
Reinforcement Learning with Modular Neural Networks for Control

Charles W. Anderson Zhaohui Hong

Department of Computer Science

Colorado State University

Fort Collins, CO 80523

anderson@cs.colostate.edu

Abstract

Reinforcement learning methods can be applied to

control problems with the objective of optimizing the

value of a function over time. They have been used

to train single neural networks that learn solutions to

whole tasks. Jacobs and Jordan [5] have shown that a

set of expert networks combined via a gating network

can more quickly learn tasks that can be decomposed.

Even the decomposition can be learned. Inspired by

Boyan's work of modular neural networks for learning

with temporal-di�erence methods [4], we modify the

reinforcement learning algorithm called Q-Learning to

train a modular neural network to solve a control prob-

lem. The resulting algorithm is demonstrated on the

classical pole-balancing problem. The advantage of

such a method is that it makes it possible to deal with

complex dynamic control problem e�ectively by using

task decomposition and competitive learning.

1 Introduction

Neural networks have been applied in a number of

ways to the problem of learning to control a system

[3]. Usually there is a single network in a system.

The performance of the system depends on many fac-

tors, such as the structure and the size of the prob-

lem to which it is applied, the amount of training

data, the type of neurons in the network, and so on.

Larger networks are capable of learning more complex

functions, but generally require more training expe-

rience. This prompted the development of a modu-

lar network architecture to automatically decompose

a problem and train multiple, smaller networks on

sub-problems. Modular networks have been primar-

ily studied in the supervised-learning paradigm. Here

we develop a modular network form of a reinforcement

learning algorithm, the Q-learning algorithm, and ap-

ply it to the simulated pole-balancing problem.

Reinforcement learning is a direct learning method

in which the performance of the learning agent is eval-

uated based on a single scalar reinforcement signal.

The objective is to determine an optimal policy which

can determine the actions that the agent is going to

take given each state.

Q-learning is a family of reinforcement learning

algorithms initially developed by Watkins [6]. The

prevalence of these algorithm is partially due to the

existence of convergence proofs [7]. In Q-learning, the

predicted long term cumulative reinforcement, called

the Q-value, is a function of actions as well as input

states. The Q-function acts as an evaluation func-

tion that predicts the discounted cumulative reinforce-

ment. The action-selection policy is based on the Q-

value and the adjustment of the reinforcement pre-

diction is based on the temporal di�erence error in

the Q-value. The Q-network learns the optimal Q-

function that maps each action-state pair to the dis-

counted cumulative reinforcement. The control policy

simply selects the action that leads to the maximum

Q-value for the current state.

Modular nets consist of several single networks and

a gating network, which determines how much of each

network's output is applied to the �nal output. The

single network is also called an expert network. Ex-

pert networks and the gating network work together

to learn to divide a task into several subtasks that are

functionally independent. The gating network medi-

ates the competition of each expert network and allo-

cates distinct networks to learn each task. This mod-

ular architecture avoids learning a �xed global control

policy, which may not be good for the whole control

task under every di�erent operation point.

Figure 1 shows a typical architecture of modular

networks. There are two types of modular networks.

The di�erence resides in the design of the gating net-

work. For the �rst type of network a human decom-

poses the problem. A prior knowledge is hard-coded

Expert Network 1

Expert Network 2 1 2 2 n n

Expert Network n

Gating Network

y

y

y

g g g

1

2

1 2 n

n

output=g y + g y + ... + g y1

Figure 1: A Modular Connectionist Architecture

into the gating network so the gating network can co-

ordinate the outputs of the expert networks without

being trained. The second type of network consists

of several expert networks and a gating network that

learns to control the �nal output of the whole network.

This network starts training from scratch and doesn't

need any a priori knowledge.

Jacobs and Jordan [5] studied the modular network

architecture in a \multiple payload robotics" task.

They tested four architectures: a single network, a

modular architecture, a modular architecture with a

share network, and a constrained modular architecture

with a share network, respectively. They concluded

that faster learning speed over the single network can

be achieved by developing a piecewise control strategy

for each sub-network.

Boyan [4] developed a modular neural network for

learning game strategies. He applied his \Designer

Domain Decomposition" and \Meta-Pi" architectures

to the Tic-Tac-Toe and Backgammon games. Both

architectures used temporal-di�erence methods.

1.1 Q-Learning for Modular Networks

Figure 1 shows several expert networks in the mod-

ular architecture and one gating network. The expert

network architectures are equivalent, and in fact can

be used as stand-alone networks trained to learn the

whole task. When used as part of a bigger modular

network, each competes to learn a sub-task instead of

learning the whole task. In Figure 1, yi; i = 1; 2; : : : ; n

denotes the outputs of expert networks. The gat-

ing network has the same number of output units

as the number of expert networks. The variables

gi; i = 1; 2; : : : ; n denote the outputs of each output

unit of the gating network. The values of gi are non-

negative and sum to one. The output of the entire

network is determined by

output =

nX

i=0

giyi

In this way, the gating network determines how much

each expert network should contribute to the �nal out-

put.

The weights of a neural network being trained via

Q-learning are modi�ed so as to maximize the dis-

counted cumulative reinforcement in the future:

Vt =

1X

k=0

krt+k

where Vt is the discounted cumulative reinforcement,

rt is the reinforcement received after the state transi-

tion from t to t+ 1,
 is a discounted factor adjusting

the importance of long term consequences of actions.

During learning, maxfQ(y; k)jk 2 actionsg is used as

an approximation to the discounted cumulative rein-

forcement Vt.

When given a state x and an action a, the system

goes into a new state y and gets feedback reinforce-

ment r from the environment. The Q-function can be

learned by the following steps:

1. input vector is fed into expert networks and the

gating network.

2. the gating network selects ith expert network for

that particular input state according to the pre-

coded output value.

3. let u be the current value of Q(x; a) output by

the ith expert network;

4. let u0 be the ith expert network's predicted value

r +
maxfQ(y; k)jk 2 actionsg;

5. update the weights of the ith expert network to

improve Q-function by back-propagating the tem-

poral di�erence error u0 � u.

When the gating network is not �xed, the modu-

lar network is able to learn both a decomposition of

the whole task and the control of each sub-task. The

gating network with trainable weights takes the same

input as what the expert networks take. The last layer

of the network computes the weighted sums of the out-

puts of the hidden units. The weighted sum of the jth

unit is denoted as sj :

sj =

mX

i=1

xiwji

where m is the number of hidden units, and wji is the

weight connecting output node j and hidden unit out-

put xi. Because the outputs of gating network have

to sum to one, the softmax activation function is used

in the second layer of the network to meet this con-

straint. The ith output node is denoted as gi:

gi =
esiPn

j=1 e
sj

where n is the number of output units.

During the training, the weights of the expert net-

works and the gating network are updated at the same

time using the backpropagation with TD-error. The

Q-function is learned and the discounted cumulative

reinforcement in the future is maximized. In our ex-

periments, the expert networks used radial basis func-

tions in the hidden units in order to compare directly

to the results of Anderson [2].

2 Experiments and Results

The pole-balancing problem is a classic example

of an inherently unstable system. It involves a pole

hinged to the top of a wheeled cart which can move

along a track of limited length. The system is mod-

elled by two di�erential equations, taken from Ander-

son [1]. The neural network receives a performance

feedback, which indicates failure when the pole falls

past 12 degrees from vertical and when the cart hits

the bounds of the track, and a four-component vector

as the current state including the velocities and posi-

tions from the pole-cart system. The pole is said to be

balanced if it does not fail within 10,000 steps. After

each failure either due to that the pole falls to a de-

gree greater than required or due to the cart hits the

horizontal boundary, the pole and the cart is reset to

the original position in which pole is straight up and

the cart is in the middle of the track.

The performance is judged by the average number

of failures before the pole balanced. The smaller it

is, the better the performance is. Averages are taken

from a total of 30 runs. Each run follows the proce-

dure of initializing the networks, taking the pole/cart

system state from input vector, predicting the action

that needs to take, applying the action, getting next

pole/cart system state, and updating the network.

Each run ends up with the pole/cart system is bal-

anced. The only di�erence among these runs is that

the initial states of networks are di�erent because of

the di�erence seed values for the random number gen-

erator.

For the �xed gating network, we tested networks

with two and with four expert networks and four par-

Table 1: Training with trainable gating network for

di�erent numbers of expert networks.

number of expert networks 2 4 8

avg. number of failures 2398.8 2364.97 2596.23

number of failed runs 0 0 0

titioning methods: partitioning the state space ac-

cording to the position of the cart, the velocity of the

cart, the position of the pole, and the velocity of the

pole. The results of a typical two-expert experiment

are the following. The everage number of failures be-

fore balancing is 2433, 2364, 3548, and 4507 for par-

titions based on cart position, velocity, pole position,

and pole velocity, respectively. The average number

of failed runs for these four partition methods is 0,

0, 5, and 21. The average number of failures before

balancing does not count the failed runs. From these

results, we see that the performance of the network

depends on the methods of task decomposition. The

decomposition based on the cart's position and veloc-

ity are signi�cantly better than on the pole's position

and velocity.

A typical four-expert experiment resulted in only

17 runs balancing the pole and other 13 runs don't

balance. The average number of failures before bal-

ance in the 17 successful runs is 4323, not counting

the unsuccessful runs. This result shows that perfor-

mance is not improved as the task is decomposed into

more sub-tasks.

In experiments with a trainable gating network, our

goal was to see whether the number of expert net-

works impact the performance of the whole network

and how the gating network allocate the expert net-

works to the various input state spaces over di�erent

runs. Table 1 shows the performance of the network

with various numbers of expert networks. The perfor-

mance is almost the same for all the networks, which

contradicts our expectations. We expected that the

performance would increase as the number of experts

increases. However, we found that a four expert net-

works with a trainable gating network generally per-

forms better than the one just con�gured with a �xed

gating network.

Training with a trainable gating network results in

a smaller average number of failures, and a smaller

number of unsuccessful runs during the total of 30

runs. The trainable gating network helped the expert

networks perform better than a �xed gating network.

Table 2, which shows the training results under two

same learning rate sets (in each pair, the �rst item

Table 2: Fixed Gating Network vs. Trainable Gating

Network

learning rate 1 learning rate 2

�xed 4323.12, 13 3199.75, 6

trainable 2405.00, 2 2430.33, 0

represents the average number of failures before bal-

ance, the second item represents the number of un-

successful runs), also con�rms this conclusion. This is

encouraging because it shows that the gating network

does learn the decomposition of the task and how to

assign di�erent expert network to respond to various

state spaces.

In order to watch how the the gating network as-

signs di�erent expert networks to various input state

space, we investigated the outputs of the gating net-

work. We found that out of 30 runs, 13 resulted in 1

expert network being allocated, 14 resulted in 2 net-

works allocated, 3 resulted in 3 networks, and no runs

resulted in 4 networks. So sometimes the modular

network just runs like a single network. Other expert

networks are not in use. But there are still 14 runs

in which there are two networks allocated. In most

of these runs, the cart's velocity was used to allocate

the expert networks, which matches the results that

we got from the training with 2 expert networks and a

�xed gating network. One works on the positive cart's

velocity and another works on the negative cart's ve-

locity. There are three runs that allocate three expert

networks. No run allocates all four expert networks.

Other expert networks actually are not in use.

3 Discussion and Conclusion

Compared with the training on the same problem

with single neural network, the results show that the

modular neural network does not surpass the perfor-

mance of the single networks. With the same values

of �, �h, and �� , an experiment with the single net-

work succeeded in balancing the pole/cart system for

29 runs and the average number of failure before bal-

ance is 2532 without counting the failure run.

This work has shown that Q-learning can be

adapted for a modular network architecture and ap-

plied to dynamic control problems. However, our pre-

liminary results show that the modular networks do

not perform better that a single network architecture.

This might be related to the symmetry of the pole-

balancing problem, which results in a fairly simple,

single-network solution. For example, the control sig-

nal may be negated when the cart or the pole goes

from left to right. The pole-balancing problem is not

a typical control problem in which di�erent local con-

trol models are required. A global control model can

perform as well as two local control models.

Possible extensions of this research are to try di�er-

ent activation functions for the hidden layer in the ex-

pert networks, to test more parameter-value combina-

tions, and to apply such an architecture and learning

algorithm to a dynamic problem with a more complex

input state space.

References

[1] C. W. Anderson. Strategy learning with multilayer

connectionist representations. Technical Report

TR87-509.3, GTE Laboratories, Waltham, MA,

1987. Revision of article that was published in

Proceedings of the Fourth International Workshop

on Machine Learning, pp. 103{114, June, 1987.

[2] Charles W. Anderson. Q-learning with hidden-

unit restarting. In Stephen Jose Hanson, Jack D.

Cowan, and C. Lee Giles, editors, Advances in

Neural Information Processing Systems 5, pages

81{88. Morgan Kaufmann Publishers, San Mateo,

CA, 1993.

[3] A. G. Barto. Connectionist learning for control:

An overview. In W. T. Miller, R. S. Sutton, and

P. J. Werbos, editors, Neural Networks for Con-

trol, chapter 1, pages 5{58. MIT Press, Cambridge,

MA, 1990.

[4] Justin A. Boyan. Modular neural networks for

learning context-dependend game strategies. Mas-

ter's thesis, University of Cambridge, 1992.

[5] R. A. Jacobs and M. I. Jordan. A modular connec-

tionist architecture for learning piecewise control

strategies. In Proceedings of the 1991 American

Control Conference, 1991.

[6] C. Watkins. Learning with Delayed Rewards. PhD

thesis, Cambridge University Psychology Depart-

ment, 1989.

[7] Whitley, Dominic, Das, and Anderson. Genetic

reinforcement learning for neurocontrol problems.

Technical Report CS92-102, CSU, 1992.

