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Ca2+, a universal messenger in eukaryotes, plays a major role in signaling pathways that control many
growth and developmental processes in plants as well as their responses to various biotic and abiotic
stresses. Cellular changes in Ca2+ in response to diverse signals are recognized by protein sensors that
either have their activity modulated or that interact with other proteins and modulate their activity. Cal-
modulins (CaMs) and CaM-like proteins (CMLs) are Ca2+ sensors that have no enzymatic activity of their
own but upon binding Ca2+ interact and modulate the activity of other proteins involved in a large num-
ber of plant processes. Protein–protein interactions play a key role in Ca2+/CaM-mediated in signaling
pathways. In this review, using CaM as an example, we discuss various experimental approaches and
computational tools to identify protein–protein interactions. During the last two decades hundreds of
CaM-binding proteins in plants have been identified using a variety of approaches ranging from simple
screening of expression libraries with labeled CaM to high-throughput screens using protein chips. How-
ever, the high-throughput methods have not been applied to the entire proteome of any plant system.
Nevertheless, the data provided by these screens allows the development of computational tools to pre-
dict CaM-interacting proteins. Using all known binding sites of CaM, we developed a computational
method that predicted over 700 high confidence CaM interactors in the Arabidopsis proteome. Most
(>600) of these are not known to bind calmodulin, suggesting that there are likely many more CaM tar-
gets than previously known. Functional analyses of some of the experimentally identified Ca2+ sensor tar-
get proteins have uncovered their precise role in Ca2+-mediated processes. Further studies on identifying
novel targets of CaM and CMLs and generating their interaction network – ‘‘calcium sensor interactome’’
– will help us in understanding how Ca2+ regulates a myriad of cellular and physiological processes.

� 2011 Elsevier Ltd. All rights reserved.
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1. Introduction

Ca2+ is an important messenger for relaying signals and regulat-
ing many aspects of plant growth and development and plant re-
sponses to stresses. A change in cytoplasmic Ca2+ concentration
([Ca2+]cyt) is implicated in the regulation of diverse physiological
processes and plant defense and stress responses (Hepler, 2005;
Reddy, 2001; White and Broadley, 2003). The cell signaling process
via Ca2+ has three phases: generation of a Ca2+ signature, sensing
the signature and transduction of the signal (Reddy and Reddy,
2004). The Ca2+ concentration in the cytoplasm is maintained at a
low concentration (100–200 nM), while in the cell wall and vacuole,
the concentration can be millimolar (Hirschi, 2004; Reddy and
Reddy, 2004; Rudd and Franklin-Tong, 2001; McAinsh and Pittman,
2009 #2771). The generation of a cellular Ca2+ signature in response
to signals is orchestrated by Ca2+ channels that allow Ca2+ to flow
from the stores to the cytoplasm and then by Ca2+ pumps restoring
the resting [Ca2+]cyt (McAinsh and Pittman, 2009). The change in
[Ca2+]cyt is sensed by Ca2+-binding proteins, the Ca2+ sensors (Day
et al., 2002; Dodd et al., 2010; Reddy and Reddy, 2004). The sensors
themselves may become active and transduce the signal by their
activity or may bind to other proteins affecting their activity and,
thereby, transduce the signal through their interacting proteins.

A majority of Ca2+ sensors have one or more EF-hand motifs
(InterPro IPR002048) that are responsible for binding Ca2+. Each
EF hand is composed of two helices (E and F) flanking a Ca2+-bind-
ing loop capable of binding one Ca2+ ion. Two other types of pro-
teins have been shown to bind Ca2+, annexins and C2-domain
proteins, and a few other proteins with novel sequences have also
been shown to bind Ca2+ (Reddy and Reddy, 2004).

Bioinformatics analysis of EF hand-containing proteins in
Arabidopsis and rice has revealed a large number of putative Ca2+

sensors (Boonburapong and Buaboocha, 2007; Day et al., 2002). A
phylogenetic analysis of the Arabidopsis EF-hand proteins revealed
the presence of six major groups, which were further classified into
several subfamilies of proteins (Boonburapong and Buaboocha,
2007; Day et al., 2002). A major group of EF-hand proteins includes
calmodulin (CaM) and CaM-like proteins (CMLs). CaM is an acidic
EF-hand protein with no catalytic activity of its own. The prototype
CaM found in all eukaryotes is 148 amino acids long with two glob-
ular domains, each containing two EF hands connected by a long
flexible helix (Chin and Means, 2000). CML proteins are defined
as proteins composed of EF hands and no other known or identifi-
able functional domains, and that share at least 16% amino acid
identity with CaM (McCormack et al., 2005). There are seven CaM
and 50 CML genes in Arabidopsis (Supplementary Table 1). Upon
binding Ca2+, CaM and CMLs can bind to target proteins involved
in many cellular processes modulating their activity (Bouche
et al., 2005). McCormack et al. (2005) reviewed expression analysis
of the CaM and CML genes and found that while most CaMs are ex-
pressed somewhat similarly, the CMLs have a greater difference in
expression at different developmental stages and under different
conditions.
The CaM-binding domain of target proteins is composed of 12–
30 contiguous amino acids with positively charged amphiphilic
characteristics that tend to form an alpha-helix upon binding to
CaM (Bouche et al., 2005; Reddy and Reddy, 2004). However, the
amino acid sequence in different CaM-binding proteins (CBPs) is
variable and some CBPs do not have typical motifs, and so the iden-
tification of unique CBPs does not lend itself to database searches.
The proteomic challenge is to identify all CBPs and CML binding
proteins (CMLBPs) and study the specificity of their interacting
partners. This will provide the information to construct a ‘‘calcium
sensor interactome’’ and further our understanding of CaM/CBL-
regulated processes.

2. Calmodulin interacting proteins

CaM, one of the best characterized Ca2+ sensors, has been stud-
ied extensively in animals and plants. Many proteins that are the
targets of CaM have been identified in numerous expression
screens with labeled CaM. The targets have been found to be in-
volved in regulation of transcription, metabolism, ion transport,
protein folding, cytoskeleton-associated functions, protein phos-
phorylation and dephosphorylation and phospholipid metabolism
(Bouche et al., 2005; Reddy and Reddy, 2004; Yang and Poovaiah,
2003). Some CBPs are common in plants and animals while others
are specific to either animals or to plants (Reddy et al., 2002; Yang
and Poovaiah, 2003). Animal studies have shown three types of
CaM-activation mechanisms for target proteins (Hoeflich and
Ikura, 2002). One is relief of autoinhibition with the CaM binding
site adjacent to or within the autoinhibitory domain of the target.
The second is active site remodeling and the third is CaM-induced
dimerization.

There are many experimental approaches to study protein–
protein interactions (PPIs) (Reddy and Reddy, 2004; Shoemaker
and Panchenko, 2007). However, only a few of these (see below)
have been used extensively to identify CaM interactors. Since the
interaction of CaM with its targets is dependent on Ca2+, the yeast
two-hybrid (Y2H) method, a widely used approach to identify di-
rect protein–protein interactions, is not an ideal system because
of the problems associated with cellular Ca2+ manipulation during
the screening process. CaM-binding proteins in the human prote-
ome and Caenorhabditis elegans were identified using the mRNA
display technique (Shen et al., 2008, 2005). Although this is a pow-
erful method for discovering the targets of not only CaM, but also
other Ca2+ sensors, it has not been used in plants. TAP, a mass spec-
trometry-based approach for identifying interacting proteins that
form complexes (Rohila et al., 2004, 2006) has the potential to
uncover proteins that complex with CaM/CML binding proteins.
So far, this approach has not been applied to CaMs/CMLs.

2.1. Isolation by screening expression libraries

Historically the method used to identify CaM-binding proteins
was to screen an expression library with 125I or 35S labeled CaM
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(Fromm and Chua, 1992; Reddy et al., 1993, 1996b; Sikela and
Hahn, 1987). Biotinylated or horseradish peroxidase (HRP)-labeled
CaM was also used for identifying CBPs (Fordham-Skelton et al.,
1994; Lee et al., 1999; Safadi, 2000). The labeled CaM methods
use expression libraries grown on plates and induced to express
protein. The plaques are overlaid with filters containing IPTG to in-
duce expression. The filters are lifted and probed with labeled CaM.
Positives are picked and rescreened through additional rounds and
then the positive clones are rescued and sequenced (See Fig. 1).
Verification of CaM binding in a Ca2+-dependent manner has been
done in a variety of ways including CaM overlay assays, gel shift as-
says, CaM immunoprecipitation or using CaM Sepharose columns
(O’Day, 2003; Reddy and Reddy, 2004). Fig. 2 shows examples of
the CaM overlay, gel shift, and CaM Sepharose column assays.

Early screens of Arabidopsis expression libraries identified
interacting proteins such as GAD (Arazi et al., 1995; Bouche
et al., 2004), KCBP (Reddy et al., 1996a,b) and EICBP also called
CAMTA3 or SR1 (Reddy et al., 2000; Yang and Poovaiah, 2002a)
and many others (Bouche et al., 2005; Yang and Poovaiah, 2003).
A more global effort at identifying CBPs in Arabidopsis was done
using the labeled CaM method to identify new CBPs by screening
a number of expression libraries prepared from different tissues/
plant parts that were exposed to hormones and other signals,
and then searching the Arabidopsis genome with sequences of
the newly identified proteins and known plant and animal CBPs
(Reddy et al., 2002). Several expression libraries from flower mer-
istem, seedlings or tissues treated with hormones, an elicitor, or a
pathogen were used. Of the twenty identified CBPs in the search,
14 were previously unknown. Searching the genome revealed a to-
tal of 27 CBPs in Arabidopsis. Sixteen of the CBPs are represented
by families with 2–20 members while 11 were single gene-
encoded CBPs, totaling about 100 proteins. Thirteen of the 27 pro-
tein types were plant specific and 29 animal CBPs were not found
in the Arabidopsis genome reflecting the differences in plant and
animal Ca2+/CaM signaling. Although this screen and database
search revealed many new CBPs, it was not exhaustive and more
CBPs have been found in CaM labeled screens using a protein
microarray.
Fig. 1. Screening of expression libraries for CaM targets. A flow sheet describes the label
filters probed with CaM and the third shows one side of the final screen probed with C
2.2. Identification of CBPs using a protein chip

Given that there are 7 CaMs and 50 CMLs in Arabidopsis, screen-
ing libraries is too laborious to provide global identification of the
Ca2+ sensor interactome. Protein chip technologies are providing a
platform for large-scale analysis of proteins in plants. Popescu
et al. (2007) developed a protein microarray to screen with CaM
and CML proteins. A key element of the protein microarray was that
the proteins were expressed in plants rather than bacteria or yeast.
Using a Nicotiana benthamiana transient expression system they
expressed 1133 Arabidopsis ORFs and isolated and purified the pro-
teins for use on the microarray chip. The chips containing the 1133
Arabidopsis proteins, mostly transcription factors and signaling
proteins, were then probed in the presence of Ca2+ with CaM1,
CaM6, CaM7, CML8, CML9, CML10, or CML12. A total of 173 targets
were identified, 122 interacted with CaM1, 99 with CaM6, 117 with
CaM7, 77 with CM8, 113 with CML9, 102 with CML10, and 86 with
CML12. Six of nine known Arabidopsis homologs of CaM targets
including SAUR (At5g20810), phosphofructokinase (At5g47810),
diacylglycerol kinase (At5g63770), Hsp70-1 (At5g02500), TGA3
(At1g22070) and WRKY21 (At2g30590) were identified as CaM/
CML binding but three (At4g30360-CNGC-like.m, At5g60390-
EF-1a.a, and At3g094490-CNGC4.d) were not detected. The identi-
fied targets included 70 putative intracellular and receptor protein
kinases, 60 transcription factors, and 43 other classes of proteins. To
validate their data, coimmunoprecipitation assays were performed
for 20 target proteins with extracts from plant cells coexpressing a
Ca2+ sensor and its target. They were able to coimmunoprecipitate
17 of the targets with at least one of the CaM/CML proteins. Several
previously unknown targets were verified including CBL-interact-
ing protein kinase (CIPK) 6 and CIPK24, which is interesting in that
CBLs are Ca2+-binding proteins (Kolukisaoglu et al., 2004). Also the
binding of CaM/CML to two Ca2+-dependent protein kinases (CDPK6
and 30) was verified (Popescu et al., 2007). Results with the protein
chip show that novel CaM-binding proteins can be identified using
this high throughput method. Extension of this approach to the
whole proteome is likely to result in many more targets of CaMs
and CML proteins. Using the above approaches about 200 proteins
ed CaM-screening method. The three filters below show the first and second screen
aM in the absence of Ca2+ (EGTA) or the presence of Ca2+ (CaCl2).



Fig. 2. (A) Overlay assay to verify CaM-binding protein from an expression library. Autoradiogram shows Ca2+-dependent binding of 35S-labeled CaM to CAMTA3. (B) Overlay
assay showing detection of CaM-binding protein using either radioactive or non-radioactive probes. Bacterially expressed truncated EICBP (CAMTA3) (aa 770–1042) and its
binding to CaM. Soluble proteins from induced cultures containing vector alone (V) or the truncated form of EICBP (E) were separated on four gels. One gel was stained with
Coomassie blue (stained), and the other three were blotted and probed with either T7 tag-antibody (T7 tag-Ab), HRP-conjugated CaM (HRP-CaM) or 35S-labeled CaM (35S-
CaM). The location of EICBP is indicated by an arrow. (C) CaM-binding proteins eluted from a CaM-Sepharose column. Soluble protein from pollen was passed through CaM-
Sepharose and bound proteins were eluted with EGTA-containing elution buffer. Soluble protein (1), flow-through (2), wash (3), and elution fractions (4) were separated on
SDS polyacrylamide gels and were either stained with Coomassie Blue (stained gel), or blotted and probed with HRP-CaM (HRP-CaM). (D) Purification by CaM-Sepharose
column. A fusion protein of maize pollen CaM-binding protein (MPCBP) was purified by passing crude protein through a CaM-Sepharose column. Lanes 1–7 are elution
fractions either stained with Coomassie Blue or probed with a tag to the fusion protein T7. (E) Gel-shift assay. CaMs 2, 4 or 6 or bovine CaM (166 pmol) were run on a gel alone
(lane 1) or with 166, 332, 664 pmol of synthetic peptide corresponding to the CaM-binding domain of MPCBP. From Reddy et al. (2000) and Safadi et al. (2000).
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were identified as CaM-binding proteins, suggesting that it is one of
the few proteins in plants that interacts with numerous other pro-
teins (Lee et al., 2010).
3. Computational approaches for prediction of protein–protein
interactions (PPIs)

The identification of hundreds of targets for CaM and CMLs per-
mits development of computational tools to predict targets of cal-
cium sensors and PPIs in general. In discussing computational
approaches we consider two related problems – the prediction of
the whole interactome of a given organism and prediction of inter-
actions of a given protein, using CaM as an example.

In general, large scale high-throughput screens for PPIs suffer
from a high rate of false positives and false negatives (up to 50%
for the false positive rate) (von Mering et al., 2002). Computational
prediction and filtering of PPIs is therefore extremely useful even
in model organisms that have been studied using high-throughput
experimental methods, and more so in plants, where such efforts
have been limited so far (see Section 4). As the number of experi-
mentally determined interactions increases, computational models
will become more and more accurate in their predictions. The high
false-positive rate of high-throughput experimental methods has
led to the development of computational methods that assign con-
fidence scores to the results of high-throughput experimental
methods (Suthram et al., 2006). Being able to predict interactions
de novo or verify a given set of interactions are related problems
– both of them rely on data that serve to lend credibility to a puta-
tive interaction. These data are surveyed next.
3.1. Sources of data for interactome prediction

There are many sources of information indicative of an interac-
tion between two proteins. Each of these can be used to predict
interactions by itself, but better accuracy can be obtained by inte-
grating several sources of data and building a model to predict
interactions on the basis of a collection of features of a pair of pro-
teins. These integrative models typically use classification methods



Table 1
CaMs and CMLs in the Arabidopsis genome (Day et al., 2002; McCormack et al., 2005).

ATG No. Gene name ATG No. Gene name

AT5G37780 CaM1 AT1G66400 CML23
AT2G41110 CaM2 AT5G37770 CML24
AT3G56800 CaM3 AT1G24620 CML25
AT1G66410 CaM4 AT1G73630 CML26
AT2G27030 CaM5 AT1G18210 CML27
AT3G43810 CaM7 AT3G03430 CML28
AT3G59450 CNL1 AT5G17480 CML29
AT4G12860 CML2 AT2G15680 CML30
AT3G07490 CML3 AT2G36180 CML31
AT3G59440 CML4 AT5G17470 CML32
AT2G43290 CML5 AT3G03400 CML33
AT4G03290 CML6 AT3G03410 CML34
AT1G05990 CML7 AT2G41410 CML35
AT4G14640 CML8 AT3G10190 CML36
AT3G51920 CML9 AT5G42380 CML37
AT2G41090 CML10 AT1G76650 CML38
AT3G22930 CML11 AT1G76640 CML39
AT2G41100 CML12 AT3G01830 CML40
AT1G12310 CML13 AT3G50770 CML41
AT1G62820 CML14 AT4G20780 CML42
AT1G18530 CML15 AT5G44460 CML43
AT3G25600 CML16 AT1G21550 CML44
AT1G32250 CML17 AT3g29000 CML45
AT3G03000 CML18 AT5G39670 CML46
AT4G37010 CML19 AT3G47480 CML47
AT3G50360 CML20 AT2G27480 CML48
AT4G26470 CML21 AT3G10300 CML49
AT3G24110 CML22 AT5G04170 CML50
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from the field of machine learning (Tarca et al., 2007). In what fol-
lows we present various sources of data that are predictive of pro-
tein interactions (summarized in Table 2) and then discuss
methods for integrating them.

3.1.1. Interlogs
Perhaps the simplest method for predicting PPIs is by orthology.

A pair of proteins are called ‘‘interlogs’’ if there is a pair of orthologs
in another species that are known to interact (Matthews et al.,
2001; Walhout et al., 2000). This was the first method to be used
in Arabidopsis for creating a draft interactome (Geisler-Lee et al.,
2007). To improve the accuracy of the resulting interactions, De
Bodt et al. (2009) predicted interlogs in Arabidopsis and filtered
the resulting interactions by their co-expression and similarity in
functional annotations. Chen et al. (2009) provide a web-server that
can be used to search for interlogs in a large number of species.

3.1.2. Domain/motif methods
Domain-based methods operate under the assumption that PPIs

are mediated by domains, and that proteins with the same domain
will exhibit similar interactions (Ta and Holm, 2009). The first of
these methods was proposed in Sprinzak and Margalit (2001); they
score each pair of domains according to their tendency to co-occur
in PPIs more frequently than chance. A pair of proteins is then
scored according to the maximum scoring pair of domains they
contain. This method has been extended using more sophisticated
maximum likelihood approaches that aim at explaining a set of
interactions as domain–domain interactions (Wang et al., 2007).
Perhaps surprisingly, even a simple approach based on amino acid
composition is able to perform on-par with some domain compo-
sition methods (Roy et al., 2009).

3.1.3. Comparative genomics methods
Comparative genomics methods that consider the genomic con-

text of genes are providing information that is complementary to
orthology and domain methods. Table 1 lists several such methods
– gene neighborhood methods (Dandekar et al., 1998), the gene-
fusion method (Enright et al., 1999; Marcotte et al., 1999), phyloge-
netic methods that quantify the co-occurrence of a pair of proteins
Table 2
Methods for predicting PPIs and the rationale behind them.

Method Biological rationale

Orthology to known
interactions

A pair of proteins is suspected to interact if there is a
called ‘‘interlogs’’ (Walhout et al., 2000; Matthews et

Domain composition PPIs are mediated by domains, and proteins with the
Co-expression Proteins that interact need to be present in the cell at t

scoring the reliability of PPIs (Deane et al., 2002) and
Co-regulation The co-expression required for an interaction can be a
Network topology Pairs of interacting proteins have similar interaction n

development of scores that capture local topological f
2003)

Similarity in functional
annotations

Proteins that interact tend to participate in similar bio

Phylogenetic profiles Given that the homologs of interacting proteins are also
tend to be coordinated – either both or none of them w
organisms is captured by what’s called a phylogenetic
and Valencia, 2001)

Gene neighbors Proteins that are encoded by genes that are on the sam
(Dandekar et al., 1998)

Gene fusion (Rosetta Stone
method)

Some interacting proteins have homologs in other gen
(Marcotte et al., 1999). Existence of a Rosetta Stone pr
1999; Marcotte et al., 1999)

Sequence co-evolution Proteins that interact need to co-evolve so as to mainta
for the corresponding families of the two proteins

Docking Proteins interact because they have structures that su
Literature mining Automatic extraction of interaction data from the liter

manually
in a set of genomes (Pazos and Valencia, 2001), and co-evolution
methods that quantify the likelihood of an interaction by the simi-
larity of the phylogenetic trees of the families of proteins that two
proteins belong to (Goh et al., 2000; Pazos and Valencia, 2001).
These methods have been applied mainly in prokaryotic genomes
and yeast, and a large compendium of such predictions is available
via the STRING database (Jensen et al., 2009).

3.1.4. Co-expression and co-regulation
Proteins that interact need to be present in the cell at the same

time and in similar concentrations under the conditions that re-
pair of interacting orthologs in another organism; such putative interactors are
al., 2001)
same domain will exhibit similar interactions (Ta and Holm, 2009)
he same time and in similar concentrations; co-expression has been used for both
predicting PPIs (Soong et al., 2008)
chieved by co-regulation of interacting proteins
eighborhoods, i.e. interact with similar sets of proteins. This has led to the
eatures of the network that are indicative of an interaction (Goldberg and Roth,

logical processes and have similar cellular localization

likely to interact, the existence of homologs for a pair of interacting proteins will
ill have homologs in other organisms. The pattern of homology of a protein across
profile, and interacting proteins tend to have similar phylogenetic profiles (Pazos

e bacterial operon tend to be functionally related, and often physically interact

omes that are fused into a single protein - the so-called Rosetta Stone protein
otein is an indication of a functional linkage or protein interaction (Enright et al.,

in their interaction. This will show itself as similarity between phylogenetic trees

pport the interaction
ature is complementary to the work of database curators that perform this task
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quire their interaction; co-expression, as measured using DNA
microarrays has been used for both scoring the reliability of PPIs
(Deane et al., 2002) and predicting PPIs (Soong et al., 2008). In most
cases, it has been used in conjunction with other signals for de novo
prediction of PPIs, as expression is not a very specific signal for
PPIs. The co-expression of two genes can occur if the genes are reg-
ulated by the same transcription-factors. Since transcription factor
binding can be quantified in a high-throughput manner, co-regula-
tion has proven to be a useful source of information for prediction
of PPIs (Lu et al., 2005).

3.1.5. Network topology methods
In organisms with well-characterized interaction networks it

has been observed that pairs of interacting proteins have similar
interaction neighborhoods, i.e. interact with similar sets of pro-
teins. This has led to the development of scores that capture local
topological features of the network that are indicative of an inter-
action (Chen et al., 2008; Goldberg and Roth, 2003).

3.1.6. Shared functions
Proteins that interact tend to participate in similar biological

processes and have similar cellular localization. Researchers have
therefore used the similarity of Gene Ontology (GO) terms associ-
ated with a pair of proteins as a source of data for predicting PPIs
(Lu et al., 2005; Ben-Hur and Noble, 2005). In fact, shared GO bio-
logical processes are one of the most predictive sources of data (Lu
et al., 2005). However, shared process annotations are not useful in
the case of proteins with unknown function that are often charac-
terized with the help of PPIs.

3.1.7. Using structure
The three-dimensional structure of a protein is what deter-

mines its biochemical activity and ability to interact with proteins
and other biological molecules. Docking methods that use protein
structure in order to predict a complex of two or more proteins at
atomic-scale resolution can be used to infer whether a pair of pro-
teins interact. It has been noted that docking methods are ‘‘not suf-
ficiently accurate to predict whether or not two proteins actually
interact’’ (Russell et al., 2004). Despite the significant improve-
ments in docking algorithms in recent years as evidenced by their
performance in Capri evaluations this is still likely to be the case
(Ritchie, 2008). There are other ways of using structure to infer
interactions without resorting to docking, which is computation-
ally intensive (Hue et al., 2010).

3.1.8. Automatic extraction of interactions from the biomedical
literature

The curators of PPI databases can’t keep up with the large num-
ber of interactions that are reported in the literature (Baumgartner
et al., 2007). Since there are many ways of expressing interactions
in natural language, extraction of biological knowledge from the
biomedical literature is a difficult task. It turns out that even
detecting which genes are being referred to is difficult (known as
the problem of gene normalization). An overview of the state-
of-the-art of literature mining is provided in Krallinger et al.
(2008). A large number of interactions that are automatically
extracted are found in the STRING database (Jensen et al., 2009).

3.2. Integrative methods

Each of the methods described above constitutes noisy evidence
for a PPI. Furthermore, individual sources of data have limited cov-
erage, and cannot provide support for every interaction (Lu et al.,
2005). Integration of several of these can lead to more accurate
predictions, increasing both the number of predicted interactions
and the confidence with which they are predicted (Ben-Hur and
Noble, 2005; Lu et al., 2005; Qi et al., 2006). This is crucial when
performing predictions on a genome-wide scale since even a mod-
est error-rate can lead to millions of false-positives when applied
to all pairs of proteins. Integration is carried out using statistical
and machine learning techniques (Tarca et al., 2007). This involves
the training of a model for distinguishing between interacting and
non-interacting pairs of proteins. The training process requires a
set of known PPIs (positive examples), and a set of pairs of proteins
that are not known to interact (negative examples). In view of the
high rate of false positives in high-throughput datasets, assessing
the performance of the resulting models is usually performed on
trusted interactions – interactions that have been found using mul-
tiple methods or by reliable small-scale methods.

The simplest and most widely used integration method is the
Naïve Bayes classifier, which was employed in several publications
(Jansen et al., 2003; Jensen et al., 2009; Lu et al., 2005). These stud-
ies use a small number of features, making this a viable approach.
When incorporating all possible combinations of domains for
example, more sophisticated machine learning approaches that
can handle high dimensional data are required. Support-vector
machines are one such approach (Ben-Hur et al., 2008), and this
has been applied successfully for prediction of PPIs using such ex-
tremely high dimensional data (Ben-Hur and Noble, 2005). The
random forests classification method has done well in a compari-
son of several machine learning approaches (Qi et al., 2006).

Most of the work on integrative methods has been carried out in
yeast, where there is a wealth of genomic data. A comprehensive
integration of all the possible signals supporting PPIs is a challeng-
ing bioinformatics task; the most comprehensive integration to-
date has been carried out by the designers of the STRING database,
that combines information from orthology, sequence evolution
methods, co-expression, and literature mining, providing over 50
million predictions in 630 organisms (Jensen et al., 2009).

3.3. Prediction of CaM-binding proteins in Arabidopsis

An alternative approach to the construction of a global interac-
tome prediction model is to train models for the prediction of PPIs
for individual proteins. Bleakley et al. (2007) trained models for
each protein in the yeast genome that has known interaction part-
ners using a collection of genomic data that included expression,
localization information, and phylogenetic profiles. This approach
has the advantage over a global model in that it is able to take into
account specific propensities of individual proteins. Their results
show the advantage of this approach over global modeling of the
interactome. An issue with this approach is that for many proteins
very few interaction partners are known, so extensions of their
method were proposed to address this point (Yip and Gerstein,
2009).

Focusing on prediction of interactions of specific proteins al-
lows the design of a classifier that is specifically tailored towards
the properties of the protein and the modes in which it interacts
with other proteins. Whereas all the models used in Bleakley
et al. (2007) employ the same data in the same way for all proteins,
recent work on prediction of interactions of CaM uses the sequence
characteristics of the interaction partners of CaM to design accu-
rate classifiers that can predict both interaction sites and interac-
tion partners of CaM (Radivojac et al., 2006) (Hamilton et al.,
2010). Taking advantage of the fact that CaM is highly conserved
across eukaryotes these methods model CaM binding sites using
data from a variety of organisms collected in the CaM Target Data-
base (Yap et al., 2000). Hamilton et al. (2010) used the support-vec-
tor machine classifier, which has shown its usefulness in a large
variety of bioinformatics domains (Ben-Hur et al., 2008); a
support-vector machine finds a boundary between known binding
sites and non-binding sites such that the margin between these
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two classes is maximized. This concept is illustrated in Ben-Hur
et al. (2008). Hamilton et al. (2010) considered several representa-
tions of CaM binding sites and found that using the amino acid
composition of a binding site yields results that are almost as accu-
rate as more sophisticated methods that use evolutionary informa-
tion and the presence of short motifs. The success using amino acid
composition is related to the fact that CaM binding sites tend to be
disordered, a property driven by amino-acid composition (Radivo-
jac et al., 2006). When run on the whole Arabidopsis proteome
their method produces over 700 high-confidence predictions with
an estimated false positive rate less than 0.05. This adds to the 200
or so CaM binders identified by Popescu et al. (2007), again high-
lighting how computational approaches complement high-
throughput approaches in saturating interaction networks.
4. Databases of protein–protein interactions

There are many databases that store both experimental and
predicted PPIs. Table 3 provides a list of interaction databases –
both generic, and plant-specific. This table highlights the fact that
high-throughput interaction data in plants is not as widely avail-
able as in yeast and animal model organisms. The IntAct database
(Aranda et al., 2010), which contains the largest number of exper-
imentally-derived interactions in plants (most of them in Arabid-
opsis), contains 8000 interactions in Arabidopsis, compared to
nearly 70,000 in yeast, over 40,000 for human, close to 30,000 for
fly, over 10,000 for C. elegans, and close to 10,000 for mouse. This
relative paucity is likely to change soon, as large-scale projects
are under way to interrogate the interactomes of several plants
(see Table 3).

Because of the small number of experimentally determined
interactions in plants, computationally predicted interactions have
been the main source of PPIs. The first database of predicted inter-
actions in Arabidopsis was published in 2007, and consisted mostly
of interlogs, with confidence scores assigned by their level of co-
expression (Geisler-Lee et al., 2007). Additional resources soon fol-
lowed. AtPID integrates interlogs, information from co-expression,
Table 3
A lists of protein–protein interaction databases. We list both generic PPI databases that con
we list the total number of interactions in the database across all species, and the plant i
collect interactions from other databases (we list the number of such interactions as ‘‘coll

Database Number of interactions URL/publicatio

BioGRID 241,173 (total)
3304 (plant)

http://thebiog

DIP 69,463 (total)
54 (plant)

http://dip.doe

IntAct 154,639 (total)
8000 (plant)

http://www.eb

Mint 83,571 (total) http://mint.bio
VisANT 918,312 total (300,297

predicted) 147,204 in
Arabdiopsis

http://visant.b
interactions (H

STRING Over 60 million predicted
interactions in 630 organisms
89,009 (predicted high
confidence in Arabidopsis)

http://string.e
based on evolu

Plant specific
TAIR (Arabidopsis) 2656 (Arabidopsis) http://www.ar
Arabidopsis predicted

interactome
4300 (collected)
70,944 (predicted)

ftp://ftp.arabid
cgi-bin/arabid

Arabidopsis thaliana protein
interactome database (AtPID)

4666 (collected)
23,396 (predicted)

http://atpid.bi
evolutionary i

Arabidopsis thaliana protein
interaction network (AtPIN)

96,827(collected) http://bioinfo.
2009)

Rice kinase database 378 http://rkd.ucd
Plant interactome database Coming soon http://interact

interactome
shared Gene-Ontology biological processes, domain composition,
gene fusion events, and phylogenetic profile similarity scores using
a simple Naïve-Bayes method (Cui et al., 2008). The AtPIN database
pools interactions from several databases and its latest release
(#10) contains 96,827 interactions (Brandao et al., 2009). A similar
number of interactions are available from the STRING database
that contains 89,009 Arabidopsis interactions when considering
their most stringent threshold for prediction confidence (Lars
Jensen, personal communication). VisANT (Hu et al., 2008) is an-
other useful resource that provides both a database back end and
tools for analyzing interaction networks. Many of these databases
have features for visualization of interaction networks, where
AtPIN, for example, allows visualization of query results using
Cytoscape, which is one of the standard tools in network analysis
(Cline et al., 2007). The CaM Target Database (Yap et al., 2000) is
a collection of around 200 proteins that interact with CaM where
the binding site location is known. This database has not been
updated in recent years, and additional data is likely available.
5. Specificity of interaction with CaM and CML proteins

There is little sequence difference in the seven CaMs in Arabid-
opsis. One isoform is encoded by CaM1 and CaM4, while CaM2,
CaM3, and CaM5 encode a second isoform. The CaM1/CaM4 iso-
form differs by four amino acids from CaM7 while the CaM2/
CaM3/CaM5 isoform and CaM6 differ from CaM7 by only one ami-
no acid (McCormack et al., 2005; Reddy et al., 1999). The CMLs are
more highly divergent having as little as 16% amino acid identity
with one to six EF hands. CaMs have been shown to have many tar-
gets and some targets have been shown to bind more than one
CaM isoform, raising the question of specificity of CaM/CBP
interactions. KCBP is a kinesin-like protein that binds CaM in a
Ca2+-dependent manner and the binding of CaM blocks the motor
interaction with microtubules (Reddy et al., 1996a). Crystallization
studies suggest that Ca2+/CaM inhibits the binding of KCBP to
microtubules by blocking the microtubule binding sites
(Vinogradova et al., 2008, 2004). In a yeast two-hybrid assay, a
tain interactions for all species, and plant specific databases. For the generic databases
nteractions (most of them are in Arabidopsis). The plant specific databases typically
ected’’); two of the databases contain predicted interactions.

n

rid.org/ (Breitkreutz et al., 2008)

-mbi.ucla.edu/dip/ (Xenarios et al., 2002)

i.ac.uk/intact/ (Aranda et al., 2010)

.uniroma2.it/mint/ (Ceol et al., 2010)
u.edu/Contains interactions collected from other databases and predicted
u et al., 2008)

mbl.de/Contains interactions collected from several databases and predictions
tionary methods and text mining (Jensen et al., 2009).

abidopsis.org/
opsis.org/home/tair/Proteins/Interactome2.0http://bar.utoronto.ca/interactions/

opsis_interactions_viewer.cgiMostly interlogs (Geisler-Lee et al., 2007)
osino.org/Predicted from orthology, co-expression, shared annotations,
nformation, and domain pairs (Cui et al., 2008)
esalq.usp.br/atpin/atpin.plCollected from all the above databases (Brandao et al.,

avis.edu/Interactions of rice kinases (Dardick et al., 2007)
ome.dfci.harvard.edu/A_thaliana/A Y2H and protein chip map of the Arabidopsis

http://thebiogrid.org/
http://dip.doe-mbi.ucla.edu/dip/
http://www.ebi.ac.uk/intact/
http://mint.bio.uniroma2.it/mint/
http://visant.bu.edu/
http://string.embl.de/
http://www.arabidopsis.org/
http://atpid.biosino.org/
http://bioinfo.esalq.usp.br/atpin/atpin.pl
http://rkd.ucdavis.edu/
http://interactome.dfci.harvard.edu/A_thaliana/
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second protein (KIC, KCBP Interacting Ca2+ sensor) was found to
bind KCBP and also inhibit microtubule binding (Reddy et al.,
2004). It is also a Ca2+-binding protein with one EF hand. Although
both Ca2+-KIC and Ca2+-CaM are able to interact with KCBP and in-
hibit its microtubule binding and ATPases activity, the concentra-
tion of Ca2+ required to inhibit the microtubule-stimulated
ATPase activity of KCBP by KIC is threefold less than that required
for CaM. At the same time, two KIC-related Ca2+-binding proteins
and CML19 from Arabidopsis, which contain one and four EF-hand
motifs, respectively, bound Ca2+ but did not affect microtubule
binding and microtubule-stimulated ATPase activities of KCBP.
Probing of thirteen purified Ca2+-binding proteins on a slot blot
with KCBP showed interaction with three CaMs (1, 4 and 6) and
KIC in the presence, but not absence, of Ca2+. KCBP did not bind
to the tested CBL, CPK or to KRP1, a KIC-related protein that binds
Ca2+ but does not regulate KCBP/tubulin binding and other tested
CMLs. These findings indicate that there are specific CaMs/CMLs
that bind targets but multiple targets for a given CaM/CML are also
possible. These findings were supported by the Arabidopsis protein
microarray probed with three CaMs and four CMLs (Popescu et al.,
2007). Each of the CaMs/CMLs interacted with 86–122 of the target
proteins, suggesting that large numbers of targets can interact with
individual CaMs/CMLs. Looking at the specificity of the targets,
approximately 25% of the proteins interacted with all the CaMs/
CMLs, 50% interacted with two or more and 25% interacted with
only one CaM/CML (Popescu et al., 2007). The interaction networks
that they constructed showed four hubs containing different sets of
CaMs/CMLs. One hub contained CaM1, CaM6, CaM7, CML9 and
CML10, which share more common targets than any other hub. An-
other hub containing CML8 and CML12 interacted with a larger
number of unique targets. In fact, CaM4 and CaM7 represent the
top two of three hubs in Arabidopsis (Lee et al., 2010). These data
indicate that there is a range of specificity in targets from one to
multiple interacting CaM/CML proteins.

6. Functions of CaM and CML targets

Interaction screens and predictions have resulted in identifica-
tion of numerous targets of CaMs and CMLs in plants. Functions
of only a few of these have been elucidated. Here we discuss briefly
the functions of CaM/CML targets in plant growth and develop-
ment and stress responses.

6.1. Calmodulin-binding proteins in plant growth and development

Several of the identified CBPs that are transcription factors, en-
zymes and motors have functions in plant growth and develop-
ment. Plant hormones regulate many aspects of plant growth
and development and some CBPs are involved in response to hor-
monal changes. A group of proteins are upregulated in response
to auxin, the small auxin up RNA (SAUR) proteins. Yang and
Poovaiah (2000) isolated a Zea mays SAUR using labeled CaM;
an Arabidopsis homolog to a bean SAUR was also identified as a
CBP (Reddy et al., 2002) and SAUR.B was found to interact with
CaM in the protein chip assay (Popescu et al., 2007). Two other
transcription factors involved in auxin signaling were also found
to bind CaM/CMLs, GRAS and AUX/IAA (IAA31 was verified by
immunoprecipitation), which play a role in root development
and gibberellin signaling (GRAS) and in many developmental pro-
cesses (AUX/IAA) (Popescu et al., 2007b).

The CAMTA family of transcription factors is comprised of eth-
ylene and stress induced CaM-binding proteins (Bouche et al.,
2002; Reddy et al., 2000; Yang and Poovaiah, 2002a). A mutant
CAMTA3 line is smaller than WT Arabidopsis (Du et al., 2009;
Galon et al., 2008) indicating a role for CAMTA3 in growth and
development. DWARF1 (DWF1), another CBP in Arabidopsis, is
responsible for an early step in brassinosteroid biosynthesis
(Du and Poovaiah, 2005). Brassinosteroids have a role in coupling
environmental factors with plant growth and development. Ca2+/
CaM binding was shown necessary for DWF1 function using site-
directed and deletion mutants (Du and Poovaiah, 2005).

Some CBPs are involved in pollen germination and the directed
growth of pollen tubes. The Arabidopsis homolog of maize pollen
CaM-binding protein (MCPCBP), NPG1 (no pollen germination1),
is essential for pollen germination (Golovkin and Reddy, 2003;
Safadi et al., 2000). Pollen forms normally in npg1 mutants but ger-
mination of pollen grains containing the npg1 allele was affected
(Golovkin and Reddy, 2003). ACA9 is a Ca2+/CaM activated Ca2+-
ATPase that has been shown to be important for normal pollen
tube growth (Schiott et al., 2004). Three mutant alleles of aca9
showed poor growth of the pollen tube and low frequency of fertil-
ized ovules. Another possible Ca2+/CaM regulated protein that may
be involved in pollen growth is apyrase. There are two apyrases in
Arabidopsis but only one of them has a CaM binding domain
(Steinebrunner et al., 2003). When both apyrases were knocked
out, pollen failed to germinate and growth of hypocotyls was
inhibited (Steinebrunner et al., 2003; Wu et al., 2007).

KCBP, a kinesin regulated by Ca2+/CaM (see above) was isolated
as a protein involved in trichome morphogenesis (Oppenheimer
et al., 1997). ZWITCHEL mutants had aberrant trichomes with only
one or two branches instead of the normal three (Oppenheimer
et al., 1997). KCBP has also been localized to the phragmoplast dur-
ing cell division and has a role in cytokinesis (Bowser and Reddy,
1997; Voss et al., 2000). Other cell cycle proteins were identified
in the protein chip assay as possible CaM/CML-binding proteins
including CDKB2 (verified by immunoprecipitation) and two other
CDK-like proteins (Popescu et al., 2007).

GAD, an enzyme that catalyzes the conversion of glutamate to
GABA, has been shown to be regulated by Ca2+/CaM and has been
identified in many plant species (reviewed in Bouche et al., 2005).
Using a GAD deletion mutant with no CaM-binding domain re-
sulted in constitutive GAD activity, increased amounts of GABA
and abnormal plant development (Baum et al., 1996).

Recently the Arabidopsis transcription factor Telomerase
Activator1 (TAC1) was found to bind the promoter of AtBT2, a
CBP known to be involved in transcription regulation suggesting
a role for AtBT2 in telomerase regulation (Du and Poovaiah,
2004; Ren et al., 2007). A functional analysis of the BT family in
Arabidopsis showed that there is functional redundancy among
the family members, and that the expression of specific BT genes
is up- or down-regulated when null mutations occur in other BT
genes (Robert et al., 2009). It was shown that BT proteins play an
essential role during gametogenesis, and probably throughout
plant development in plants containing multiple null mutations
in the different BT genes.

Membrane bound proteins have also been shown to bind CaM.
A protein involved in translocation of proteins across the chloro-
plast membrane was isolated using a CaM-Agarose column (Chigri
et al., 2006). Calmodulin-binding assays corroborated the finding
and domain analysis located a CaM-binding domain between
Leu-296 and Leu-314 close to the C-proximal end of the pea
Tic32. Tic32 is a dehydrogenase and its dehydrogenase activity is
affected by CaM (binding of NADPH and CaM to Tic32 appear to
be mutually exclusive). A homolog in Arabidopsis, At4g23430,
has a similar binding domain (Chigri et al., 2006).

A 50 kDa protein encoded by AT4G30490 (AFG1L1) with simi-
larity to the ATPase family gene 1 protein from yeast was identified
using affinity chromatography on CaM-agarose with chloroplast
proteins (Bussemer et al., 2009). The protein has a single AAA-do-
main characteristic for members of the AAA+-ATPase and in vitro
pull-down as well as cross-linking assays corroborate Ca2+-depen-
dent binding of the protein to CaM. The CaM-binding domain was
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located in a region of 20 amino acids within the AAA-domain. The
protein localizes to both mitochondria and chloroplasts.

An S-locus RLK (receptor-like kinase) CaM-binding kinase
(CBRLK1, AT1G11350) identified in a CaM screen was localized to
the plasma membrane (Kim et al., 2009a). Calmodulin bound spe-
cifically to a Ca2+-dependent CaM-binding domain in the C-termi-
nus of CBRLK1. The bacterially expressed CBRLK1 kinase domain
could autophosphorylate and phosphorylates general kinase sub-
strates (Kim et al., 2009a).
6.2. Calmodulin-binding proteins in stress responses

Ca2+ plays a major role in the response to environmental stres-
ses, both biotic and abiotic (Reddy, 2001; Reddy and Reddy, 2002,
2004). CBPs have been shown to be involved in both responses,
some are specific to biotic, some to abiotic and others are involved
in both responses. Six WRKY transcription factors and two TGA
transcription factors that are involved in activation of stress or de-
fense pathways interacted with CaM/CMLs in the microarray over-
lay assays done by Popescu et al. (2007). The CaM/CML interaction
was verified by immunoprecipitation for two of the WRKYs (43 and
53) and TGA3. TGA3 has been shown to bind Ca/CaM and as a tran-
scription factor, binds to the CaM3 promoter (Reddy et al., 2002;
Popescu et al., 2007; Szymanski et al., 1996). TGA3 binding to the
CaM3 promoter is enhanced in the presence of Ca/CaM (Szymanski
et al., 1996). Another transcription factor, WRKY7, a WRKY group
IId member was isolated in a labeled CaM screen. A CaM overlay
assay with members of the WRKY group IId family showed CaM-
binding by all tested members while representative members of
the other WRKY families did not bind CaM (WRKY43 and WRKY53
proteins were not tested) (Park et al., 2005).

Receptor-like kinases (RLKs) have been shown to be involved
in developmental and defense-related processes. The CaM/CML
microarrays also identified (RKLs) and RLK-like proteins that bind
CaM/CML (Popescu et al., 2007). It has been reported that BT
genes mediate diverse hormone, stress and metabolic responses
(Mandadi et al., 2009). Accumulation of BT2 (At3g48360) mRNA
was affected by a variety of hormones, nutrients and stresses,
and BT2 was required for response to many of these same factors
(Mandadi et al., 2009). Here we have discussed the functions of
just a few CBPs. A detailed discussion on functions of CBPs in
stress responses can be found in recent reviews (Galon et al.,
2010; Kim et al., 2009b).
6.2.1. Biotic stresses
As reviewed by Bouche et al. (2005), a number of CBPs have

been identified with a role in response to pathogens. A protein first
identified in tobacco as a CaM-binding protein involved in patho-
gen response, NAD kinase (NADK) catalyzes the phosphorylation
of NAD to NADP (Harding et al., 1997). Two Arabidopsis NADKs
were isolated later but only one is CaM-binding (Turner et al.,
2004). Other CBPs involved in biotic stress response include
CaM-regulated catalase (Yang and Poovaiah, 2002b), GAD
(MacGregor et al., 2003), a receptor-like protein MLO (Kim et al.,
2002), and two cyclic-nucleotide gated channels, AtCNGC2 (Clap-
ham, 1995) and AtCNGC4 (Babu et al., 1988). Some CBPs found
to be induced by pathogens include SCA1- a Ca2+-ATPase in soy-
beans (Chung et al., 2000), several isoforms of CBP-60 in bean
(Ali et al., 2003) and PICBP in Arabidopsis (Reddy et al., 2003).
Mutations in an Arabidopsis CBP60 (CBP60g, At5g26920) that abol-
ish CaM binding prevent complementation of SA production and
bacterial growth defects of cbp60g mutants (Wang et al., 2009).
CaM binding is Ca2+ dependent, which demonstrates that CBP60g
constitutes a Ca2+ link between MAMP recognition and SA accumu-
lation in resistance to Pseudomonas syringae (Wang et al., 2009).
A protein involved in production of glucosinolates, IQD1 was
shown to bind CaM in a Ca2+-dependent manner and overexpres-
sion of IQD1 reduces insect herbivory (Levy et al., 2005). A family
of 33 IQD genes was found in Arabidopsis with a conserved CaM-
binding domain and CaM-binding was confirmed for one other
family member, IQD20 (Levy et al., 2005). Two cell death-related
proteins have been shown to bind CaM. A family of proteins con-
taining a BAG (BCL-2-associated athanogene) domain has seven
members in Arabidopsis, three of which have a CaM-binding
domain—AtBAG5, 6 & 7 (Kabbage and Dickman, 2008). AtBAG6,
isolated in a screen with labeled CaM, binds CaM through an IQ
motif in a Ca2+-independent manner and induces cell death (Kang
et al., 2006). A cell death suppressor protein, Bax inhibior-1 (BI-1)
was shown to bind CaM using the split-ubiquitin system, overlay
assay and bimolecular fluorescence complementation analysis
(Ihara-Ohori et al., 2007).

The transcription factor CAMTA3 has also been shown to be a
suppressor of biotic defense responses in Arabidopsis with
mutants showing enhanced resistance to bacterial and fungal
pathogens (Du et al., 2009; Galon et al., 2008). Plant–pathogen
interactions lead to local and systemic acquired resistance. Sali-
cylic acid is required for both of these responses, but whether
and how salicylic acid level is regulated by Ca2+ signaling during
plant–pathogen interaction is unclear. A mechanistic connection
of a Ca2+ signal to salicylic-acid-mediated immune response
through CaM, has been shown for AtSR1 (CAMTA3), a Ca2+/CaM-
binding transcription factor and EDS1, an established regulator of
salicylic acid level (Du et al., 2009). In loss-of-function alleles of
Arabidopsis SR1 there is constitutive disease resistance and ele-
vated levels of salicylic acid, suggesting that it is a negative regula-
tor of plant immunity. Interaction of SR1 with the promoter of
EDS1 resulted in repressesion of its expression. The CaM-binding
domain is required to function as a negative regulator.

6.2.2. Abiotic stresses
A variety of abiotic stresses can induce a transient cytosolic

Ca2+ increase and the CaM and CML sensors are often induced
in response to these stresses (Knight, 2000; Reddy, 2001). CBPs
are involved in osmotic stress, cold and heat stress, oxidative
stress and xenobiotic stress (Bouche et al., 2005). Some CAMTA
family members are induced by salt (Yang and Poovaiah,
2002a), the Ca2+-ATPase, ACA4 plays a role in salt tolerance
(Geisler et al., 2000), and AtCaMBP25 is induced by osmotic stress
(Perruc et al., 2004). A MYB transcription factor cloned from a li-
brary from dehydrated Arabidopsis was later shown to bind CaM
and regulate the expression of salt- and dehydration-responsive
genes in Arabidopsis (Yoo et al., 2005). A Ca2+/CaM-regulated
receptor-like kinase (CRLK) was shown to be a positive regulator
of cold tolerance in plants (Yang et al., 2010b). The crlk1 knock-
out mutants showed delayed induction of cold-responsive genes
and exhibited increased sensitivity to chilling and freezing tem-
peratures. Northern analysis showed that the induction of cold-
responsive genes, including CBF1, RD29A, COR15a, and KIN1 in
crlk1 mutants, is delayed as compared with wild-type plants.
The interaction of CRLK with a MAP kinase kinase kinase (MEKK1)
suggests that it acts through MAP kinase pathway (Yang et al.,
2010a).

CBPs involved in heat shock are Arabidopsis homologs of wheat
FKBPs including TWD1 which bind CaM and are induced by heat
shock (Kamphausen et al., 2002; Reddy et al., 2002) and Arabidop-
sis homologs of wheat TCB60. Recently, a Ser/Thr phosphatase
AtPP7 was found to interact with CaM (Liu et al., 2007). A pp7
knockout impaired the thermotolerance of Arabidopsis seedlings
and overexpression increased thermotolerance (Liu et al., 2007).
Most recently, a CaM-binding protein kinase AtCBK3 was shown
to be a part of a heat-shock signal transduction pathway and a
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knockout mutant and an overexpressor again impaired or in-
creased respectively thermotolerance (Liu et al., 2008).

Two CaM-binding transcription factors AtBT and some CAMTAs
are induced by H2O2, indicating their involvement in oxidative
stress (Du and Poovaiah, 2004; Yang and Poovaiah, 2002a). CAM-
TA3 has been show to bind a CGCG element in cold-induced genes
and induced their expression. AtCNGC1, apyrase, catalase and a
multidrug resistance gene AtMRP1 are involved in tolerance to
xenobiotic compounds (Bouche et al., 2005).

In addition to the above described CBPs with known functions
there are other CBPs for which functions have not been elucidated.
Some of these are described below. A transcription factor CBNAC
(CaM-binding NAC protein), a member of NAC family transcription
factors, that binds to a GCTT core sequence was isolated using HRP-
labeled CaM screen (Kim et al., 2007). CBNAC was found to bind to
its cognate DNA sequence and repress transcription (Kim et al.,
2007). Another HRP CaM-labeled screen identified a protein kinase,
AtCK whose phosphorylation of myelin basic protein was en-
hanced by Ca2+-bound CaM (Jeong et al., 2007). AtMKP1, a MAPK
phosphatase was also identified in a HRP labeled CaM screen and
the phosphatase activity was increased by CaM in a Ca2+-depen-
dent manner (Lee et al., 2008). The plasma membrane protein
PCaP1 interacts with CaM and the phosphatidylinositol phosphates
Ptdins (3,4,5) P(3) and Ptdins (3,5) P(2) and CaM association with
PCaP1 weakened the interaction of PCaP2 with PtdInsPs (Nagasaki
et al., 2008). Calmodulin was found to interact with and regulate
the RNA-binding activity of an Arabidopsis polyadenylation factor
subunit (AtCPSF30) (Delaney et al., 2006). Other confirmed CaM-
binding proteins include a non-specific lipid transfer protein-1
(nsLTP1) (Wang et al., 2005), a ubiquitin protease 6 (AtUBP6)
(Moon et al., 2005), and ACA11, a Ca2+-ATPase that localizes to
the vacuole membrane (Lee et al., 2007).

7. Conclusions and future perspectives

CaMs and CMLs constitute a large group of calcium of sensors
in Arabidopsis and other plants. These Ca2+-binding proteins, with
no activity of their own, bind target proteins and modulate their
activity. Screening of expression libraries and protein chips con-
taining a partial proteome with labeled CaM and CMLs has re-
sulted in identification of a large number of target proteins. A
large interactome of CaMs and CMLs and their interacting pro-
teins is emerging. The probing of a protein chip containing the
full complement of Arabidopsis proteins with all CaMs and CMLs
will identify all the possible interactions between CaM/CMLs and
their targets. A prototype protein microarray with over 1100 pro-
teins identified about 15% of the proteins on the chip as targets of
one of the three CaMs or four CMLs, suggesting that a large num-
ber CBPs exists in plants (Popescu et al., 2007). This high percent-
age of targets is likely a reflection of biased selection of proteins,
mostly transcription factors and signaling proteins, which are
likely to participate in Ca2+ signaling pathways. Application of a
computational pipeline that we developed predicted another
600 putative CaM interactors (Hamilton et al., 2010). A major
challenge in the future will be to experimentally verify these pre-
dictions, determine their specificity, and test their biological sig-
nificance. Given the large number of CaM and CML targets, it
appears that the calcium sensor interactome is highly complex.
However, not all the interactions that are found in these in vitro
assays may be physiologically relevant as some observed interac-
tors may not be expressed in the same cell type/tissue or devel-
opmental stage. Even if they are expressed, they may be in
different cellular compartments, which precludes their interac-
tion. Hence, analysis of the interaction data with integrative
methods, which take into consideration expression at the RNA
and protein level, subcellular localization and other parameters,
will yield more meaningful information. A complete understand-
ing of calcium signaling pathways will require us to investigate
these interactions using system-level approach.
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