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Summary. Protein function prediction, i.e. classification of protein sequences ac-
cording to their biological function is an important task in bioinformatics. In this
chapter we illustrate that the presence of sequence motifs – elements that are con-
served across different proteins – are highly discriminative features for predicting
the function of a protein. This is in agreement with the biological thinking that con-
siders motifs to be the building blocks of protein sequences. We focus on proteins
annotated as enzymes, and show that despite the fact that motif composition is a
very high dimensional representation of a sequence, that most classes of enzymes can
be classified using a handful of motifs, yielding accurate and interpretable classifiers.
The enzyme data falls into a large number of classes; we find that the one-against-
the-rest multi-class method works better than the one-against-one method on this
data.

1 Introduction

Advances in DNA sequencing are yielding a wealth of sequenced genomes. And
yet, understanding the function of the proteins coded by a specific genome is
still lagging. The determination of the function of genes and gene products
is performed mainly on the basis of sequence similarity (homology) [1]. This
leaves the function of a large percentage of genes undetermined: close to 40%
of the known human genes do not have a functional classification by sequence
similarity [2, 3].

The most commonly used methods for measuring sequence similarity are
the Smith-Waterman algorithm [4], and BLAST [5]. These assign a similarity
by aligning a pair of sequences. Other commonly used methods measure simi-
larity to a family of proteins: PSI-BLAST, profiles, or HMM methods [5, 6, 7].
Motif methods on the other hand, represent short, highly conserved regions of
proteins [8, 9, 10]. Sequence motifs often correspond to functional regions of a
protein – catalytic sites, binding sites, structural motifs etc [8]. The presence
of such protein motifs often reveals important clues to a protein’s role even if
it is not globally similar to any known protein. The motifs for most catalytic
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sites and binding sites are conserved over much larger taxonomic distances
and evolutionary time than the rest of the sequence. However, a single motif
is often not sufficient to determine the function of a protein. The catalytic
site or binding site of a protein might be composed of several regions that are
not contiguous in sequence, but are close in the folded protein structure (for
example in serine proteases). In addition, a motif representing a binding site
might be common to several protein families that bind the same substrate.
Therefore, a pattern of motifs is required in general to classify a protein into
a certain family of proteins. Manually constructed fingerprints are provided
by the PRINTS database [11]. We suggest an automatic method for the con-
struction of such fingerprints by representing a protein sequence in a feature
space of motif counts, and performing feature selection in this feature space.
Our experiments show that motifs are highly predictive of enzyme function;
using feature selection we find small sets of motifs that characterize each class
of enzymes; classifiers trained on those feature sets have reduced error rates
compared to SVM classifiers trained on all the features. Representing pro-
tein sequences using a “bag of motifs” representation is analogous to the bag
of words representation used in text categorization. This type of approach
was suggested in the context of remote homology detection [12] (see also the
unpublished manuscript [13]).

Our work should be compared with several other approaches for protein
classification. Leslie and co-authors have focused on various flavors of kernels
that represent sequences in the space of k-mers, allowing gaps and mismatches;
these include the spectrum and mismatch kernels [14, 15]. The k-mers used
by these methods are analogous to the discrete motifs used here. k-mers are
less flexible than motifs, but can provide a result in cases when a sequence
does not contain known motifs. When it comes to remote homology detection,
discriminative approaches based on these kernels and kernels based on HMM
models of sequence families (Fisher kernels) [16, 17] yield state of the art
performance.

An alternative approach is to represent a sequence by a set of high-level
descriptors such as amino acid counts (1-mers), predicted secondary structure
content, molecular weight, average hydrophobicity, as well as annotations of
the sequence that document its cellular location, tissue specificity etc. [18, 19].
These approaches are complementary to sequence-similarity based approaches
such as our motif-based approach.

SVMs are typically used for multi-class problems with either the one-
against-the-rest or one-against-one methods [20]. The large number of classes
in the data considered in this chapter makes the one-against-one method infea-
sible. Moreover, we find that the accuracy of the one-against-the rest method
is better, which we attribute to the large number of classes. Other studies
of multi-class classification using SVMs (see [21] and references therein) have
not addressed datasets with such a large number of classes.

In this chapter we consider the problem of classifying proteins according
to their enzymatic activity using a motif-based representation. In Section 2 we



Sequence motifs: highly predictive features of protein function 3

introduce the Enzyme Commission (EC) numbering system used to classify
enzymes. In Section 3 we describe sequence motifs and the classification and
feature selection methods used in this chapter. Finally, we show results of
these methods, illustrating that SVM-based feature selection methods yield
accurate low dimensional predictors of enzyme function.

2 Enzyme Classification

Enzymes represent about a third of the proteins in the Swiss-Prot database [22],
and have a well established system of annotation. The function of an enzyme
is specified by a name given to it by the Enzyme Commission (EC) [23]. The
name corresponds to an EC number, which is of the form: n1.n2.n3.n4, e.g.
1.1.3.13 for alcohol oxidase. The first number is between 1 and 6, and indi-
cates the general type of chemical reaction catalyzed by the enzyme; the main
categories are oxidoreductases, transferases, hydrolases, lyases, isomerases and
ligases. The remaining numbers have meanings that are particular to each cat-
egory. Consider for example, the oxidoreductases (EC number starting with
1), which involve reactions in which hydrogen or oxygen atoms or electrons
are transferred between molecules. In these enzymes, n2 specifies the chemical
group of the (electron) donor molecule, n3 specifies the (electron) acceptor,
and n4 specifies the substrate. The EC classification system specifies over
750 enzyme names; a particular protein can have several enzymatic activ-
ities. Therefore, at first glance, this is not a standard multi-class problem,
since each pattern can have more than one class label; this type of problem is
sometimes called a multi-label problem [24]. In order to reduce this multi-label
problem into a multi-class problem consider the biological scenarios in which
an enzyme has multiple functions:

1. The enzyme can catalyze different reactions using the same catalytic site.
2. The enzyme is a multi-enzyme, an enzyme with multiple catalytic func-

tions that are contributed by distinct subunits/domains of the protein [25].

In both cases it is reasonable to consider an enzyme that catalyzes more than
one reaction as distinct from enzymes that catalyze only one reaction. This is
clear for multi-enzymes; in the other case, a catalytic site that can catalyze
more than one reaction might have different sequence characteristics than a
catalytic site that only catalyzes one of the reactions. We found that this
multi-label problem can be reduced to a regular multi-class problem by con-
sidering a group of enzyme that have several activities as a class by itself; for
example, there are 22 enzymes that have EC numbers 1.1.1.1 and 1.2.1.1,
and these can be perfectly distinguished from enzymes with the single EC
number 1.1.1.1 using a classifier that uses the motif composition of the pro-
teins. When looking at annotations in the Swiss-Prot database we then found
that these two groups are indeed recognized as distinct.
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3 Methods

We propose to use the motif composition of a protein to define a similar-
ity measure or kernel function that can be used with various kernel based
classification methods such as Support Vector Machines (SVMs).

3.1 The motif composition kernel

In this chapter we use discrete sequence motifs extracted using the eMOTIF
method [9, 10], which is described here briefly. A motif is a simple regular
expression specifying the allowed amino acids in each position of the motif.
Consider for example the motif [as].dkf[filmv]..[filmv]...l[ast]. A sequence
matches (or contains) this motif if it has either an a or an s in some position,
followed by any amino acid, then d, k, f and so on, matching until the end of
the motif. A group of amino acids in brackets is called a substitution group.
A formal definition is as follows:

Definition 1. Denote by A the alphabet of amino acids. A substitution group
S = {s1, . . . , sk} is a subset of A, written as [s1 . . . sk]. Let S̄ be a set of
substitution groups, and let ’.’ denote the wildcard character.
A motif m is a sequence over A ∪ S̄ ∪ {.}.
A sequence s = s1s2 . . . s|s| ∈ A∗ is said to contain a motif m at position i if
for j = 1, . . . , |m|, if mj ∈ A then si+j−1 = mj; if mj is a substitution group
S then si+j−1 ∈ S; if mj is the wildcard character, then si+j−1 can be any
character. A sequence s contains a motif m, if s contains m at some position.

Protein sequence motifs are typically extracted from ungapped regions
(blocks) of a multiple sequence alignment (see Figure 1 for an illustration of
the process). Each position in the motif represents the variability in a column
of the block. A substitution group such as [filmv] denotes the appearance of
several amino acids in a particular column in a block. Motifs generated by the
eMOTIF method contain only a limited number of substitution groups that
reflect chemical and physical properties of amino acids and their tendency to
co-occur in multiple sequence alignments. If the pattern of amino acids that
appear in a column of a block does not match any substitution group, then
the motif contains the wildcard symbol, ’.’.

Motifs can often be associated with specific functional sites of a protein:
catalytic sites, DNA binding sites, protein-protein interactions sites, small
molecule binding sites etc. We give a few examples that illustrate this in the
context of the enzyme data.

Example 1. The motif k[kr][iv]a[iv][iv]g.g.sgl..[ilv][kr] appears in
19 out of 19 enzymes belonging to the enzyme class 1.14.13.11. It charac-
terizes a binding site for an FAD molecule.

Example 2. In many cases a binding site motif is not specific to one class of en-
zymes, but characterizes a similar functional site in several enzyme classes that
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Fig. 1. (a) The pipeline from multiple sequence alignment to the construction of
sequence motifs: we use discrete motifs that are simple regular expressions that
represent the variability in conserved columns in ungapped regions of a multiple
sequence alignment. (b) The syntax of a discrete motif: each position in the motif
is either an amino acid, a substitution group (a set of amino acids) or the wildcard
symbol. Our motif databases use only a limited set of substitution groups; substitu-
tion groups are sets of amino acids that tend to substitute for each other in column
of a multiple sequence alignment. Considering a limited set of substitution groups
helps avoid overfitting.

constitute a broader family of proteins: The motif dp.f...h.....[ilmv]...[fwy]
has 57 hits in the Swiss-Prot database, and is specific to the EC classes
1.14.18.1, 1.10.3.1 and 5.3.3.12. The histidine residue, represented by
the h in the pattern, binds one of two copper atoms that act as co-factors for
these enzymes.

We are currently undertaking the task of automatically characterizing the
function of motifs in our database based on annotations available in the Swiss-
Prot database.

A sequence s can be represented in a vector space indexed by a set of
motifs M:

Φ(s) = (φm(s))m∈M , (1)
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where φm(s) is the number of occurrences of the motif m in s. Now define the
motif kernel as:

K(s, s′) = Φ(s) · Φ(s′) . (2)

Since in most cases a motif appears only once in a sequence, this kernel es-
sentially counts the number of motifs that are common to both sequences.
The computation of the kernel can be performed efficiently by representing
the motif database in a TRIE structure: Let m be a motif over the alphabet
A ∪ S̄ ∪ {.}. Every prefix of m has a node; let m1 and m2 be prefixes of m;
there is an edge from m1 to m2 if |m2| = |m1| + 1. The motifs are stored in
the leaf nodes of the TRIE. To find all motifs that are contained in a sequence
x at a certain position, traverse the TRIE using DFS and record all the leaf
nodes encountered during the traversal (see Figure 2 for an illustration).

h

k[ilmv].h

.

[as]
v

[kr]

k[ilmv].rk[ilmv]v[kr]k.[as]v

v

[ilmv]

k

r

.

kiqh

Fig. 2. Motifs are stored in the leaves of a TRIE. The figure shows a TRIE storing
the motifs k.[as]v, k[ilmv]v[kr], k[ilmv].h and k[ilmv].r. To find the motif content,
the tree is traversed, matching at each position a letter from the sequence with
the same letter, a substitution group containing the letter, or the wildcard symbol.
Traversing the tree shows that the sequence kiqh contains the motif k[ilmv].h.

To find all motifs that are contained in a sequence s at any position,
this search is started at each position of s. Thus the computation time of
the motif content of a sequence is linear in its length. Unlike a standard
TRIE searching the motif TRIE has a complexity that depends on the size of
the database; this is the result of the presence of wildcards and substitution
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groups. A trivial upper bound is linear in the size of the database; numerical
experiments indicate that the complexity is sub-linear in practice.

The motif kernel is analogous to the “bag of words” representation that
is commonly used in information retrieval, where a document is represented
as a vector of (weighted) counts of the number of occurrences of each word in
the document [26, 27]. In a recent study we found that this “bag of motifs”
representation of a protein sequence provides state of the art performance
in detecting remote homologs [12]. Like the bag of words representation, our
motif composition vector is both high dimensional and sparse: the eBlocks
database of motifs [28] used in this work contains close to 500,000 motifs, while
a sequence typically contains only a handful of conserved regions. Motifs are
often very specific as features: We found that using feature selection we could
reduce the number of motifs to a few tens at the most, while maintaining
classification accuracy (see Section 4 for details).

3.2 Classification methods

In what follows, we assume that our data are vectors xi representing the motif
content of the input sequences. In this chapter, we report results using two
classification methods: SVMs and k-Nearest-Neighbors (kNN). A linear SVM
is a two-class classifiers with a decision function of the form

f(x) = w · x + b , (3)

where w is a weight vector, and b is a constant, and a pattern x is classi-
fied according to the sign of f(x). The vector w and the bias, b, are chosen
to maximize the margin between the decision surface (hyperplane) and the
positive examples on one side, and negative examples on the other side, in
the case of linearly separable data; in the case of non-separable data some
slack is introduced [29, 20, 30]. As a consequence of the optimization process,
the weight vector can be expressed as a weighted sum of the Support Vectors
(SV):

w =
∑

i∈SV

βixi . (4)

The decision function is now written as:

f(x) =
∑

i∈SV

βixi · x + b . (5)

To extend the usefulness of SVMs to include nonlinear decision functions,
and non-vector data one proceeds by mapping the data into a feature space,
typically high dimensional, using a map Φ, and then considering a linear SVM
in the high dimensional feature space [20, 30]. Since the SVM optimization
problem can be expressed in terms of dot products, this approach is practical
if the so called kernel function, K(x,x′) = Φ(x) · Φ(x′), can be computed
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efficiently. In terms of the kernel function, the decision function is expressed
as:

f(x) =
∑

i∈SV

βiK(xi,x) + b . (6)

A kNN classifier classifies a pattern according to the class label of the
training set patterns that are most similar to it. We use a kNN classifier with
a continuous valued decision function that assigns a score for class j defined
by:

fj(x) =
∑

i∈kNNj(x)

K(xi,x) , (7)

where kNNj(x) is the set of k nearest neighbors of x in class j; a pattern x is
classified to the highest scoring class.

3.3 Feature Scoring and Selection

In order to show that motifs are highly predictive of the class of an enzyme we
compute for each motif feature the following statistics. The Positive-Predictive
Value (PPV) of a feature is the fraction of the predictions made on the basis
of a motif m that are correct, namely

ppv(m) =
count(m|C)
count(m)

, (8)

where count(m) (count(m|C)) is the number of occurrences of the motif m
(in class C). Note that this is referred to as precision in information retrieval.
A motif has PPV which is equal to 1 in a class C if it occurs only in proteins
from class C. On the other end of the spectrum we consider the sensitivity
(or recall in information retrieval terms) of a motif m in picking members of
a class C:

sens(m) =
count(m|C)

|C| , (9)

where |C| is the size (number of members) of class C.
The motifs in the database we use are often highly redundant in their

pattern of occurrence in a group of proteins. Feature selection methods that
are based on ranking individual features do not handle redundancy, and are
therefore not suitable for producing a small subset of features without an
additional filter for redundancy.

In this chapter we focus on SVM-based feature selection methods and show
their effectiveness. Note that the weight vector of an SVM (w) is a weighted
sum of a subset of the motif composition vectors (the support vectors). In
most cases the number of support-vectors was rather small when training a
classifier to distinguish one enzyme class from all the others, so the weight
vector is typically very sparse; discarding features that are not represented in
the weight vector would already yield a significant reduction in the number
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of features, without modifying the decision function. The idea of using the
magnitude of the weight vector to perform feature selection is implemented
in the RFE method [31], which alternates between training an SVM and
discarding a subset of the features with small components of the weight vector.
The RFE method requires a halting condition. A halting condition based on
cross-validation is too expensive in our case so we we use a halting condition
that is based on the observed monotonicity of the the number of support
vectors in successive iterations of RFE: initially, most of the features removed
are noise; when these are eliminated the data is simpler to describe, requiring
less support vectors. At a later stage essential features are removed, making
the features insufficient to describe the data, so many data points will be
misclassified, making them bounded support vectors. We choose the smallest
number of features for which the number of support vectors is minimal.

A related method to RFE is the zero-norm method of Weston et al. [32].
They formulate the feature selection problem as a search for the smallest set
of features such that a dataset is still linearly separable (with slack variables
added for the case of data that is not linearly separable). In other words,
minimizing the zero norm of the weight vector of a linear decision boundary,
subject to the constraints that the decision boundary separates the two classes
(the zero norm of a vector is its number of nonzero coefficients). They show
that this difficult combinatorial problem can be relaxed into a problem that
is solved by an algorithm similar to RFE: alternate between training an SVM
and multiplying the data by the absolute value of the weight vector (feature
i of each pattern is multiplied by |wi|). This is iterated until convergence.

In general, minimizing the zero norm might not be an optimal strategy:
the method minimizes the number of variables that separate the two classes,
without considering the margin of the separation. However, the data under
consideration is discrete, so if a set of motifs separates the data, they do so
with large margin. This can explain the good performance obtained with this
method on the motif data: our results show that the accuracy of classifiers
trained on features selected using the zero-norm method is higher than that
of classifiers trained on all the features. For comparison we tested the zero-
norm method on the problem of predicting protein function on the basis of
gene expression data (we used the data analyzed in [33] and considered the
five functional classes shown to be predictable using SVMs). In this case of
continuous data in 79 dimensions, SVMs trained on all features outperformed
SVMs trained using the zero-norm method (data not shown).

3.4 Multi-class classification

Protein function prediction is a classification problem with a large number of
classes (hundreds of classes in the EC classification scheme alone). This poses
a computational challenge when using a two-class classifier such as SVM.
The two standard approaches for using a two-class classifier for multi-class
data are the one-against-one method and one-against-the-rest method [20].
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The one-against-the-rest method trains c classifiers, where c is the number
of classes in the data, and classifier i is trained on class i against the rest
of the data. A test pattern is then classified to the class that receives the
highest value of the decision function. The one-against-one method requires
training c(c−1)/2 classifiers on all pairs of classes; an unseen pattern is tested
by all these classifiers and is classified to the class that receives the highest
number of votes. In our case this amounts to training 651 * 650/2 = 2,111,575
classifiers, which makes this too computationally intensive. Moreover, the data
in Table 3 shows that the one-against-the-rest method works better on the
enzyme function prediction task. It can be argued that the large number of
“irrelevant” tests performed by the one-against-one method may be the cause
of this.

A recent paper by Rifkin and Klautau [21] argues that the one-against-the-
rest method should work as well as other multi-class methods, and presents
experimental results to support their arguments, including a critical analysis
of previous studies. The datasets they considered are UCI datasets that have
a small number of classes compared to the enzyme data. Yeang et al. [34]
studied a gene expression dataset with 14 classes corresponding to patients
with various types of cancer; they also obtained higher accuracy with one-
against-the-rest than with one-against-one. Our results further support their
findings in the case of a multi-class problem with a much larger number of
classes.

3.5 Assessing classifier performance

In some of our analyses we will consider two-class problems that are highly
unbalanced, i.e. one class is much larger than the other; in such cases the stan-
dard error rate is not a good measure of classifier performance. Therefore we
consider two alternative metrics for assessing the performance of a classifier:
the area under the Receiver Operator Characteristic (ROC) curve [35], and
the balanced success rate. The balanced success rate is:

1−
∑

i

P (err|Ci) , (10)

where P (err|C) is a shorthand for a classifier’s error on patterns that belong
to class C. The ROC curve describes the trade-off between sensitivity and
specificity; it is a plot of the true positive rate as a function of the false
positive rate for varying classification thresholds [35]. The area under the ROC
curve (AUC) is commonly used to summarize the ROC curve. The AUC is a
measure of how well the classifier works at ranking patterns: it quantifies the
extent to which positive examples are ranked above the negative examples.
The AUC is a useful metric for assessing a classifier used in the context of
protein classification: a user will typically be interested in the most promising
patterns, i.e. patterns that are most likely to belong to a class of interest. The
AUC score however, can be problematic for highly unbalanced data: one can
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obtain a very high AUC even when the ranking produced by the classifier is
almost useless from the point of view of the user if for example 500 out of
30,000 patterns from the negative class are ranked above the real members of
the class. Therefore we consider the ROC50 curve, which counts true positives
only up to the first 50 false positives [15]. A classifier that correctly classifies
all the data has an ROC50 score (AUC50) equal to 1, while if the top 50
values of the decision function are false positives, the AUC50 is 0.

4 Results

We extracted protein sequences annotated with EC numbers from the Swiss-
Prot database Release 40.0 [22]. EC numbers were taken from the description
lines; we removed sequence fragments, and sequences where the assigned EC
number was designated as “putative” or assigned by homology. Sequences with
an incompletely specified EC number were discarded as well. Enzyme classes
with a small number of representatives (less than 10) were not considered in
our analysis. The resulting dataset has 31117 enzymes in 651 classes. In some
cases we focus on oxidoreductases – enzymes that have an EC number starting
with 1. The statistics of the two datasets are summarized in Table 1.

number of sequences number of classes number of motifs

Oxidoreductases 5911 129 59783
All enzymes 31117 651 178450

Table 1. The enzyme sequence data; oxidoreductases are enzymes with EC number
that starts with 1.

In order to illustrate that the eBLOCKS database [28] contains many mo-
tifs that are predictive of enzyme function we consider their positive predictive
value (PPV) and sensitivity in picking members of each enzyme class. Out of
the 651 enzyme classes, 600 classes had a motif that was perfectly specific to
that class, i.e. had a PPV equal to 1. To see the sensitivity of such perfectly
specific motifs, for each class we find the set of motifs with maximum PPV
and find the one with maximum sensitivity. The distribution of the sensitiv-
ity of these motifs is shown in Figure 3. We observe that 89 enzyme classes
have a motif that covers all its proteins and has no hits outside the class. In
general we do not expect to find motifs that cover all members of an enzyme
class, since it might be heterogenous, composed of several clusters in sequence
space. We considered aggregating motifs with perfect PPV to form predictors
of EC classes, but only a limited number of classes had sets of motifs that
cover the entire class, so a less strict form of feature selection is required.

Next, we report experiments using motifs as features for predicting the EC
number of an enzyme. In these experiments we used the PyML package (see
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Fig. 3. The motif database contains motifs whose occurrences are highly correlated
with the EC classes. For each class we computed the highest PPV, and the highest
sensitivity of a motif with that value of PPV. 600 out of 651 classes had a motif
with PPV equal to 1. The distribution of the sensitivity of these motifs is shown.
There are 89 EC classes that have a “perfect motif”: a motif that cover all enzymes
of the class, and appears only in that class, i.e. the class can be predicted on the
basis of a single motif.

section 4.3). We used a linear kernel in motif space in view of the high di-
mensionality. SVM performance was not affected by normalizing the patterns
to unit vectors, but was critical for the kNN classifier. On other datasets we
observed that classification accuracy did not vary much when changing the
SVM soft margin constant, so we kept it at its default value. In order to
reduce the computational effort in comparing multiple approaches we focus
on enzymes whose EC number starts with 1 (oxidoreductases); this yields a
dataset with 129 classes and 5911 enzymes. We compare classifiers trained on
all 129 one-against-the-rest problems; Figure 4 shows the number of classes
which have a given level of performance for two metrics: AUC50 (area under
ROC50 curve), and the balanced success rate. The results are for the follow-
ing methods: SVM and kNN trained on all features and SVM with RFE and
zero-norm feature selection.

The kNN classifier works well, outperforming the SVM on the balanced
success rate. The fact that kNN works so well despite the high dimensionality
of the data is the result of the presence of highly informative features, cou-
pled with the sparsity of the data and the discreteness of the representation.
In another set of experiments we compared kNN classifiers trained on fea-
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Fig. 4. Performance in 5 fold cross-validation for the 129 enzyme classes in the
oxidoreductase data. The number of classes with a given level of performance is
plotted for the various methods: Top: Area under ROC50 curve. Bottom: balanced
success rate.
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tures derived from scores with respect to Position Specific Scoring Matrices
(PSSMs). The PSSM score reflects how well the best hit in the sequence fits
the model of the PSSM, and not just the presence or absence of a motif. Scores
that were not statistically significant were set to zero, so the representation
remained sparse. In this case SVMs performed significantly better than kNN
(data not shown). The SVM’s better performance with respect to the AUC50
metric can be attributed to the fact that SVM training explicitly optimizes
the decision function while for the kNN classifier a continuous valued decision
function is an after-thought, rather than an integral part of the design.

Feature selection using the RFE and zero-norm method lead to an im-
provement over the SVM method with respect to the balanced success rate.
An intuitive explanation is provided in Section 3.3. The performance with
respect to the AUC50, however, deteriorated as a result of feature selection.
This can be understood by the fact that the feature selection process is gov-
erned by the objective of the underlying SVM, which is good performance
under the balanced success rate (since we account for the class imbalance by
introducing a misclassification cost that is inversely proportional to the class
size). The improvement in the balanced success rate comes at the expense of
the AUC50. We also note that the RFE method performed better than the
zero-norm method. We attribute this to the difference in the halting condi-
tions used, and the resulting number of features — the zero-norm method
yielded 10 features on average, whereas RFE yielded 77 features on average
over the 129 classes. Using a polynomial kernel after the feature selection stage
using RFE yielded worse results than using a linear kernel (data not shown).
All the differences seen in Figure 4 are statistically significant other than the
difference between kNN and the zero-norm method in the AUC50 metric, and
between the zero-norm method and RFE in the balanced success rate metric.

We also ran an experiment with a filter method that ranks a feature m

according to abs
(

count(m|C)
|C| − count(m|C̄)

|C̄|

)
, where C̄ is the set of patterns

outside of class C. Features whose score was less two standard deviations above
the average score obtained on randomly labeled datasets were discarded. Due
to the high redundancy of the motif features, the method is not successful
in reducing the dimensionality in a significant way – over 5000 features on
average over the 129 enzyme classes were chosen, and the performance was
almost identical to an SVM trained on all the features.

4.1 Enzymes with multiple functions

In our analysis we considered a set of enzymes with multiple functionalities
as a unique class; for example enzymes with EC numbers 1.1.1.1 and 1.2.1.1
were considered a distinct class. The data contains 27 classes with multi-
ple functionalities. In order to quantify the degree of success in predicting a
class with multiple functionalities, for each class with multiple functionalities
we assessed the accuracy of a classifier trained to distinguish between the
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Method success rate balanced success rate

kNN-normalized 0.94 0.92
SVM-one-against-rest 0.96 0.94
BLAST 0.96 0.93

Table 2. Success rate in Multi-class classification of the enzyme data, estimated by
5-fold CV. The differences are significant: the standard deviation in 10 repeats of the
experiment was 0.002 and below. All methods other than the BLAST method use
motifs; a normalized kernel is generated by dividing each motif composition vector
by its L1 norm.

Number of classes one-against-rest one-against-one

10 0.99 0.97
20 0.98 0.96
40 0.98 0.96
60 0.98 0.94
80 0.98 0.95

Table 3. Success rate in multi-class classification measured using 5-fold cross-
validation for the SVM-based methods when varying the number of classes.

multiple-functionality class and the classes with which it shares a function.
The average balanced success rate in this experiment was 0.95, and the aver-
age AUC50 was 0.95. These results support our reduction of the multi-label
problem to a multi-class problem.

4.2 Multi-class classification

The results of multi-class experiments appear in Table 2. The BLAST method
assigns the class label according to the class of the enzyme with which an
input sequence has the largest BLAST score (a nearest neighbor BLAST).
The one-against-the-rest motif-SVM method worked slightly better than the
BLAST-based method and better than the nearest-neighbor motif method.
When using a nearest neighbor method normalization of the kernel was crit-
ical: normalizing the kernel by dividing each pattern by its L1-norm im-
proved the results significantly. Most of the misclassifications in the case of
the non-normalized kernel occurred by classifying a pattern into a class of
large proteins that contain many motifs; such classes “attract” members of
other classes. A comparison of the motif-SVM multi-class methods is provided
in Table 3 for an increasing number of classes. It shows an advantage for the
one-against-the-rest method that increases as the number of classes increases,
that may be explained by the large number of “irrelevant” comparisons made
by the one-against-one method.
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4.3 Data and Software

A license for the motif database used in this work is freely available for
academic users; see http://motif.stanford.edu. The machine learning ex-
periments were performed using PyML, which is an object oriented envi-
ronment for performing machine learning experiments. PyML is available at
http://pyml.sourceforge.net.

5 Discussion

Several databases of conserved regions reviewed in the introduction are con-
structed by experts that use known annotations to group protein sequences
that are then modeled by motifs, profiles, or HMMs, namely PROSITE,
BLOCKS+ and Pfam [8, 36, 7]. The use of such patterns as features to train
classifiers that predict protein function can lead to biased results since knowl-
edge about function is often incorporated by the experts constructing these
databases. The eBLOCKs database used in this study on the other hand, is
constructed in an unsupervised way by aligning clusters of similar sequences
in Swiss-Prot [28], so our results are free from such bias. We are currently
developing a motif database that is constructed on the basis of enzyme anno-
tations rather than on the basis of clustering by sequence similarity. In this
case we cannot test on sequences that were used in creating the motifs since
the labels are used in motif construction. To avoid bias in the test results we
are evaluating the method by constructing several versions of the database,
each on a different training set, allowing the use of cross-validation. Such an
evaluation is not necessary in this case since no information about the labels
is used in creating the motifs.

Although results of classification using motifs did not offer a significant
advantage over BLAST in terms of accuracy, our examples suggest that mo-
tifs can offer greater interpretability. Since manually curating the function of
motifs is infeasible, we are working on automating the process to produce an-
notations for as many motifs as possible using sequence annotations available
in the Swiss-Prot database.

Despite the higher accuracy of the SVM-based multi-class methods over
kNN, the SVM-based methods are expensive to train in view of the large
number of classes. The sequence data is very sparse in sequence space: most
classes are well separated. One can take advantage of this property in many
ways. We performed experiments using a method that uses one-class SVMs
to filter a small number of “candidate” classes, and then deciding among
that smaller number of classes using a one-against-one approach. Since the
number of classes that are not well separated is small, this resulted in the
need to train only a small number of classifiers, with accuracy similar to the
one-against-the-rest method.
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In this work we represented a motif by a simple regular expression. Posi-
tion Specific Scoring Matrices (PSSMs) offer greater flexibility in describing
a pattern of conservation; therefore it is of interest to see if better perfor-
mance can be obtained using PSSMs, since relevant information may be lost
in the process of extracting discrete motifs (note however that the eMOTIF
method generates multiple motifs out of a conserved sequence block, compen-
sating for the loss in expressive power of a single motif). Preliminary results
indicate a slight improvement in accuracy for PSSM-based classifiers. On the
other hand, the advantage of using discrete motifs over PSSMs is the efficient
search methods for computing motif hits. Using a hybrid approach – choosing
PSSMs over motifs for classes that are not as well described using discrete
motifs, could offer the best of both worlds.

6 Conclusion

In this chapter we have illustrated that the motif composition of a sequence is a
very “clean” representation of a protein; since a motif compactly captures the
features from a sequence that are essential for its function, we could obtain
accurate classifiers for predicting enzyme function using a small number of
motifs. We plan to develop the motif-based classifiers as a useful resource
that can help in understanding protein function.

References

1. F.S. Domingues and T. Lengauer. Protein function from sequence and structure.
Applied Bioinformatics, 2(1):3–12, 2003.

2. E.S. Lander, L.M. Linton, and B. Birren. Initial sequencing and analysis of the
human genome. Nature, 409(6822):860–921, 2001.

3. J.C. Venter, M.D. Adams, E.W. Myers, and P.W. Li. The sequence of the human
genome. Science, 2901(16):1304–1351, 2001.

4. T. Smith and M. Waterman. Identification of common molecular subsequences.
Journal of Molecular Biology, 147:195–197, 1981.

5. S.F. Altschul, T.L. Madden, A.A. Schaffer, J. Zhang, Z. Zhang, W. Miller, and
D. J. Lipman. Gapped BLAST and PSI-BLAST: A new generation of protein
database search programs. Nucleic Acids Research, 25:3389–3402, 1997.

6. M. Gribskov, A.D. McLachlan, and D. Eisenberg. Profile analysis: Dectection
of distantly related proteins. Proc. Natl. Acad. Sci. USA, 84:4355–4358, 1987.

7. E.L. Sonnhammer, S.R. Eddy, and E. Birney. Pfam: multiple sequence align-
ments and hmm-profiles of protein domains. Nucleic Acids Research, 26(1):320–
322, 1998.

8. L. Falquet, M. Pagni, P. Bucher, N. Hulo, C.J. Sigrist, K. Hofmann, and
A. Bairoch. The PROSITE database, its status in 2002. Nucliec Acids Re-
search, 30:235–238, 2002.



18 Asa Ben-Hur and Douglas Brutlag

9. C.G. Nevill-Manning, T.D. Wu, and D.L. Brutlag. Highly specific protein se-
quence motifs for genome analysis. Proc. Natl. Acad. Sci. USA, 95(11):5865–
5871, 1998.

10. J.Y. Huang and D.L. Brutlag. The eMOTIF database. Nucleic Acids Research,
29(1):202–204, 2001.

11. T.K. Attwood, M. Blythe, D.R. Flower, A. Gaulton, J.E. Mabey, N. Maudling,
L. McGregor, A. Mitchell, G. Moulton, K. Paine, and P. Scordis. PRINTS and
PRINTS-S shed light on protein ancestry. Nucleic Acids Research, 30(1):239–
241, 2002.

12. A. Ben-Hur and D. Brutlag. Remote homology detection: A motif based ap-
proach. In Proceedings, eleventh international conference on intelligent systems
for molecular biology, volume 19 suppl 1 of Bioinformatics, pages i26–i33, 2003.

13. B. Logan, P. Moreno, B. Suzek, Z. Weng, and S. Kasif. A study of remote
homology detection. Technical report, Cambridge Research Laboratory, June
2001. http://www.hpl.hp.com/techreports/Compaq-DEC/CRL-2001-5.html.

14. C. Leslie, E. Eskin, and W.S. Noble. The spectrum kernel: A string kernel
for SVM protein classification. In Proceedings of the Pacific Symposium on
Biocomputing, pages 564–575. World Scientific, 2002.

15. C. Leslie, E. Eskin, J. Weston, and W. Stafford Noble. Mismatch string kernels
for svm protein classification. In Advances in Neural Information Processing
Systems, 2002.

16. T.S. Jaakkola and D. Haussler. Exploiting generative models in discriminative
classifiers. In Advances in Neural Information Processing Systems 11, 1999.

17. T. Jaakkola, M. Diekhans, and D. Haussler. Using the Fisher kernel method to
detect remote protein homologies. In Proceedings of the Seventh International
Conference on Intelligent Systems for Molecular Biology, pages 149–158, Menlo
Park, CA, 1999. AAAI Press.

18. U. Syed and G. Yona. Using a mixture of probabilistic decision trees for direct
prediction of protein function. In RECOMB, 2003.

19. M. des Jardins, P.D. Karp, M. Krummenacker, T.J. Lee, and C.A. Ouzounis.
Prediction of enzyme classification from protein sequence without the use of
sequence similarity. In Intelligent Systems for Molecular Biology, pages 92–99,
1997.

20. B. Schölkopf and A.J. Smola. Learning with Kernels: Support Vector Machines,
Regularization, Optimization and Beyond. MIT Press, Cambridge, MA, 2002.

21. R. Rifkin and A. Klautau. In defense of one-vs-all classification. Journal of
Machine Learning Research, 5:101–141, 2004.

22. C. O’Donovan, M.J. Martin, A. Gattiker, E. Gasteiger, A. Bairoch A., and
R. Apweiler. High-quality protein knowledge resource: SWISS-PROT and
TrEMBL. Brief. Bioinform., 3:275–284, 2002.

23. Nomenclature Committee of the International Union of Biochemistry and Molec-
ular Biology (NC-IUBMB). Enzyme Nomenclature. Recommendations 1992.
Academic Press, 1992.

24. A. Elisseeff and J. Weston. A kernel method for multi-labelled classification. In
Advances in Neural Information Processing Systems, 2001.

25. A.D. McNaught and A. Wilkinson. IUPAC Compendium of Chemical Termi-
nology. Royal Society of Chemistry, Cambridge, UK, 1997.

26. T. Joachims. Learning to Classify Text using Support Vector Machines. Kluwer
Academic Publishers, 2002.



Sequence motifs: highly predictive features of protein function 19

27. T. Joachims. Text categorization with support vector machines: Learning with
many relevant features. In Claire Nédellec and Céline Rouveirol, editors, Pro-
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