CS 200: Relations

Rosen 8.1 – 8.5

Tuples

- An ordered n-tuple is a sequence of n objects
 \((x_1, x_2, \ldots, x_n)\)
 First component is \(x_1\)
 …
 n-th component is \(x_n\)
- An ordered pair: 2-tuple \((x, y)\)
- An ordered triple: 3-tuple \((x, y, z)\)

Tuples vs Sets

- Two tuples are equal iff they are equal coordinate-wise
 \((x_1, x_2, \ldots, x_n) = (y_1, y_2, \ldots, y_n)\) iff
 \(x_1 = y_1, x_2 = y_2, \ldots, x_n = y_n\)

 \((2, 1) \neq (1, 2), \text{ but } \{2, 1\} = \{1, 2\}\)
 \((1, 2, 1) \neq (2, 1), \text{ but } \{1, 2, 1\} = \{2, 1\}\)

Binary Relations

- A – set of students B – set of courses
 R – pairs \((a, b)\) such that student a is enrolled in course b
 R = \{\((\text{chris, cs200}), (\text{mike, cs520}), \ldots\)\}
- A – set of cities B – set of US states
 R – \((a, b)\) such that city a is in state b
 R = \{\((\text{Denver, CO}), (\text{Laramie, WY}), \ldots\)\}

Binary Relations

- A binary relation from a set A to a set B is a set R of ordered pairs \((a, b)\) where \(a \in A\) and \(b \in B\).
- The notation \(aRb\) denotes \((a, b) \in R\)
- Example: \(A = \{0, 1, 2\}, B = \{a, b\}\) and \(R = \{(0, a), (0, b), (1, a), (2, b)\}\)

Relations as Cartesian Products

- Let A, B be sets
 The \textbf{cartesian product} of A and B is denoted by \(A \times B\) and is equal to:
 \[\{(a, b) \mid a \in A \text{ and } b \in B\} \]
- A binary relation from A to B is a subset of \(A \times B\)
- Given sets A and B with sizes n and m the number of elements in \(A \times B\) is nm and the number of binary relations from A to B is \(2^{nm}\)
n-ary Relations

Definition: Let \(A_1, A_2, \ldots, A_n \) be sets. An *n-ary relation* on these sets is a subset of \(A_1 \times A_2 \times \cdots \times A_n \).

The sets \(A_1, A_2, \ldots, A_n \) are called the *domains* of the relation, and \(n \) is called its *degree*.

Example: The *between* relation consisting of triples \((a,b,c)\) where \(a, b, c\) are integers such that \(a < b < c\).

Databases and Relations

<table>
<thead>
<tr>
<th>Students</th>
<th>StudentName</th>
<th>IDnumber</th>
<th>Major</th>
<th>GPA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Students</td>
<td>Ackermann</td>
<td>231455</td>
<td>Computer Science</td>
<td>3.88</td>
</tr>
<tr>
<td>Students</td>
<td>Adams</td>
<td>888323</td>
<td>Physics</td>
<td>3.45</td>
</tr>
<tr>
<td>Students</td>
<td>Chou</td>
<td>102147</td>
<td>Computer Science</td>
<td>3.49</td>
</tr>
<tr>
<td>Students</td>
<td>Goodfriend</td>
<td>453876</td>
<td>Mathematics</td>
<td>3.45</td>
</tr>
<tr>
<td>Students</td>
<td>Rao</td>
<td>678543</td>
<td>Mathematics</td>
<td>3.90</td>
</tr>
<tr>
<td>Students</td>
<td>Stevens</td>
<td>786576</td>
<td>Psychology</td>
<td>2.99</td>
</tr>
</tbody>
</table>

Databases defined by relations are called *relational databases*.

Functions as Relations

- A function \(f \) from \(A \) to \(B \) assigns an element of \(B \) to each element of \(A \).
- Differences between relations and functions?

Relations on a Set

- A relation on a set \(A \) is a relation from \(A \) to \(A \).
- Example: relations on the set of integers
 - \(R_1 = \{(a,b) \mid a \leq b\} \)
 - \(R_2 = \{(a,b) \mid a > b\} \)
 - \(R_3 = \{(a,b) \mid a = b + 1\} \)

Relations on a Set as Graphs

- Consider the relation \(R \) on cities:
 \[R = \{(a,b) \mid a, b \text{ are cities such that the population of } a \text{ is smaller than that of } b\} \]
- We can represent \(R \) as a directed graph where there is an edge from \(a \) to \(b \) if \((a,b)\) is in \(R \).
Relations on a Set

- A – the set of actors
- \(R = \{(a, b) : a, b \text{ are actors that have played in the same movie}\)

R has the property that if \(aRb \) then \(bRa \).
- It is a symmetric relation
- Can be represented as an undirected graph

Properties of Relations

- A relation \(R \) on a set \(A \) is called transitive if whenever \(aRb \) and \(bRc \) then \(aRc \) for all \(a, b, c \) in \(A \).
- Example: the ancestor relation

- A relation \(R \) on a set \(A \) is called reflexive if \(aRa \) for all \(a \) in \(A \).
- Example: the less-or-equal to relation on the positive integers

Composite Relations

- Let \(R \) be a relation from \(A \) to \(B \), and let \(S \) be a relation from \(B \) to \(C \). The composite \(S \circ R \) of \(R \) and \(S \) is defined as:
 \[S \circ R = \{(a, c) \mid \exists b : aRb \land bSc\} \]
- Example: Let \(R \) be the relation such that \(aRb \) if \(a \) is a parent of \(b \). What is the relation \(R \circ R \)?

Composite Relations

- \(R^2 = R \circ R = (a, c) \quad (e, c) \quad (b, d) \)
 \[(d, d) \quad (c, c) \]

Paths and Relations

- Let \(R \) be a relation on a set \(A \). There is a path of length \(n \) from \(a \) to \(b \) in the graph representing \(R \) if and only if \(aR^n b \)
- Example: the six-degrees of separation can be succinctly expressed as \(aR^6 b \) where \(R \) is the relation on the set of people such that \(aRb \) if \(a \) knows \(b \)
- Proof: by induction on \(n \) (Rosen p. 547)
Paths and Relations

- Define: $R^* = \bigcup_{i=1}^{\infty} R^i$

 - Example: Let R be the relation between states in the US where aRb if a and b share a common border. What is R^*?

 - For a relation over a set with n elements $\quad R^* = \bigcup_{i=1}^{n} R^i$

Transitive Closure

- The smallest transitive relation on A that includes R is called the transitive closure of R.

 - R^* is the transitive closure of R (Rosen p. 548)

 - Example: $A = \{1, 2, b\}$
 - $R = \{(1, 1), (b, b)\}$
 - $S = \{(1, 2), (2, b), (1, b)\}$
 - $T = \{(2, b), (b, 2), (1, 1)\}$

 - The transitive closures of R and S are themselves

 - The transitive closure of T is $T \cup \{(2, 2), (b, b)\}$