Problem Solving by Searching

Russell and Norvig, chapter 3

Outline
- Problem-solving agents
 - A kind of goal-based agent
- Formulating problems
- Example problems
- Search strategies

Puzzles!

The missionaries and cannibals problem
- Goal: transport the missionaries and cannibals to the right bank of the river.
- Constraints:
 - Whenever cannibals outnumber missionaries, the missionaries get eaten
 - Boat can hold two people and can’t travel empty

Formulating the problem

- A state description that allows us to describe our state and goal:
 \[(M_L, C_L, B)\]
- Initial state: \((3,3,L)\) Goal: \((0,0,R)\)

Problem solving agents
- Problem Formulation
 - States and actions (successor function).
- Goal Formulation
 - Desired state of the world.
- Search
 - Determine the possible sequence of actions that lead to the states of known values and then choosing the best sequence.
- Execute
 - Given the solution, perform the actions.
- Assumptions:
 - Environment is fully observable, deterministic
 - Agent knows the effects of its actions
Graph formulation of the problem

- Nodes: all possible states.
- Edges: edge from state u to state v if v is reachable from u (by an action of the agent).
- Edges for missionaries and cannibals problem?
- Problem is now to find a path from $(3,3,L)$ to $(0,0,R)$.
- In general, paths will have costs associated with them, so the problem will be to find the lowest cost path from initial state to the goal.

Stating a Problem as a Search Problem

- State space S (nodes)
- Successor function: the states you can move to by an action (edge) from the current state
- Initial state
- Goal test: is a state a goal?
- Cost

Back to our problem

Actions (operators):
- CCR - transport two cannibals to the right bank
- MCL - transport a missionary and a cannibal to the left bank

The (partially expanded) search graph

Actions:
- CCR - transport two cannibals to the right bank
- MCL - transport a missionary and a cannibal to the left bank

Repeated states

The search graph is not necessarily a tree!

Searching the State Space

- Often it is not feasible (or too expensive) to build a complete representation of the state graph
- A problem solver must construct a solution by exploring a small portion of the graph
Searching the State Space

Search tree

Searching the State Space

Search tree
The 8 puzzle

- States?
- Initial state?
- Actions?
- Goal test?
- Path cost?

(n²-1)-puzzle

- States? Integer location of each tile
- Initial state? Any state
- Actions? (tile, direction) where direction is one of {Left, Right, Up, Down}
- Goal test? Check whether goal configuration is reached
- Path cost? Number of actions to reach goal
- Is the search graph a tree?

15-Puzzle

Sam Loyd offered $1,000 of his own money to the first person who would solve the following problem:

But no one ever won the prize!!
Solution to the Search Problem

- A solution is a path connecting the initial node to a goal node (any one)

Path Cost

- An edge cost is a positive number measuring the "cost" of performing the action corresponding to the edge, e.g.:
 - \(c = 1 \) in the 8-puzzle example
- We will assume that for any given problem the cost \(c \) of an arc always satisfies:
 - \(c \geq \epsilon > 0 \), where \(\epsilon \) is a constant
- Why? Has to do with the cost of arbitrarily long paths

Goal State

- It may be explicitly described:
- or partially described:
- or defined by a condition, e.g., the sum of every row, of every column, and of every diagonal equals 30
- ("a" stands for "any" other than 1, 5, and 8)

Another example: the 8 queens problem

- Incremental vs. complete state formulation:
 - Incremental formulation starts with an empty state and involves operators that augment the state description
 - A complete state formulation starts with all 6 queens on the board and moves them around

8 queens problem: representation is key

- Incremental formulation
 - States? Any arrangement of 0 to 8 queens on the board
 - Initial state? No queens
 - Actions? Add queen in empty square
 - Goal test? 8 queens on board and none attacked
 - Path cost? None
 - 64 x 63 x \(\ldots \) 57 \(\sim 3 \times 10^{19} \) states to investigate
- Is the search graph a tree?
A better representation

Another Incremental formulation:
- States? n (between 0 and 8) queens on the board, one in each of the n left-most columns; no queens attacking each other.
- Initial state? No queens
- Actions? Add queen in leftmost empty column such that it does not attack any of the queens already on the board.
- Goal test? 8 queens on board

n-Queens Problem

- A solution is a goal node, not a path to this node (typical of design problem)
- Number of states in state space:
 - 8-queens \rightarrow 2,057
 - 100-queens \rightarrow 10^{42}
- But techniques exist to solve n-queens problems efficiently for large values of n

Path Planning

What is the state space?

Assumptions in Basic Search

- The world is static
- The world is discretizable
- The world is fully observable
- The actions are deterministic

But many of these assumptions can be removed, and search still remains an important problem-solving tool

Search and AI

- Search methods are ubiquitous in AI systems. They often are the backbones of both core and peripheral modules
- An autonomous robot uses search methods:
 - to decide which actions to take and which sensing operations to perform,
 - to quickly anticipate collision,
 - to plan trajectories,
 - etc...

Applications

- Search plays a key role in many applications, e.g.:
 - Route finding (mapquest, internet, airline)
 - VLSI Layout
 - Robot Navigation.
 - Pharmaceutical drug design, protein design
 - Video games