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Abstract— Principal Components Analysis (PCA) is often
used to project high-dimensional signals to lower dimensional
subspaces defined by basis vectors that maximize the variance
of the projected signals. Data containing variations of relatively
short duration and small magnitude, such as those seen in EEG
signals, may not be captured by PCA when applied to time
series of long duration. Here, PCA is applied independently
to short segments of data and the basis vectors themselves
are used as features for classification. In addition, time-
embedding the EEG by augmenting each sample with previous
samples prior to PCA results in a representation that captures
EEG variations in space and time. The resulting features are
classified into categories corresponding to which mental task
a subject is performing in a brain-computer interface (BCI)
paradigm. Approximately 80% of test samples are correctly
classified as one of five mental tasks. In addition, an on-line
artifact removal method is demonstrated and an inexpensive
hardware and software system for BCI research is described.

I. I NTRODUCTION

A brain-computer interface (BCI) is a hardware and
software system that records electroencephalogram (EEG)
signals from human subjects and is used in an on-line
fashion to take actions, such as computer cursor movement
or the selection of a letter for a typing task, by identi-
fying patterns in EEG corresponding to various kinds of
mental imagery performed by the subject. Recent efforts
in the brain-computer interface (BCI) field have resulted
in exciting demonstrations of the potential for BCI appli-
cations. Wolpaw, et al., [15] showed that some subjects
can learn two-dimensional control of a computer cursor.
Mill àn, et al.,[14] demonstrated the control of a wheelchair
instrumented with range sensors that prevented collisions.
Most of these advances are still based on the discrimination
between two or three mental imagery, such as imagined
hand or foot movements. The ability to discriminate more
mental tasks would enhance the speed with which a disabled
person could communicate through a BCI.

Progress in the BCI field is impeded primarily by the
difficulty of finding and representing the patterns in EEG
that correspond to various mental tasks. To-date, most BCI
systems rely on our current understanding of changes in
EEG over motor cortex areas during imagined movements.
The identification of EEG from other kinds of mental tasks
will require new signal representations that capture patterns
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in EEG over multiple electrodes and over time. Here such
a representation is described that is based on singular value
decomposition (SVD) of short time windows of multi-
channel EEG. Results show that with this representation a
simple classifier (linear discriminant analysis) can correctly
identify about 80% of the time which of five particular
mental tasks subjects are performing, using about four
seconds of EEG data. Before describing these results, a
method for removing unwanted variations, called artifacts,
from the EEG is shown which is also based on SVD.

Another major factor limiting research activity in BCI
is the lack of affordable and extendable BCI hardware and
software. Here we describe the publicly-available software
we have developed and use with an EEG amplifier by
NeuroPulse-Systems, LLC. A complete BCI system based
on this amplifier with our software running on a laptop
computer costs a total of about $6,500.

II. A RTIFACT REMOVAL

A computationally efficient method for removing artifacts
from EEG on-line is the maximum signal fraction analysis
(SFA). SFA was initially developed as a method to reduce
noise in satellite imagery [3] and it was further developed
in the context of signal separation [6], [5], [10]. Here
SFA is defined as it relates to the problem of separating
the components in a sequence of EEG signals. Common
artifacts in EEG signals are caused by eye blinks and eye
movements and by other muscle movements. The artifacts
due to the eyes tend to be slow waves that are present in data
recorded from frontal and central electrodes. Artifacts due
to muscle movement are higher frequency. Therefore, one
approach to artifact removal is to separate the EEG signals
into components from slow to fast variability, then eliminate
the extreme components from the signal. SFA provides such
a spectrum of components, as follows.

Let a time series of multi-channel EEG data be rep-
resented by the matrixXn×d where n is the number of
samples andd is the number of electrodes. Each column
of X contains the data recorded from a single electrode
and each row is the data from all electrodes at one point in
time. Characterize the “noise” in the signal by the temporal
difference,Y , in X, whereY = X −Xs, and the subscript
s represents a shift forward in time by one sample. The
generalized singular value decomposition (GSVD) ofX and
Y can be used to extract a spectrum of components ordered



by the degree to which they represent signal versus noise.
The GSVD ofX andY is given by

X = UCWT

Y = V DWT

where the matricesU and V are orthogonal,W is an
invertible matrix, andC andD are diagonal withC2+D2 =
I. The GSVD of X and Y may be computed with the
following Matlab code.

Y = X(1:end-1,:)-X(2:end,:);
[U,V,W,C,D] = gsvd(X,Y,0);
extractedSources = U;

The matrixU contains the components ordered by increas-
ing amounts of variation. A visual inspection of a graph
of these components can reveal which components should
be eliminated from the signals. To remove a component
the corresponding column ofU must be set to zero. This
operation can be represented as a right multiplication by
a matrix Z where Zii = 1 if a signal is not an artifact,
Zii = 0 if signal i is an artifact, andZij = 0 for all
i 6= j. Now the artifact filter,F , can be calculated by
F = (CWT )−1ZCWT . The GSVD definesW as an
invertible matrix making this definition well defined. This
filter is applied to the original EEG asXF and has the
effect of removing the contribution of components that were
considered artifacts. Application of the filter is not limited
to X. It can be applied to new data sets as well. Further
details on SFA for artifact removal is provided by Knight,
et al., [11], [2].

The use of SFA for artifact removal is demonstrated by
applying it to 10 channels of EEG recorded from a subject
performing a mental multiplication task. Figure 1a shows 10
channels of EEG recorded for five seconds. Eye movements
are visible in the lowest frequencies of FP1 and FP2 and
60 Hz line noise is apparent in all channels. Figure 1b
shows the 10 components resulting from SFA. The first
component is mostly 60 Hz power-line interference. We
can also see that most of the eye movement signal has
been isolated in the tenth component. The first, second,
and tenth components were selected to be removed and the
corresponding filter constructed. Applying the filter to the
original EEG results in the filtered EEG shown in Figure 1c.
60 Hz power line noise is no longer apparent. The eye
movement has been removed from FP1 and FP2 (and other
channels) revealing details not seen in the original EEG.

III. C LASSIFICATION OF EEG REPRESENTED BY

SHORT-TIME PCA

Principal component analysis (PCA) is commonly used to
project data samples to a lower-dimensional subspace that
maximizes the variance of the projected data. For many data
sets, PCA is also used to isolate the information in the data
into meaningful components, such as “eigenfaces” [13] and
“eigenlips” [9] in applications involving analysis of face
images.
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Fig. 1. Creation and use of SFA for removing artifacts from EEG10
channels of EEG. a) Five seconds of 10 channel EEG sampled at 256 Hz;
b) Components (columns ofU ) separated by SFA, ordered from smallest
to largest signal-to-noise ratio; c) EEG after removing SFA Components
1, 2, and 10.



For classification problems, PCA is usually applied to a
collection of samples from all classes with the hope that
the projection of new samples onto the PCA basis form
components whose amplitudes are related to the class. This
approach may fail to capture variations that appear in the
data over short time intervals. Such variations contribute
little to the overall variance of the data, but may be critical
in classifying samples into the correct classes.

Features of short duration can be captured by applying
PCA to short windows in time of the data. This results
in multiple bases, one for each window. To project data
samples using these multiple bases, they must somehow
be combined into a single basis. An alternative approach
is used here. Rather than projecting the data to form
features on which classification is performed, the bases
themselves are taken as the features. Our hypothesis is that
the directions of significant variation within each window
will capture the information needed to correctly classify
the data in the window. We refer to this method as short-
time PCA, or STPCA. The basis vectors are calculated
by singular value decomposition (SVD) of the matrix of
samples in each window.

The EEG samples are augmented by samples delayed
in time, forming a time-embedded representation described
in the next section and in [2], [8]. With this modification,
PCA becomes a tool for simultaneously analyzing spatial
and temporal aspects of the data. A related approach using
common spatial patterns was recently described in [12].

Let xi be a column vector of EEG voltages ford
electrodes at sample timei. Consecutive samples are com-
bined to form the l + 1 dimensional time embedding
x̂i = (xT

i+l, x
T
i+l−1, . . . , x

T
i )T , for i = 0, . . . , n − l.

Windows of w consecutive time-embedded samples that
overlap by p samples are collected into matricesWj =
(x̂1+(w−p)(j−1), . . . , x̂(w−p)j+p), for j = 1, . . . , ⌊n−p−l

w−p
⌋.

EachWj is d(l + 1) × w. The SVD,Wj = UjSjV
T
j , of

each window,Wj , is performed to obtain the left singular
vectors in Uj . To remove the variation in sign of basis
vectors over multiple windows that results from SVD,
columns ofUj for which the first component is negative are
multiplied by−1. Concatenating all columns ofUj results
in a (d(l + 1))2 dimensional vector representing thejth

window of multichannel, time-embedded EEG data.

A. Linear Discriminant Analysis

Linear Discriminant Analysis (LDA) is a simple prob-
abilistic approach to classification in which each class is
assumed to follow a normal distribution [4]. The param-
eters for the distribution of each class are estimated, and
with Bayes Rule are combined to form linear discriminant
functions. For Classk with sample meanµk and covariance
matrixΣ averaged over all classes, the discriminant function
is

δk(x) = xT Σ−1µk −
1

2
µT

k Σ−1µk.

Defining weights wk = Σ−1µk and bias bk =
− 1

2µT
k Σ−1µk, each discriminant function simplifies to

δk(x) = xT wk + bk.

B. Results

EEG data used here was provided by an earlier study [7].
EEG signals were recorded from subjects performing the
following five mental tasks: 1) resting task, in which sub-
jects were asked to relax and think of nothing in particular;
2) mental letter writing, in which subjects were instructedto
mentally compose a letter to a friend without vocalizing; 3)
mental multiplication of two multi-digit numbers, such as 49
times 78; 4) visual counting, in which subjects were asked
to imagine a blackboard and to visualize numbers being
written on the board sequentially; and 5) visual rotation
of a three dimensional block figures. For each trial, EEG
was recorded from six electrodes (d = 6) at positions
(C3, C4, P3, P4, O1, O2) for 10 seconds sampled at 250
Hz. Each task was repeated five times (for a total of five
trials per task). The order in which tasks were performed
was randomized, and subjects did not practice the tasks
beforehand. Another five trials of each task were recorded
during a second session on a following day.

Window size and overlap werew = 50 andp = 40. The
time embedding involved three samples (l = 2). Data was
partitioned into training and testing sets as follows. First,
all five trials from the first day comprised the training set
and all five trials from the second day comprised the testing
set. The LDA classifier was computed from the training set
samples and the trained classifier was tested by applying it
to the testing set samples. This evaluates how well a trained
classifier generalizes to data recorded on another day. Then,
training one trial at a time from the second day was moved
from the testing set to the training set.

It was found that the classification accuracy on testing
data is increased by combining the classification result over
consecutive windows of EEG by selecting the most com-
monly predicted class over consecutive windows. Results
for two subjects are shown in Figure 2 as fraction of test
samples correctly classified versus the number of consec-
utive windows whose predicted classes were combined.
There is a clear trend in increasing classification accuracyas
more trials from the second day are included in the training
set.

The amount of EEG in seconds,t, sampled atf Hz,
that corresponds to combining the classes ofm consecutive
windows of sizew with overlapp is t = m(w−p)+p

f
. So, in

this experiment,m = 1 consecutive window is equivalent to
approximatelyt = 0.2 seconds,m = 40 is t = 1.8 seconds
andm = 100 is t = 4.2 seconds. For Subject 1, the correct
classification rate for test trials 9 and 10 goes from about
62% for 0.2 seconds of data to about 78% for 1.8 seconds.
The results for Subject 2 reach about 68% correct for 4.2
seconds of data. Recall that this is the rate of predicting the
correct task out of five, so a random classifier would result
in only 20% correct.
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Fig. 2. Fraction of test samples correctly classified versus number of
consecutive windows whose predicted classes are combined. Different
curves correspond to different partitions of trials into training and testing
sets, indicated by the range of trials indices in the testingset. Trials 1
through 5 were recorded on the first day and Trials 6 though 10 were
recorded on a second day.

Details of the classification performance on test trials
is revealed by confusion matrices showing the percent of
test samples correctly classified for each pair of actual and
predicted classes. Table I shows the confusion matrices for
each Subject, usingm = 100 consecutive windows. Clearly
some tasks are better classified than others, but depend
on the Subject. Data from Subject 1 when performing
the resting, multiplication, and visual rotation tasks are
classified with the most accuracy, while data from the letter
writing task is classified as either visual rotation or mental
counting. For Subject 2, resting and mental counting are
well classified, but letter writing data is confused with

Predicted
Task 1 Task 2 Task 3 Task 4 Task 5

Task 1 100.0 0.0 0.0 0.0 0.0
Task 2 3.4 11.0 3.8 34.2 47.6

Actual Task 3 0.0 0.0 100.0 0.0 0.0
Task 4 0.0 0.0 1.6 96.0 2.4
Task 5 2.0 0.0 15.3 0.0 82.7

a. Subject 1

Predicted
Task 1 Task 2 Task 3 Task 4 Task 5

Task 1 90.9 0.0 4.5 0.0 8.7
Task 2 39.4 35.8 0.0 0.0 24.8

Actual Task 3 21.2 31.4 45.6 1.8 0.0
Task 4 0.0 2.4 0.0 72.6 25.0
Task 5 0.0 0.0 0.0 0.0 100.0

b. Subject 2

TABLE I

CONFUSION MATRICES FORSUBJECTS1 AND 2 SHOWING THE

PERCENT OF TEST SAMPLES CORRECTLY CLASSIFIED.
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Fig. 3. Fraction of samples from test trials 9 and 10 that are correctly
classified versus the time embedding dimension,l.

resting and counting, and multiplication data is confused
with resting and letter writing.

The above results are for the a time embedding dimension
of l = 2. The sensitivity of the results to this dimension
is determined by repeating the above classification experi-
ments using a variety of values. Figure 3 shows the results.
The number of consecutive windows ism = 20. A higher
embedding dimension of 3 or 4 produces better results for
Subject 1, but a dimension of 1 is best for Subject 2.

For six-channel EEG with time embedding dimension
l = 2, the representation,Ui of the ith window of data
consists of(6(l+1))2 = 324 components. The variations in
the weights of the LDA discriminant functions over the five
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Fig. 4. Standard deviation of LDA weights over the five lineardiscrimi-
nant functions for the five tasks. Components of the first and the last basis
vectors have the most variance and are thus the most significant.

classes indicate which of 324 features are most significant
for the classification results. Figure 4 shows the standard
deviation of the weights for an LDA classifier trained on
data from Subject 1. Results are similar for Subject 2.
Recall thatUi is composed of the basis vectors ordered
from ones with largest singular values to those with smallest
singular values. Figure 4 shows that the components in the
first basis vector, the one that captures the most variance
in the data, have LDA weights that vary the most over
the LDA discriminant functions, so play a significant role
in distinguishing the tasks. Somewhat surprising is that
components in the last basis vectors, ones that capture the
least variance in the data, are also significant. These low-
variance directions may be capturing small variations in the
data that relate strongly to the mental task being performed.

IV. EEG ACQUISITION AND CUSTOM BCI SOFTWARE

The expense of clinical EEG acquisition systems is out
of reach of small research groups. To facilitate the entry
of new researchers into the BCI field, we have studied a
combination of an affordable EEG amplifier with custom
EEG acquisition and BCI software. The EEG amplifier is
the 24-channel amplifier, called MS-24R, from NeuroPulse-
Systems, LLC, with a cost of $5,000. Additional parts
are Electro-cap electrode caps with supplies, an impedance
meter, and a SCSI adaptor for a notebook computer, with
a total cost of $1,500. So, without the purchase of a
notebook computer, the total cost is about $6,500. This list
of hardware, and the software described below, is available
on the net [1].

Our software has been designed to perform on-line EEG
recording, filtering, and classification. The objective of
the software design is to provide a convenient method of
connecting various pieces of BCI experimentation such as
interfacing with an EEG amplifier, selecting channels, fil-
tering, extracting features, classifying, and providing input

interfaces. The system was written in C++ and runs on the
Linux operating system.

The software is designed to be modular in terms of
all the pieces that might need to be added for future
experimentation. Filters, feature extractors, and classifiers
are all built as external libraries which can be plugged into
the main system. This makes experimentation with new
algorithms convenient.

In addition to the filters, feature extractors, and classifiers,
the user interfaces are designed to be modifiable and easy
to implement. These user interfaces are the method of
converting classified mental tasks from a user wearing
the EEG cap into useful computer input. The interfaces
currently designed are a simple pie menu, where each slice
represents a class, and a keyboard using a similar pie menu.
Figure 5 shows this pie menu in action. In the top example,
there are three mental tasks, each of which is displayed on
one slice of the pie. As data is sampled from a user wearing
an EEG cap and classified as one of these three classes, a
bar will grow from the center of the menu towards one of
the slices. When a bar reaches a pie slice, all bars are reset
and the process starts again.

A more complicated and useful interface is the keyboard
pie menu shown in the bottom half of Figure 5. This pie
menu is similar to the one previously described, but instead
of just resetting when a bar reaches a pie slice, the contents
of the selected slice expand to cover the rest of the pie.
When a single letter or command is finally selected, it is
sent to the computer as keystroke and the whole menu is
reset to its initial state.

Initial tests of the entire system involved the control of a
wirelessly connected robot using commands from the BCI.
A subject wore an EEG cap with four bipolar electrodes
used. Three tasks were trained. To simplify the classification
problem in this preliminary experiment, three tasks were
used that were primarily muscle movements instead of pure
mental tasks. They included blinks, jaw clenches, and right
hand movement. Each task was trained for three sequences
of five seconds each. After training, an LDA classifier
was trained to classify time-embedded data. After training,
the system was attached wirelessly to a simple robot, and
commands were associated with each task. To turn the robot
left, the subject would blink, to turn the robot right, the
subject would move their right hand, to move the robot
forward, the subject would clench their jaw. Using these
tasks, the subject effectively steered the robot around the
room with these three controls.

V. CONCLUSION

Experiments showed that EEG representations based on
short-time PCA can be classified by simple linear discrimi-
nant analysis (LDA) with an accuracy of about 80% correct
classification of the correct mental task out of five. This data
was obtained from two subjects; tests on additional subjects
are warranted to investigate the generality of this result.



Fig. 5. Two user interfaces being tested in the publicly-available BCI
software [1]. Top: An interface for the three mental tasks, count backwards,
imagine left hand or right hand imagery. Bottom: An interface for three
mental tasks to type by choosing a section of the circle in a hierarchical
menu. The selected subset of letters is distributed among the three rings
at each level, until a single letter is selected.

Analysis of the classifiers’ weights revealed that short-
time PCA basis vectors late in the sequence play significant
roles, suggesting that the low-variance activity represented
by these vectors is strongly related to the mental task. This
hypothesis warrants further study.

Information gleaned from analyses like those summarized
in Figures 4 can be used to select subsets of features to
greatly reduce the dimensionality of the data and possibly
improve the generalization performance of the classifiers.
Extending this analysis to consider the time course of

significant electrodes and basis vector directions could lead
to hypotheses of the underlying cognitive activity.
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