Chapter 3 - Graphs
Undirected Graphs

Undirected graph. $G = (V, E)$

- $V = \text{nodes}$.
- $E = \text{edges between pairs of nodes}$.
- Captures pairwise relationship between objects.
- Graph size parameters: $n = |V|, m = |E|$.

$V = \{1, 2, 3, 4, 5, 6, 7, 8\}$

$E = \{1-2, 1-3, 2-3, 2-4, 2-5, 3-5, 3-7, 3-8, 4-5, 5-6\}$

$n = 8$

$m = 11$
Google maps

Transportation graph.
- **Nodes**: street addresses
- **Edges**: streets/highways
World Wide Web

Web graph.
- Nodes: web pages.
- Edges: hyperlinks.

http://golesystem.blogspot.com/2007/05/worldwide-web-as-seen-by-google.html
Social Networks

Social network graph.
- Node: people.
- Edge: relationship.

http://people.oii.ox.ac.uk/hogan/2010/01/new-pinwheel-network-layout/
A graph of blogosphere links

http://datamining.typepad.com/gallery/blog-map-gallery.html
Additional Graph Applications

<table>
<thead>
<tr>
<th>Graph</th>
<th>Nodes</th>
<th>Edges</th>
</tr>
</thead>
<tbody>
<tr>
<td>transportation</td>
<td>street intersection</td>
<td>highways</td>
</tr>
<tr>
<td>communication</td>
<td>computers</td>
<td>Network connections</td>
</tr>
<tr>
<td>World Wide Web</td>
<td>web pages</td>
<td>hyperlinks</td>
</tr>
<tr>
<td>social</td>
<td>people</td>
<td>relationships</td>
</tr>
<tr>
<td>scheduling</td>
<td>tasks</td>
<td>precedence</td>
</tr>
</tbody>
</table>
Graph Representation: Adjacency Matrix

Adjacency matrix. n-by-n matrix with $A_{uv} = 1$ if (u, v) is an edge.
- Two representations of each edge.
- Space proportional to n^2.
- Checking if (u, v) is an edge takes $\Theta(1)$ time.
- Identifying all edges takes $\Theta(n^2)$ time.
Graph Representation: Adjacency List

Adjacency list. Node indexed array of lists.
- Two representations of each edge.
- Space proportional to $m + n$.
- Checking if (u, v) is an edge takes $O(\text{deg}(u))$ time.
- Identifying all edges takes $\Theta(m + n)$ time.

degree = number of neighbors of u
Paths and Connectivity

Def. A path in an undirected graph $G = (V, E)$ is a sequence P of nodes $v_1, v_2, ..., v_{k-1}, v_k$ with the property that each consecutive pair v_i, v_{i+1} is joined by an edge in G.

Def. An undirected graph is **connected** if for every pair of nodes u and v, there is a path between u and v.
Cycles

Def. A cycle is a path $v_1, v_2, ..., v_{k-1}, v_k$ in which $v_1 = v_k$, $k > 2$, and the first $k-1$ nodes are all distinct.

cycle $C = 1-2-4-5-3-1$
Def. An undirected graph is a tree if it is connected and does not contain a cycle.

How many edges does a tree have?

Given a set of nodes, build a tree step wise
- every time you add an edge, you must add a new node to the growing tree, WHY?
- how many edges to connect n nodes?
Trees

Def. An undirected graph is a tree if it is connected and does not contain a cycle.

Theorem. Let G be an undirected graph on n nodes. Any two of the following statements imply the third.
- G is connected.
- G does not contain a cycle.
- G has $n-1$ edges.
Rooted Trees

Rooted tree. Given a tree T, choose a root node r and orient each edge away from r.

Importance. Models hierarchical structure.

![Graphs showing rooted trees](image)

- A tree
- The same tree, rooted at 1

- v is a child of v
- v is a parent of v
Phylogenetic Trees

Phylogeny. Describes the evolutionary history of species.

![Phylogenetic Tree](http://www.whozoo.org/mammals/Carnivores/Cat_Phylogeny.htm)

(Redrawn after Johnson, et al, 2006)

http://www.whozoo.org/mammals/Carnivores/Cat_Phylogeny.htm
3.2 Graph Traversal
Connectivity

s-t connectivity problem. Given two node s and t, is there a path between s and t?

s-t shortest path problem. Given two node s and t, what is the length of the shortest path between s and t?
Breadth First Search

BFS intuition. Explore outward from s, adding nodes one "layer" at a time.

BFS algorithm.
- $L_0 = \{ s \}$.
- L_1 = all neighbors of L_0.
- L_2 = all nodes that do not belong to L_0 or L_1, and that have an edge to a node in L_1.
- L_{i+1} = all nodes that do not belong to an earlier layer, and that have an edge to a node in L_i.

Theorem. For each i, L_i consists of all nodes at distance exactly i from s. There is a path from s to t iff t appears in some layer.
Breadth First Search

Property. Let T be a BFS tree of G, and let (x, y) be an edge of G. Then the level of x and y differ by at most 1.
BFS - implementation

```python
bfs(v) :
    q - queue of nodes to be processed
    q.enqueue(v)
    mark v as explored
    while(q is non empty) :
        u = q.dequeue()
        for (each node v adjacent to u) :
            if v is unexplored :
                mark v as explored
                q.enqueue(v)
```

Claim: this implementation explores nodes in order of their appearance in BFS layers
Breadth First Search: Analysis

Theorem. The above implementation of BFS runs in $O(m + n)$ time if the graph is given by its adjacency list representation.

Proof:

- when we consider node u, there are $\deg(u)$ incident edges (u, v)
- total time processing edges is $\sum_{u \in V} \deg(u) = 2m$ \[\blacksquare\]

Each edge (u, v) is counted exactly twice in sum: once in $\deg(u)$ and once in $\deg(v)$

```python
bfs(v):
    q - queue of nodes to be processed
    q.enqueue(v)
    mark v as explored
while (q is non empty):
    u = q.dequeue()
    for (each node v adjacent to u):
        if v is unexplored:
            mark v as explored
            q.enqueue(v)
```

```
**Connected Components**

*Connected graph.* There is a path between any pair of nodes.

*Connected component of a node s.* The set of all nodes reachable from s.

```
Connected component containing node 1 = \{ 1, 2, 3, 4, 5, 6, 7, 8 \}.```

![Graph Diagram](image)
Flood fill. Given lime green pixel in an image, change color of entire blob of neighboring lime pixels to blue.

- **Node**: pixel.
- **Edge**: two neighboring lime pixels.
- **Blob**: connected component of lime pixels.

Recolor lime green blob to blue.
Flood Fill

Flood fill. Given lime green pixel in an image, change color of entire blob of neighboring lime pixels to blue.

- **Node:** pixel.
- **Edge:** two neighboring lime pixels.
- **Blob:** connected component of lime pixels.

recolor lime green blob to blue
Connected Components

Given two nodes s, and t, what can you say about their connected components?
Connected Components

A generic algorithm for finding connected components:

\[R = \{ s \} \quad \text{# the connected component of } s \text{ is initially } s. \]

while there is an edge \((u,v)\) where \(u\) is in \(R\) and \(v\) is not in \(R\):

add \(v\) to \(R\)

Theorem. Upon termination, \(R\) is the connected component containing \(s\).

- **BFS:** explore in order of distance from \(s\).
- **DFS:** explore in a different way.
DFS: Depth First Search

Explores edges from the most recently discovered node; backtracks when reaching a dead-end.
DFS: Depth First Search

Explores edges from the most recently discovered node; backtracks when reaching a dead-end.

Recursively:

```
DFS(u):
    mark u as Explored and add u to R
    for each edge (u,v) :
        if v is not marked Explored :
            DFS(v)
```
DFS - nonrecursively

DFS(u):
 mark u as Explored and add u to R
 for each edge (u,v):
 if v is not marked Explored :
 DFS(v)

DFS(v):
 s – stack of nodes to be processed
 s.push(v)
 mark v as Explored
 while(s is non empty) :
 u = s.pop()
 for (each node v adjacent to u) :
 if v is not Explored :
 mark v as Explored
 s.push(v)
Theorem. The above implementation of DFS runs in $O(m + n)$ time if the graph is given by its adjacency list representation.

Proof:

Same as in BFS.

DFS(v) :

s - stack of nodes to be processed
s.push(v)
mark v as Explored
while(s is non empty) :
 u = s.pop()
 for (each node v adjacent to u) :
 if v is not Explored :
 mark v as Explored
 s.push(v)
3.4 Testing Bipartiteness
Def. An undirected graph $G = (V, E)$ is **bipartite** if the nodes can be colored red or blue such that every edge has one red and one blue end.

Applications.
- Scheduling: machines = red, jobs = blue.
Testing bipartiteness. Given a graph G, is it bipartite?

- Many graph problems become tractable if the underlying graph is bipartite (independent set)
- A graph is bipartite if it is 2-colorable

\[\begin{array}{c}
 v_1 \\
 v_2 \\
 v_3 \\
 v_4 \\
 v_5 \\
 v_6 \\
 v_7 \\
\end{array} \]

\[\begin{array}{c}
 v_1 \\
 v_2 \\
 v_3 \\
 v_4 \\
 v_5 \\
 v_6 \\
 v_7 \\
\end{array} \]

a bipartite graph G

another drawing of G
Algorithm for testing if a graph is bipartite

- Pick a node s and color it blue
- Its neighbors must be colored red.
- Their neighbors must be colored blue.
- Proceed until the graph is colored.
- Check that there is no edge whose ends are the same color.
An Obstacle to Bipartiteness

Which of these graphs is 2-colorable?
An Obstacle to Bipartiteness

Lemma. If a graph G is bipartite, it cannot contain an odd cycle.

Proof. Not possible to 2-color the odd cycle, let alone G.

![Bipartite Graph](image1)

bipartite (2-colorable)

![Not Bipartite Graph](image2)

not bipartite (not 2-colorable)
Lemma. Let G be a connected graph, and let L_0, \ldots, L_k be the layers produced by BFS starting at node s. Exactly one of the following holds.

(i) No edge of G joins two nodes of the same layer. G is bipartite.
(ii) An edge of G joins two nodes of the same layer. G contains an odd-length cycle (and hence is not bipartite).

Case (i)

Case (ii)
Lemma. Let G be a connected graph, and let L_0, \ldots, L_k be the layers produced by BFS starting at node s. Exactly one of the following holds.

(i) No edge of G joins two nodes of the same layer. G is bipartite.
(ii) An edge of G joins two nodes of the same layer. G contains an odd-length cycle (and hence is not bipartite).

Proof. (i)
- Suppose no edge joins two nodes in the same layer.
- I.e. all edges join nodes on adjacent layers.
- Bipartition: red = nodes on odd levels, blue = nodes on even levels.

Case (i)
Lemma. Let G be a connected graph, and let L_0, \ldots, L_k be the layers produced by BFS starting at node s. Exactly one of the following holds.

(i) No edge of G joins two nodes of the same layer. G is bipartite.

(ii) An edge of G joins two nodes of the same layer. G contains an odd-length cycle (and hence is not bipartite).

Proof. (ii)

- Suppose (x, y) is an edge with x, y in same level L_j.
- Let $z = \text{lca}(x, y) =$ lowest common ancestor.
- Let L_i be level containing z.
- Consider cycle that takes edge from x to y, then path from y to z, then path from z to x.
- Its length is $1 + (j-i) + (j-i)$, which is odd.
Corollary. A graph G is bipartite iff it contains no odd length cycle.
3.5 Connectivity in Directed Graphs
Directed Graphs

Directed graph. $G = (V, E)$
- Edge (u, v) goes from node u to node v.

Example. Web graph - hyperlink points from one web page to another.
- Modern web search engines exploit hyperlink structure to rank web pages by importance.
Graph Search

Directed reachability. Given a node \(s \), find all nodes reachable from \(s \).

Web crawler. Start from web page \(s \). Find all web pages linked from \(s \), either directly or indirectly.

BFS and DFS extend naturally to directed graphs.

Given a path from \(s \) to \(t \), not guaranteed there is a path from \(t \) to \(s \).
Strong Connectivity

Def. Nodes u and v are mutually reachable if there is a path from u to v and also a path from v to u.

Def. A graph is strongly connected if every pair of nodes is mutually reachable.

Lemma. Let s be any node. G is strongly connected iff every node is reachable from s, and s is reachable from every node.

Proof. ⇒ Follows from definition.

Proof. ⇐ Path from u to v: concatenate u-s path with s-v path.
Path from v to u: concatenate v-s path with s-u path. •
Strong Connectivity: Algorithm

Theorem. Can determine if G is strongly connected in $O(m + n)$ time.

Proof.

- Pick any node s.
- Run BFS from s in G.
- Run BFS from s in G^{rev}.
- Return true iff all nodes reached in both BFS executions.
- Correctness follows immediately from previous lemma. □
3.6 DAGs and Topological Ordering
Graphs Describing Precedence

Examples:
- prerequisites for a set of courses
- dependencies between programs
- dependencies between jobs

Precedence constraints. Edge \((v_i, v_j)\) means task \(v_i\) must occur before \(v_j\).

Want an ordering of the nodes that respects the precedence relation

- Example: An ordering of CS courses

The graph does not contain cycles. Why?
Directed Acyclic Graphs

Def. A Directed Acyclic Graph (DAG) is a directed graph that contains no directed cycles.

Def. A topological order of a directed graph G is an ordering of its nodes as $v_1, v_2, ..., v_n$ so that for every edge (v_i, v_j) we have $i < j$.

![a DAG](image1.png)
![a topological ordering](image2.png)
Lemma. If G has a topological order, then G is a DAG.

Proof. (by contradiction)

- Suppose that G has a topological order v_1, \ldots, v_n and that G also has a directed cycle C.
- Let v_i be the lowest-indexed node in C, and let v_j be the node just before v_i; thus (v_j, v_i) is an edge.
- By our choice of i, we have $i < j$.
- On the other hand, since (v_j, v_i) is an edge and v_1, \ldots, v_n is a topological order, we must have $j < i$, a contradiction. □
Directed Acyclic Graphs

Lemma. If G has a topological order, then G is a DAG.

Q. Does every DAG have a topological ordering?

Q. If so, how do we compute one?
Directed Acyclic Graphs

Lemma. If G is a DAG, then G has a node with no incoming edges.

Proof. (by contradiction)

- Suppose that G is a DAG and every node has at least one incoming edge.
- Pick any node v, and begin following edges backward from v.
- Repeat. After $n + 1$ we will have visited a node, say w, twice.
- Let C denote the sequence of nodes encountered between successive visits to w. C is a cycle.
Directed Acyclic Graphs

Lemma. If G is a DAG, then G has a topological ordering.

Proof. (by induction on n)

- **Base case:** true if $n = 1$.
- Given DAG on $n > 1$ nodes, find a node v with no incoming edges.
- $G - \{v\}$ is a DAG, since deleting v cannot create cycles.
- By induction hypothesis, $G - \{v\}$ has a topological ordering.
- Place v first in topological ordering; append nodes of $G - \{v\}$ in topological order.

To compute a topological ordering of G:
Find a node v with no incoming edges and order it first
Delete v from G
Recursively compute a topological ordering of $G - \{v\}$
and append this order after v
Topological Sort: Algorithm

Algorithm:

keep track of # incoming edges per node
while (nodes left):
 extract one with 0 incoming
 subtract one from all its adjacent nodes

Running time?
Better way?
Topological Sort: Algorithm Running Time

Theorem. Algorithm can be implemented to run in $O(m + n)$ time.

Proof.

- Maintain the following information:
 - $\text{count}[w] =$ remaining number of incoming edges
 - $S =$ set of nodes with no incoming edges
- Initialization: $O(m + n)$ via single scan through graph.
- Update: to delete v
 - remove v from S
 - for each edge (v, w): decrement $\text{count}[w]$ and add w to S if $\text{count}[w]$ hits 0
- this is $O(1)$ per edge