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Abstract— Principal Components Analysis (PCA) is often in EEG over multiple electrodes and over time. Here such

used to project high-dimensional signals to lower dimensional a representation is described that is based on singulae valu
subspaces defined by basis vectors that maximize the variance decomposition (SVD) of short time windows of multi-

of the projected signals. Data containing variations of relatively . . .
short duration and small magnitude, such as those seen in EEG channel EEG. Results show that with this representation a

signals, may not be captured by PCA when applied to time Simple classifier (linear discriminant analysis) can cctitye
series of long duration. Here, PCA is applied independently identify about 80% of the time which of five particular

to short segments of data and the basis vectors themselves mental tasks subjects are performing, using about four
are used as features for classification. In addition, time- <oconds of EEG data. Before describing these results, a

embedding the EEG by augmenting each sample with previous thod f . ted iati lled artifact
samples prior to PCA results in a representation that captures method Tor removing unwanted variations, called artiiacts

EEG variations in space and time. The resulting features are from the EEG is shown which is also based on SVD.
classified into categories corresponding to which mental task ~ Another major factor limiting research activity in BCI

a subject is performing in a brain-computer interface (BCl) s the lack of affordable and extendable BCI hardware and
paradigm. Approximately 80% of test samples are correctly —gqgare Here we describe the publicly-available sofevar

classified as one of five mental tasks. In addition, an on-line h d | d d ith EEG li b
artifact removal method is demonstrated and an inexpensive W€ Nave developed and use with an amplitier by

hardware and software system for BCI research is described. NeuroPulse-Systems, LLC. A complete BCI system based
on this amplifier with our software running on a laptop
. INTRODUCTION computer costs a total of about $6,500.

A brain-computer interface (BCI) is a hardware and [I. ARTIEACT REMOVAL

software system that records electroencephalogram (EEG)A computationally efficient method for removing artifacts

signals from human subjects and is used in an on-lin L . . : ;
g ) f‘? m EEG on-line is the maximum signal fraction analysis

fashion to take actions, such as computer cursor moveme S
or the selection of a letter for a typing task, by identi—(% A). SFA was initially developed as a method to reduce

. . . . , oise in satellite imagery [3] and it was further developed
fying patterns in EEG corresponding to various kinds Of]n the context of signal separation [6], [5], [10]. Here

mental imagery performed by the subject. Recent EﬁOEFA is defined as it relates to the problem of separating

in the brain-computer interface (BCI) field have resulte . s i f EEG sianals. C
in exciting demonstrations of the potential for BCI appli- € components in a sequence o signais. .ommon

caions. Wolav. ot al. 18] shaned that some e 1 EEC S0l e cuser o i i e o
can learn two-dimensional control of a computer cursof! y )

Mill an, et al.,[14] demonstrated the control of a Wheelchalci]'ue o the eyes tend to be slow waves that are pre;ent in data
instrumented with range sensors that prevented collisio recorded from frontal and central electrodes. Artifacts du

S .
Most of these advances are still based on the discriminat%(ﬁ muscle move_zment are hlgher frequency. Therefore_, one
acpproach to artifact removal is to separate the EEG signals

between two or three mental imagery, such as imagine R -
gery 9 nto components from slow to fast variability, then elimima

hand or foot movements. The ability to discriminate mor extreme components from the sianal. SFA provides such
mental tasks would enhance the speed with which a disabl Q]e P gnal. P
a spectrum of components, as follows.

person COUIC.’ communlca}te throygh a BCI. . . Let a time series of multi-channel EEG data be rep-
Progress in the BCI field is impeded primarily by the ; .
difficulty of finding and representing the patterns in EEd’esented by the matrix, s wheren is the number of
mples and/ is the number of electrodes. Each column

that correspond to various mental tasks. To-date, most BC ) .
svstems relv on our current understanding of changes & X contains the data recorded from a single electrode

y y S 9 9¢S Bhd each row is the data from all electrodes at one point in
EEG over motor cortex areas during imagined movementﬁ,

The identification of EEG from other kinds of mental tasks Characterize the “noise” in the signal by the temporal

will require new signal representations that capture padte difference ', in X, whereY” = X — X, and the subscript
s represents a shift forward in time by one sample. The

This work was supported by the National Science Foundatiam@No. generalized singular value decomposition (GSVD}oand
0208958. Y can be used to extract a spectrum of components ordered



by the degree to which they represent signal versus noise.

The GSVD of X andY is given by FP1

X = vcw? FP2

Y = vDWT F3

where the matriced/ and V are orthogonal W is an Fzs

invertible matrix, and” and D are diagonal wittC?+D? = Fa

I. The GSVD of X and Y may be computed with the ol

following Matlab code. o

C4

Y = X(1l:end-1,:)-X(2:end,:); P3

[UV,WC D = gsvd(XY,O0); 2

extract edSources = U; PZ
The matrixU contains the components ordered by increas- P ‘ ‘ ] ‘ ‘
0 1 2 3 4 5

ing amounts of variation. A visual inspection of a graph

of these components can reveal which components should o
be eliminated from the signals. To remove a component a. Original EEG
the corresponding column df must be set to zero. This o

operation can be represented as a right multiplication by " Piuldaiess i dameA Ny @
a matrix Z where Z;; = 1 if a signal is not an artifact, D‘ZWMWWMWMWWWMWWWWWJWW O
Z;; = 0 if signal i is an artifact, andZ;; = 0 for all '3*3 o
i # j. Now the artifact filter, /", can be calculated by . WWWVWWWWWMWWWWWWWM

F = (CWT)='ZCWT. The GSVD definesiV as an sl b bbb e pnd st €
invertible matrix making this definition well defined. This SWWWWWWWMWW\WWWMWWWW @
filter is applied to the original EEG aX F' and has the o

effect of removing the contribution of components that were SWWWWWWWWWMMWWWW%WW @
considered artifacts. Application of the filter is not liegt 7WW’W\WMWWWWWWWWWWWWWWMW e
to X. It can be applied to new data sets as well. Further

details on SFA for artifact removal is provided by Knight, 8l ey s st gl oo e (@
etal, [11], [2] 9 iy sty ool st @

The use of SFA for artifact removal is demonstrated by

applying it to 10 channels of EEG recorded from a subject N i
performing a mental multiplication task. Figure lashows 10 ¢ 05 1 15 2 25 3 35 4 45 5
channels of EEG recorded for five seconds. Eye movements b. SFA Components

are visible in the lowest frequencies of FP1 and FP2 and

60 Hz line noise is apparent in all channels. Figure 1b FP1 bl

Seconds

shows the 10 components resulting from SFA. The first o5
component is mostly 60 Hz power-line interference. We FPZ
can also see that most of the eye movement signal has F3
been isolated in the tenth component. The first, second, Fz|
and tenth components were selected to be removed and the F4
corresponding filter constructed. Applying the filter to the 73
original EEG results in the filtered EEG shown in Figure 1c. c3
60 Hz power line noise is no longer apparent. The eye ca
movement has been removed from FP1 and FP2 (and other ;if ‘
channels) revealing details not seen in the original EEG. Fzzsg
[1l. CLASSIFICATION OF EEG REPRESENTED BY ljf
SHORT-TIME PCA 83 ‘ ‘ : ‘ ‘
0 1 2 3 4 5
Principal component analysis (PCA) is commonly used to Seconds
project data samples to a lower-dimensional subspace that c. Filtered EEG

maximizes the variance of the projected data. For many data
sets, PCA is also used to isolate the information in the dafdg. 1. Creation and use of SFA for removing artifacts from EEG

: ; wa » annels of EEG. a) Five seconds of 10 channel EEG sampledati25
Into meanmgfu' components, such as elgenfaces [13] a Components (columns @f) separated by SFA, ordered from smallest

“eigenlips” [9] in applications involving analysis of face to |argest signal-to-noise ratio; ¢) EEG after removing SFémponents
images. 1, 2, and 10.



For classification problems, PCA is usually applied to @efining weights wy = X 'y, and bias b, =
collection of samples from all classes with the hope that%prfluk, each discriminant function simplifies to
the projection of new samples onto the PCA basis formy (z) = 27wy, + by.
components whose amplitudes are related to the class. This
approach may fail to capture variations that appear in tHg Results
data over short time intervals. Such variations contribute EEG data used here was provided by an earlier study [7].
little to the overall variance of the data, but may be criticaEEG signals were recorded from subjects performing the
in classifying samples into the correct classes. following five mental tasks: 1) resting task, in which sub-

Features of short duration can be captured by applyirigcts were asked to relax and think of nothing in particular;
PCA to short windows in time of the data. This results2) mental letter writing, in which subjects were instructed
in multiple bases, one for each window. To project dataentally compose a letter to a friend without vocalizing; 3)
samples using these multiple bases, they must somehowental multiplication of two multi-digit numbers, such & 4
be combined into a single basis. An alternative approadimes 78; 4) visual counting, in which subjects were asked
is used here. Rather than projecting the data to fori® imagine a blackboard and to visualize numbers being
features on which classification is performed, the basewitten on the board sequentially; and 5) visual rotation
themselves are taken as the features. Our hypothesis is thhta three dimensional block figures. For each trial, EEG
the directions of significant variation within each windowwas recorded from six electroded (= 6) at positions
will capture the information needed to correctly classif(Cs, Cy, P3, Py,01,02) for 10 seconds sampled at 250
the data in the window. We refer to this method as shortz. Each task was repeated five times (for a total of five
time PCA, or STPCA. The basis vectors are calculatetfials per task). The order in which tasks were performed
by singular value decomposition (SVD) of the matrix ofwas randomized, and subjects did not practice the tasks
samples in each window. beforehand. Another five trials of each task were recorded

The EEG samples are augmented by samples delay@dring a second session on a following day.
in time, forming a time-embedded representation described Window size and overlap were = 50 andp = 40. The
in the next section and in [2], [8]. With this modification, time embedding involved three samplés=(2). Data was
PCA becomes a tool for simultaneously analyzing spatidlartitioned into training and testing sets as follows. t-irs
and temporal aspects of the data. A related approach usi@ five trials from the first day comprised the training set
common spatial patterns was recently described in [12]. and all five trials from the second day comprised the testing

Let z; be a column vector of EEG voltages fat Set. The LDA classifier was computed from the training set
electrodes at sample time Consecutive samples are com-samples and the trained classifier was tested by applying it
bined to form thel + 1 dimensional time embedding t0 the testing set samples. This evaluates how well a trained

i, = (x?+l7$?+l—1""’x;)T’ for i = 0,...,n — . classifier generalizes to data recorded on another day, Then
Windows of w consecutive time-embedded samples thdfaining one trial at a time from the second day was moved
overlap byp samples are collected into matricék; = from the testing set to the training set.

(Z14(w—p) (G=1)s - - - » B(w—p)jip)s TOF G = 1,00, Ln—ip—l ) It was found that the classification accuracy on testing

EachWj; is d(l 4+ 1) x w. The SVD,W; = Uij\??‘p of datais increased by combining the classification result ove
. ) ] 1

each window,V/;, is performed to obtain the left singular COnsecutive windows of EEG by selecting the most com-
vectors inU;. To remove the variation in sign of basismonly predicted class over consecutive windows. Results
vectors over multiple windows that results from SvD,for two subjects are shqun in Figure 2 as fraction of test
columns oftJ; for which the first component is negative areSamples correctly classified versus the number of consec-
multiplied by —1. Concatenating all columns @f; results Utive windows whose predicted classes were combined.

in a (d(l + 1))? dimensional vector representing thé& There is a clear trend in increasing classification accuaacy

window of multichannel, time-embedded EEG data. more trials from the second day are included in the training
set.
A. Linear Discriminant Analysis The amount of EEG in seconds, sampled atf Hz,

Linear Discriminant Analvsis (LDA) i ol b that corresponds to combining the classeswofonsecutive
ear Discriminant Analysis (LDA) is a simple pro " windows of sizew with overlapp is t = “=2)*P g5q in

abilistic approach to classification in which each class s experimentm = 1 consecutive window is equivalent to

assumed to follow a normal distribution [4]. The param- proximatelyt — 0.2 secondsn — 40 is £ — 1.8 seconds
eters for the distribution of each class are estimated, and 40 — 100 is ¢ :'4 9 seconds. For Subjecti the correct

with Bayes Rule are c'ombmed to form linear d'scr.'mmanEIassification rate for test trials 9 and 10 goes from about
funct_|ons. For Clasé with sample mea, an_d covarance g4 for 0.2 seconds of data to about 78% for 1.8 seconds.
matrix 32 averaged over all classes, the discriminant funct|0111he results for Subject 2 reach about 68% correct for 4.2
IS seconds of data. Recall that this is the rate of predictieg th
correct task out of five, so a random classifier would result
in only 20% correct.

1

Sp(z) = 2Ty — 5

ph S .
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Fig. 2. Fraction of test samples correctly classified versursitrer of Time Embedding Dimension

consecutive windows whose predicted classes are combinigreDt

curves correspond to different partitions of trials intaining and testing

sets, indicated by the range of trials indices in the testieg Trials 1  Fig. 3. Fraction of samples from test trials 9 and 10 that areecty
through 5 were recorded on the first day and Trials 6 though &few classified versus the time embedding dimension,

recorded on a second day.

resting and counting, and multiplication data is confused
Details of the classification performance on test trialgvith resting and letter writing.

is revealed by confusion matrices showing the percent of The above results are for the a time embedding dimension
test samples correctly classified for each pair of actual araf [ = 2. The sensitivity of the results to this dimension
predicted classes. Table | shows the confusion matrices fisr determined by repeating the above classification experi-
each Subject, usingr = 100 consecutive windows. Clearly ments using a variety of values. Figure 3 shows the results.
some tasks are better classified than others, but depeflde number of consecutive windows1is = 20. A higher
on the Subject. Data from Subject 1 when performingmbedding dimension of 3 or 4 produces better results for
the resting, multiplication, and visual rotation tasks aré&ubject 1, but a dimension of 1 is best for Subject 2.
classified with the most accuracy, while data from the letter For six-channel EEG with time embedding dimension
writing task is classified as either visual rotation or ménta = 2, the representatiori/; of the i** window of data
counting. For Subject 2, resting and mental counting areonsists of(6(/+1))? = 324 components. The variations in
well classified, but letter writing data is confused withthe weights of the LDA discriminant functions over the five



asX10 ‘ ‘ ‘ ‘ ‘ interfaces. The system was written in C++ and runs on the
Linux operating system.

The software is designed to be modular in terms of
all the pieces that might need to be added for future
3 ] experimentation. Filters, feature extractors, and diassi
25) ] are all built as external libraries which can be plugged into
the main system. This makes experimentation with new
algorithms convenient.

In addition to the filters, feature extractors, and classfie
the user interfaces are designed to be modifiable and easy
to implement. These user interfaces are the method of
. - T converting clas_siﬁed mental tasks f_rom a_user wearing

Feature Index the EEG cap into useful computer input. The interfaces
currently designed are a simple pie menu, where each slice
Fig. 4. Standard deviation of LDA weights over the five lineiscrimi-  represents a class, and a keyboard using a similar pie menu.
nant functions for the five tasks. Components of the first adabt basis Figure 5 shows this pie menu in action. In the top example,
vectors have the most variance and are thus the most significant . . .
there are three mental tasks, each of which is displayed on
one slice of the pie. As data is sampled from a user wearing
EEG cap and classified as one of these three classes, a
r will grow from the center of the menu towards one of
the slices. When a bar reaches a pie slice, all bars are reset

351

Standard Deviation of LDA Discriminant Function Weights

classes indicate which of 324 features are most significal f
for the classification results. Figure 4 shows the standa
deviation of the weights for an LDA classifier trained on :
data from Subject 1. Results are similar for Subject 2’;_1nd the process. starts again. . .

Recall thatU; is composed of the basis vectors ordered A more complicated and useful interface is the keyboard

from ones with largest singular values to those with smalle®1® Meénu shown in the bottom half of Figure 5. This pie

singular values. Figure 4 shows that the components in tHaeNU is similar to the one previously described, but instead

first basis vector, the one that captures the most varian@E/USt resetting when a bar reaches a pie slice, the contents

in the data, have LDA weights that vary the most ovePf the selected slice expand to cover the rest of the pie.

the LDA discriminant functions, so play a significant roleWhen a single letter or command is finally selected, it is

in distinguishing the tasks. Somewhat surprising is thattht o the computer as keystroke and the whole menu is
components in the last basis vectors, ones that capture fifg€t 10 its initial state. _

least variance in the data, are also significant. These low- Initial tests of the entire system involved the control of a
variance directions may be capturing small variations & thWirelessly connected robot using commands from the BCI.

data that relate strongly to the mental task being performefi Subject wore an EEG cap with four bipolar electrodes
used. Three tasks were trained. To simplify the classiicati

problem in this preliminary experiment, three tasks were
IV. EEG ACQUISITION AND CUSTOMBCI SorTwaRe  Used that were primarily muscle movements instead of pure
. e . mental tasks. They included blinks, jaw clenches, and right
The expense of clinical EEG acquisition systems is 04{ang movement. Each task was trained for three sequences
of reach of small re_search groups. To facilitate the enty five seconds each. After training, an LDA classifier
of new researchers into the BCI field, we have studied gas trained to classify time-embedded data. After training
combination of an affordable EEG amplifier with customype system was attached wirelessly to a simple robot, and
EEG acquisition and BCI software. The EEG amplifier is;ommands were associated with each task. To turn the robot
the 24-channel amplifier, called MS-24R, from NeuroPulsggft, the subject would blink, to turn the robot right, the
Systems, LLC, with a cost of $5,000. Addltlor}éﬂ partssypject would move their right hand, to move the robot
are Electro-cap electrode caps with supplies, an impedanggvard, the subject would clench their jaw. Using these

meter, and a SCSI adaptor for a notebook computer, wWitisis the subject effectively steered the robot around the
a total cost of $1,500. So, without the purchase of &,om with these three controls.

notebook computer, the total cost is about $6,500. This list
of hardware, and the software described below, is available
on the net [1].

Our software has been designed to perform on-line EEG Experiments showed that EEG representations based on
recording, filtering, and classification. The objective ofhort-time PCA can be classified by simple linear discrimi-
the software design is to provide a convenient method afant analysis (LDA) with an accuracy of about 80% correct
connecting various pieces of BCI experimentation such agassification of the correct mental task out of five. Thisadat
interfacing with an EEG amplifier, selecting channels, filwas obtained from two subjects; tests on additional subject
tering, extracting features, classifying, and providingut are warranted to investigate the generality of this result.

V. CONCLUSION



Stap Classifing |

Count Backwards

Imagined Left Hand \

m Imagined Right Hand [

~ [z Recarding | eEc Deves | anir] Ariface | Fewmres ] clasaiier] Trin|

5] Send Keyboard Events?.

Fig. 5.  Two user interfaces being tested in the publiclydatsée BCI

software [1]. Top: An interface for the three mental tasksintdackwards,
imagine left hand or right hand imagery. Bottom: An interface tfree
mental tasks to type by choosing a section of the circle in ealghical
menu. The selected subset of letters is distributed amonghtee tings
at each level, until a single letter is selected.

significant electrodes and basis vector directions coud le
to hypotheses of the underlying cognitive activity.
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Analysis of the classifiers’ weights revealed that shorty 3
time PCA basis vectors late in the sequence play significant

roles, suggesting that the low-variance activity repressekn [

by these vectors is strongly related to the mental task. This

hypothesis warrants further study.

Information gleaned from analyses like those summarizéd®
in Figures 4 can be used to select subsets of features to
greatly reduce the dimensionality of the data and possibly
improve the generalization performance of the classifiers.
Extending this analysis to consider the time course of
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