
CS 314 Software Engineering

Notes 1.

Software Product and Process

James M. Bieman and Geri Georg

2016

1-1

1-1

CS 314, Colorado State Univ.
Software Engineering

Notes 1:
Software Products & Development

Processes

James M. Bieman
with contributions from Geri Georg

Copyright © James M. Bieman 2004-2016

What Is Software?

• The non-physical manifestation of
information:
Books, music, movies, your genetic code, your
bicycle lock combination, the Linux operating
system (or any program).

• The software media (flash drive, DVD,
etc.) is not software.
Do we even need media?

Copyright © James M. Bieman 2004-2016 1-2

Computer Software
• Executable code
• Non-executable software:

– A problem statement.
– A requirements document.
– A software design.
– A software test plan & associated

documents.
– Source code.

Copyright © James M. Bieman 2004-2016 1-3

Nature of Software

• Malleable: Software is easily modified,
but “correct” modification is difficult.

• Software creation is human-intensive,
using engineering and not manufacturing
skills.

• Software does not wear out, but its
requirements and the environment
change.

Copyright © James M. Bieman 2004-2016 1-4

Quality to Whom?

Low Costs

Increased Efficiency

Productivity

Flexibility

Functionality

Ease of use

Reliability

Few defects

Good documentation

Readable Code

Good Design Maintainer

UserSponsor

Copyright © James M. Bieman 2004-2016 1-5

Software Qualities
• Correctness: a program is correct with

respect to a formal specification.
• Reliability: probability that a program will

not fail over a specified time period.
• Robustness: a program behaves reasonably

under stress.
• Performance: efficient use of resources.
• Safety: do no harm.

Copyright © James M. Bieman 2004-2016 1-6

CS 314 Software Engineering

Notes 1.

Software Product and Process

James M. Bieman and Geri Georg

2016

1-2

Software Qualities (2)

• Portability: the ease of transferring
software from one platform to
another.

• Usability: ease of use.
• Maintainability: ease of maintaining.
• Reusability: SW unit’s reuse potential.
• Usefulness: does it do something

useful?

Copyright © James M. Bieman 2004-2016 1-7

Pragmatic Constraints

• Software must be completed within
time and $ constraints.

• Software must work with existing
software.

Copyright © James M. Bieman 2004-2016 1-8

Quality Requirements in Different
Application Areas:

• Information systems: data integrity,
security, data availability, transaction
performance, usability.

• Distributed systems: system reliability,
tolerance to network partitioning, fault
tolerance.

• Embedded systems: response time,
reliability, safety, usability.

Copyright © James M. Bieman 2004-2016 1-9

Long Ago:
Expensive Hardware, Few Users.
• Focus on writing computer

instructions.
• Formal and well understood

problems.
• Programs written by user.
• Small gap between problem &

solution.
• Small gap between user and

computer.

IBM 7090. 1959
• $2.9 million.
• ~147 KB core storage.
• CPU Cycle time: 2.18 microSecs.
• Tape drives; no hard drive.
• Used by NASA to control space

flights.
• Used in the movie Dr.

Strangelove.

Copyright © James M. Bieman 2004-2016 1-10

Now: Cheap
Hardware, Many
Users.
• Focus on maintaining systems

& defining requirements
(informal problems).

• Programs written by
programmers, not users.

• Large gap between problem &
solution.

• Large gap between user and
computer.

Apple iPhone 6
• $199 – 849 (unlocked).
• 1 GB RAM, main memory.
• CPU 64-bit A8 cycle time 2

GHz dual-core.
• 1334-by-750-pixel resolution.
• 16-128 GB Disk.
• 4.55 ounces.

Copyright © James M. Bieman 2004-2016 1-11

Conflict
The informal domain of humans versus the

formal domain of computers.
Typical and “wicked” applications:

– Point-of-sale terminals and support systems.
– Income tax program for individuals or tax

professionals.
– Digital dashboard for automobiles.
– Natural language interface for physical and cyber

navigation.
– Driverless car.

Copyright © James M. Bieman 2004-2016 1-12

CS 314 Software Engineering

Notes 1.

Software Product and Process

James M. Bieman and Geri Georg

2016

1-3

Common Requirement: Solve Problems
in “Human Domain”

Key requirements can only be expressed
informally.

• Point-of-sale: must reflect retail environment.
• Tax program: must reflect complex and

changing tax laws, be correct (but
specifications are not formal), and easy to use.

• Electronic dashboard: safety critical, and must
be ergonomic.

• Natural languages are informally specified.
• Driverless car combines navigation with safety

concerns.

Copyright © James M. Bieman 2004-2016 1-13

Computer Solution: A Formal
System

• Computers are formal systems: machine
language follows precise rules.

• Programs are formal: compile into
machine instructions.

Running programs precisely execute
discrete commands.

Copyright © James M. Bieman 2004-2016 1-14

The Software Problem

Problem domain
informal, imprecise

Software solution
formal, precise

We need formal solutions to informally
described problems.

Copyright © James M. Bieman 2004-2016 1-15

Software Development Myths
[Pressman]

• Management myths:
– Problems solved by standards & tools.
– When schedules slip add more people.
– All programmers are equal in ability.

• Software customer myths:
– Change is easily accommodated.
– A general statement of need is

sufficient to start coding.

Copyright © James M. Bieman 2004-2016 1-16

Software Development
Myths (2)

• Developer myths:
– The job is done when the code is delivered.
– Project success depends solely on the quality

of the delivered program.
– You can’t assess software quality until the

program is running.

Copyright © James M. Bieman 2004-2016 1-17

What Is a Software Process?

• What software developers do, their
activities or tasks:
– Requirements identification.
– Specification.
– Design.
– Validation.
– Evolution.

Copyright © James M. Bieman 2004-2016 1-18

CS 314 Software Engineering

Notes 1.

Software Product and Process

James M. Bieman and Geri Georg

2016

1-4

“Code & Fix” Model

• Write code, then test & debug.
• Problems:

– Ignores requirements analysis & design.
• Errors not corrected until after coding.
• Software does not satisfy needs.

– Code becomes unstructured after a
number of fixes.

– Debugging is difficult. Why?

Copyright © James M. Bieman 2004-2016 1-19

Waterfall Process Model
Requirements

definition

System
specification

Design

Implement & unit test

Integrate & system test

Maintenance

Copyright © James M. Bieman 2004-2016 1-20

Boehm’s Spiral Model
Determine objectives,
alternatives, and
constraints.

Evaluate alternatives,
identify and resolve risks

Develop and
verify next level
productPlan next phase.

Copyright © James M. Bieman 2004-2016 1-21

Iterative Development Process
Many flavors of iterative development, for example the

“Rational Unified Process (RUP)”, which is a UML
model-driven process.
– Inception iterations: early interactions with stakeholders.
– Elaboration iterations: finalize requirements, define

software architecture.
– Construction iterations: develop initial running system.
– Transition iterations: complete product release.

Each iteration type includes some portion of
requirements, analysis, design, implementation, and
test.

Copyright © James M. Bieman 2004-2016 1-22

Iterative Development Models
• Use case model.
• Analysis model.
• Design model.
• Deployment model.
• Implementation

model.
• Test model.
Each model depicts a

different view of a
system.

Copyright © James M. Bieman 2004-2016

Models of competing X-15 designs
surrounding the earlier Bell X-1A

1-23

Agile Processes

• Minimize risk by focusing on small
increments of work.

• Typical cycle time: 1 week – 1 month.
• Priorities re-evaluated after each cycle.
• Aim is for flexibility – agility.
• Example agile processes:

– Scrum
– Extreme Programming

Copyright © James M. Bieman 2004-2016 1-24

CS 314 Software Engineering

Notes 1.

Software Product and Process

James M. Bieman and Geri Georg

2016

1-5

Scrum
• Roles

– ScrumMaster
– Product Owner
– Team: group that does the work.

• Sprint
– 1 week to 1 month cycle.
– Constant length “timeboxed”.
– Some deliverable produced at the end of a

sprint.
https://www.youtube.com/watch?v=XU0llRltyFM
https://www.youtube.com/watch?v=9TycLR0TqFA

Copyright © James M. Bieman 2004-2016 1-25

Scrum Meetings
• Sprint planning: start of a

sprint.
• Daily Scrum: very brief.
• Sprint review;

retrospective.
• All meetings have strict

time limits.
• The Scrum Master provides

coaching and expertise at
all points of the process
and for all the artefacts of
the process.

Copyright © James M. Bieman 2004-2016 1-26

Sprint Planning Meeting
- Product Owner prioritizes user stories in the product backlog to

be implemented during the sprint.
- Team commits to the stories they will implement during the sprint.
- Team Members decompose the committed stories into tasks with

estimation times (or at “grooming” meeting).
- Team Members split user stories that are still large, and estimate

their story points – a comparative effort estimate.
- Team Members and the Product Owner develop acceptance criteria

for each user story so that everyone understands what is needed
to declare the story “done”: “Done” means acceptance criteria are
met.

- Meeting input: product backlog, a prioritized set of user stories.
- Meeting Outcome: the sprint backlog – a set of user stories and

all tasks needed to complete them that the team has committed to
complete for the sprint.

Copyright © James M. Bieman 2004-2016 1-27

Daily Scrum Meeting
Each member of the team states:

- Tasks they completed since the last meeting.
- Tasks they plan to complete before the next meeting.
- Obstacles encountered: team members volunteer to help

if they are working on a lower priority user story.
Meeting inputs: artefacts to the daily scrum from
the task board.
Meeting output: the states of each task in the
sprint: to do, doing, and done. Shown on a task
board.

Copyright © James M. Bieman 2004-2016 1-28

Scrum Review Meeting

Sprint review meeting input: a working system that
with all the committed stories of the sprint
implemented and tested.
• Team demos the user stories implemented during the

sprint.
• Team conducts a private review of what did/didn’t

work, and decides how to improve the next sprint.
Review Output: a set of improvements that will be made
to the next sprint.

Copyright © James M. Bieman 2004-2016 1-29

User Stories
User Story Template:
<title>
As a <type of user>,
I want to <do something>
so that I <get a benefit>

Priority:
<decided by the produc
owner>
Story points:
<estimate of a story”s
relative “size” – NOT
lines of code (see next
slide)>
Acceptance Criteria:
<whatever is needed to
let the Product Owner
know the user story was
implemented as intended>

Sources:
http://agile2007.agilealliance.org/downloads/handouts/Smits_495.pdf
https://www.rallydev.com/sites/default/files/guide-userstories-v1.pdf
https://msdn.microsoft.com/en-us/library/hh273055

CS 314 Software Engineering

Notes 1.

Software Product and Process

James M. Bieman and Geri Georg

2016

1-6

User Stories
• Acceptance criteria: a simple pass/fail test for each element of the criteria.

• Product owner assigns priorities to user stories.

• Team members assign (often tentative) story points to the story.

• As the user story moves to a higher priority, it is split into smaller, well-
understood stories with less tentative story point estimates.

• User stories that reach the top of the product backlog are included in the
next sprint
– The story must be small enough that implementation tasks (and its acceptance criteria)

can be identified, along with accurate time completion estimates.

When there is too much unknown about some part of a user story. Define a
“Spike”.

Copyright © James M. Bieman 2004-2016 1-31

Spike

• A story or task aimed at answering a question
or gathering information.

• Required to answer a technical question or
solve a design problem in order to do a user
story estimate.

• The spike is given an estimate and included in
the sprint backlog.

Copyright © James M. Bieman 2004-2016 1-32

Estimating User Story Points
• Story size estimates are ordinal.

– Humans are good at comparing.
– Estimation can be done quickly.

• Use Fibonacci scale: 1, 2, 3, 5, 8, 13, 21, …
Separation between numbers makes it easer for
team members to agree.

• Elements for point estimation:
– Complexity
– Effort
– Doubt

Copyright © James M. Bieman 2004-2016 1-33

Planning Poker
• Card Deck: Cards are inscribed with a number

in the Fibonacci sequence: 1, 2, 3, 5, 8, 13, 21,
etc.

• Team members each choose a card that
represents their best guess of the user story
difficulty.

• Everyone turns over their cards at once.
• High and low card owners argue.

Repeat process until estimates converge.
Project Manager or Scrum Master may serve
as moderator.

Copyright © James M. Bieman 2004-2016 1-34

Scrum Master
(from Wikipedia definition)

• Accountable for removing impediments to the ability of
the team to deliver the product goals and deliverables.

• Not a traditional team lead or project manager, but acts
as a buffer between the team and distracting influences.

• The scrum master ensures that the scrum process is used
as intended.

• The scrum master helps ensure the team follows the
agreed scrum processes, often facilitates key sessions,
and encourages the team to improve.

• referred to as a team facilitator

Ultimate Scrum Master:
https://www.youtube.com/watch?v=P6v-
I9VvTq4&list=PLIXxHp9iBs-m6t1S6kmxeqigQBju86eFF

Copyright © James M. Bieman 2004-2016 1-35

Decomposing a story into Tasks
• Tasks should be small enough that the estimated time

needed for them should be 1-10 hours
• Break the user story into as many tasks as needed so that

if all are completed the acceptance criteria will be met.
– Defining test data, designing test approaches (e.g. unit test,

GUI tests, integration tests, …) must be included as tasks.
• Sometimes “non-functional” requirements (e.g.

performance or security-related) are included as split user
stories and have their own set of related tasks.

• Regularly occurring tasks related to acceptance criteria
for every user story can basis of the “definition of done”
(e.g. all tests pass and there are no outstanding defects).

Copyright © James M. Bieman 2004-2016 1-36

Sources:
https://www.rallydev.com/toolkits/iteration-planning-toolkit, Testing in the Iteration slides

CS 314 Software Engineering

Notes 1.

Software Product and Process

James M. Bieman and Geri Georg

2016

1-7

Scrum Measures
Improving the team’s ability to estimate:
• Velocity

– Number of story points the team completes per
iteration.

• Initially, the team may underestimate story points.
• Estimations will improve as a project progresses, and a more

accurate team velocity will emerge.
• Capacity

– The number of hours available to work on story tasks.
• Since each user story has a set of tasks with hour

estimations this number is used to decide which user stories
to commit to for the sprint.

• As the project progresses team task estimation times will
become more realistic, and lead to a better match with
committed user stories.

Copyright © James M. Bieman 2004-2016 1-37

Extreme Programming

• Incremental iterative development aimed for
small improvements in each cycle.

• Continuous unit and regression testing.
• Pair programming.
• On-site customer as part of the development

team.
• Refactoring.
• Simplicity – don’t do more than necessary.

Copyright © James M. Bieman 2004-2016 1-38

Lots of Interest in Extreme
Programming, but …

• Detailed specifications and designs are not written
up:
– UML diagrams are done on the “white board” and not saved

as documentation.
– Code is the only documentation.

• A customer representative is part of the project
team.

• Programmers work in pairs.
• Design activity takes place “on the fly”.

Start with the simplest solution; add complexity only when
required due to test failures.

May not be suitable for large projects.

Copyright © James M. Bieman 2004-2016 1-39

Software Failures
• IRS Automated Income Tax Form Processing

System (Sperry 1980’s).
• SDI Star Wars software.
• Ariane-5 Rocket.
• Therac-25 Accidents.
• Year-2000 bug.
• London Ambulance Service Fiasco.
• Colorado Benefits Management System (2004).
• MS Zune failure on December 31, 2008.
…

Copyright © James M. Bieman 2004-2016 1-40

IRS System

• Inadequate performance, cost overruns.
• 1985: $90 m. added to $103 m. spent.
• Late refunds.

– IRS pays $40.2M in interest to taxpayers &
$22.3M in overtime wages.

• 1996: Still no improvement! No master plan;
only a 6,000 page technical document.

Copyright © James M. Bieman 2004-2016 1-41

SDI “Star Wars” Software
(1983 -)

Goal: use ground and space-based systems to
protect the US from attack by nuclear
ballistic missiles.

• 10M+ lines of code.
• Huge testing job. But.

– Cannot tested under operational conditions.
– Tests must be done via simulation.

• Required reliability: fewer than 1 failure in
10^9 hrs. of operation.
– To demonstrate this reliability, the system must

run for more than 10^9 hrs. without failure.

Copyright © James M. Bieman 2004-2016 1-42

CS 314 Software Engineering

Notes 1.

Software Product and Process

James M. Bieman and Geri Georg

2016

1-8

Ariane-5 Rocket launched on June 4
1996.

• Veered off course after ~40 sec.
• Destroyed by remote control.
• Reason: incorrect requirement spec.
• $500 million worth of equipment lost.
• Future economic loss: Ariane held

more than half of the world’s launch
contracts.

Copyright © James M. Bieman 2004-2016 1-43

The Therac-25 Accidents

• Therac-25: a computerized radiation
therapy machine.

• Accelerates electrons to create high-
energy beams to destroy tumors with
minimal impact on healthy tissue.

• June 1985 - Jan. 1987: 6 known
accidents involving massive overdoses;
some resulting in deaths.

• Accidents caused by faulty software.

Copyright © James M. Bieman 2004-2016 1-44

Year 2000 “Bug”

• Only 2 digits to store year data.
“We didn’t think that anyone would be using this in

2000.”
• Result: potential for failures in all SW

computing dates after 01-01-00.
– Financial software failures.
– Embedded system failures.
– The entire economic system!!
– Panic!

Copyright © James M. Bieman 2004-2016 1-45

Y2K Repair

• Must scan all code looking for dates.
• Determine all dependencies.
• Make changes.
• Test, test, test.

Copyright © James M. Bieman 2004-2016 1-46

Observations

• Y2K was a risk but was over-hyped.
Why? It’s a bug that is easy for reporters

to understand.
• Although there were few real failures,

social effects were significant:
Many people planned for a shutdown of the

economic & industrial infrastructure.
Y2K bug supported existing millenium fears.

Copyright © James M. Bieman 2004-2016 1-47

London Ambulance Service (LAS)
Fiasco

• Largest ambulance service in the world.
• The LAS computer aided dispatch system

replaced a manual system.
• The system failed when it went on line in

1992:
– Overloaded by normal use.
– Multi-hour delays in responses to emergency calls.
– Ambulance communications failed and ambulances
“disappeared”.

Copyright © James M. Bieman 2004-2016 1-48

CS 314 Software Engineering

Notes 1.

Software Product and Process

James M. Bieman and Geri Georg

2016

1-9

LAS Fiasco Causes
• Winning contractor’s experience was only for administrative

systems.
• No independent quality assessment.
• Concerns not followed up.
• System did not match prior manual process.
• Lack of voice control & flexibility.
• Need for perfect information.
• Poor interface:

– Failure to identify duplicated calls.
– Exception messages scrolled off of screen.
– …

• Memory leaks.
• …

Copyright © James M. Bieman 2004-2016 1-49

Colorado Benefits Management
System

• Replaced prior system for reviewing and
approving applications for benefits.

• Failed immediately after put in operation in
2004.
– Required 17 screens to process 1 case.
– Each screen took up to 24 minutes to load.
– System would time out.
Poor clients!, poor caseworkers!

• No provision for a rollback to prior working
system!!

Copyright © James M. Bieman 2004-2016 1-50

CBMS Fiasco Causes

• No load testing.
• No usability testing.
• Extreme work hours by contractors.
• Contractor’s engineers had little

experience.
The mistakes were avoidable with good

software engineering practices.

Copyright © James M. Bieman 2004-2016 1-51

Zune Failure 12/31/2008
• From Wikipedia:

“At approximately midnight Pacific Standard
Time, on the morning of December 31, 2008,
many first generation Zune 30 models froze.
Microsoft has stated that the problem is with
the internal clock driver written by Freescale
and the way the device handles a leap year
…
a third party analysis of the clock driver's
source code revealed an infinite loop in the way
the clock driver calculates years based on a
given number of elapsed days.”

Copyright © James M. Bieman 2004-2016 1-52

Affordable Care website rollout

• Inexperienced project management.
• Waterfall process: couldn’t test until it

was all implemented.
• Multiple contractors.

Copyright © James M. Bieman 2004-2016 1-53

Toyota acceleration accidents

• Recall of 9 million vehicles (model years
2009-2011).

• Blamed on floormat problem.
• Suspicious software:.

Possible race conditions due to global variable
references by device drivers.

Copyright © James M. Bieman 2004-2016 1-54

CS 314 Software Engineering

Notes 1.

Software Product and Process

James M. Bieman and Geri Georg

2016

1-10

Software Successes

• Phone systems: wired & wireless.
• Banking & securities systems.
• Embedded systems.
• Medical systems.
• Entertainment.

. . .

Copyright © James M. Bieman 2004-2016 1-55

