Constraint Satisfaction Problems (CSPs)

Russell and Norvig Chapter 5

CSP example: map coloring

Given a map of Australia, color it using three colors such that no neighboring territories have the same color.

Solution example:

- Variables: WA, NT, Q, NSW, V, SA, T
- Domains: D_i = {red, green, blue}
- Constraints: adjacent regions must have different colors.

- E.g., WA ≠ NT

Constraint satisfaction problems

- A CSP is composed of:
 - A set of variables X_1, X_2, ..., X_n with domains (possible values) D_1, D_2, ..., D_n
 - A set of constraints C_1, C_2, ..., C_m
 - Each constraint C_i limits the values that a subset of variables can take, e.g., V_1 ≠ V_2

In our example:

- Variables: WA, NT, Q, NSW, V, SA, T
- Domains: D_i = {red, green, blue}
- Constraints: adjacent regions must have different colors.
- E.g., WA ≠ NT (if the language allows this) or (WA, NT) in {(red, green), (red, blue), (green, red), (green, blue), (blue, red), (blue, green)}

Constraint satisfaction problems

- A state is defined by an assignment of values to some or all variables.
- Consistent assignment: assignment that does not violate the constraints.
- Complete assignment: every variable is mentioned.
- Goal: a complete, legal assignment.

(WA=red, NT=green, Q=red, NSW=green, V=red, SA=blue, T=green)
Varieties of CSPs

- Discrete variables
 - Finite domains of size $d \to O(d^n)$ complete assignments.
 - The satisfiability problem: a Boolean CSP
 - Infinite domains (integers, strings, etc.)
 - E.g. job scheduling where variables are start/end days for each job.
 - Need a constraint language e.g. `StartJob1 + 5 \leq StartJob2`.
- Continuous variables
 - E.g. start/end times for Hubble Telescope observations.
 - Linear constraints solvable in poly time by linear programming methods (dealt with in the field of operations research).

Varieties of constraints

- Unary constraints involve a single variable.
 - E.g. `SA ≠ green`
- Binary constraints involve pairs of variables.
 - E.g. `SA ≠ WA`
- Higher-order constraints involve 3 or more variables.
 - Preference (soft constraints) e.g. `red` is better than `green` often representable by a cost for each variable assignment; not considered here.

Constraint graph

- Binary CSP: each constraint relates two variables
- Constraint graph: nodes are variables, edges are constraints

Example: cryptharithmetic puzzles

- Variables: `FTUWROX Y X X`
- Domains: `{0,1,2,3,4,5,6,7,8,9}`
- Constraints:
 - `all(F, T, U, W, R, O)`
 - `O + O = R + 10 \cdot X_1`, etc.

CSP as a standard search problem

- Incremental formulation
 - Initial State: the empty assignment `{}`
 - Successor function: Assign value to unassigned variable provided that there is no conflict.
 - Goal test: the current assignment is complete.
- Same formulation for all CSPs !!!
- Solution is found at depth n (n variables).
 - What search method would you choose?

Backtracking search

- Observation: the order of assignment doesn't matter
 - can consider assignment of a single variable at a time.
 - Results in n leaves.
- Backtracking search: DFS for CSPs with single-variable assignments (backtracks when a variable has no value that can be assigned)
- The basic uninformed algorithm for CSP
function BACKTRACKING-SEARCH(csp) return a solution or failure
 return RECURSIVE-BACKTRACKING({}, csp)

function RECURSIVE-BACKTRACKING(assignment, csp) return a solution or failure
 if assignment is complete then return assignment
 var ← SELECT-UNASSIGNED-VARIABLE(VARIABLES[csp], assignment, csp)
 for each value in ORDER-DOMAIN-VALUES(var, assignment, csp) do
 if value is consistent with assignment according to CONSTRAINTS[csp] then
 add {var=value} to assignment
 result ← RECURSIVE-BACKTRACKING(assignment, csp)
 if result ≠ failure then return result
 remove {var=value} from assignment
 return failure

Improving backtracking efficiency

- **General-purpose** methods can give huge gains in speed:
 - Which variable should be assigned next?
 - In what order should its values be tried?
 - Can we detect inevitable failure early?
Most constrained variable

\[\text{var} \leftarrow \text{SELECT-UNASSIGNED-VARIABLE(VARIABLES[csp].assignment,csp)} \]

Choose the variable with the fewest legal values (most constrained variable)
a.k.a minimum remaining values (MRV) or "fail first" heuristic

- What is the intuition behind this choice?

Most constraining variable

- Select the variable that is involved in the largest number of constraints on other unassigned variables.
- Also called the degree heuristic because that variable has the largest degree in the constraint graph.
- Often used as a tie breaker e.g. in conjunction with MRV.

Least constraining value

- Least constraining value heuristic: guides the choice of which value to assign next.
- Given a variable, choose the least constraining value:
 - the one that rules out the fewest values in the remaining variables
 - why?

Forward checking

- Can we detect inevitable failure early?
- And avoid it later?
- Forward checking: keep track of remaining legal values for unassigned variables.
- Terminate search direction when a variable has no legal values.

Forward checking

- Assign \{WA=red\}
- Effects on other variables connected by constraints with WA
 - NT can no longer be red
 - SA can no longer be red

Forward checking

- Assign \{Q=green\}
- Effects on other variables connected by constraints with WA
 - NT can no longer be green
 - NSW can no longer be green
 - SA can no longer be green
Forward checking

- If V is assigned blue
- Effects on other variables connected by constraints with WA
 - SA is empty
 - NSW can no longer be blue
- FC has detected that partial assignment is inconsistent with the constraints and backtracking can occur.

Example: 4-Queens Problem

- Assignment of queens to rows:
 - X1: {1,2,3,4}
 - X2: {1,2,3,4}
 - X3: {1,2,3,4}
 - X4: {1,2,3,4}

- The four squares in the same row or in the same column or in the same diagonal are marked red.

- The constraints are imposed on the remaining squares.

- Backtracking occurs when a constraint is violated.

- The final assignment that satisfies all constraints results in a solution.
Example: 4-Queens Problem

X1 {2,3,4} X2 {, , ,}
X3 {, , ,} X4 {, , ,}

Constraint propagation

- Solving CSPs with combination of heuristics plus forward checking is more efficient than either approach alone.
- FC does not provide early detection of all failures.
 - Once WA=red and Q=green: NT and SA cannot both be blue!
- Constraint propagation: propagate the implications of each constraint.

Arc consistency

- X → Y is consistent iff for every value x of X there is some allowed y
- SA → NSW is consistent since SA=blue and NSW=red is a consistent assignment.
- Arc – directed edge

Arc consistency

- X → Y is consistent iff for every value x of X there is some allowed y
- NSW → SA is not consistent since for NSW=blue there is no consistent assignment to SA.
- Arc can be made consistent by removing blue from NSW.

Arc consistency

- RECHECK neighbours!!
 - Remove red from V

Arc consistency

- Can be run as a preprocessing before the search or after each assignment.
 - Repeated until no inconsistency remains
Arc Consistency Algorithm

function AC-3(csp) return the CSP, possibly with reduced domains
inputs: csp, a binary csp with variables (X₁, X₂, ..., Xₙ)
local variables: queue, a queue of arcs initially the arcs in csp

while queue is not empty do
 (Xᵢ, Xⱼ) ← REMOVE-FIRST(queue)
 # REMOVE-INCONSISTENT-VALUES(Xᵢ, Xⱼ)
 for each Xₖ in NEIGHBORS[Xᵢ] do
 add (Xᵢ, Xⱼ) to queue

function REMOVE-INCONSISTENT-VALUES(Xᵢ, Xⱼ) return true iff we remove a value
removed ← false
for each x in DOMAIN[Xᵢ] do
 if no value y in DOMAIN[Xᵢ] allows (x,y) to satisfy the constraints between Xᵢ and Xⱼ then
delete x from DOMAIN[Xᵢ]; removed ← true
return removed

Time complexity: O(n²d³)

K-consistency

Arc consistency does not detect all inconsistencies:
- Partial assignment (WA=red, NSW=red) is inconsistent.
- Stronger forms of propagation can be defined using the notion of k-consistency.
- A CSP is k-consistent if for any set of k-1 variables and for any consistent assignment to those variables, a consistent value can always be assigned to any kth variable.
- Not practical!

Local search for CSP

- Local search methods use a “complete” state representation, i.e., all variables assigned.
- To apply to CSPs
 - Allow states with unsatisfied constraints
 - Operators reassign variable values
- Select a variable: random conflicted variable
- Select a value: min-conflicts heuristic
 - Value that violates the fewest constraints
 - Hill-climbing like algorithm with the objective function being the number of violated constraints
- Works surprisingly well in problem like n-Queens

Problem structure

- How can the problem structure help to find a solution quickly?
 - Subproblem identification is important
 - Coloring Tasmania and mainland are independent subproblems
 - Identifiable as connected components of constraint graph
 - Improves performance

Problem structure

- Suppose each problem has c variables out of a total of n.
- Worst case solution cost is \(O(n/c \cdot d) \) instead of \(O(d^n) \)
- Suppose n=80, c=20, d=2
 - \(2^{80} \approx 4 \text{ billion years at 1 million nodes/sec} \)
 - \(4 \times 2^{20} \approx 4 \text{ second at 1 million nodes/sec} \)

Tree-structured CSPs

- Theorem: if the constraint graph has no loops then CSP can be solved in \(O(nd^2) \) time
- Compare with general CSP, where worst case is \(O(d^n) \)
Tree-structured CSPs

- Any tree-structured CSP can be solved in time linear in the number of variables.
 - Choose a variable as root, order variables from root to leaves such that every node’s parent precedes it in the ordering. Label var from X_1 to X_n.
 - For j from n down to 2, apply REMOVE-INCONSISTENT-VALUES(Parent(X_j), X_j).
 - For j from 1 to n assign X_j consistently with Parent(X_j).

Nearly tree-structured CSPs

- Can more general constraint graphs be reduced to trees?
- Two approaches:
 - Remove certain nodes
 - Collapse certain nodes

Nearly tree-structured CSPs

- Idea: assign values to some variables so that the remaining variables form a tree.
- Assign $(SA=x)$ ⇒ cycle cutset
 - Remove any values from the other variables that are inconsistent.
 - The selected value for SA could be the wrong: have to try all of them.

Summary

- CSPs are a special kind of problem: states defined by values of a fixed set of variables, goal test defined by constraints on variable values.
- Backtracking=depth-first search with one variable assigned per node.
- Variable ordering and value selection heuristics help significantly.
- Forward checking prevents assignments that lead to failure.
- Constraint propagation does additional work to constrain values and detect inconsistencies.
- Structure of CSP affects its complexity. Tree structured CSPs can be solved in linear time.