CS200: Trees

Walls Ch. 11

Tree Terminology

- **Node**
- **Edge**
- **Parent**
- **Root**
- **Leaf**
- **Interior Node**
- **Path**
- **Degree?**
- **Depth/Level?**
- **Height?**

The parent child relationship is generalized to the relationship of ancestor and descendant.

All the defs are in page 525 of the textbook.

Binary Trees

- A binary tree is a set T of nodes such that either
 - T is empty, or
 - T is partitioned into three disjoint subsets:
 - A single node r, the root
 - Two possibly empty sets that are binary trees, called left and right subtrees of r

- **Right Subtree**
- **Root**
- **Left Subtree**

Trees - more definitions

- **m-ary tree**
 - Every internal vertex has no more than m children
 - Our main focus will be binary trees

- **Full m-ary tree**
 - All interior nodes have m children

- **Perfect m-ary tree**
 - Full m-ary tree where all leaves are at the same level

- **Perfect binary tree**
 - Total number of nodes: $2^h - 1$
 - Recurrence relations for the # of leaf nodes and total # of nodes?

More definitions

- **Complete binary tree of height h**
 - Zero or more rightmost leaves not present at level h
 - A binary tree T of height h is complete if
 - All nodes at level h - 2 and above have two children each, and
 - When a node at level h - 1 has children, all nodes to its left at the same level have two children each, and
 - When a node at level h - 1 has one child, it is a left child
More definitions

- balanced tree
 - Height of any node's right subtree differs from left subtree by 0 or 1
- A complete tree is balanced

Applications - Expression Trees

- unambiguously represent infix expressions

Applications - Parse Trees

- Used in compilers to check syntax

Applications - Search Trees

- AI: search trees

 Example: a game tree

Applications - Decision Trees

- Example: a tree for deciding whether to wait for a table at a restaurant

Binary search trees

- A very efficient way of storing data!
Binary Tree ADT

- Create
 - createBinaryTree()
 - createBinaryTree(in rootItem:TreeItemType)

- Add/Modify
 - setRootItem(in rootItem:TreeItemType) throws UnsupportedOperationException

- Remove
 - makeEmpty()

- Ask
 - isEmpty():boolean {query}
 - getRootItem():TreeItemType throws TreeException {query}

Extensions to Binary Tree ADT

- Create
 - createBinaryTree(in rootItem:TreeItemType, in leftTree:BinaryTree, in rightTree:BinaryTree)

- Add/Modify
 - attachLeft(in newItem:TreeItemType) throws TreeException
 - attachLeftSubtree(in leftTree:BinaryTree) throws TreeException

- Remove
 - detachLeftSubtree():BinaryTree throws TreeException

- Ask
 - getLeftSubtree():BinaryTree throws TreeException

Show example of how to use the ADT

Complete Binary Tree

- If the binary tree is complete and remains complete
 - A memory-efficient array-based implementation can be used

Indices of left/right child and parent node?

Reference Implementation

- TreeNode
 - item
 - left child
 - right child
 - parent (optional)

- Tree
 - root
 - size (optional)

Traversing a binary tree

- How to traverse a tree?
Traversing a Binary Tree

- **Pre order**
 - visit the node
 - go left
 - go right
- **Post order**
 - go left
 - go right
 - visit the node
- **In order**
 - go left
 - visit the node
 - go right
- **Level order / breadth first**
 - for \(d \geq 0 \) to height
 - visit nodes at level \(d \)

Traversal Examples

<table>
<thead>
<tr>
<th>Pre order</th>
<th>In order</th>
<th>Post order</th>
<th>Level order</th>
</tr>
</thead>
<tbody>
<tr>
<td>A B D G H C E F I</td>
<td>G D H B A E C F I</td>
<td>G H D B E I F C A</td>
<td>A B C D E F G H I</td>
</tr>
</tbody>
</table>

Traversal Implementation

- **recursive implementation of preorder**
 - The steps:
 - visit node
 - preorder(left child)
 - preorder(right child)
 - base case?

```java
void preorder(TreeNode<T> node) {
    doSomething(node);
    preorder(node.getLeft());
    preorder(node.getRight());
}
```

Implementing Traversal with Iterators

- Use a queue to order the nodes according to the type of traversal.
- Initialize iterator by type (pre, post or in) and enqueue all nodes in order necessary for traversal
- dequeue in next operation

LevelOrder Algorithm

- Use a queue to track unvisited nodes
- For each node that is dequeued,
 - enqueue each of its children
 - until queue empty
- Also called: breadth first traversal

```
<table>
<thead>
<tr>
<th>Step</th>
<th>Queue</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>[B,E]</td>
<td>A</td>
</tr>
<tr>
<td>2</td>
<td>[C,D,E,F,G,H]</td>
<td>A B</td>
</tr>
<tr>
<td>3</td>
<td>[D,E,F,G,H]</td>
<td>A B C</td>
</tr>
<tr>
<td>4</td>
<td>[E,F,G,H]</td>
<td>A B C D</td>
</tr>
<tr>
<td>5</td>
<td>[F,G,H]</td>
<td>A B C D E</td>
</tr>
<tr>
<td>6</td>
<td>[G,H]</td>
<td>A B C D E F</td>
</tr>
<tr>
<td>7</td>
<td>[H]</td>
<td>A B C D E F G</td>
</tr>
<tr>
<td>8</td>
<td>[]</td>
<td>A B C D E F G H</td>
</tr>
<tr>
<td>9</td>
<td>[]</td>
<td>A B C D E F G H I</td>
</tr>
</tbody>
</table>
```
Categories of Data Structures

- Position-oriented data structures: access is by position.
- Value-oriented structures: access is by value.
- Examples?

Binary Search Trees

- **Definition:** A binary tree T is a binary search tree if for every node n in T:
 - n’s value is greater than all values in its left subtree T_L
 - n’s value is less than all values in its right subtree T_R
 - T_R and T_L are binary search trees

(Binary Tree Example)

Valid Not Valid Valid

BST

- **Organization**
 - the sequence of adding and removing influences the shape of the tree
- **Search / Retrieval**
 - Using inorder traversal
 - On a search key

BST ADT

- `insert(item: TreeItemType)`
 - inserts `newItem` into a BST whose items have distinct search keys that differ from `newItem`
- `delete(searchKey: KeyType)` throws `TreeException`
 - Deletes the item whose search key equals `searchKey`. If none exists, the operation fails.
- `retrieve(searchKey: KeyType): TreeItemType`
 - Returns the item whose search key equals `searchKey`. Returns null if not found.

BST - Search

- compare value with node
 - empty: not found
 - ==: found
 - <: search in the left sub-tree
 - >: search in the right sub-tree

(Binary Tree Example)

Why doesn’t BinarySearchTree extend Binary Tree?
BST – Insert

- Always add as a leaf – in the position where the search method would look for it
- Find leaf location
 - `<` : add to the left sub-tree
 - `>` : add to the right sub-tree
- Special Cases:
 - already there
 - empty tree

Inserting an item

```c
insertItem(in treeNode:TreeNode, in newItem:TreeItemType)
// Inserts newItem into the binary search tree of which
// treeNode is the root
if (treeNode is null) {
    create new node with newItem as data
    return new node
} else if (newItem.getKey() < treeNode.getItem().getKey()) {
    treeNode.setLeft(insertItem(treeNode.getLeft(), newItem))
    return treeNode
} else {
    treeNode.setRight(insertItem(treeNode.getRight(), newItem))
    return treeNode
}
```

How is insertItem used in the code?
BST – Insert

```java
if (treeNode is null) {
    create new node with newItem as data
    return new node
}
newItem.getKey() <- 6
```

```
treeNode.setRight(insertItem(treeNode.getRight(), newItem))
return treeNode
```

Delete: Cases to Consider

- Delete something that is not there
 - Throw exception
- Delete a leaf
 - Easy, just set link from parent to null
- Delete a node with one child
- Delete a node with two children

Delete

- Case 1: one child
 - delete(5)
- Case 2: Left child has no right child
 - left child becomes root
 - (or vice-versa for right child with no left child)
 - delete(5)
- Case 2: two children
 - Strategy: replace node with a node that is easier to remove!
Digression: inorder traversal of BST

- In order:
 - go left
 - visit the node
 - go right
- The keys of an inorder traversal of a BST are in sorted order!

Delete Case 2: two children

Delete Pseudo Code I

Delete Pseudo Code II

Delete Pseudo Code III

Complexity of BST Operations
Tree Sort

- Uses the binary search tree ADT to sort an array of records according to search-key
- Efficiency
 - Average case: O(n * log n)
 - Worst case: O(n²)