Applications of the Maxflow Problem

7.5 Bipartite Matching

Bipartite Matching

- Input: undirected, bipartite graph $G = (L \cup R, E)$.
- $M \subseteq E$ is a matching if each node appears in at most one edge in M.
- Max matching: find a max cardinality matching.

How to solve using maxflow?
- Need a source and sink
- Graph needs to be directed
- Capacities?
- How to interpret the flow?

Source + sink:

Capacities:
Max flow solution.
- Create directed graph $G' = (L \cup R \cup \{s, t\}, E')$.
- Direct all edges from L to R, and assign infinite (or unit) capacity.
- Add source s, and unit capacity edges from s to each node in L.
- Add sink t, and unit capacity edges from each node in R to t.

Theorem. Max cardinality matching in $G = \text{value of max flow in } G'$.
Proof.
- Let f be a max flow in G' of value k.
- Consider M = set of edges from L to R with $f(e) = 1$.
 - each node in L and R participated in at most one edge in M, and therefore represent a matching with $|M| = k$.

Running time?
- $O(m \text{val}(f^*)) = O(mn)$.

Bipartite Matching: Proof of Correctness

Reductions
We took problem A (bipartite matching) and showed that it can be solved using an instance of problem B (maxflow).
This is an example of reducing problem A to problem B.
Reduction: mapping from an instance of A to an instance of B, such that the solution to the instance of B we can construct the solution of the instance of A.
If A reduces to B, which one is harder?
Reductions

Reduce, Reuse, Recycle...

If we have a solution to one problem and we can use this solution to solve another problem, we do not need to write a new program, we can reuse the existing code, and reduce the new problem (change its input (and output)), so it can use the existing code to solve it.

Example: We have a max heap, but we need a min heap. How can we use the max heap to perform min heap operations, without changing one bit of the max heap code? (Assume the heap holds integers)

- Insert(x): InsertMaxHeap(-x);
- Extract(): x = ExtractMaxHeap(); return -x;

7.6 Disjoint Paths

Disjoint path problem. Given a directed graph \(G = (V, E) \) and two nodes \(s \) and \(t \), find the max number of edge-disjoint \(s \)-\(t \) paths.

Def. Two paths are edge-disjoint if they have no edge in common.

Example: Communication networks.

Max flow formulation: assign unit capacity to every edge.

Theorem. Max number edge-disjoint \(s \)-\(t \) paths equals max flow value.

Proof.

- Suppose there are \(k \) edge-disjoint paths \(P_1, \ldots, P_k \).
- Set \(f(e) = 1 \) if \(e \) participates in some path \(P_i \); else set \(f(e) = 0 \).
- Since paths are edge-disjoint, \(f \) is a flow of value \(k \).

Edge Disjoint Paths

Disjoint path problem. Given a directed graph \(G = (V, E) \) and two nodes \(s \) and \(t \), find the max number of edge-disjoint \(s \)-\(t \) paths.

Def. Two paths are edge-disjoint if they have no edge in common.

Example: Communication networks.

Max flow formulation: assign unit capacity to every edge.

Theorem. Max number edge-disjoint \(s \)-\(t \) paths equals max flow value.

Proof.

- Suppose max flow value is \(k \).
- Integrality theorem \(\Rightarrow \) there exists 0-1 flow \(f \) of value \(k \).
- Consider edge \((s, u) \) with \(f(s, u) = 1 \).
- By conservation, there exists an edge \((u, v) \) with \(f(u, v) = 1 \).
- Continue until reach \(t \), always choosing a new edge.
- Produces \(k \) edge-disjoint paths.
Network Connectivity

Network connectivity. Given a directed graph \(G = (V, E) \) and two nodes \(s \) and \(t \), find min number of edges whose removal disconnects \(t \) from \(s \).

Def. A set of edges \(F \subseteq E \) disconnects \(t \) from \(s \) if every \(s \)-\(t \) path uses at least one edge in \(F \).

Edge Disjoint Paths and Network Connectivity

Theorem. (Menger 1927) The max number of edge-disjoint \(s \)-\(t \) paths is equal to the min number of edges whose removal disconnects \(t \) from \(s \).

Proof.
- Suppose the removal of \(F \subseteq E \) disconnects \(t \) from \(s \), and \(|F| = k \).
- Every \(s \)-\(t \) path uses at least one edge in \(F \).
- Hence, the number of edge-disjoint paths is at most \(k \).

\[\square \]

Circulation with Demands

Circulation with demands:
- Directed graph \(G = (V, E) \)
- Edge capacities \(c(e), e \in E \)
- Node supply and demands \(d(v), v \in V \)

Def. A circulation is a function that satisfies:
- For each \(e \in E \):
 \[f(e) \leq c(e) \] (capacity)
- For each \(v \in V \):
 \[\sum_{e \in \delta^+(v)} f(e) - \sum_{e \in \delta^-(v)} f(e) = d(v) \] (conservation)

Circulation problem: given \((V, E, c, d) \), does there exist a circulation?

Edge Disjoint Paths and Network Connectivity

Theorem. (Menger 1927) The max number of edge-disjoint \(s \)-\(t \) paths is equal to the min number of edges whose removal disconnects \(t \) from \(s \).

Proof.
- Suppose max number of edge-disjoint paths is \(k \).
- Then max flow value is \(k \).
- Max flow min-cut \(\Rightarrow \) cut \((A, B)\) of capacity \(k \).
- Let \(F \) be set of edges going from \(A \) to \(B \).
- \(|F| = k \) and disconnects \(t \) from \(s \).

\[\square \]

7.7 Extensions to Max Flow

Necessary condition: \(\sum d(v) = \sum d'(v) \)

Proof. Sum conservation constraints for every demand node \(v \).
Max flow formulation?

- Add new source \(s \) and sink \(t \).
- For each \(v \) with \(d(v) > 0 \), add edge \((v, t) \) with capacity \(d(v) \).
- For each \(v \) with \(d(v) < 0 \), add edge \((s, v) \) with capacity \(-d(v) \).
- Claim: \(G \) has circulation if \(G' \) has max flow of value \(D \).

Reductions

We have seen the following problems that can be reduced to maxflow/mincut:

- Bipartite matching
- Number of disjoint paths
- Circulation with demands
- Image segmentation

There are many more!

Reduction as a problem solving tool: If you have an algorithm for a very general problem, that gives you a tool for solving lots of other problems.