Sets

1. Use set builder notation to give a description of this set:
\{ 0,3,6,9,12 \}

2. Determine whether each of these statements is true or false:
 (a) \(x \in \{ x \} \)
 (b) \(\{ x \} \subseteq \{ x \} \)
 (c) \(\{ x \} \in \{ x \} \)

3. Use a Venn diagram to illustrate the set of all months of the year whose names do not contain the letter \(r \) in the set of all months of the year.

4. Suppose that A, B, and C are sets such that \(A \subseteq B \) and \(B \subseteq C \). Use a Venn diagram to show that \(A \subseteq C \).

5. Let \(A = \{ a, b, c \} \), \(B = \{ x, y \} \), and \(C = \{ 0, 1 \} \). Show the contents of the set:
\(C \times B \times A \).

6. Let \(A = \{ 1,2,3,4,5 \} \) and \(B = \{ 0,3,6 \} \). Show the contents of each of the following:
 (a) \(A \cup B \)
 (b) \(A \cap B \)
 (c) \(A - B \)
 (d) \(B - A \)

7. Let \(A = \{ 7,8 \} \) and let \(B = \{ a,b,c \} \).
 (a) What is the cardinality of \(A \): \(| A | \)?
 (b) What is the intersection of \(A \) and \(B \): \(A \cap B \)?
 (c) What is the powerset of \(A \): \(P(A) \)?
(d) What is the cardinality of the powerset of A: $|P(A)|$?

(e) What is the powerset of B: $P(B)$?

(f) What is the Cartesian product of B and A: $B \times A$?

(g) What is the cardinality of the Cartesian product of B and A: $|B \times A|$?

8. What can you say about the sets A and B if you know the following? (The first one is done for you.)

(a) $A \cup B = A$ (We know that $B \subseteq A$.)

(b) $A \cap B = A$

(c) $A - B = A$

(d) $A \cap B = B \cap A$

(e) $A - B = B - A$

9. Suppose that the universal set is $U = \{1,2,3,4,5,6,7,8,9,10\}$. Express each of these sets with bit strings where the ith bit in the string is 1 if i is in the set and 0 otherwise.

(a) $\{3, 4, 5\}$

(b) $\{1, 3, 6, 10\}$

(c) $\{2, 3, 4, 7, 8, 9\}$

Functions

10. For the following functions, state whether f is a function from \mathbb{Z} to \mathbb{R}:

(a) $f(n) = \pm n$

(b) $f(n) = \sqrt{n^2 + 1}$

11. What are the domain and range of the function that assigns to each positive integer its largest decimal digit?

12. Is the following function from \mathbb{Z} to \mathbb{Z} one-to-one?

$f(n) = n^2 + 1$