets tended to produce an output error

that is independent in magnitude from the target value the network is trying to reproduce.

This places extraordinary demands on the accuracy of the neural network if the neural

network is to have errors which are small in comparison to the smallest expected target

value.

The hemicube method, by contrast, produces errors which are somewhat proportional

to the size of the target value. In order to reproduce this characteristic with the neural

network, training was also done with logarithmic scaling. The base 10 logarithm of the

target values which were then scaled to the range [0.1, 0.9]. These were scaled as

fftrain = (�0:1 log10 ffraw) + 0:1

and unscaled as

ffout = 10

ffnet � 0:1

�0:1 :

4.2.4 Evaluation

In order to evaluate the accuracy of the neural networks, the mean error between the

form factor values produced by the analytic solution and the other approximate solutions

were computed. The mean of the error should indicate how much bias there is, on average,

in each computation that each approximation makes. While the mean of the error is not

expected to be visually signi�cant, because human vision is not very sensitive to absolute

intensity values, the computations following the computation of the form factor values rely

on the overall accuracy of the approximation method. It is hoped that the magnitude of

the errors is smaller that the target values, hence the standard deviation of the error were
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Approximation Number of Mean Error Std. Dev. T test F test

Method Hidden Units of Error Hypth. t value Hypth. F value

1 = reject 1 = reject

null hypth. null hypth.

Hemicube 6:0358(10�6) 0.0043 0 0.4142 1 7.79

Neural Net 50 4:1391(10�4) 0.0053 1 22.80 1 1.47

(Linear Scaling) 30 9:5549(10�4) 0.0059 1 47.67 1 1.63

15 0.0819 0.0375 1 642 1 15.91

5 0.0822 0.0378 1 639 1 16.00

Neural Net 30 0.2262 0.1160 1 573 1 150

(Log Scaling) 15 0.1492 0.0672 1 652 1 50

5 0.1482 0.0669 1 651 1 49

Table 4.1: Results of rendering a simple scene with various neural networks.

Training on standard radiosity cube.

4000 epochs. Mean of target data: 3:4(10�3). Standard Deviation of target data: 0.0096.

86436 samples in the data set.

computed. If the standard deviation of the error is larger than the standard deviation of

the target values, then something is wildly wrong with the approximations.

Several statistical tests were performed on the results. Since it is hoped that each

approximation is indistinguishable from the target data, two tailed, paired sample, t tests

were performed on each approximation to see if the approximated values and the target

values are, on average, signi�cantly di�erent. Because human vision is more sensitive to

contrast than intensity, F tests were computed between the variance of the target data

and the variance of the data produced by each approximation method. We hypothesis

that the data which are indistinguishable by t tests might be distinguishable visually, and

hence some measure of contrast might be important.

4.3 Results

4.3.1 Statistical Results

The statistical results of the experiment are shown in Table 4.1. As one can see from

the table, the mean error of the hemicube method was considerably lower than that of

any of the neural networks. Further, only the hemicube and the 50 hidden unit neural

network were able to render an image. The other neural networks \blew up" when the
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Rad program tried to render the image: the program exited and core dumped. These

observations can be suggest a practical threshold for the required accuracy of the form

factor calculations. Since each row (or column) of the n by n form factor matrix should

sum to one, the sum of all elements in the form factor matrix should be the number of

rows in the matrix, i.e.

Mean error =

P
(FFactorapproximate � FFactoranalytic)

Number of Samples
=

P
(FFactorapproximate � FFactoranalytic)

(Number of Rows)(Number of Rows)
=

Average Row Error

Number of Rows

Hence the mean error over all the form factors multiplied by the number of rows gives the

average error for a given row. If the mean error for the hemicube is multiplied by the 294

rows in the form factor matrix for this scene, the average error per row is about 0.2%.

For the 50 hidden unit, linearly scaled, neural network, this error is 12% and for the 30

hidden unit, linearly scaled, neural network, this error is 28%. Thus, for the Rad program

and for this particular scene, the accuracy of the form factor should be such that the sum

of each row should have 12% error or less in order for the program to run to completion

without problem. More generally, however, this suggests that there is an upper bound on

the acceptable error for the form factor values if a scene is to be successfully rendered.

Comparing the statistical tests for the 50 hidden unit neural network and the hemicube

solution one can see that the t values for the hemicube were more than 50 times lower

than for the neural network while the F values for the hemicube were somewhat higher

than for the neural network. As we shall see later, the hemicube produced a much better

image than the neural network, so the hypothesis that variance is visually more signi�cant

than the overall accuracy of the approximation may be false or at least masked by large

mean error of the neural network.

4.3.2 Visual Results

Plate 1 in Figure 4.3 shows the scene rendered with the analytic method while Plate 2

shows the scene rendered with the hemicube method. Despite the inaccuracies of the
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Plate 1 (analytic) Plate 2 (hemicube)            

Plate 3 (neural network) Plate 4 (red)

Plate 5 (green) Plate 6 (blue)

Figure 4.3: A simple radiosity scene rendered with the analytic, hemicube and neural

network methods.
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hemicube method, these two images are di�cult to distinguish visibly and the image ren-

dered with the hemicube shows the correct symmetry of red and blue color components

about the vertical center of the image. The hemicube image also shows the correct dim-

ming of all color components with increasing distance from the luminous surface (shown

here as depth into the scene). The scene rendered by the 50 hidden unit neural network as

shown in Plate 3, seems to show the correct fading of color from left to right in the scene.

However, it shows neither the correct dimming with distance from the luminous surface

nor the correct symmetry about the vertical center of the image. Both the hemicube and

the neural network methods took about �ve minutes to render the scene while the analytic

method took several hours.

To further explore the errors in the image rendered by the neural network, three

more images, Plates 4, 5, and 6, were created showing error in the red, green, and blue

components respectively. In the new images, each pixel is the di�erence between the value

rendered by the approximate method and the value rendered by the analytic method. The

images were scaled such that medium gray represents no error, white represents positive

error and black represents negative errors.

It is di�cult to predict how errors in the form factor matrix would a�ect the computa-

tions that follow, but several things might be expected. Since three independent Gaussian

elimination steps are performed to compute the distribution of light for each of the three

color components, one might expect to see symmetric errors in the color computations.

The errors one sees in the green component (Plate 5) do appear to be symmetric, but the

red and blue components (Plates 4 and 6) did not converge to solutions with symmetric

errors. The errors, however, are clearly not randomly distributed across the three error

images, which suggests that inaccuracies are not caused solely by random noise in the

approximation but by systematic inaccuracies in the neural network's approximation of

the form factor integral. In other words, the neural network has not fully learned all the

relevant relationships for form factor calculations. Given that such a simple scene gener-

ated an enormous amount of data to train on, this might suggest that the representation

used to specify the quadrilateral, the x; y and z values of each vertex, may be too vague
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for the neural network to learn the correct relationships between patches. It is possible

that with even more training data a better approximation could be achieved. However, if

the additional training data introduced more geometrical relationships between patches,

this e�ect could be diluted.



Chapter 5

CONCLUSION

We conclude this report with some observations about the experiments and the im-

plementation of tools used in the experiments. Most important of these observations are

the issues of visibility and representation. Directions for future work are then suggested.

5.1 Visibility

Our statement of the form factor in Equation 2.5 was

Fij =
1

Ai

Z
x2Pi

Z
y2Pj

cos � cos �
0

�r2
V (x; y)dydx;

which contained the innocuous term V (x; y) where

V (x; y) =

(
1; if x and y are mutually visible;

0; otherwise.

In actual implementations, the V (x; y) term can be more problematic than the rest of the

integral.

Several of the most popular form factor approximation methods inherently take visi-

bility into account. The hemicube, for example, casts a ray through each window in the

hemicube and �nds the closest patch that the ray intersects. In this manner, the visible

portion of all patches in the scene (within the limits of the hemicube resolution) are pro-

jected onto the surface of the hemicube. Another popular method, Monte Carlo sampling,

selects a pair of patches and then casts rays between randomly selected beginning and

ending points on the patches. If the cast rays are occluded by other objects, then they

don't contribute to the estimation of the integral and in this manner the V (x; y) term is

accounted for.
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The naive implementation of the neural network approximation used in this report

simply casts a ray from the center of one patch to the center of another patch to determine

visibility. If the contributing patch is, say, 40% occluded but the ray cast for the visibility

test is not, then the estimate of the form factor will be seriously in error. One solution to

this problem is simply to mesh the scene with smaller patches. However, increasing the

n2 pairs of form factor computations to be done is undesirable. Another solution would

be to cast multiple rays to test visibility for each pair of patches. If either all or none of

the rays are obstructed, then either the full form factor is calculated or it is zero. If a

portion of the rays are obstructed, the patches could be adaptively subdivided until they

were small enough for an \all or nothing" estimation of the form factor.

A novel solution to the visibility problem would be to use the hemicube method to

locate the closest patch and then use the neural network to compute the delta form factor

between the base patch and each window in the hemicube. With a properly implemented

neural network, this could increase the accuracy of the hemicube method, although it

would not address the aliasing problem inherent in the hemicube method nor would it

be able to take advantage in the pre-computation used in the straightforward hemicube

method.

5.2 Representation of the Patches

The representation of the quadrilaterals used in this report, the x; y and z values of

each vertex in the two quadrilaterals, was chosen for two reasons. First, this representation

is easy to extract from routines within the Rad program. Second, these are the required

inputs for the analytic form factor library routines, so they had to be computed anyway.

There is no indication that this representation is optimal. For example, for two patches

there are four ways to start the clockwise listing of vertices. This gives sixteen ways to

list the vertices that are input into the neural network yet each of the ways gives the same

form factor. This redundancy suggests a more concise representation for the patches could

exist.

An interesting test of the current representation would be to take the data from the

simple scene and train the neural network on the dot product of the patch normals. If
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the neural network would learn this relationship then one could have more faith that the

representation of the problem used here is appropriate.

5.3 Future Work

Several directions exist for future work. The experiments with data from a simple

scene (Table 4.1) suggests that a threshold has been crossed between a neural network

with 30 hidden units, which cannot render a scene and a neural network with 50 hidden

units, which can render a scene. In order to render scenes with more accuracy, larger

neural networks should be tested with the simple scene data in order to see if accuracy

improves.

The experiments with random data illustrate the desirability of an approximation

that produces errors that are proportional to the target value. Although the experiments

which trained the neural network on the logarithm of the target value have produced

results as good as the networks trained on linearly scaled data, this idea should be further

explored in order to reduce the demands on accuracy needed by the neural network.

A more fruitful direction, however, might be to more directly model the integral

sampling one �nds in numerical integration and in Monte Carlo integration. This could

be done by breaking the problem of solving the integral into sampling the two patches

with one layer of a multi-layer network and then computing the contribution to the overall

integral with another layer in the network. The �rst hidden layer of the network might

be trained to have each node in the hidden layer sample a subsection of the of each of the

two patches represented in the input vector. After this layer was trained and hard-coded

into the network, a second hidden layer could be trained to compute the kernel of the

form factor integral for each of the sub-patch pairs found in the previous layer. The ouput

unit would then simply sum up the integral. The total amount of training required of the

neural network might be much reduced by specifying more speci�c subtasks and solving

them independently.
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