FEATURE GENERATION AND SELECTION
BY A LAYERED NETWORK OF
REINFORCEMENT LEARNING ELEMENTS:
SOME INITIAL EXPERIMENTS

Charles W. Anderson
Computer and Information Science Department
University of Massachusetts
Amherst, Massachusetts 01003

COINS Technical Report 82-12

Acknowledgement

Andrew G. Barto and Richard S. Sutton designed the learnipg
rules, guided the development of the network architecture used in
the experiments, and provided helpful comments concerning the
issues and clarity of this report. Richard Sutton al§o
contributed to the computer graphics used in the figure;. ?h;s
research was supported by the Air Force Office of Scientific

Research and the Air Force Avionics Laboratory through Contract
No. F33615-80-C-1088.

Abstract

The adaptive network approach to pattern classification was
persued at an optimistic rate in the 1950's and 60's. As the
complexity of the tasks increased, networks with 1layered
architectures were formulated to allow the construction of
nonlinear input-output mappings. However, progress with this
approach was practically halted by the lack of general learning
algorithms with which 1layered networks could acquire the
appropriate mappings. Adaptive elements using error-correction
techniques are not of sufficient complexity to allow the type of
inter-element cooperativity that is necessary for efficient
learning to occur in layered networks. We have found that the
desired cooperativity can arise by constructing networks from
elements that employ a more powerful form of reinforcement
learning. This is illustrated in this report by presenting a
layered network that learns to perform some simple control tasks
by simultaneously 1) developing an input representation with the
appropriate balance between discrete and continuous components,
and 2) learning the appropriate control actions as a function of

the input representation.

TABLE OF CONTENTS

LIST OF FIGURES .

1.0 INTRODUCTION .
2.0 THE "DIVIDE AND CONQUER" APPROACH TO CONTROL SYSTEMS .
3.0 STORAGE VS. COMPUTATION
4.0 OPEN-LOOP VS. CLOSED-LOOP LEARNING
5.0 ERROR-CORRECTION VS. REINFORCEMENT LEARNING . . .
6.0 A LAYERED NETWORK THAT LEARNS FEATURES AND ACTIONS .
6.1 Introduction
6.2 Description of the Tasks
6.3 Layer 2 of the Network
6.4 Layer 1 of the Network . e e e .
6.5 Operation of the Combined Layers c e e e e
7.0 DEMONSTRATION OF THE SYSTEM'S BEHAVIOR
8.0 RESULTS . . . © s & 3 s o s s & ° e s e e e o s
8.1 Experlment 1., e e e e e e e e e e e e e e
8.2 Experiment 2 v vt e e e e e e e
8.3 Experiment 3 0 i v e e e e e e e
8.4 Experiment 40 0 e e e e e .
9.0 DISCUSSION . & & v v v v v v o o o o o o s o o o o
10,0 BIBLIOGRAPHY . v & & v v v 4 v v ¢ o o o o o o« o o

APPENDIX A.0 THE NECESSITY OF LAYER 1 FOR EXPERIMENT 4

o o N W N

11
14
15
16

26
33

37
50
50
57
66
72
80
83

87

Figure
Figure
Figure

Figure
Figure
Figure
Figure
Figure
Figure
Figure

Figure

Figure
Figure

Figure

Figure
Figure
Figure

Figure
Figure

Figure
Figure
Figure
Figure
Figure
Figure
Figure

Figure
Figure
Figure
Figure

Figure
Figure
Figure
Figure

Figure
Figure

Figure
Figure

—_\00O~NOVU = LWION) —

—
a2 (D es ee es es ss e

-—
w
PR

-
=

—_ e
o

_
(Vo RN o o]

NSO SIS I SIS V]
ool EwmMNn -0

n N
[o o R

w
o

wwww
W=
ee oo oo oo

w W
(o B ¥

ww
o0 =

N
O

List of Figures

LIST OF FIGURES

A General View of a Reinforcement Learning System

Addition of a Feature Encoding Mechanism .

A Two-layered Network of Adaptive Elements as a
Reinforcement Learning System

Two Possible Payoff Functions

Layer 2 of the Network

Layer 1 of the Network

Layers 1 and 2 Combined

How the Current Situation is Presented to Layer 1

Demonstration: The Payoff Function .

Demonstration: Vector Field Display of Actlons
After 100 Steps in Situation (3,3)

Demonstration: Functions Computed by Layer 1
Elements After 100 Steps . .

Demonstration: Network Weights After 100 Steps

Demonstration: Vector Field Display After
Additional 150 Steps in Situation (3,7) .

Demonstration: Functions Computed by Layer 1
Elements . . .

Demonstration: F1na1 Network Welghts .« . e .

Experiment 1: Trace of the Situation Changes

Experiment 1: Vector Field Display After 700
SEEPS & v v v e e e e e e e e e e e e e e e e

Experiment 1: Vector Field Display After an
Additional 500 steps

Experiment 1: Functions Computed by Layer 1
Elements . « e e

Experiment 1: Network Welghts e e e e e e e e e
Experiment 2: Payoff Function .
Experiment 2: Trace of the Sltuatlon Changes
Experiment 2: Vector Field Display .
Experiment 2: Additional Situation Changes
Experiment 2: Final Vector Field Display
Experiment 2: Functions Computed by Layer 1
Elements . e

Experiment 2: Network Welghts

Experiment 3: Payoff Function

Experiment 3: Vector Field Display .

Experiment 3: Functlons Computed by Layer 1
Elements . . .

Experiment 3: Network Welghts

Experiment 4: Payoff Function . .

Experiment U4: Vector Field Display .

Experiment 4: Functions Computed by Layer 1
Elements

Experiment 4: Functions Computed by Layer 2
Elements .« « « o o o o o o o o s o o s s e o

Experiment 4: Final Situation-to-Action Mapping

Experiment 4: Network Weights . .

Diagrams used in the Proof of the Nece551ty of
Layer 1 for Experiment 4 . . . « o « « .« -

17
18

20

23
27
34
38
39

41

42
4y

46

48
49
52

53
54

55
56
59
60
61
62

63

6u
65

69
70
71
T4
75
76
77
78
79

88

Introduction

1.0 INTRODUCTION

The determination of appropriate representations for
complex problem-solving systems remains one of the primary issues
confronting investigators in the field of Artificial Intelligence
(Barr and Fiegenbaum, 1981). Although most problem domains can
accommodate many different types of representations, usually a
particular representation will afford the most direct solution to
a particular problem. One way of distinguishing the various
representations is by classifying them as being either discrete,
continuous, or a combination of the two (Berliner and Ackey,
1982). Semantic networks, frame-based systems, and production
rule systems are examples of systems employing discrete state and
control structure representations; classical control systems
using real-valued state vectors and analytic functions are
examples of systems employing continuous state and control
structure representations. As Berliner and Ackley (1982) have
stated, there are many problem domains for which a purely
discrete or continuous representation will not be satisfactory.

If it 1is 1impossible to determine a priori an appropriate

representation, then it would be highly desirable to employ a
problem-solving system that is capable of developing the best
balance between the discrete and the continuous extremes. An
attempt at designing such a system is Waterman's (1970)
production-rule system which generates rules that partition a

problem's state space.

Introduction

Little effort in the field of AI has been made to
duplicate or extend Waterman's results. So to begin a study of
the issues and possible techniques involved in the development of
representations with the proper 'discrete/continuous’ balance, we
should look for similar lines of research in othar fields or
domains. The control of dynamical physical systems is a specific
problem-solving domain in which the representation problem has
received some attention. In this domain, the representation
problem is often referred to as part of a pattern classification
problem or a feature selection problem. The application of
pattern classification techniques has 1long been considered a
necessary step in the design of "intelligent" control systems
that are capable of performing tasks in complex environments (Fu,
1970; Mendel and MclLaren, 1970; Mendel and Zapalac, 1968;

Saridis, 1977; Widrow and Smith, 1964).

This report reviews some of the issues that arise in the
control systems domain that are relevant to the representation
problem, particularly the development of representations with a
balance between continuous and discrete components. Following
this review, a control system is presented that learns, through
interaction with its environment, to encode its input into an
appropriate set of features to which goal-directed actions are
associated. The control system is a layered Associative Search
Network, or ASN, defined by Barto, Sutton, and Brouwer (1981),
with a structure similar to that used by Barto, Anderson, and
Sutton (1982). This layered ASN structure represents one of our

initial attempts to investigate the potential of this network

Introduction

approach for problems involving adaptive representation
development . Although we will be dealing in this report
specifically with the control system domain and with
representations that would not be considered sophisticated by
many Al researchers, it is our belief that many of the issues
addressed and solutions proposed are relevant to other

problem-solving domains.

2.0 THE "DIVIDE AND CONQUER™ APPROACH TO CONTROL SYSTEMS

The classical approach to the design of a control system
is to analyze the plant to be controlled, referred to here as the
environment, and to arrive at an analytic function defining the
control surface, i.e., an expression that produces a control
action when given the state of the environment. The potentially
great complexity of the environment has led to the investigation
of control systems with adaptive, or learning, capabilities. By
including 1learning capabilities in a control system, 1less
analysis of the environment is required. The simplest approach
is to give a control system the ability to alter the parameters
of its control surface function. The environment has to be
analyzed to the point where a parameterized class of possible
control surface functions can be defined. Saridis (1977,1979)

reviews several methods by which this type of 1learning control

system, which he terms "parameter-adaptive", can be designed.

However, in order to increase the applicability of a
learning control system to more general (i.e., less analyzable)

environments, the structure of the control surface function, in

The "Divide and Conquer" Approach to Control Systems

addition to its parameters, must be alterable (Kaufman, 1967;
Wiener, 1967). Many methods for accomplishing this lead to
Searches over very large spaces of possible function structures.
This motivated a "divide and conquer" approach: The input space
of the control system is divided into regions, and one structure
of limited complexity is associated with each region or set of
regions. Thus, the single search over the large space of complex
Structures can be replaced by many searches over smaller spaces
of simpler, and sometimes linear, structures. A trade-off arises
between the degree of complexity allowed for each structure and
the number of regions into which the input space is divided, or

between the complexity of the structures and their quantity.

3.0 STORAGE VS. COMPUTATION

"Storage vs. computation" refers to the general type of
trade-off encountered with the "divide and conquer" approach.
(Raibert (1977) 1labels this trade-off as "table 1look-up
vs. anaiytical equations.") At the =storage extreme, every
possible input vector, or group of similar input vectors, is
represented by a location in a storage device, and in each
location is stored the specification of a control action. To
choose an action for a given input vector, a table look-up scheme
is employed simply to refer to the appropriate storage location.
The only computation required by this approach 1is the
determination of which location to reference. On the other hand,
the computational extreme applies an analytic function to the

current input vector to calculate the control action to be taken.

Storage vs. Computation 7

Both approaches have advantages and disadvantages. The
storage method results in a control surface that responds with an
action quickly, due to the 1limited amount of computation
required. It also suggests a straightforward generalization
procedure: changes in the action specification at one 1location
can be extrapolated to neighboring locations. The storage method
is directly extensible to more complex tasks by decreasing the
number of input vectors that are represented by each location in
storage, with the limit of one location, and thus one action, for
each possible input vector. A potential problem with the storage
method is the possibly large amount of experience required to
learn a good control surface. This problem could be alleviated by
grouping the input vectors in a manner that results in beneficial
generalizations; that is, by representing in one storage location
those situations that are likely to produce the same action.
This implies a knowledge of the control surface before learning,

which cannot be assumed for complex tasks.

For simple control surfaces, the computational approach

is superior. If the structure of the analytic function is known
a priori, then the generalization resulting from a few trials
will greatly facilitate further 1learning. For example, if the
desired control surface function is known to be 1linear, then
training to a relatively small number of input vectors might be
sufficient to learn the entire function. However, very few
methods have appeared that are capable of learning the correct
structure of the function, and that can, therefore, perform

complex tasks. In general, the computational extreme will

Storage vs. Computation

require far less storage than the storage extreme, but will tend

to yield slower response times.

The storage and computational approaches are actually the
two extremes of a spectrum of.methods, i.e., it 1is possible to
devise methods that combine some aspects of both storage and
computation. For example, storage locations can store function
specifications that produce actions, rather than storing the
action specifications themselves. Also, some input vectors could
be represented by more than one 1location, in which case the
resulting action could be a combination of the actions calculated
within each storage location. Therefore, for a given task, a
compromise between these two extremes might be found that would

result in the most efficient performance.

The storage vs. computation issue presented itself to the
designers of learning control systems when they had to decide on
the'quantity and placement of the regions in the input space.
Michie and Chambers (1968) took the extreme storage approach by
providing sufficiently small, disjoint regions so that one
control action could be associated with or "stored" in each
region. Others assumed a compromise between storage and
computation by associating simple analytic expressions with each
region (Raibert, 1977,1978) or by using overlapping regions and
computing an action by combining the actions associated with each
region containing the current input vector (Albus,-1979; Mendel,

1970; Mendel and Zapalac, 1968; Widrow and Smith, 1964).

Storage vs. Computation 9

In all of these references, the regions are defined
before any learning occurs and remain fixed, although Michie and
Chambers (1968) mention the possibility of allowing the regions
to "split" apart and "lump" together as learning proceeds. It
would certainly be advantageous to the designer if the role of
specifying or altering the regions was given to the learning
control system, resulting in still further generality in the
possible environments in which the system could satisfactorily

perform.

It is 1largely this objective that has persuaded many
investigators of control theory to draw upon results in the field
of pattern classification. The relation between these two fields
is a close one, since a control problem can be recast as a
pattern classification problem by defining the input vectors as
patterns and the control actions as classes (Fu, 1970; Mendel and
McLaren, 1970; Mendel and Zapalac, 1968; Saridis, 1977; Widrow
and Smith, 1964). In fact, within the pattern classification
field we find a process, that of feature extraction, that endows
a classification system with many of the "divide and conquer"
aspects discussed above. A feature extractor groups patterns
into sets having common feature values, just as the input vectors
to a control system can be grouped into regions. Thus, a rich
source of information and techniques is available asra guide in
the search for mechanisms with which a control system can learn
to divide its input space. Scme of the issues concerning feature
selection and their relation to control ‘theory will now be

discussed.

10 Open-loop vs. Closed-loop Learning

4.0 OPEN-LOOP VS. CLOSED-LOOP LEARNING

The solutions to pattern classification problems and
control problems can be categorized in several ways, one of which
is open-loop vs. closed-lcop learning. This dichotomy, as used
here, refers to whether or not any knowledge about the attempted
classification or action is fed back to the system as learning
proceeds. A method employing open-loop learning, such as
clustering, does not use this type of knowledge. In the learning
control systems mentioned previously, the procedures used to
divide the input space into regions were certainly open-1loop,
since they were fixed a priori and did not change as the systems
learned.

The initial approach towards feature selection taken by
investigators in pattern classification was to ignore the results
of the classification task and attempt to find specific aspects
that were present in a large number of the patterns (Block,
Nilsson, and Duda, 1964; Fukushima, 1969; Nagy, 1969; Riseman,
1971; Sears, 1965; see Gose, 1969 for further references
concerning this approach and others to be discussed below) .
Their motivation was to reduce the number of components in the
pattern that the classifier must deal with. However, the
features that resulted from these methods were often capable of
reconstituting the original patterns, indicating that the
features were possibly much greater in number and/or complexity

than the classification tasks required.

Open-loop vs. Closed-lcop Learning 11

Other investigators realized that a feature selection
process should depend on the information that is available from a
classification attempt, making it a closed-loop process. Minsky
(1963) stressed this when he defined the "teleological
requirements of classification" by stating that "useful
classifications are those which match the goals and the methods
of the machine." The same concern is seen in MacKay's (1969)
suggestion that the "problem of pattern recognition is always
.ill-defined until the class of agents have been specified."
Holland (1969) observed that "different environments or different
goals will determine different sets of critical features." Arbib
(1972) coined the phrase "action-oriented perception" to label a
perceptual process that utilizes the information resulting from
its use (by an action-selecting mechanism) to alter its

representational analysis.

Thus for problems that are not completely analyzable, the

pattern classification process must be sensitive to the results
of its classifications and be able to alter the classifier and

the feature extractor in order to perform well. For control

theorists, this means that divisions of the input space must be

regulated by the learning control system.

To develop pattern classification techniques that are
useful to the control theorist, we can concentrate on only those
methods that employ some knowledge of the results of a
classification or action. The following section presents and

contrasts the two forms that this knowledge-of-results can take.

12 Error-Correction vs. Reinforcement Learning

5.0 ERROR-CORRECTION VS. REINFORCEMENT LEARNING

The specification of a pattern classification or a
control problem determines whether error-correction or
reinforcement learning is applicable. 1In particular, the amount
of a priori knowledge about the correct classifications or
actions makes this distinction. The typical pattern
classification problem includes a set of patterns and their
appropriate classifications, thus permitting an error between a
system's classification attempt and the correct classification to
be computed. In this case, the system can apply proven
error-correction techniques to try to force the error to =zero.
However, for the typical control problem, the correct actions are
unknown and the objective is to truly discover which actions will
drive the environment into a goal state. Here only a
reinforcement signal 1is available that might, for example,
indicate how close the current state is to a goal state. Errors
cannot be computed since the correct control actions are unknown

(although the desired environmental state may be known).

The feature selection problem in pattern classification
is similar to the typical control problem in that the correct set
of features is usually wunknown a priori, preventing the
computation of an error signal and the use of the standard
error-correcting pattern classification procedures to learn an
appropriate set of features. If such a correct set of features
were known, it could simply be built into the pattern
classification system. This problem has been known for some

time. Nilsson's (1965) analysis of layered machines, where the

Error-Correction vs. Reinforcement Learning 13

first layer, or layers, could be viewed as computing features,
showed that the use of error-correction training methods was
limited. Due to a lack of understanding about how a specific
parameter change affects the performance of the other layers, it
is difficult to determine which parameters in which layer should
be adjusted as training proceeds (Anderson and Hinton, 1981;
Barto, Anderson, and Sutton, 1982). Minsky and Papert (1969)
became aware of this problem in their study of layered networks
of Perceptrons. They surmised that a training algorithm for a
layered network might involve the magnitude of a reinforcement

signal, rather than an error signal.

Reinforcement 1learning has been applied to feature
selection by others in the pattern classification field. Their
approach can generally be characterized as a generate-and-test
approach -- new features are generated and added to the current
feature set, which is subsequently tested by applying the
classification procedure using the new feature set. Various
techniques for the generation of features have appeared. Some
have simply supplied an initial set of features from which new
features were chosen (Lewis, 1962) and others randomly altered or
combined old features (Kamentsky and Liu, 1963; Klopf and Gose,
1969; Uhr and Vossler, 1963). Chow and Liu (1966) applied the
generate-and-test viewpoint to the adaptation of the structure of

a pattern recognition system, which can be considered as the

adaptation of the feature set. Their demonstration contains a
significant variation of the random methods of generation

mentioned above: Rather than generating completely new

14 Error-Correction vs. Reinforcement Learning

structures randomly, slight alterations were made to previous
structures that had been shown to be useful. In this way,
initially simple (linear) structures increased in complexity
until the desired level of performance was achieved. The genetic
algorithms developed by Holland (1975) are other examples in
which slight alterations are used to systematically increase the

complexity of the structure.

Although reinforcement learning and its application to
feature selection has received much attention, iés utility to
control theory is not direct. Reinforcement learning has been
applied to feature selection, but due to the nature of the
typical pattern classification problem, the classifier can still
use error-correction learning. Very little work has appeared
concerning how two processes, such as feature selection and
classification, can cooperate when both are driven by
reinforcement learning. In the typical control problem, the
action-selection mechanism, analogous to the classifier, must
employ reinforcement learning. To develop general 1learning
control systems we must deal with the interaction between the
regibn formation process and the action-selection process as they
learn under the influence of reinforcement feedback. The
remainder of this report presents a study of this issue with the
implementation of a 1learning control system that, through
reinforcement learning, divides its input space into regions and
associates with them the actions that produce good

reinforcements.

A Layered Network that Learns Features and Actions 15

6.0 A LAYERED NETWORK THAT LEARNS FEATURES AND ACTIONS

6.1 Introduction

Barto, Sutton and Brouwer (1981) have defined a
reinforcement 1learning system, called the Associative Search
Network (ASN), that posesses all of the desirable qualities
expressed above: closed-loop learning, reinforcement learning,
and cooperativity among its processes. The ASN is designed to
search through the space of action vectors and with each input
vector associate the "best" action ("best" refers to the highest
payoff, to be defined later). An ASN is composed of elements,
based on the theory of Klopf (1972, 1979, 1982), which are
themselves reinforcement learning systems. Single 1layers of
these elements have been investigated and their applicability to
simple control problems has been demonstrated (Barto, Sutton, and

Brouwer, 1981; Barto and Sutton, 1981a).

In the past, networks of two or more layers have been
applied to pattern classification and control problems (Chow,
1966; Nilsson, 1965; Minsky and Papert, 1969; Rosenblatt, 1962;
Widrow and Smith, 1964) with the additional 1layer or 1layers
performing a feature extraction process. However, learning rules
for implementing a feature selection process in these layers were
very limited, and more modern methods are still tailored to
specific problems. Barto and Suttoq (1981b) suggest that the
types of elements used in these early networks were a hindrance
to the development of robust learning systems. They believe that
much can be gained by using elements, such as the ASN element and

its extensions, that are alone capable of solving control

16 A Layered Network that Learns Features and Actions

problems that are difficult along certain dimensions. In fact,
initial work has shown that a two-layered ASN can solve problems
requiring the selection of features that are simple combinations
of the components of the original input (Barto, Anderson and
Sutton, 1982). The results of further experimentation with a
two-layered ASN as it is applied to simulated control tasks are

presented following a description of the control tasks and the

ASN.

6.2 Description of the Tasks

The solution to the type of control problems considered
here requires the control system to produce the "best" action for
every input from the environment. This general formulation is
shown in Figure 1. The current situation of the environment
determines the input to the system, which then applies a
situation-to-action mapping (the control surface) to generate an
action. The action then affects the environmental situation.
The critic within the system evaluates the new situation by
computing a performance index, or payoff, based on the situation
or how the situation 1is changing. The payoff 1is wused to
reinforce the actions just taken. After an appropriate mapping
is learned, the payoff input is no longer required. We split the
situation-to-action mapping into a feature encoder and a
feature-to-action mapping as in f&gure 2. Note that the same
payoff (evaluation) goes to both the feature encoder and the

adaptive feature-to-action mapping.

A Layered Network that Learns Features and Actions 17

ENVIRONMENT <]:"

e e e ——— o —————

REINFORCENENT LEARNING SYSTEN

r‘|‘> SITURTION-T0-
ACTION NAPPING ACTION

(OUTPUT VECTOR)

SITUATION
{INPUT VECTORI

TEVHLUHTIUN

L) CRITIC

Figure 1: A General View of a Reinforcement Learning System.

A reinforcement learning system is here defined as a
system that 1) receives an input vector from its
environment, 2) implements a situation-to-action
mapping (control surface) that is updated as a function
of the evaluation, and 3) produces an output vector
that is applied as a control signal to the environment.

18 A Layered Network that Learns Features and Actions

ENVIRONMENT <L

REINFORCEMENT LEARNING SYSTEN

FEATURE 'i> FERTURE-TO

N\
st | [V| ENCODER ;zwmnﬂmwamm ACTION

(vt e luTsut

EVALUATION

> CRITIC

Figure 2: Addition of a Feature Encoding Mechanism.

serted between the

A feature encoding mechanism is in
g system and the

input to ‘the reinforcement learnin
situation-to-action mapping.

A Layered Network that Learns Features and Actions 19

This type of control problem is greatly simplified
compared to more general problems by the availability of a payoff
signal at every time step that always evaluates the action made
at the preceding step. We have temporarily adapted this
simplification to allow us to focus on basic feature-selection
issues. Work is currently in progress concerning the use of the
ASN for tasks involving delayed evaluations (Barto, Sutton, and
Anderson, 1982). The ASN 1is augmented by a component that
adaptively develops a more useful evaluation function than is
originally supplied in the control task. Future reports will

consider this additional complexity.

The layered ASN is applied to simple control tasks using
a two-dimensional input, or situation, vector (x1’x2) and a
two-dimensional output, or action, vector (u1,u2). A payoff, z,
is calculated from the input vector indicating how desirable the
current situation is. This system is shown 1in Figure 3. A
payoff function is defined by constructing a surface over the

two-dimensional input space whose height at each point, or

situation, (X, y,) is the desirability of the situation. For
example, if one situation is more desirable than all others, then
the payoff function would appear as in Figure U4a (see Experiment
1). If one situation is desirable while another is to be avoided
a payoff function 1like that in Figure U4b would be used (see

Experiment U4).

20 A Layered Network that Learns Features and Actions

ENVIRONMENT

<

" REINFORCENENT LERRNING SYSTE

ZI,LHYER l
X2

PAYOFF | Z ... | INTERNAL
‘ jFUNCTIDN REPRESENTATION

ut

LAYER 2

u?2

Figure 3: A Two-layered Network of Adaptive Elements as a
Reinforcement Learning System.

A Layeréd Network that Learns Features and Actions 21

GOAL GORL

% | L }ﬂ*‘L e

1

Figure #4: Two Possible Payoff Functions.

A payoff function is defined for all points in the
two-dimensional input space. The height of the surface
indicates the desirability of each situation.

22 A Layered Network that Learns Features and Actions

6.3 Layer 2 of the Network

Let us look at the second layer of the ASN in isolation.
It is actually a network of adaptive elements, with each element
receiving the same inputs and generating one output that is one
component of the output vector. The structure of layer 2 is

shown in Figure 5.

Four adaptive elements are used in this layer. They are
represented by the four numbered circles with inputs coming in
from the left and outputs going out to the right. The vertical
input 1lines (in this case the output 1lines from layer 1)
intersect each element's input pathway. Associated with each
intersection is a real-valued weight w21’j(t) designating the
strength of the connection of input r;(t) with element j's input
pathway. In the figures, the magnitude of each weight is shown
as the radius of a circle or disk at the intersection, with a
positive weight being an open circle and a negative weight being
a filled-in disk. For example, two positive weights and one
negative weight are shown in Figure 5. The output of each
element is computed by first evaluating the function

52j(t) = jg1 Wzi’j(t) ri(t) + Noisej(t),
for j=1,...,4, where Noisej(t) is a normally distributed random
variable of mean 0.0 and a standard deviation of 0.01 for all
simulations. The outputs of the elements are then given by the

following equations:

A Layered Network that Learns Features and Actions

LAYER 2

PRYOFF = INPUTS

3

23

ACTIONS

= -IKL

£

g

LI VA | R

Figure 5: Layer 2 of the Network.

4~ +]IXZ.

The second layer of the network receives the payoff and
the features r, tnhrough rg from the first layer and

computes the action, or output, vector.

The circles

represent the values of the weights of each adaptive

element.
shading

Their radii

indicates sign, i.e.,

indicate magnitudes and their
open circles represent

positive weights and filled-in disks represent negative

weights.

24 A Layered Network that Learns Features and Actions

T, 1f s29(t) - s2p(t) > e
Yi(t) = {

0, otherwise

1, 1f s25(t) - s29(t) > e
Y2(t) = $

0, otherwise

1, if S23(t) - s2y(t) > e
Y3(t) =

0, otherwise

T, 1f s2,(t) - 523(t) > e
yu(t) =

0, otherwise

with e being 0.01 for all simulations. The outputs of the
network, action components Uq(t) and up(t), can be -1, 0, or 1

and are computed by

Uq(t)

yo(t) - yq(t)

Us(t) yy(t) - y3(t).

A very simple environment is assumed for this
demonstration. The environment is represented by the following

equations:

Xq(t+1) = xq(t) + a uq(t)
x2(t+1) = Xo(t) + a ux(t),
where a = 0.2 for all simulations. Thus, the action

(01(t),u2(t)) directly effects a change in the situation. Action

A Layered Network that Learns Features and Actions 25

vectors will be represented as (+dx; or -dxq, +dxy or -dx,).
This simple environment is used to facilitate the conprehension
of what situation-to-action mapping would be required to solve

each control task as Specified by the payoff function.

At each time step the inputs are received and the outputs
are computed. One time step later the outputs effect a change in
the environmental situation, and the payoff, z(t+1), is assigned
as the desirability of the new situation. At this time the

weights are updated by the equation

wzi’j(t+1) = W2i,j(t) + c2 [z(t+1) - z(t) - s2;(t)] yj(t) ri(v),

for i=1,...10 and J=1,...,4, where c2 = 0.4 for most of the
simulations. This learning rule is referred to as the
"conditional-predictor" rule because the weights are adjusted in
a8 manner that makes each 52j an estimate, or prediction, of the
change in payoff received on the condition that the corresponding
element j contributed to the calculation of the action 1last
taken, i.e., on the condition that the element had an output
greater than 0. One effect of this rule is to 1limit the
magnitude of the weights. If, for a particular input vector, the
best action is always chosen (producing the max imum
reinforcement), the weights will increase until the weighted sum,

s2, matches the change in payoff, which is a bounded value.

26 A Layered Network that Learns Features and Actions

As shown above, each element of the ASN computes its
output by applying a threshold function to a weighted sum of its
inputs. This places severe restrictions on the complexity of the
mappings from the input vector (x1,xZ) to the action vector
(01,u2) that the single-layered ASN can perform. In order to
relax these restrictions, another layer is introduced between the
input vector and the layer already described, forming the layer 1
in Figure 3.

6.4 Layer 1 of the Network

The role of this layer is to place each input vector into
one of several classes, with each class corresponding to one
component of this layer's output vector. The classes can be -
considered as regions of the input space. Thus, layer 1 will
implement a feature encoding of the inputs (x1,xZ), The
combination of the first and second layers will be able to form
situation-to-action mappings of greater complexity than those

formed by a single layer.

Figure 6 shows layer 1 in isolation. Each element of
this layer must be able to learn a function that is greater than
zero only when the input vector falls within a certain region of
the input space. A single element that computes a 1linear
function of its inputs (a weighted sum in this case) and a
threshold is only capable of dividing the input space with
hyperplanes. To provide the element with the capability of
classifying an input vector into a more general type of region,

an input representation other than (x1,x2) is needed. The

N TE -

A Layered Network that Learns Features and Actions

" || |
2.5 AL 0 0 0
4.2 L;;

Al 5 || L
_ | H;
. 1 —C
@, = B
1
5.2 L__J ’ |
PAYOFF 11 J}2 I T,E %n: Jt_uw 1([;
cRoNe c|::-' (1:5' &5y o

._.
[g3
o
-
o
[b]
-
o0
S =

DLTPUT=

LAYER oOHE

Figure 6: Layer 1 of the Network.

The first layer receives the payoff and the input
vector (X, x,) encoded in a manner described in the

text. It computes the values Ty through rg which are
the components of the input vector to the second layer.

27

28 A Layered Network that Learns Features and Actions

approach taken in this system is to divide each dimension of the
input space into six overlapping intervals, for a total of 12
intervals. The new representation consists of the 12 variables
91,...,912, where values are determined as follows: given
(x4,x2), the value of qj, i=1,...,6, is maximal when xq1 is the
center of the interval corresponding to aj ; the value of gqj,
i=7,...,12, is maximal when x, is the center of the interval
corresponding to q;., The values of the qj decrease as the points
X7 (or xp) move away from the center of the corresponding
intervals. More specifically, the value of gq;, i=1,...,12, 1is

determined by a Gaussian curve of unit variance and mean my

centered over the interval corresponding to qj. That is:

(mi - X1) / 2

qi e ,i=1,...,6

(mi - X2) / 2
qize ,i

Tyeoorl.

In the simulations to be described below, the values of X1 and xp
range from 0.0 to 10.0. The means of the Gaussian curves

my,...,mg and m7,...,Mqp are assigned 0.83, 2.50, 4.17, 5.83,
7.50, and 9.17.

This representation was chosen as a compromise in the
storage vs. computation trade-off. An extreme storage approach
could be taken by forming all the cross-product terms of the
variables quantizing each dimension, thereby dividing the input
space into a grid of overlapping boxes (Albus, 1979) or
nonoverlapping boxes (Michie and Chambers, 1969) . If each

dimension were divided into six intervals as specified above,

A Layered Network that Learns Features and Actions 29

then 36 cross-product components would result. In general, the
number of components is an exponential function of the number of
dimensions, making this approach unsatisfactory for high
dimensional problems. On the other hand, an extreme
computational approach would entail very few regions and more
complicated output functions in the elements. This 1latter
alternative was not chosen because we wished not to alter the
basic ASN element. The representation outlined above is an
acceptable compromise since the number of components is a linear
function of the number of dimensions. This 1leads to an
architecture that is extensible to problems of higher
dimensionality. The objective of layer 1 is to allocate its
limited resources to forming just those regions that are
necessary to solve a given problem. The variables aj,
i=1,...,12, serve as a substrate for the expression of a wide

class of possible regions.

The output function of each element in layer 1 is given

by the equations

S1j(t)»= 21 Wli 5(E) qi(t) + Noise;(t)
1=

S15(t), if s15(t) > O
rj(t) =

0, otherwise,

for j=1,...,10, where Noisej(t) is a normally distributed random
variable of mean 0.0 and a standard deviation of 0.1. The
outputs of these elements are not binary as they are in layer 2.

The value of an element's output designates the degree to which

30 A Layered Network that Learns Features and Actions

the current input vector is within the region to which the
element is sensitive; input vectors near the edge of the region
will produce an output value slightly greater than zero, while

input vectors near the center of the region will produce greater

output values.

The learning rule for 1layer 1 requires special
consideration. If the 1learning rule of layer 2 were used in
layer 1, then many of the elements in layer 1 would learn to
respond to the same regions, i.e., if one element of layer 1
became tuned to a region and connected to the appropriate action
elements of layer 2, then the other elements of layer 1 would
also tend to tune to this region because a high reinforcement
would be received while experiencing a signal in that region.
Some way of allowing the learning that occurs in one element to
influence that occurring in other elements must be employed; a
method of "enforcing variety" is needed. 'One approach to this
problem is to assume that the learning (updating the weights) of
each element is dependent on the output, or activity, of every
element. By adding a neural-like lateral inhibitory mechanism to
the layer, all but the most active elements can be suppressed
(see Barto, Anderson, Sutton, 1982 for further discussion and
references). Another approach is to apply this selection process
to the learning rule only and leave the outputs of the elements
unchanged. The second approach is used here since it does not
place any restrictions on the number of components in the output
vector, i.e., the number of features, that can have nonzero

(unsuppressed) values. Therefore, layer 1 is capable of encoding

A Layered Network that Learns Features and Actions 2

the inputs in a nontopographic, or distributed, manner, which is
not the case if the output of only one element of layer 1 is
allowed to be nonzero at any given time. The nontopographic
encoding allows a large set of possible output vectors from layer
1. In particularly, it allows vectors that contain more than one
nonzero component and is thus a more efficient input
representation for layer 2: Each input component to layer 2 can
be associated with a certain action, and when more than one

~component is present (nonzero) their associated actions can be

combined to produce different actions.

At each time step (defined later), the layer 1 element
with the largest output,ié selected as the one that is eligible

for learning. Let that element be element j. Its learning rule
is |

o~

Wi,j(t+1) - wi,j(t) + e1 [2(t+1) - z(t) - s15(t)1 rj(t) qi(t),

for i=1,...,12 and j=1,...,10, where c1 = 0.08 for all
simulations. The reinfofcement z(t+1)—z(t) is the same value

used in the learning rule of layer 2.

The behavior of layer 1 can be illustrated as follows.
The output of an element can be viewed as a confidence measure
that thé current input vector is contained within the region to
which the element is sensitive. Only the most confident element
is able to update its weights. If a negative reinforcement is

received, meaning the action produced by layer 2 was not good

32 A Layered Network that Learns Features and Actions

given the situation indicated by the current input vector, then
the learning rule alters the weights with the result of lowering
the confidence of the selected element (the currently most
confident element). This will continue whenever that input
vector is encountered, until the confidence of another element
becomes greater than the lowered confidence of the updated
element. If the action associated with the new element's region
of sensitivity is good, then a positive reinforcement is
received causing the confidence of that element to increase.
This behavior allows the retention of what is 1learned in
different areas of the input space; learning within one region
can proceed with minimal effects on the knowledge already

acquired in other regions.

It is instructive to consider briefly the difficulties
that would arise if error-correction elements, such as
Perceptrons, were used in layer 1. Since each such element must
be provided with its own error signal, some agency must know from
the start what output values these elements should produce for
some training set of input signals. It is not enough for this
agency to know the éorrect control actions for each input, but it
must also know the correct representation, produced by layer 1.
Therefore, the necessary a priori knowledge is not Jjust a
function of the environment, but of the controller as well. This
places a great demand on the 'teacher' of such a control system
since it must specify the correct outputs of every element in the
layered network. This problem has been discussed by several

investigators in the past, but no general solution has been found

A Layered Network that Learns Features and Actions 33

(Nilsson, 1965; Minsky and Papert, 1969). Rosenblatt (1962)
considered the use of "backward-chaining" to propagate the effect
of the error-correction in the final layer to previous layers.
However, for the ASN the only training signal present is the
reinforcement, which is the same value for each element in each
layer. This enables us to use the same ASN element, whose
behavior we have studied in isolation, to construct both layers

of the ASN described here.

6.5 Operation of the Combined Layers

Figure 7 illustrates the structure of the entire
two-layer system. To illustrate clearly the sequence of
operations that take place during one time step, the following

list gives the order of execution:

1. Input wvector (xq(t),xo(t)) is received from the
environment and payoff z(t) is computed.

2. The weights in both 1layers, Wi1(t) and W2(t), are
updated.

3. The weighted sums S1(t) are calculated.
4. The layer 1 elements produce the outputs R(t).
5. The weighted sums S2(t) are calculated.
6. The layer 2 elements produce the outputs Y(t).

7. The action (u;(t),up(t)) is calculated and applied to
the environment.

8. The environment 1is forced into the new situation
(Xq(t+1),%x0(t+1)).

9. Repeat steps 1 through 8 after incrementing t by 1.

34

>=C
—

o

TR S

A Layered Network that Learns Features and Actions

L_|

S———

T

L

S

L
i

L

i

NM—=CTEZ

>
[]

w N G Od N @jw v 0o a2 N Q@

M2 N

moolwn

RN

L

| | | N | R | |
Ll

PAYOFF =

S

~.
»,

W

o
L

N/ Lot

R

S o o

Figure 7: Layers 1 and 2 Combined.

Il

i

I

Al

RETIONG

i

TROK!
'}ll:":L | :

1K1
- JInZ

12

A Layered Network that Learns Features and Actions 35

It is important to study the effects of basing the
updating of the weights in both networks on the same
reinforcement signal. Let us first note that the cause of an
incorrect action, indicated by a decrease in payoff, could be
twofold. One cause could be an incorrect mapping in layer 2 from
the representation (produced by layer 1) to the action vector. A
second cause could be a poor representation of the input vector
provided by layer 1. A poor representation is one which divides
the input space into regions within which more than one best
action vector exists. This motivates the question: when a low
reinforcement is received, should layer 1 or layer 2 be updated?
The reinforcement does not indicate the answer. One possible way
of proceeding is to update both. This leads to an interpretation
of the learning procedure as a competition between two processes:
1) altering the action-producing map of layer 2, and 2) altering

the representation produced by layer 1.

The proper balance of this competition must be found. If
layer 2 learns faster than layer 1, then the action-producing map
in layer 2 will change rapidly as the state of the environment
moves to states requiring different actions. 1In this case, layer
1 will tend to form representations that contain regions covering
large areas of the input space. For example, when a bad action
is made, the action-producing map of layer 2 will quickly adapt
to produce a good action, allowing an insufficient number of time
steps for layer 1 to split the current representation into one
containing a region with which layer 2 can associate the good

action. If layer 1 1learns faster than 1layer 2, then the

36 A Layered Network that Learns Features and Actions

representation formed by layer 1 will change rapidly in relation
to the change made in the action-producing layer 2 map. If a bad
action is made, rather than altering the action-producing map,
the representation 1is split into one containing many small
regions. This splitting will proceed to the limit, i.e., all of
the elements in layer 1 will be employed to form regidns in the
first few areas of the input space that have been visited. To
illustrate this it would be necessary to vary the number of time
steps between the activations of the learning process in both
layers. For example, by allowing layer 1 to learn at every step
and layer 2 to learn only every fifth step, layer 1 might be
forced to split the representation to an unnecessary degree.
This was not investigated in the experiments to be described
here, in which both layers learned at every step. A set of
learning rule parameters was found that produced the desired

cooperative effect between the two layers.

Demonstration of the System's Behavior 37

7.0 DEMONSTRATION OF THE SYSTEM'S BEHAVIOR

Before descibing the behavior of the system, we refer to
Figure 8 to describe the variables 91,...,912. Each
three-dimensional graph has the axes labeled as shown at the
bottom of the figure: the base plane is actually the
two-dimensional input space, defined by X4 and xp, and the height
above the plane represents the value df 4;. The first six graphs
show the Gaussian curves 91,..,9¢ that are used to encode the
value of X;, The last three graphs show just three of the six

Gaussian curves 97, a9, and g1p that encode the values of x5.

The behavior of the system is now demonstrated with a
simple example. The goal of the system is the situation (x1,X2)
= (5,5), meaning that from every other situation the best action
is the one that takes the system closer to the situation (5,5).
The payoff function z is defined as shown in Figure 9. Note that
this figure contains the same base plane as in Figure 8, but the
height above the plane now depicts z. The payoff 1is at a

maximum, which is 1.0, at situation (5,5).

For the first part of this demonstration, the situation
was held constant at (3,3). This was done to emphasize the
effects of learning in one situation; normally the situation is
allowed to change at each time step as a result of the actions
taken by the system. Figure 10 provides a useful view of the
system's state after 100 steps have elapsed. Arrows are shown at
representative points of the (x1,x2) input space. Each arrow

represents the system's expected action, assuming that the system

38

LAYER &,

ELEMENT

1

Demonstration of the System's Behavior

LAYER O,

ELLHENT 2

LAYER B, ELEMENT 3

i
I
!
|
|
1
i
'
v
1
[
i

LAYER B,

ELEMENT

4

LAYER ©.

ELLMERT S

LARYER ©, ELEMENT ¢

LATER O,

ELEMEWT

L .
LAYER ©, ELEMENT i

Figure 8: How the Current Situation is Presented to Layer 1.

Each dimension of the current situation vector (xq,x%x2)

is quantized into six intervals, and
such that they are maximal

defined

unique overlapping domains.

12 variables are
at the center of
The top six graphs show

the variables used to represent x; and the bottom three
graphs show three of the six variables representing X5,

39

Demonstration of the System's Behavior

GORAL

Y /u/ . y\ \WAVAVAN;

NAVA
A

.._. v ..p. S

avs

L AN NN
P A A AN .\/ N
... AW YA Y V.\..

M/% AVAVAN
,/.V./

payoff

: The Payoff Function.

Demonstration

Figure 9

.

the
the

is to learn to generate

This payoff function defines situation (5,5) as
for any given situation the action that results in the

situation. The task of

reinforcement learning system

desirable

most

5) as the set of

next situation being as close to (5,

possible actions permits.

40 Demonstration of the System's Behavior

is presented with the input vector corresponding to that point
and that the system uses its current weight values for
determining the action. We call this type of display a "vector
field display". The display is generated by first removing the
noise from the network's elements and disabling the 1learning
mechanism. The input space is then sampled at evenly spaced
points (situations) and the system is simulated for one step
starting at each point. The weighted summations that are
produced determine the orientation of the arrows. Figure 10
shows that after 100 time steps the system learned to take action

(+dx1,+dx2) at situation (3,3), and that the effects of learning

were generalized across much of the space.

Figure 11 shows the outputs of the nine layer 1 elements,
indicating the effect of the system's experience on layer 1.
Seven of the elements compute outputs that are very close to zero
(their initial outputs), but the outputs of elements 3 and 8 have
obviously been affected. These elements produce their greatest
values for input situation (3,3). By comparing this figure with
Figure 10, one can see that the generalization of the learned
action is due to the shape of the "receptive fields" of elements
3 and 8 in layer 1. By the "receptive field" of an element we
mean that region of the input space for which the element

prdduces an output greater than zero.

The formation of the elements' receptive fields can be
understood by studying the development of the weights in each

layer. The values of the weights after the 100 steps are shown

Demonstration of the System's Behavior 41
CURRENT MAF
. T N N R I I PO . .
- - » P A » -, . .
. . ~ 2 A S S s » . . .
. , I N N A - .
. - » ‘/’ Pl N E . .
. - ~ oA S S S s » ’ . .
. L N o O - .
» - F] P Vol A A V. A E » »
a , » P A A A Y vl LA 2 » - » . - . -
R I B R B
~ A A A /78‘ /7 /"? /”? A » ~ » » ~ » » A
A A AR A A A A A A FE A A A2
s A /? /7? / 7 f ,77 ,,-'7 v A A A A A0 4
A AT / .‘ AL L R A A A O
A2 A T ,/7? / " /’ /,:7 A L B R
Ap A A AAA AT e p A s s s
P A B IO L I R S T R S D R
- k. 2t /1‘ /-v //7 . /‘ﬁ . Pl A L& A A K x ~ x » -
P .. I . B A I P
s A A A A A A e o
X2
il

Figure 10: Demonstration: Vector Field Display of Actions After

100 Steps in Situation (3,3).

The situation was held constant at (3,3), and the
system was allowed to learn for 100 steps. The results
are presented by displaying for each sampled situation
the expected sltuation change, and thus the expected
action, that the system will generate if it continues
to use the weights present by the 100th step.

42 Demonstration of the System's Behavior

LFYER 1, ELEMENT 1 LAYER 1. ELIMENT 2 LAYER 1., ELEMENT 3

LAYER 1., ELEMENT 4 LHYER 1, ELIHEHT 5 LAVER 1, ELEMENT ¢

TFER 1. ELEWEMT 9

PR e

o

LAYER 1., ELEMENT ¥ LAYER 1. ELLFENT

Figure 11: Demonstration: Functions Computed by Layer 1 Elements
After 100 Steps.

The elements of the adaptive network learn by adjusting
their weights and thereby altering the functions that
they compute. The resulting functions computed by each
of the nine elements of layer 1 are shown here.

Demonstration of the System's Behavior 43

in Figure 12. All weights, other than those associated with
elements 3 and 8 of layer 1, have very small magnitudes. Large
positive weights have formed between element 3 and the d;'s that
have large values for situation (3,3), and similar weights have
formed on element 8. It is these weights that determine the
shape of the elements' receptive fields. The weights between
elements 3 and 8 and the action-producing elements of layer 2
positively associate with each of the elements 3 and 8 the

actions +dx, and +dxo,

In addition to viewing the elements as becoming tuned to
certain input situations, one can also view the elements as
becoming tuned to certain compound output actions. Whereas the
weights on the input side of an element determine its receptive
field, the weights on its output side, through which its actions
affect other elements, determine its "projective field".
Elements 3 and 8 have developed projective fields consisting of
the layer 2 elements determining actions +dx1 and +dxo. These
elements have thus become very simple examples of "command cells"
that trigger a complex of actions. If a system like this were
being applied to the control of a two-jointed arm, for example,
then activity in these elements might simultaneously increase the

angular displacements of both joints (a simple "synergy").

It is important to realize why only two layer 1 elements
have weights of significant magnitude. This is due to the
competition inherent in the learning rule used for layer 1: At

each step only the element producing the 1largest output is

nN—HC DI

by

Demonstration of the System's Behavior

#l

~ U & N O

D

A N O

Y

o N a

Figure 12: Demonstration: Network Weights After 100 Steps.

The values of both layers' weights after 100 steps of
learning are displayed here. The weight values of
elements 3 and 8 in layer 1 changed more than those of
the other elements due to the competitive nature of the
learning rule used in layer 1.

Y
R

ACT 1K=
-JIK1
1111

Demonstration of the System's Behavior 45

allowed to alter its weights. Since all weights are initially
zero, the element producing the largest output is randomly chosen
for the initial steps (due to the random noise component in the
output function of each element). When a particular layer 1
element is selected for learning, an action produced by layer 2
(also produced randomly for the initial steps) that 1leads to
positive reinforcement will increase the weights associated with
that element. As the magnitudes of the weights increase, the
selection of layer 1 elements for learning becomes less random
until one becomes selected for every step. 1In this example, the
random noise in the elements was such that elements 3 and 8 were
initially selected for learning, and during later stages of

learning, only element 3 was consistently selected.

Little a priori information was assumed in the design of
this system about the structure of the desired
situation-to-action mapping. Consequently, the generalization
that occurs while experiencing one situation might either
facilitate or degrade the learning performance in other
situations. In this example, the generalization would certainly
facilitate learning in the lower left quadrant of the input space
(referring to Figure 10), but would degrade the learning in other
quadrants. This degrading effect is seen in the following

results.

For the second part of this demonstration, the situation
was changed to (3,7) and held constant for another 150 steps.

The new vector field display is shown in Figure 13. The best

46

Demonstration of the System's Behavior

CURRENT HMAP
. “ ~ ~- T N T -~ ~ N
v - ~ - - -~y ~— -~ - . - - - . - - - - . .
~ ~ N Y b e N ~ N - ~ ~ - > - - S - - ~
) - ~ . NN Ny N Y *y ~ \. ~ ~ ~ ~ ~ - \ ~
0N 0N NN NN N N s e ~ ~ N 0~ N .
o000 N N N N N N N e o ~a ~ ~ ~ ~ S ~
N ~ N N NN N YN “n “u N ~ ~ ~ u ~ m > “a
V) S NN N N Ny 0™ N -) ~ - “a u ~ - ~
~a ",’ N “a Ny MNa ~4 Sy s Sy N 4 ~ > - - ~ ~ - e
~ - ~3 -~ e e —p = ~ -3 - ~ ~ ~ ~ - ~ > ~ -
- -~ e N s PV S I a2 -2 - o - - . - . - -
T B T T T L . e s STt e -~ . . o . o
e B -~ '/?' 7 T T - e S BT, B P . S P =
G A A A T ST T L L A A A A A A A
.-’::" .-"” ,-/7". —~ ..r"") .r"'a" .p-"’:-? 7 - -~ 4 4-""" ~ 7 ,-R /.’v? ~ : /:? /;f r';*r /} ./,'-:-“
e B B2 T -~ T /.,-7:! __,..:}' A b I . A A A A A
I P, T LT P S I e = s B S - P e 2 o P
- -~ - S S S s _f) > I 2 e o 2 T r s
i - - o e 4 — —~t - e} - -~ - Fd -~ » 2’ -, ’, .-
- - - — - — - — — .t - - - - - - - - - -
Xp)
L
4
Figure 13: Demonstration: Vector Field Display After Additional

150 Steps in Situation (3,7).

After moving the current situation to (3,7) and again
holding it constant, another 150 steps of learning were
run. This figure shows that the appropriate action was
learned at (3,7) while the action previously learned at
(3,3) remains, though with somewhat decreased

probability.

Demonstration of the System's Behavior 47

action has been learned in situation (3,7) and has been
generalized over large areas, overlapping some of the regions in
which the action 1learned earlier was generalized. Figure 14
shows the resulting receptive fields of the layer 1 elements.
Now the three elements 3, 4 and 8 possess significant receptive
fields. The most notable change in the receptive fields of
elements 3 and 8 are the suppression of the output in the upper
left quadrant of the base plane (input space), with the maximum
suppression near situation (3,7). The receptive field of element
4 has formed in a manner similar to the original formation of the
fields of elements 3 and 8. Element 4 produces its greatest
output at situation (3,7), while elements 3 and 8 still produce

their largest values at situation (3,3).

These new receptive fields are consequences of the weight
values shown in Figure 15. These weights formed as follows.
When the system was placed in situation (3,7) after learning in
situation (3,3), the action (+dx; +dx5) was produced as a result
of generalization. This action resulted in a negative
reinforcement, causing the weights associated with elements 3 and
8 and the new situation to decrease. Some of these weights
became negative (dark disks), thereby suppressing the output of
elements 3 and 8 in situation (3,7). As its output approached
zero, the other layer 1 elements were again able to compete with
elements 3 and 8 for the largest output. Eventually, element U4
began to dominate the layer 1 elements and formed the positive
weights shown. Element 4 is associated with the (+dx1,_dx2)

action-producing elements of layer 2. The graded changes in the

48 Demonstration of the System's Behavior

LAYER 1., ELEMENT 1 LAYER 1., ELLMENT 2 LAYER 1, ELEMENT 3

LAYER 1, ELEMENT 4 LAYER 1., ELIMENT 5 LAYER 1, ELEMENT &

X {‘G})(‘é
AR
\(x"

AN
L5

X

s
..‘I
5
s
"
A
LYAY

gh
)

4
LY
X
Sy
A0
rAYAYA
o, o }i
WA

;?
Ao

o
N,
d

"
2

e

AV
X
&0

LAYER 1, ELEMENT 7 LAYER 1, ELLMENRT & LAYER 1., CELEMENT K]

%
ol
/

LA
f&;"'\}.
v’%g

.
N
I\l
=,
‘\

)
A
s
kY
4

LAWY
A

s
:

£y

N

T
X
y
&,
¥
'
¢

K

A
e

b
lxx;;
3
AR

Figure 1l: Demonstration: Functions Computed by Layer 1
Elements. :

Elements 3, 4, and 8 became tuned to overlapping
regions of the input space and therefore produce
outputs greater than 0 for unequal but intersecting
sets of situations.

VMHACTZEH

Demonstration of the System's Behavior

O N & N gl v 00 a2 N O

AT i LI R R PR

Figure 15: Demonstration: Final Network Weights.

Elements 3 and 8 lecarned tc produce the (+dx¢, 6 +dxs)
action while element 4 learned to produce the

(+dx,,-dx,) action.

ug

(X
| -1z

.....

ACTIONS
1 - Il

1UK1

K2

L

50 , Demonstration of the System's Behavior

actions across the space in Figure 13 are due to the

superposition of the two receptive fields.

8.0 RESULTS

This section presents the results of four experiments
involving fourv simﬁlated control tasks. The same parameter
values were used for all experiments, and all weights were
initially =zero. The experiments primarily differed in the form
of the-payoff functions employed.

8.1 Experiment 1

The payoff function used in the first experiment was the
same as the one used to demonstrate the behav1or of the system in
Sectiqn 7.Q and is shown in Figure 9. The experiment was
initiated by setting the situation to (5,1) and starting the
execution of the éystem. The action produced at each step was
'allowed to change the situation. The system was run for 700
steps 'in this manner. Figure 16 is a record of every fifth
situatién change produced, and the asterisk marks the current
situation. The system successfully learned what actions to
associate with each situation that it experienced. This can also
be seen in the vector field display of Figure 17. Note the
generalizaton to situations that had not been experienced. The
situation-to-action mapping can be refined by experiencing more
situations. This was demonstrated by randomly selecting 500
additional situations and running the system for one step in
each. The resulting situation-to-action mapping appears in

Figuré 18.

Results 51

Figure 19 shows the final receptive fields of the
elements in layer 1. Elements 1, 3, 6 and 9 encode the only
significant features that formed. This 1is more noticeable in
Figure 20. In this network display, the weights in layer 2 show
that only four layer 1 elements contributed to the
action-selecting process. From this display, we can determine
that the features computed by elements 1, 3, 6 and 9 of layer 1

are respectively associated with the actions (+dx1,_dx2)’

(=dxq,4dxp), (-dxq,-dxp), and (+dxq,+dx»).

Results

SITUATION TREARCE

Figure 16: Experiment 1: Trace of the Situation Changes.

The situation was initialized to (5,1) and allowed to
be changed by the system's actions. The system quickly
learned to produce actions that maintained the
situation close to (5,5).

Results 53

CURKRENT MAP

» ’7 ,7 ,/"f /? '__2 -~ - » “_/ R ¢ ,/ “‘,-

» ~ Vad rﬁ /? T -~ - o KJ rd o ~ L/"

‘ - AT e e e FAr A
v e N e R L I G Y T v v & vV
A I A e G G A A A A
A R R SV A Y A A 4
A A S T A A AT A A A A
v 4 ¢ P~ s - . ¢ v v e & L
T P 2 2 P I I
A . T N S P

A A P P /-3 /'JP ot Vad » . - - - - e ¢ . » -
PAAAAA A A s s s
V4 4 ;,‘ ! ,/ 4 / 4 7? v < /-';:'. R § - < . r A » i:' /’ .-'“
pA A A A e e e e s s
I L R L A A
A ¥l P . A /'?? O e a N . o ~ . I » r
’ I A
» s * P # /'7 A A3 s . - it 2" & ~ ‘ *
» 2) = /.7 _,J s x> P - e s P &« s »~ N

X2

L.

Figure 17: Experiment 1: Vector Field Display After 700 Steps.

After the 700 steps shown in the previous figure, the
expected actions were as shown here. In some regions,
such as near the corners of the situation space, the
learned situation-to-action mapping will not result in
good performance. This is due to a lack of experience
with the situations in these areas.

54

Results

CURRENT MARP

N N O T A G i N
NN N N T N N T A R G S A ¢
YN N \& \; \ _J \4 \ 5,.' J v v &l v V4 v S
YN NN NN NN VL e
\u \N \Ei \\$ \\g \\g \\$ \\x Bm T& -i ﬁf g/ e & e K/ #K v/ i
YN N N NN N NNV VAN
"fw Ny A \5;. _-;. \", \\45 \'}4 \| ..,a. -J! '."f A{f, L-/ L"-./ l-"/ k/ '.-":! J .'{
NN N N NN A ! ¢ v v v v L
N N T N VN R S S S G
T T T R A i T 2 A
A A AT 2 'd—a ~F A OB S Gl Rl T o Tl vl R
PAAP A A A A s R R RURCRON S RN
LA R R P A N N T A T
PR A A A A AR SRR RN RS
rAAPNT AT AN fOoR R T BT OB RN
A A A I e y AR UL S SN N SN NN A
jﬂ ;ﬁ lgﬁ A AT LR SR S B | U S D \t\t_tzwx z“\n F&\‘ %a‘ 'R\ .
;;.1 '__;1 - R R . G S y L r;\. v o ¥, W\.. 1‘“\ N r\ r-.;"
R R R S S A T VI N N N L SN
I B R e JE T N S S Voo, T, Vo S Bl oBG
X2
L.,

Figure 18: Experiment 1: Vector Field Display After an
Additional 500 steps.

An additional 500 steps of learning were performed with
random changes in the situvation before each step. This
resulted in learning experiences throughout much of the
space, thus refining the learned situation-to-action
map.

LAYER 1.,

Results

ELEMENT 1 LAYER 1.,

EILF MENT

-~
<~

LAYER 1.,

55

ELEMENT

Ly
o

LAYVER 1,

ELEMENT 4 LAYER 1,

ELEMERT

S

LAYER 1,

ELEMENT

o

LAVER 1.

ELEMENT 7 LAYER 1.

ELHHENRT

LAYER 1.

Figure 19: Experiment 1: Functions Computed by La&er 1 Elements.

Four of the layer 1 elements have developed significant

receptive fields.

They produce their maximum values in
unique quadrants of the situation space.

nN—HC0I+H

56

Results

11

o

w N A N

H N ©

~N G

0

RS

Figure 20: Experiment 1: Network Weights.

The weights on the inputs to layer 1 have adapted to
produce the functions shown in the previous figure.
The adaptation of the layer 2 weights resulted in the
generation of actions (+dxq,-dxp), (-dxq,+dx2),

('dx1,—dx2), and (+dxq,+dxp) by elements 1, 3, 6, and
9, respectively, of layer 1.

| 41152
|

ACTION
-1k

- 1142

Results 57

8.2 Experiment 2

For the second experiment we used the payoff function in
Figure 21. In this case there are two situations of equal
desirability, (2.5,5) and-(7.5,5). Figure 22 shows the actions
produced by the first 1000 steps, starting from situation (5,5).
The initial actions generated by the network resulted in
situation changes that brought the system closer to the goal at
(2.5,5). The network learned to generate those actions that
produced situations near (2.5,5), thus avoiding the entire right
half side of the input space. Figure 23 shows the resulting
vector field display. The left half of the input space generates
a more accurate mapping than that generated by the right half
because the system's experience was limited to the left side.
The system was restarted in situation (6,2) and the actions shown
in Figure 24 were generated during the next 1000 steps, resulting

in the much improved situation-to-action mapping in Figure 25.

Figure 26 shows the receptive fields of the elements in
layer 1. Let us study the role that element 1 has assumed.
Figure 27 shows that element 1 is associated with the elements of
layer 2 causing the action (-dx1,_de). This action is
represented in Figure 23 by arrows pointing to the lower left,
and the area of this figure in which these arrows appear
corresponds to the receptive field of element 1. The system has
learned that element 1 and its associated action can be applied
to situations that are to the upper right of either peak. When

considering only the feature generated by element 1, situations

58 Results

that are similarly related to each peak are indistinguishable.
This loss of information, or grouping of situations into one
feature, is useful in a system of limited resources; situations
requiring similar actions need not be uniquely identifiable. The
layer 1 elements 4, 6 and 7 are also maximally sensitive to

situations that are similarly related to either peak.

Results 59

GOAL

Figure 21: Experiment 2: Payoff Function.

The payoff function for experiment 2 contains two peaks
defining two most-desirable situations, (2.5,5) and

(7.5,5).

60 Results i
]

SITUATION TRACE

. . evamcemremed

Figure 22: Experiment 2: Trace of the Situation Changes.
initialized to (5,5) and the system

The situation was
producing the

was allowed to run for 1000 steps
situation changes shown.

Results 61
CURRENT MAF

B Y

A -~ - . w L,-d" ‘__,_."" e o pos ot
- —F — - v o« ‘___/ & 7 fg;""' o s - e < P - - - .r
- = = ‘ Tl Rl Y e G 'S v s ¢ e <
e A A >) i T A A A A A A
S N A {f,ﬂ»’ Py N N A
v ™S ™ h" ¢ o« 7 ‘,::/ yod - 1_,;"’ (,_"’. .';-/ « v Y4 t4 N4 v 4
NN NN ¢ & E”/ & Vo -~ L’A‘/‘ e ¢ A o
" T O Y s v ‘;:/ Qf" .é:""‘ P A A4 W N4 K R 4 N
- - =~ . Y &f"-’ P Y < ¢ ; ¢ i ‘]
P A > o e 2t T - . . . ’ ’ ,
R R N < T Y N A R B P
,"/n /;? ./m /?‘ «"ﬁ 7 . * e o ’ r a Vs A A A A 2 2
R A R P R N T R R
A AP PP A e e e w b AF A PP A A
AT A A, 2 P T L , 7 F N Y SV A
R T I I
LR B R B . oy e a e - , R , , . . .
S S P ’ e &__,;-’ s P s Py . v v v v .
e - ~ » o w T p e - i . . R ,

X2
*1

Figure 23: Experiment 2: Vector Field Display.

The expected actions are approximately correct only for
situations near (2.5,5). This is due to the lack .of
experience in areas of the space distant from (2.5,5).

62

Results

SITUATION TRACE

Figure 24: Experiment 2: Additional Situation Changes.

An additional 1000 steps were run starting from
situation (6,2) producing the situation changes shown.

63

Results

CURREENT MAP

~ o~

~a

e

Ny

=3

v

\
v

™M N ™Y
N

N NN

”

s
&

v

7 > D
A A
A A7
A
A AA

f

a4

P

R s
%
- &
& P 4 -
rd - - - s
LS = - A

A
43
o
A
/
/ﬂ
y

*-,

~T

—F 7 7

-

- 7 —

rad

Experiment 2: Final Vector Field Display.

Figure 25:

PR

péyoff‘
is

3

of the

peak
situation-to-action mapping

near the right
the overall
much improved.

learning

After
function,

64

LAYER 1,

ELEMENT 1 LAYER 1, ELILHENT

Results

2 LAYER 1., ELEMENT

el

-

LAYER 1,

ELEMENT 4 LAYER 1. ELUMENT

S LAYER 1. ELEMENT

s

LRYER 1.

ELEMENT ¥ LAYER 1. ELIHRENT & LATER 1, ELEMENMT

Figure 26: Experiment 2: Functions Computed by Layer 1 Elements.

Four of the layer 1 elements were primarily significant
to this experiment. They became tuned to regions to

either the upper left or right,

or lower left or right

of the peaks in the payoff function.

H
i
'
'

- o e m—

LR R L

Results 65

N

9!

& RN @)l N4 G &

O N a

LY

ACT)

PR “ A, .]l:\]

= i - e

------------- ~ ceveneras e .f J pel . l|>,.' s

.............. AN & A, ,) . o
H i | i

sl AR

Figure 27: Experiment 2: Network Weights.

Elements 1, 4, 6, and 7 learned to generate actions
(~dx,,-dx5), (-dxq,+dx2), (+dxq,-dxp), and (+dxq,+dx3),
respectively.

66 Results

8.3 Experiment 3

The rationale for performing experiment 3 was to study
how the placement of the payoff function's peaks affected the
solution. The payoff function for this experiment contained two
peaks of equal height, but varied from the payoff function of
experiment 2 in that the positions of the peaks differed not only
in the X, component as in experiment 2, but also in the x,
component. This payoff function is shown in Figure 28. One
layer 1 element could become tuned to more than one region only
if the centers of the regions were approximately on a line that
was parallel to one of the dimensions, due to the manner in which
the input space was represented by the g;j's, whose values were
constant along one of the dimensions Xy or x». For example, in
experiment 2, one element became tuned to regions to the upper
right of each peak. However, this was not possible in this
experiment as the regions to the upper right of each peak were on
a diagonal line that was not parallel to a dimension. Therefore,
this experiment should result in the recruitment of more layer 1

elements.

We trained the system for 2600 steps during which we
interrupted the simulation several times and altered the current
situation to give the system experience in different areas of the
(X1,x2) space. Figure 29 shows the resulting situation-to-action
mapping as a vector field display. Figures 30 and 31
respectively show the layer 1 elements' receptive fields and the

network's weights. By comparing Figures 30 and 27, we can see

Results 67

that experiment 3 resulted in a greater utilization of the layer
1 elements than did experiment 2. 1In experiment 3 at least seven
elements make significant contributions to the calculation of an

action, whereas only four elements were significant in experiment

2.

To further contrast these experiments, let us analyze the

production of the (-dX; 4dx,) action in both cases. In
experiment 2, element Y4 is sensitive to the lower right regions
of each peak and is positively connected to the -dx1 and the +dx>
layer 2 elements. However, in experiment 3 two elements, numbers
5 and 7, were used to generate the (-dx1,+dX2) action, with
element 5 sensitive to the upper left peak and element 7 to the
lower right peak. These two experiments demonstrate that the
behavio} during learning is such that an "approximately minimal"
number of layer 1 elements are recruited to perform the task.
(The actual number of layer 1 elements used for a given task is
dependent on the parameters of the system and is not guaranteed

to be minimal.)

Results

68

s
P}
[Ls)

Payoff Function.

: Experiment 3:

Figure 28

experiment 3 contains two

2.5).

5

The payoff function used in
5) and (7.

peaks at (2.5,7.

Results

CURRENT MaP

69

N N N N L e e e W 4 o e e e
I N T A A A A A S A
YN N N VY e e e
N N N L v am e e T T e T e
A v K K % e o W w w7 T T
g A A N e . T K e e W e a7 o g ke
.. R B S S N O R P i ool et S
AP A RN TR Bl YR s e s e e e
A A A7 TN AN RN . e e e e e
A A A A R ™ R - Y Ve o 4 e — —
e L A B A A A N N N N I e
P S S S G S - . v YN Ny DN \; : é o & &
P P T T A - N . S N T T Y { w e— & a-
— T T T M . ¢ P U CR YO Y ¢ 4 & & &
eI . N B I ’ f fo ey e e s v 4 e e e
A A A2 /77 t T O B S N N TS
AR A T TN e s S
AAAFFE YT AN TN
PPN A O AN N Y A AR A S N S
r2A2 7272111 O A Nt

Figure 29: Experiment 3: Vector Field Display.

The system was trained for 2600 steps during which the
situation was changed and the system restarted several

times.

Results

70

ELEMENT 1 LAYER 1, ELEMENT 2 LAYER 1, ELEMENT 3

LAYER 1.

(3

ELEMENT

LAYER 1.

K]

MEHT 95

ELL

LAYER 1.

EMENT

.

E

LRYER 1.

2

CHEMT

EL

LAYER 1.

MENT 4

ELE

LAYER 1,

v

MENT

ELLE

LAYER 1.

Functions Computed by Layer 1 Elements.

Figure 30: Experiment 3

In this experiment approximately seven layer 1 elements

contributed significantly to the results.

NHCTOZ -

Results

X1

w 4 N & N O

2

N ®

H

g N g

..............

..............

Figure 31: Experiment 3: Network Weights.

A larger proportion of layer 1 elements were tuned in
this experiment in relation to experiment 2. This is
due mainly to the fact that the placement of the two
peaks of the payoff function were diagonally related
rather than horizontally (and how this relates to the
horizontal and vertical nature of the input
representation to layer 1; see Figure 8).

71

~ Dkl
1)iE]

42

ACY TR

72 Results

8.4 Experiment U4

The purpose of this experiment was to demonstrate the
performance of a task for which the layered structure of the
system could be proven to be necessary. The payoff function
defining the task is shown in Figure 32. To obtain the highest
payoff, the system should learn to generate actions that result
in situation changes such that situation (2.5,5) is sought and
situation (7.5,5) is avoided. The appendix provides a proof that
layer 2 alone cannot solve this task, assuming that the

situations are represented in terms of the g;rs,

The training procedure for this experiment was slightly
different from that used in the previous experiments. Since the
system produced actions that rapidly carried it away from the
peak to be avoided, it was necessary to place the system
periodically into a situation near this peak in order to provide
enough experience in this region. The system was trained for a
total of 10,000 steps, with a random situation change after every
20 steps. Most of the situation-to-action mapping was formed
early in the experiment, but many additional steps were required
to learn the mapping completely near the peak to be avoided. The
number of steps could have been reduced if the system would have
been placed into those situations that required more experience

rather than changing the situation randomly.

Results 73

Figure 33 shows the resulting vector field display. It
is clear that a good situation-to-action mapping has formed.
Figure 34 shows the final receptive fields of the 1layer 1
elements. In addition, the receptive fields of the layer 2
elements are shown in Figure 35. The fact that layer 2 alone
could not form these receptive fields can be realized by studying
the fields of elements 3 and 4 of layer 2. A weighted sum of the
4; inputs could not form this type of function. However, the

receptive fields of elements 1 and 2 of layer 2 could be formed

from the Qj's. Thus, for this task the internal representation

produced by layer 1 was necessary only for the generation of the

dxg component of the actions (generated by elements 3 and 4 of
layer 2). The dx; components of the actions for each situation
can be computed by subtracting the output of layer 2's element 1
from the output of element 2. Similarly, the dx2 components of
the actions can be computed by subtracting the output of layer
2's element 3 from the output of element 4, Figure 36 shows the
results of these subtractions. Notice that these functions
approximate the partial derivatives of the payoff function, which

is just what is desired. Finally, Figure 37 shows the network

weights that were formed during this experiment.

Results

74

GOAL

S 19 l~ /\ ..:\ /‘

;;;?,\(\x\/\,aﬁ.

Experiment U4: Payoff Function.

Figure 32

desirable

most

a

defines
and a least desirable situation,

i0n

payoff functi
situation, (2.5,5),

This
(7.5,5).

Results
75

CURRENT MAP

/S

\&\J\\\\\&\j{&//l//"
vy NNy N e s

¢ ’ < v - - ' 7 Vel - - -
' e Ve & v o . . N ¢ 7 2 o - N .
&' J k/ I.Z e SV “ % i y S O B S P
V k/ / & e o~ 17 rA2A oo~
3(\E J U-/-/ fi-/ 4 “/' o P ['.“ f- /l 7 /ﬁ -,-3. _
“ ['s & & - &_/ v ~ o <~ - t+ }' / /f? 2 —
I N N N A I B
A ~ = ¥
/ X \\ ';\\ T Loal L_/ / L/, J 5 " -y — —
;?\ ,\ lh\\ T‘\‘ ®- £ {z../ / V./ qfi ,1, - e ~ -
?) R F\ '\ AN “ l—'/ L</ l'_// “-:'. I3 - - - -
s (l = r\ LN o R4 v é . . - .
° ¢ - 4 » ” -
X2
L..

Figure 33: Experiment 4: Vector Field Display.

This is the vector field display obtained after
approximately 10,000 steps, with random situation
changes after every 20 steps.

Results

76

3

ILAYER 1, ELEMENT

2

LEMENT

ILLAYER 1,

1

ELEMENT

LAYER 1,

O wﬂ
= |
= z
LIV} mu.—
m i
- -
W Ll
- -
o o
w w
> >
jont T
3]
Hy) oy
£ =
3
o 3
- -
& u
w w
T T
- i
< H
£ ot
i]
w 9
. -
w w
- -
v &L
x _%
T T
- -

Figure 34: Experiment 4: Functions Computed by Layer 1 Elements.

elements

1

layer
f the situation space.

eight of the

ent,
became tuned to regions O

this experim

In

77

Results

2

ELEMENT

-
<

LAYER

ELEMENT 1

2.

LAYER

AAA

O f\wm »«mﬁ«%ﬂwxﬂ\ A
VI AN NN

ﬁ, N

S5\

.

T

meJ\ff\ AR &uih
hﬂ\ N /VFW(XK 3&. m
A LNV W
TR L
Nz\V\}/ \\ﬂr\LAJ%%}x ﬁ
SO E
Ul ;
~ p \.\ ..—v_w/ .
\ .
~04 w_
"G m
-
(0]
E
]
z=
w
-}
w

s

-

LAYER

Figure 35: Experiment 4: Functions Computed by Layer 2 Elements.

displaying the
-dxo, and +dx;

as

+dX1,

interpreted

be

can
probability of producing a —dx1,

graphs

These

acﬁions for all situations.

78 Results

LAYER 2,RACTION DX 1 LAYER 2,ACTION DX 2

Figure 36: Experiment Ai: Final Situation-to-Action Mapping.

An alternative way of displaying the knowledge learned
by the system is to graph the values of dx1.and dx, as

functions of the situation. This was done by
subtracting the output of element 1 from element 2 and
element 3 from 4, all of layer 2. The resulting
functions approximate the partial derivatives of the
payoff function.

Results

79

ACTIONS

proveren

=Z0 O

PRYOFF =

Network Weights.

Figure 37: Experiment 4:

The values of the weights show that most of the layer 1

elements were tuned during this experiment.

80 Discussion

9.0 DISCUSSION

The system presented in this report illustrates a method
by which a reinforcement learning system can acquire, through
experience in an environment, an internal representation (a
feature encoding) that enables the action-selecting mechanism to
perform a task that it might otherwise be unable to do. The
capabilities of the system primarily result from its use of the
"divide and conquer" approach, closed-loop reinforcement
learning, and goal-seeking components that cooperate. Although
the demonstrations involved relatively simple control tasks using
two-dimensional input and output vectors, it is claimed that this
method 1is extensible to more complex problems of higher
dimensionality. However, the following aspects of the method
require further investigation before more complex tasks can be

attempted.

All of the experiments presented here were initiated
with zeroed weights. Certainly if the system is to be applied to
a known class of tasks, then all a priori knowledge about those
tasks should be used to set some of the initial weight values to -
produce features that might be useful. This type of information
could greatly decrease the time required to search for a good

internal representation.

The process by which the layer 1 elements are forced to
be tuned to different stimuli should also be investigated. Rather
than selecting only one element of layer 1 to be eligible for

learning, the layer 1 elements could be divided into smaller

Discussion 81

groups with the competition for activity or 1learning being
restricted to within each group. This would result in a greater
redundancy of features, which is desirable if the elements are
unreliable. One could also apply a small excitatory and large
inhibitory field around each layer 1 element, which might result
in a more "biological" organization in which groups of

neighboring elements would tune to similar situations.

Another aspect to be noted is the unavailability of the
original representation (i.e., the Xj's and gqi's), to the
action-selecting 1layer. If these representations were provided
as input to layer 2 in addition to any features that might be
formed by layer 1, then the search for a good feature set could
be much easier. The only required features would be those that
are defined on situations for which the action-selecting elements
could not generate the <correect actions from the original

representation. Layer 1 would provide the additional inputs

needed to correct, or "de-bug", layer 2's mapping.

Finally, the method does not dictate that the system be
composed of only two layers. Perhaps additional layers would
increase the efficiency of the search for both the input
representation and the output representation. Here again it
might be advantageous to provide the original inputs to each
layer and send the outputs of each layer to all subsequent
layers, including the final action-selecting layer. In this
case, a particular layer could be considered as receiving "higher

level” inputs from the previous layers, whose function would be

82 Discussion

to modify the receptive fields of the elements in that layer.

Bibliography 83

10.0 BIBLIOGRAPHY

Albus, J. S.: Mechanisms of planning and problem solving in the
brain. Math. Biosci. 45, 247-293 (1979)

Anderson, J. A., Hinton, G. E.: Models of information processing
in the brain. In: Parallel models of associative memory, pp.
9-48. Anderson, J. A., Hinton, G. E., eds. Hillsdale, NJ:
Lawrence Erlbaum Assoc., Inc. (1981)

Arbib, M. A.: The metaphorical brain. New York:
Wiley-Interscience 1972

Barr, A,, Feigenbaum, E. A.: The handbook of artificial
intelligence. Los Altos, Ca: William Kaufmann, Inc. (1981)

Barto, A. G., Anderson, C. W., Sutton, R. S.: Synthesis of
nonlinear control surfaces by a layered associative search
network. Biol. Cybern. 43, 175-185 (1982)

Barto, A. G., Sutton, R. S.: Landmark learning: an illustration
of associative search. Biol. Cybern. 42, 1-8 (1981a)

Barto, A. G., Sutton, R. S., Anderson, C. W.: Adaptive
neuron-like elements that can solve difficult learning
control problems. COINS Technical Report 82-20, University
of Massachusetts, Amherst. (1982)

Barto, A. G., Sutton, R. S., Brouwer, P.: Associative search
network: a reinforcement learning associative memory. Biol.
Cybern. 40, 201-211 (1981)

Berliner, H. J., Ackley, D. H.: The QBKG system: generating
explanations from a non-discrete knowledge representation.
Proc. National Conf. on Art. Intell., 213-216 1982)

Block, H. D., Nilsson, N. J., Duda, R. O.: Determination and
direction of features in patterns. In: Computer and
information sciences: collected papers in learning,
adaptation, and control in information systems, pp. 75-110.
Tou, J. T., Wilcox, R. H., eds. Washington, D. C.: Spartan
Books 1964

Chow, C. K.: A class of nonlinear recognition procedures. IEEE
Trans. Sys. Sciences and Cyber. SSC-2, 2, 101-109 (1966)

Chow, C. K., Liu, C. N.: An approach to structure adaptation in
pattern recognition. IEEE Trans. Sys. Sciences and

84 Bibliography

Fu, K. S.: Learning control systems -- review and outlook. IEEE
Trans. Auto. Control, April, pp. 210-221 (1970)

Fukushima, K.: Visual feature extraction by a multilayered
network of analog threshold elements. IEEE
Trans. Sys. Sci. Cybern., SSC-5, 4, 322-333 (1969)

Gilstad, D. W., Fu, K. S.: Two-dimensional adaptive model of a
human controller using pattern recognition techniques. IEEE
'{ransS Systems, Man, and Cyber., SMC-1, 3, pp. 261-266

1971

Gose, E. E.; ‘Introductiorl to biological and mechanical pattern
recognition. In: Methodologies of pattern recognition, pp.
203-252. Watanbe, S.,ed. New York: Academic Press 1969

Holland, J. H.: Goal-directed pattern recognition. In:
Methodologies of pattern recognition, pp. 287-296. Watanbe,
S.,ed. New York: Academic Press 1969

Holland, J. H.: Adaptation in natural and artificial systems.
Ann Arbor: Univ. of Michigan Press 1975

Kamentsky, L. A., Liu, C. N.: Computer-automated design of
multifont print recognition logic. IBM Journal Res. Dev. 1,
2-13 (1963)

Kaufman, H.: An experimental investigation of process

identification by competitive evolution. IEEE
Trans. Systems Sciences and Cyber., ssc-3, 1, pp. 11-16
(1967)

Klopf, A. H., Gose, E.: An evolutionary pattern recognition
network. IEEE Trans. Syst. Sci. Cybern. SSC-5, 3, 247-250

(1969)
Klopf, A. H.: Brain function and adaptive systems - a
heterostatic theory. Air Force Cambridge Research

Laboratories Research Report AFCRL-72-0164, Bedford, MA,
1972 (A summary appears 1in: Proc. Int. Conf. Syst., Man,
Cybern., IEEE Syst., Man, Cybern. Soc. Dallas, Texas, 1974)

Klopf, A. H.: Goal-seeking systems from goal-seeking components:
implications for AI. Cogn. Brain Theory Newsletter 3,
2(1979)

Klopf, A. H.: The hedonistic neuron: a theory of memory,
learning, and intelligence. Washington, D.C.: Hemisphere
Publishing Corp. 1982

Bibliography 85

Lewis, P. M.: The characteristic selection problem in recognition
systems. IRE Trans. info. theory IT-8, pp. 171-178 (1962)

MacKay, D. M.: Recognition and action. 1In: Methodologies of

pattern recognition, pp. U409-416. Watanbe, S.,ed. New
York: Academic Press 1969

Mendel, J. M.: Synthesis of quasi-optimal switching surfaces by
means of training techniques. In: Adaptation, learning, and
pattern recogntion systems: Theory and applications, pp.

163-195. Mendel, J. M., Fu, K. S., eds. New York: Academic
Press 1970

Mendel, J. M., McLaren, R. W.: Reinforcement-learning control and
pattern recognition systems. In: Adaptive, learning, and
pattern recognition systems: Theory and applications, pp.

287-317. Mendel, J. M., Fu, K. S., eds. New York: Academic
Press 1970

Mendel, J. M., Zapalac, J. J.: The application of techniques of
artificial 1intelligence to control system design. 1In:
Advances in control systems: theory and application, v. 6,
pp68 2-94, Leondes, C. T., ed. New York: Academic Press
1 9 _ . . .

Michie, D., Chambers, R. A.: BOXES: An experiment in adaptive
control. Machine 1Intelligence 2, pp. 137-152. Dale E.,
Michie, D., eds. Edinburgh: Oliver and Boyd 1968

'Minsky, M. L.: Steps toward artificial intelligence. Proc. IRE

iMinSky, M. L., Papert, S.: Perceptrons: An introduction to
computational geometry. Cambridge, MA: MIT Press 1969

Nagy, - G.: Feature extraction on binary patterns. IEEE
' Trans. Syst. Sci. Cybern., SCC-5, 273-278 (1969)

Nilsson, N. J.: Learning Machines. New York: McGraw-Hill 1965

Raibert, M. H.: A model for sensorimotor control and learning.
Biol. Cybern. 29, 29-36 (1978)

Riseman, E. M.: Logical networks for feature extraction. IEEE
Trans. Sys., Man, Cyber., SMC-1, 1, 43-55 (1971)

Rosenblatt, F.: Principles of neurodynamics. New York: Spartan
Books 1962

'Saridis,' G. N.: Self-organizing control of stochastic systems.
- New York: Marcel Dekker, Inc. 1977

86 Bibliography

Sears, R. W.: Adaptive representation for pattern recognition.
IEEE Trans. Sys. Sci. Cyber., SMC-1, 1, pp. 59-66 (1965)

Uhr, L., Vossler, C.: A pattern recognition program that
generates, evaluates and adjusts its own operators.
Proc. Western Joint Comp. Conf., 555-569 (1961)

Waterman, D. A.: Generalization learning techniques for
automating the learning of heuristiecs. Artificial
Intelligence, 1, pp. 121-170 (1970)

Widrow, B., Smith, F. W.: Pattern-recognizing control systems.
In: Computer and information sciences: collected papers in
learning, adaptation, and control in information systems,
pp. 318-343. Tou, J. T., Wilcox, R. H., eds. Washington,
D. C.: Spartan Books 1964

87

A.0 THE NECESSITY OF LAYER 1 FOR EXPERIMENT 4

Consider the ranges of the input variables X1 and x5 as
each being divided into two intervals, as shown in Figure 38a.
Attention will be restricted to those regions of the input space
that are contained within the intersections of these intervals,
and specifically to thg points Py, P2, P3, and py. The arrows
indicate the actions that should be 1learned at each point.
Figures 38b and 38c show these actions in terms of their X, and

X5 components.

Each point is encoded by the maximum value of two of the
quantized measurements. Thus, the points are represented by
vectors of the form (q%,q%,q%,q£,1) for point p;. The maximum
value of a q% is specified by v. The X, components of the
actions are specified as either +u or -u. The following is a list

of the points, the vectors representing them, and the Xs

component of the actions at each point.

Py = (vOOVv 1) -u
P, = (vOvO01) +Uu
P3 = (OvoOv1) +U
Py = (0OvvoO01) -u

Layer 2 outputs the action +u only if the +dx2 element
produces a value greater than the value produced by the -dx2
element, and vice versa for action -u. If we assume that layer 2
can learn these actions, then the vectors (a1,,,,,a5) and

(b1,...,b5) must exist, such that the following inequalities are

satisfied:

88

X2 AN

9 < o

4 92 A
a.
AN X AN
Gy fi —> fe—" n T‘
94 L %
R > <— 1. 3
943 4 9 ﬁ1 sl
>y S
%1 q,z ‘ q‘i q,\. 1
b. C

Figure 38: Diagrams used in the Proof of the Necessity of Layer
1 for Experiment 4.

89

aiq} > b.ql , for i = 2,3
5= JH) =1 JM] !
2 , > .

cq3 cqt i =
> ajql < . bjq} for i = 2,3
J=1 J=1
These are expanded to

Va8 + vag + ag > vby + vby + bg (1)
Vas + vay + ag > vbp + vby + bg (2)
V81 + vay + ag < vby + vby + bg (3)
Va8 + va3z + ag < vby + vby + bg (4)

Adding vay to (1) and va3 to (3) we arrive at
Va1 + vag + vay + ag > vby + vby + bg + vay
Val + vagz + vay + ag > vby + vby + bg + vag

which are combined into

YDy + vby + bg + vagz > vaj + vaz + vay + ag >

vby 4 vb3 + bg + vay
and reduced to

vby + bs + vaz > vb3z + bg + vay. (5)

In a similar manner, add Vasz to (2) and vay to (4) to get
Va8 + vag + vay + ag > vby + vby + bg + vasg

vVaz + vaz + vay + ag > vbp + vb3z + bg + vay

which are combined into

.
M-
—
o
>
LO
e
v
[
"
—

Muw
)
(&)
0
G
A

j=1 j=1

These are expanded to

va, «+ vaz + ag
Vas + vay + ag
Va, + vay + ag

Va, + vaz + ag

>

>

<

<

JaJ
Jjaj
Vb1
vbo

vb1

vbo

Adding vay to (1) and vaz to

Vay + vaz + vay + ag > .vby + vb3z + bg + vay

vay + vag + vay + ag > vby + vby + bg + vag

which are combined into

Vb, 4+ vby + bg + vaz > vaj + vagz + vay + ag >

and reduced to

’ for i =
, for i =
+ Vb3 + b5
+ vby + Dbg
+ vby + bg
+ Vb3 + bsg

(3) we arrive at

Vb1-+ vb3 + bg + vay

vbu + b5 + vag >_vb3 + b5 + vay.

2,3

2,3

(1)

(2)

(3)

4)

(5)

89

In a similar manner, add vaz to (2) and vay to (4) to get

vas + vaz + vay + ag > vbp + vby + bg + vag

vap + vagz + vay + ag > vbp + vb3z + bg + vay

which are combined into

90
Vb, 4+ vb3 + bg + vay > vap + va3z + vay + ag >
vby + vby + bg + vas
and reduced to

Vb3 + b5 + vay > vby + b5 + vag. (6)

The inequality (6) directly contradicts (5). Therefore,
layer 2 by itself, cannot learn the function that generates the

X5 component of the actions from the vector representation. The

services of layer 1 are required to transform the vector
representation into a different representation from which layer 2

can produce the correct actions.

